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Abstract

There are contradictory claims related to whether the Einstein equation of 1916 has a dynamic solution.
The exact “ptane wave" solutions of Bondi et al., seemed to suggest that Einstein's 1936 discovery were in-
correct. In 1990, Damour and Schmidt even claimed that they have proven the existence of bounded dynamic
solutions. Nevertheless, in 1993 the non-existence of any bounded dynamic solution has been shown by Lo. To
resolve this problem, the exact "plane wave" solutions and the proof of Damour and Schmidt are examined. It
is found that the existing exact “plane-waves" are not really waves. They do not satisfy the physical require-
ments of boundedness and periodicity manifested by the linear field equation which is supported by observa-
tions on the binary pulsars. For the Einstein tensor G, = 0, there is no plane—wave solution which satisfies
the physical requirements. Moreover, the existence of an exact circularly polarized plane-wave requires Gy,
> 0. Based on known examples, it is confirmed that the claims of Damour and Schmidt on the reliability of
perturbation theory in general relativity are incorrect. In particular, the existence of a bounded dynamic
solution for the Einstien equation, was "proved" invalidly by assuming implicitly the boundedness of a wave

solution in vacuum. However, dynamic solutions do exist for the Einstein equation of Lo's 1995 version.



THE QUESTION OF DYNAMIC SOLUTIONS IN GENERAL RELATIVITY

AND GRAVITATIONAL PLANE WAVES

I. Introduction.

A major problem in general relativity is whether the Einstein equation of 1916 has a dynamic solution
since there are contradictory claims. Although Lo [1] showed the non-existence of a dynamic solution in
1995, some still believed that Damour and Schmidt [2] had rigorously proven its existence in 1990. Ap-
parently, misconceptions in physics are also responsible for the acceptance of this obscure mathematical error.
Besides, it seems, there are reasons beyond mathematics for remaining in believing Damour and Schmidt.

In essence, there are four main reasons: i) The calculation of exact “plane waves" seems to support the
existence of a dynamic solution. ii) Some current theories depend on the invalid assumption that a dynamic
solution exists; otherwise it would be very difficult to justify, for instance, the notion of black wholes [3].
iii) In general relativity many calculations in the past depend on the validity of a perturbation method [4,5].
iv) Some relativists (who do not understand sufficient mathematical analysis to make an independent judge-
ment) had accustomed to rely on Damour for the validity of mathematics in general relativity [6]. (Note that
the compatibility between physical validity and mathematical rigor is a long standing problem in general
relativity [7].) Therefore, to clarify this mistake, it seems also necessary to trace back the historical
developments how related errors have managed to persist for more than 60 years.

Historically, the theory of gravitational waves was initiated by Einstein [8,9], and the existence of such
waves had been assumed a certainty to the first approximation. However, in 1936, Einstein [10] discovered
that his field equation in geqeral relativity does not admit a propagating wave solution. Subsequently, Einstein
and Rosen [11] investigated plane and cylindrical gravitational waves. Thus, Einstein and Rosen correctly
recognized the investigation on plane waves is a cruchiad initial step.in understan_ding gravitatational waves.
Then, Rosen [1 2] came to the conclusion that there were no exact plane-wave metric filling 3ll space-time.

However, Rosen's argument was not convincing becayse his result that there had to be a 2~-space on
which the determinant of the metric tensor vanished, may not be valid. Bondi, Pirani and Rgbipson [13],

believed that Rosen's demand is too severe. For a general plane-wave satisfyjpg the vaccum Einstein
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equation, Gy, = O, they believed in the less stringent conditions by Lichnerowicz [14] and Petrov [15].
Thus, Einstein's discovery seemed wrong and the Einstein equation of 1916 would admit a propagating wave.

However, from the viewpoint of physics, the question of plane-wave should be considered beyond the
mathematical characteristic of planeness. Surprisingly, even the well-known physical requirement of bound-
edness on the amplitude of metric components, which has already been clearly pointed out by Einstein [16],
was not utilized or simply ignored. As manifested by the weak field approximation [17], a propagating gra-
vitational wave from an isolated system far away, is a periodic (almost periodic to be exact) function of time
at a point of space. But, all existing exact "plane-wave" solutions do not reflect these characteristics [13,
17,18] although some authors explicitly declared that a gravitational plane-wave, similar to the electromag-
netic plane wave, is also an idealization of a wave from a distant source. Thus, to address the problem of
dynamic solution, the physical meaning of the exact plane wave should be clarified first (§§ 2 & 3).

In this paper, based on these physical requirements, it will be shown that there is no plane-~wave solution
for the equation Gyy = 0 (8 6), i.e., Rosen [12] is essentially right. In term of physics, this failure is due
to that G,;,, = O (which has no energy-stress source) is invalid for a physical gravitational wave because it
carries energy [13]. Moreover, the results of investigating the plane-waves unequvocally support the need of
modifying the Einstein equation [18}, and the modified equation of 1995 [1] (§§ 4 & 5).

