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Abstract 

There are contradictory claims related to whether the Einstein equation Qf 1916 has a dynamic solution. 

The exact "ptane wave ll solutions of Bondi et aI., seemed to suggest that Einstein's 1936 discovery were in

correct. In 1990, Damour and Schmidt even claimed that they have proven the existence of bounded dynamic 

solutions. Nevertheless, in 1993 the non-existence of any bounded dynamic solution has been shown by lo. To 

resolve this problem, the exact "plane wave" solutions and the proof of Damour and Schmidt are examined. It 

is found that the existing exact "plane-wavesll are not really waves. They do not satisfy the physical require

ments of boundedness and periodicity manifested by the linear field equation which is supported by observa

tions on the binary pUlsars. For the Einstein tensor Cab = 0, there is ~ plane-wave solution which sattsfies 

the physical requi rements. Moreover, the existence of an exact circularly polarized plane-wave requires Gtt 

> O. Based on known examples, it is confirmed that the claims of Damour and Schmidt on the reliability of 

perturbation theory in general relativity are incorrect. In particular, the existence of a bounded dynamic 

solution for the Einstien equation, was IIprovedll invafidty by assuming implicitly the boundedness of a wave 

solution in vacuum. However, dynamic solutions do exist for the Einstein equation of Lois 1995 version. 
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THE QUESTION OF DYNAMIC SOLUTIONS IN GENERAL RELATIVITY� 

AND GRAVITATIONAL PLANE WAVES� 

I. Introduction. 

A major problem in general relativity is whether the Einstein equation of 1916 has a dynamic solution 

since there are contradictory claims. Although Lo [1 J showed the non-existence of a dynamic solution in 

1995, some sti II bel ieved that Damour and Schmidt [2 J had rigorously proven its existence in 1990. Ap

parently, misconceptions in physics are also responsible for the acceptance of this obscure mathematical error. 

Besides, it seems, there are reasons beyond mathematics for remaining in believing Damour and Schmidt. 

In essence, there are