Besides Einstein's remark, the need of modifying the Einstein equation can go back at least to Hogarth's
[19] 1953 conjecture in which he stated clearly a gravitational energy-stress tensor in the source term is
needed. However, due to the lack of experimental evidences, this conjecture has not resulted in a more
concrete proposal. Note that Lo's proof for the modified Einstein equation is based on the binary pulsar
experiments [20-22] which confirmed the linear field equation as the first order approximation [1].

Clearly, Lo's proof implies unequivocally that the 1990 claim of Damour and Schmidt [2] on the exist-
ence of bounded solutions for an isolated radiation source, is incorrect in mathematics. Moreover, based on
examples, it is found directly that their claims are incorrect. In particular, their "proof" of boundedness was
essentially by assuming boundedness implicitly on a vacuum solution. However, as pointed out by Weinberg
[17], the initial data is restricted by the four components of the Einstein equation (see § 7). Thus, the

initial data cannot be as arbitrary as suggested by Damour & Schmidt.



2. Physical Considerations and the Plane Wave as an ldealization
Relativity suggests the existence of gravitational waves because physical influence must be propagated
with a finite speed [23]. Thus, the existence of the gravitational wave is actually a physical requirement for

a valid field equation. The Einstein equation of 1916 [16] is

1

where G, is the Einstein tensor, R, is the Ricci curvature tensor, T(m),,,, is the energy-stress tensors for
massive matter, and K (= 8TKc 2, where K is the Newtonian coupling constant) is the coupling constant.
However, gravitational waves have not been directly observed [24] although there are indirect observational
evidences [20-22]. Theoretically, the existence of gravitational waves had been assumed a certainty to the

first approximation [1,3,13,17,25-27]. The linear field equation is
1 -
2 00 Yop = ~KT(m)g - (2a)

- 1
where Yoo = Yoo = 2 Nab ¥, Yab = 8ab = Nab » ¥ = N9y , and N, is the flat metric. Eq. (2a) has a

mathematical structure similar to that of Maxwell's equation. An inhomogeneous solution of eq. (2a) is

_ ) K 1 ) . .
Yap (X,1) = - ﬁSETab [yl, (t-R)]d3y, where R2 = ¥ (xi - yi)2 . (2b)

[{T®

Solution (2b) would represent a wave if T,, has a dynamical dependency on time t' (= t — R). The implicit
gauge condition is that the flat metric 1], is the asymptotic limit at infinity.

However, Einstein himself discovered [10] in 1936 that linearized gravity is not reliable and that his
eq. (1) does not admit a propagating wave solution. However, Bondi, Pirani and Bobinson [13], believed

that a general plane~wave, which they considered to be valid [14,15], is

ds? = exp(20)(dT2-d&2)-u2 [ch2B(dN2+dL2) +sh2B cos28 (dn2-d2)-2sh2B sin28dndL], (3)



where ¢, B, 6 are functions of u {= T-&). It satisfies the differential equation (i.e. their eq. [2.8}),

20" = u(B'2 + 8'2 sh2 2B). (4)

But, metric (3) is not bounded, because this would require the impossibility of |u2| < constant. Note that an
unbounded f(u) grows anomaly large as time goes by, and is therefore questionable.

From the viewpoint of physics, however, a gravitational wave must satisfy at least, three requirements:

i) The amplitude of a gravitational wave must be bounded (i.e. |g,| < constant) as weak gravity
condition requires [16].
ii) Moreover, if eq. (2a) gives a first order approximation, 92 '—Yab should be of second order [1,28]
due to the conservation law, V2 T, = O (which is independent of the notion of gauge).
iii) As manifested by solution (2b), a gravitational wave is a propagating wave, and is an almost periodic
function of time for a source in an almost periodic motion.
Note that conditions i) and iii) are also satisfied by the electromagnetic wave and conditon ii) is similar to
the Lorentz gauge. Thus, a gravitatioinal wave should have a fruitful analogy with electromagnetism [17].
But, R,, = O in all space~time would lead to a violation of these requirements (see §§ 3-7).

Bondi et al. claimed that "Our interest in plane waves derives not, of course, from the expectation that
such waves might exist in nature, but from the presumption that at agreat distances from a finite source of
gravitational waves, these waves must appear to be approximately plane." Thus, one would expect that their
metric (3) satisfies these requirements. However, for metric (3), not only i) is violated, ii) is not satisfied
since 92 ’_Yab is also clearly not bounded. Moreover, metric (3) is not even an almost periodic function. Thus,
metric (3) fails all three physical requirements (which cannot be criticized as too severe). Since metric (3)
satisfies eq. (1), this is a clear evidence that eqs. (1) and (2) are not dynamically compatible [1].

Nevertheless, since metric (3) may not be the most general form of a plane-wave, we examine another

general plane~wave form proposed by Misner, Thorne, and Wheeler [3] as the follows:

- ds? = 1L2(e?2B dx? + e 2B dy2?) + dz? ~ dt? , (5)



where both L (background factor) and B (wave factor) are functions of u(=t - z). Form (5) would be

incompatible with relativistic causality [29] which requires:
L-2e2B < 1; and L-2e-2B< 1. (6)

However, since L = 1 and B % 0 is a weak wave limit according to Misner et al., relation (6) may not be
possible. Also, form (5) cannot accommodate a circularly polarized wave [18]. As pointed out by Wald
[30], there is insufficient evidence to support the decomposition in form (5) as natural.

Although form (5) manage to avoid an appearance of obvious unboundedness, the problem remains.

Plane-wave form (5) reduces the Ricci curvature to zero except
R, = 2[L" + (BY2L]/L. (7)

However, no exact wave solution has been obtained for R,, = O [7]. As mentioned above, the difficulty is
not only in mathematics, but that no phystcat solution for Einstein equation R, = O exists (see §§ 4-6).

In fact, R,, = O is incompatible with the notion of weak gravitational waves (see §§ 3-6). To see this,
it would be enlightening to consider the weak field approximation eq. (2) further, since it is supported by the

observations [20-22] on the radiation lost of binary pulsars.

3. The Weak—Field Approximation of Waves and Modification of the 1916 Einstein Equation
The inability to recognize G, = O as invalid for waves is due to that eq. (2) is mathematically mis-
taken as a first order approximation of eq. (1). In spite of Einstein's discovery of the incompatibility between

eq. (1) and eq. (2) is not proven until 1993. Eq. (2) is actually an approximation of the modified equation,

]
Guu =Ry - 2 guuR = - K [T(m),y - t(g)pul, (8)

where t(g) ,y is the energy—stress tensor for gravity. Eq. (8) is the Einstein equation of 1995 version. Then,




VHT(m)y = O, and  VHt(g),, = O, (9)

Eq. (9) implies that the equivalence principle would be satisfied {1]. In light of eq. (2) being an
approximation of (8), let us consider the weak waves generated by massive matter.

According to eq. (2), at vaccum, a weak plane-wave satisfies the following two equations:

ac8c ?ab =0; (10a)
and

82 ¥, =0. (10b)

Note that the zero in (10) should be understood as representing a second order term [27] but not exactly
zero; otherwise (10b) and (2a) imply no radiation [30,31]. However, the periodic nature of gravity and
boundedness of a gravitational wave are clearly manifested only in solution (2b). Eq. (10) is the equation for
the plane wave and implies that the pure gravitational plane-waves are transverse waves [17].

Also, one should not consider condition (10b) as a linearization of the harmonic gauge [3,17] which
was not accepted by Eddington [28] and questioned by Einstein [16] and can be incompatible with the

equivalence principle [1,29,32]. One may argue that (10b) would be satisfied by using the transformation,

xH -> x'H = xH + $H (11a)
which gives

Y'HY = yHV - gUPH - GHYY, (11b)
By solving

8.0c<¥ =027, , (11¢)

it seems, a gauge function ¥, can be obtained. But, the mathematical similarity to the gauge in classical
electrodynamics stops at this point because, as implicitly questioned by Einstein, a derivation of the gauge

function 8, ¥, may not be be bounded [29]. An unbounded metric would be invalid in physics [1,29].



The incompatibility between eq. (1) and eq. (2) can be proved by using Einstein's radiation formula. If

one decomposes the Einstein tensor as a sum of the first order and the second order as follows [16]:

1 -
Cab = G[1]ab + C‘(z)ab where G(”ab = ;acac Yab + H“)ab (12)
where

1 . . 1 -
H(1)ab = - ”Z—ac [6bYac +aa,ch] + —;nabacachd .

Eq. (10) implies G(1),; = 0. One might argue [30] that G, = O although G2, # 0 is that
G (TP + Gy, = 0, (13)

where Y(2)_, is the second order approximation. But, eq. (13) is not valid if eq. (2) is the first order appro-
ximation; and consequently G(2),, ~ O(1/r?) # O (17). If g, is an almost periodic function of t', then it is
alway possible to find a time-average of G(1),, such that it has no term of O(1/r2) [1]. Thus, it is invalid
to consider a possible dynamic solution of eq. (1) as suggested by Wald [30]. It follows that the plane-
wave is actually an approximation of the Einstein eq. (8) of the 1995 version (see also §§ 4, 5 & 7).
Moreover, from the viewpoint of physics, Einstein's notion of gravitational energy-stress [27] actually
implies the need of modifying eq. (1). Although Einstein's notion is not localizable, his radiation formula
implies the existence of radiation in vacuum. However, physically it is impossible to transform a radiation
away by changing the space-time coordinate system. Thus, Einstein's notion cannot be exact, but is an appro-
ximation of the gravitational energy—stress tensor for some coordinate systems. It follows that this impossibility
means a necessary modification of eq. (1) which implies the exact validity of Einstein's conservation law

[17]. This impossibility means also that eq. (1) is incompatible with radiation and therefore eq. (2).

4. Field Equation for the Exact Plane—Wave Idealization
To consider the most general exact plane-wave form, we must first derive the exact field equation for

such an idealization. According to eq. (8), the field equation in vacuum should be




1
Cu\) = R““ -~ 7 gu\)R = K t(g)“\), (8)l

However, if one assume Einstein equation (1) were valid, then the field equation to be considered would be

v =

For simplicity, we consider a plane-wave propagating to the z-direction. As in the literature, the velocity of
the gravitational wave is assumed to be c, the light speed in vacuum. This is justified by the facts that an
accompany gravitational wave of the light must have the papagation speed as the light and that in a weak

field, the light speed would be very close to c. Thus, the metric g, is a function of u (= ct -z), i.e.,

8k = 8Bi(u) . (15)

Let Pk be the momentum of a graviton. (For simplicity, the units is selected to have ¢ =1.) Because the wave

speed is 1, the mass of a graviton is zero; and one obtains [18] the conditions,
P2=PY, P*=PY=0, and P®™ gpx = P, = 0 , (16a)
fork = x, y, and v (E t + z). Eq. (16a) is equivalent to

gxt * 9xz = 0, Gyt *+ Gyz = 0, and g, + 2g, + g,, = 0, (16b)
or

gxt - gXz =0, g¥t - g¥Z2 =0, and gtt - 2gtz + g2z = 0. (16c)
Egs. (15) and (16) imply also the validity of the geodesic. Then, the tensor R, is reduced to

Ry = - R, =R (17a)

7z /



and the other components are zero. Then, R, = O is simplified to a differential equation of u,

R, =0, (18a)
where

Ry = {G" - 8.8, + (847 - G'(g'/28)}/2C, (18b)
where

G =g 8y — 8y2, and g = |g] (19)

is the determinant of the metric. The metric elements are connected by the following relation:

-g=Gg?, where g =g, +g, (20)

Note that eq. (4) of Bondi et al. and eq. (7) of Misner et al. are special cases of eq. (18).

Equations (16)~(20) allow g, 8ytr and g, to be set to zero (or equivalently g, = O for k = x, y, u).
These orthogonal conditions are valid because there is no physical reason to suggest otherwise. In any case,
these assigned values have little effect in subsequent calculations. In the above derivation, periodicity has not
been used. Note that equation (16) allows the possibility of g,, to have a wave component as in metric (3).

Now, there are four metric elements (g,,, 8,,, 8, and g,) to be determined. However, there is only
one differential equation (since eq. [20] is not really an equation if g is not specified by other means).

Nevertheless, to show that there is no physical solution, eq. (18) is sufficient.

5. The Circularly Polarized Exact Plane-Waves

For an isolated system, Newtonian theory manifested the orbits are periodic functions. In general relativi~-
ty, 8., can be considered as an almost periodic function of t' (= t —= R) since the radiaton is so small [17].
Thus, in a plane-wave idealization, g, can be considered as a periodic function as in the literature [3,17].
Moreover, for some cases, the periodicity of a plane wave can be proven as intrinsic.

A graviton of spin 2 is often identified with a circularly polarized wave [17]. Here, it will be shown

10




that a circularly polarized exact plane-wave does not satisfy eq. (14), but it would satisfy eq. (8)'. For this
purpose, it is necesary to derive the circularly polarized wave from the expression of R, in eq. (18b) (but,
ignores the relation R, = 0) instead of based on the usual linear equation (10). It is interesting to note that
periodicity is also a result. For such a wave, the rotational invariants with respect to the z-axis are constants.

These invariants are: G, (8xx + gyy), Ritr T(E)yw 8isr 8/ 8w and etc. Let us assume the invariant,

Bx + By = -2 - 2C, then g, = -1-C+B,and g, =-1-C-B. (21)
Then, the expressions of R, and G in eq. (18) and eq. (19) imply,

B? +g,%2=(1+C)?2 - G, (22)
and

(B')? + (g2 = 2GR, 2 0 (23)
are constants. It folows that egs. (22) and (23) imply

B = By cos(Wu + Q), and Buy = *By sin(Wu + Q) , (24a)
where

w? = 2R,,G/By2, and Bg? = (1+C)2 - G 2 0. (24b)
Thus, the circularly polarized metric is exactly

gy =-1-C+ By cos(ldu + Q) , By = -1 - C = By cos(Wu + Q).
and

Buy = By sin(Wu + Q) (24c¢)

Wave (24c) satisfies the linear eq. (10). However, eq. (24b) implies that R, = O only if W = 0 or By = O.

11



This means that eq. (14) cannot have a circularly polarized wave. Moreover, wave (24c) implies R, > O.
This requires an antigravity coupling, and thus wave (24c) is associated with eq. (8)' but not eq. (1).

Thus, in spite of the popular speculation of associating a graviton with eq. (14) [17], there is no
possibility, within the current theory of eq. (1), to construct an acceptable metric representing the circularly

polarized gravitational wave. Moreover, the other polarizations of plane waves also result in R, # O.

6. A General Proof for the Non—existence of Plane~Waves for R, = O

In general, it can be shown that there is no bounded wave solution for eq. (14) by using the required
boundedness and periodic nature of the metric (see also 88 2 & 3). Then, the curvature tensor component
Ry, on the time average, is necessarily non-negative for a plane wave. (This reflects the fact that, on the

time average, -G(2),, is positive as manifested by Einstein's radiaton formula.) In the subsequent derivation,

4
weak gravity is utilized. If a time average is taken over multiple periods, a time average of derivatives of a
metric element must be zero. For simplicity, we assume also that the wave components are essentially

monchromatic although one can see in the following derivations that such an assumption is not necessary.

It will be shown that, on the time average, R,, > 0. For clarity, we define

-f= Y+ Yyy = -(fy + fy) = =(f; + F; + Fy) (25)

where f, is the time average of f, F, is of the first order and F, is of the second order. It follows that

Go1af-fry-(To)? - (ny)z], (26)

and
G = f2' - [f2lex + foxl +2YxxYxxl + 2'ny'ny‘]' (27)
Note that all terms in (27), except possjply f angd f,', are at least of second order in the derivations. Simply

algebraic calculation gives
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Gn_ gxxlgyy| + (gxy|)2 = (F2“ + F1") — (F1ll + le')Yxx - foxn - fQ.Yxx'
= 270"+ ()2 + 277" + (1) 2], (28)

Now, it is clear that in R, the only term which can be of first order in the deviations is f,". Note that (28)
includes ali terms (from the curvature tensor) in the lowest order equation.
To approximate eq. (14), it would be useful to drive some mathemtical relations for later usage. A
periodic function A(Wu) can be expressed by
©
A(Wu) = A,y + n§1An cos(nWu + O,). (29a)

It follows that

w®
A' = W ¥ nA_ sin(nWu + Q,),

n=1
and
<
(A')2 = W2 ¥ A n%/2 + W2 F(A), (29b)
n=1
where
<« @©
F(A) = £ mn A A, sin(mWu +Q, )sin(nWu +Q,) - ¥ n2A 2 cos2(nWu + Q)/2.
m#n n=1
[ o]
The time average of F(A) is zero. Since A" = -W? ¥ n2?A_ cos(nWu + O ),
n=1
@
AA" = —W2 ¥ n2A 2/2 + A"A, - W2F,(A), (29c¢).
n=1
where

«© [+
2F,(A) = T [m2+n2] A A, cos(mWu +Q, )cos(nWu +Q,) + T n2A 2 cos2(nWu + Q,),
m¥n n=1

whose time average is also zero. Egs. (29) implies.

(A")2 + 2AA" = -W2 T n2A 2/2 + 2A"A, - W2 (F(A) - 2F1(A)] , (29d).
n=1

13




Since all the constant terms in equation (29d) are negative, (28) is positive on the time average.

Now, let us consider the case where f," is of first order, then the first order equation is
F," =0 (30a)

Since F, is a periodic function, the only possibility is F; = O. This contradiction implies f,' is of second

order. The second order equation is
L "oy 1 2 + 2 it + |)2] . (30b]‘
Fo = [27w + f) "+ (1) Yy Yy' * (Vg

From eq. (26), one can see easily that the constant terms in eq. (30b) have the same sign. Consequently, eq.
(30b) is not valid unless the wave components of Y, and Yy are zero. Since the above arguments are
symmetric toward x and y, the wave component of 7, are also zero. Thus, the order of f," is at least three.

In general, one may assume that the constant f, is of order n, and the least order of 7' and 7, ' is m

if they are not zero. Then the lowest order equation is

" = T = (27T + (V)2 + 27,7 + (1) 2] (30c)

If nis smaller than m, the order of the left hand side is at least of order 2m. But, this also not possible since
the time average of the left hand side is zero, but the right hand-side is non-zero. If n is large than m, a
similar problem would arise. Thus, it is not possible to have a wave components in Y, ," , 'Yyy' , or ’Yyy'.

In conclusion, Rosen [12] is essentially correct, i.e., there is no physical plane-wave solution for R, =
0. Note that all existing "plane-wave" solutions are not bounded and that eq. (1) must be modified, otherwise
it has no dynamic solution (see also § 7). It seems, before 1993 theorists were unaware of that such plane
waves are not bounded, and therefore unphysical. For example, even Griffiths [33] wrote a book about col-
liding plane waves. A root of the problem is that linearized gravity was incorrectly accepted as generally

valid [34], and therfore the linear field equation (2) were considered as derivable from eq. (1).
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7. The Question of Dynamic Solutions in General Relativity

General relativity, being a theory which abandoned naive visualizations in favour of a conceptual analysis
of the correspondence between observational data and the mathematical quantities in a theoretical formalism
[27], can be a victim of over extrapolation without adequate analysis in physics. In particular, there are
confusions on what is a physically valid solution because the equivalence principle was not well-understood
[35]. In physics, deriving of a valid solution for a field equation is possible only if the physical requirements
are clearly identified [1,18,29]. On the other hand, if the physical requirements are inadequate, an unphy-
sical solution such as metric (3) would be incorrectly accepted as a "plane-wave" solution (see § 2).

In 1936, Einstein discovered that his eq. (1) does not admit a propagating wave solution. Its incompati—
bility with eq. (2) has been shown in § 3 and it has been proven that there is no plane wave solution for eq.
(1). Based on these, Lo [1] has derived the 1995 version of Einstein equation (8), which clearly has a
dynamic solution. However, one might still argue that equation (1) does mathematically admit a propagating
wave solution [36]. Was Einstein's discovery wrong, and therefore Lo's derivation invalid? To clarify this
question, one must understand that Einstein is a physicist, and thus would concern only physical solutions. To
do justice to Einstein, one must check whether any of such mathematical solutions is valid in physics.

According to Einstein [16], a metric must satisfy the equivalence principle. For a physical solution, a
weak source would produce a weak gravity. Furthermore, for a massive source, according to observations of
the binary pulsars, linear field eq. (2) is the first order approximation [1]. Moreover, existing perturbation
theories and weak gravity necessarily assume that a solution is bounded (4].

However, as manifested by metric (3), eq. (1) has no bounded physical solution for a dynamic situation.
This can be proven by contradiction. If there were a bounded solution for an isolated system, according to the
corresponding principle, eq. (1) should have a weak gravity if the source is not too strong. Let us assume that

YN = Yab = T3, and define YO, = 7O~ N, (YO N), where i = 1, 2. If

L V(1

2 acac 'Y( )ab = - KTab ’ (31)
then 7(2),, is of the second order as required by the radiation formuda. Then, from eq. (1), one has

15



1 -
—2-6c6c Y(z)ab + H(”ab = —G(z)ab . (32)

For a static problem, eq. (32) can be satisfied since both sides of eq. (32) would be of O(K2?/r4). But, for
an isolated dynamic system, T, and Y,, are admost perdodic functions of time since the effect of gravita-
tional radiation is extremely small [17]. Then, it can be shown that eq. (32) cannot be satisfied. It follows
periodicity that G(2),; is of O(K?/r2) (see also § 3). But, a non-zero time-average of the left hand side is
of O(K?/r3). Thus, the two sides of eq. (32) cannot be matched. The impossibility of satisfying eq. (32)
implies that the initial assumption of boundedness is not valid.

Note that G(1),, contains only first order time derivatives, and thus the equations, G,, = -KT(m),, (a =
X,¥,z,t) restrict the initial data. For the idealization of an exact plane wave, it is obvious that eq. (32)
cannot be satisfied. On the time average, G(V),, = 0, -G{2), > 0, and -G, > 0, according to eq. (18).

Thus, for a dynamic problem, the basic assumption of boundedness for solutions of eq. (1) in the pertur-
bative methods [4] is invalid. From the above analysis, the only possibility of having a bounded solution
could be that eq. (2) is not a valid approximation. But, such a solution, if existed, would be unphysical since
it is at odd with radiation experiments as well as the physical principles. There is no evidence for such an
unphysical solution. On the other hand, the non-existence of a bounded plane-wave solution for eq. (1),
supports the non-existence of a bounded dynamic solution (see 88 5 & 6). If one takes the viewpoint of
Bondi, Pirani and Robinson (see § 2), the impossibility of having a bounded plane wave solution can be con-
sidered as another conclusive evidence that eq. (1) does not admit a physical solution of propagating waves.

To illustrate the non-existence of a bounded radiating physical solution, let us examine a recent solution

of R,, = 0. For example, the cylindrical symmetry solution of Au, Fang & To [35] is

ds? = N2(c2dt2 - dz2) - L2dp2 - M2p2dd? (33)
where
1 1
N2 = rg exp(-4§®dp) exp (2n;), L2 = o8 (1 + pP)2exp(~-6§Pdp),
and

M2 = exp(2{®dp) where n, =n,(ct-2), and ® =& (p)
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are resepectively arbitrary functions of (ct -z) and of P. The function n,(ct - z) makes N2 a propagating

wave. If solution (33) were a physical solution, M should be a bounded function of Q, i.e.,

exp(2§®dp) < C,2 , (34)

for some positive constant C,. But, this also means that N2 is not bounded for small P. Moreover, if light

velocity is not larger than its vacuum velocity ¢, one should have N2/L2 and N2/M2 < 1. It thus follows that

(1 + p®)2 = p* exp(2§®dp)exp (2n,), and exp(6{®dP) = exp (2n,)P*. (35)
Hence,
(1/p + ®)2 = p2/3 exp (8n,/3) (36)
and therefore

92 > ~ O(p2/3). (37)

But conditon (37) is also inconsistant with condition (34). Thus solution (33) is not a physical solution.
Another example is that Damour and Schmidt [2] claimed the existence of bounded physical solutions
for an isolated radiating source. Their claims are shown in the abstract of their paper as follows:
The relation between perturbation theory and exact solutions in general relativity is tackled by investigating
the existence and properties of smooth one-parameter families of solutions. On the one hand, the coeffi-
cients of the Taylor expansion (in the parameter) of any given smooth family of solutions necessarily
satisfy the hierarchy of perturbation equations. On the other hand, it is the converse question (does any
solution of the perturbation equations come from Taylor expanding some family of exact solutions?) which
is of importance for the mathematical justification of the use of perturbation theory. This converse question
is called the one of the "reliability” of perturbation theory. Using, and completing, recent results on the
characteristic initial value probetm, the local reliability of perturbation theory of general relativity in
vacuum is proven very generally. Rhis result is then generalized to the Einstein—Yang-MiHs equations (and

therefore, in particular, to Einstein—Maxwell ones). These local results are then partially extended to the
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global ones by: (i) proving the existence of semiglobal vaccum space-time (respectively, Einstein-Yang-
Mills solutions) which are stationary before some retarded time uy, and radiative after u,, and which
admit a smooth conformal structure at future null infinity: and (ii) constructing smooth one—parameter
families of such solutions whose Taylor expansions are of the "multipolar post-Minkowskian" type which
has been recently used in perturbation analyses of radiative space~times.
With such drastic claims, one would expect them to provide a few examples to illustrate the results. However,
there is no example of a solution even for a radiating wave. They, just like Damour [4] in 1987, seemed
not aware of that the existing waves of R, = O are unbounded. Consequently, there is no discussion on the
problem of unboundedness; and inadvertently they implicitly assume that the waves were bounded. Some theo-
rists might even argue that a physical solution in vacuum need not be bounded. However, this is not an issue
here since Damour and Schmidt claimed in (ii) that eq. (2) provides the first order approximation.

In view of that all existing wave solutions of R,, = O are unbounded, from the viewpoint of physics, a
radiating physical solution should be due to false arguments. Note that the mentioned remote possibility (of
having a bounded solution for which eq. (2) is not a valid approximation) is not an issue here because of ii).
It is known that there is no possibility, within orthodox general relativity, to construct a physically acceptable
(i.e. bounded) metric representing the gravitational wave necessarily accompanying a plane electromagnetic
wave [18,29]. Therefore, their generalization to Einstein-Maxwell equations also cannot be valid in physics.
It is also known that, for a circularly polarized wave, the linearized field equation does not provide an app-
roximation [34]. Moreover, there is no excuse for not justifying, in terms of physics, the questionable
situation of a sudden switch on radiation if it is excusable for not providing examptes solved in close-forms.

Note that the local reliability is actually trivial since a continuous function is always locally bounded and
a Minkowskian metric is locally diffeomorphic to the flat metric N,,. Moreover, the existence of a smooth
one~-parameter family g,,(x',A) for R, = O has meaning to the "reliability" of perturbation theory only if 1)
globally g, (x,0) = N, the flat metric, and 2) the family is bounded, i.e. [g,,(x,A)|< constant.

To illustrate this, let us consider metric (3) of Bondi et al. Since metric (3) is not bounded, it is
impossible to have a meaningful first order approximation. Nevertheless, a one-parameter family gab(x‘,/\)

can be obtained if one substitutes ¢ and B in metric (3) respectively with §+A and 8+ A since they satisfy
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the same differential equation (4). However, not only g, (x',0), but the expansion of A order terms such as
h(m«m = _h(1)CC = 2uZsh2fB sin28, and hame = -2u?sh2B cos26, (38)

where B and O are function of u (=T-&), are not bounded. In fact, any plane wave can easily become a
family of solutions since eq. (18) is homogeneous in the metric elements. If g, (x|,0) is not bounded, no
matter how small A is chosen, one cannot joint g, (x',A) with some stationary metric to form a solution of
R, = O. In short, a one—parameter family of solutions of R, = O may have no physical meaning at all.

Thus, Damour and Schmidt's claim of validity due to the freedom of choosing a very small A is mis-
leading and requires a rigorous proof. In particular, the validity of their choice of data for the purpose of a
union (as mentioned) is itself an implicit dubious assumption. To say the least, the proof of their claim i) is
incomplete and therefore their claim ii) is misleading since local reliability has little meaning in perturbation.

One may argue, however, their assumed validity is reasonable in physics since this only means a small
deviations about some stationary metric. But, one should not confuse over the physical requirements as the
mathematical characteristics of a solution of an equation which is under investigation. If a field equafion is
inappropriate, it may not be able to accommodate the physical requirements no matter how reasonable. The
investigation of plane—waves in this paper shows that even necessary physical requirements are not satisfied
by eq. (1). A "plane wave" of eq. (1) must have an amplitude increasing with time. The existence of only
unbounded waves would imply that equation (1) is not valid for a dynamic problem. Experiments verify,
however, the existence of bounded waves and thus reject eq. (1). Note also that some time-dependent
solutions of eq. (1) even have unexplainable singularities [37].

Another major problem is that there seems no physical situation corresponds to a switch—on radiation. To
complete their proof, Damour and Schmidt must do the impossibility, to show unexpectedly a family of
bounded wave solutions g, (x/,A) for R, = O with g, (x',0) = N, and to prove, in spite of using the har-
monic gauge [16,28,30,31], such a metric satisfying the equivalence principle. The futility of such an
effort has clearly been demonstrated in the analaysis of plane waves. From the viewpoint of physics, this

futility is even cleare\r. The impossibility of having a bounded plane wave solutian for R, = O manifests that

=




a physical gravitational wave implies R,, ¥ O (see also § 5). Physically, this means that a gravitational wave

carries the gravitational energy-momentum as shown in eq. (8), the Einstein equation of 1995 version.

8. Discussions and Conclusions

In Einstein's presentation [16], linear field equation (2) was derived as a consequence of the Einstein's
equation (1). But, as Einstein discovered in 1936, his derivation is not generally valid. Then, Rosen (12]
conceived the notion that the exact plane wave would be crucial in understanding general relativity. However,
due to the lack of experimental support, the importance of Rosen's notion and Hogarth's conjecture [19] of
1953 on the need of modifying eq. (1), was not recognized. The explanation of the perihelion of Mercury
and the work on exact "plane-waves" [13] provided a seemingly unshakable appearance for eq. (1).

Moreover, the confusion on the exact plane waves [14,15] played a crucial role in disregarding Ein-
stein's discovery; and the incompatibility between eq. (1) and (2) was not proven until 1995 [1]. Although
the weak wave was analyzed, the intrinsic differences between the weak gravitational wave and the exact
"plane-wave" [13] were not addressed since eq. (2) were believed to be an approximation of eq. (1).

The investigation of plane waves has played a crucial role on the need of modifying eq. (1). First, when
the gravity of an electromagnetic plane wave was considered (18,32], according to the principle of equi-
valence and the principle of causality, there is no possibility of having a physical solution within the theo-
retical framework of eq. (1). Thus, the validity of eq. (1) became finally questionable and the need of an
antigravity coupling term in the source was apparent. In the studies of exact plane waves, as declared by
Bondi et al. [13], a crucial point is that an exact plane wave must be considered as an idealization of a
weak wave from a distant isolated source. Thus, the characteristics manifested in the weak gravitational
waves [16] should serve as guidiances in the investigation of exact gravitational plane waves. This necessary
connection in terms of physics, as shown, clearly leads to the modified Einstein eq. (8).

The physical picture on the need of modifying eq. (1) due to radiation, can be seen more clearly through
an exact plane wave because, as an idealization, it has discarded the non-essentials. Thus, it can be shown
that there is no possibility to have a circularly polarized plane wave within the framework of eq. (1), and

that there is no bounded plane waves for R, = 0. A crucial non-mathematical error of Damour and Schmidt
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[2] seemed to be that they were unaware of the non-existence of a bounded wave for R, = O.

Moreover, Einstein's radiation formula implies the existence of radiation which also leads to the need of
modifying eq. (1). Although Einstein's notion of gravitational energy-stress [27] is not localizable, physic—
ally it is impossible to transform a radiation away by changing the coordinate system. Thus, Einstein's notion
can only be an approximation of the gravitational energy-stress tensor for some coordinate systems. It follows
that eq. (1), which implies the exact validity of Einstein's conservation law [16], must be modified.

Experimentally, it is the Hulse-Taylor observation on the binary pulsar PSR 1913+16 leads to the
unequivocal support of eq. (2) as the first order approximation for a dynamical problem that eq. (1) must be
modified. Nevertheless, this experiment (and other subsequent observations) is not a theoretcal necessity in
justifying eq. (2) because the validity of eq. (2), as a first order approximation, could have been derived and
justified in terms of physical principles which led to general relativity if one utilizes earlier experiments such
as the bending of light or the time delay of light [38]. Being independent of eq. (1), eq. (2) has been
called the Maxwell-Newton Approximation [1]. Also, the Maxwell-Newton Approximation would be further
confirmed by the Gravity Probe~B gyroscopes [39] experiment in the near future.

In conclusion, there is no dynamic solution for the Einstein equation of 1916. Therefore, it is necessary’
to modify the 1916 version, and conclusions drawn from this equation must be reviewed to determine the
need of revision. On the other hand, the Einstein equation of 1995 version does have dynamic solutions since
it has the Maxwell-Newton Approximation. However, since the exact form of the gravitational energy-stress
tensor t(g),, remains to be known, general relativity remains an incomplete theory as Einstein stated (16].
Also, the pure gravitational plane wave is mathematically similar to the plane wave in electromagnetism
[17]. In terms of physics, however, this similarity implies that the gravitational energy-stress tensor with

the antigravity coupling must be added to the source of the Einstein of 1916 version.
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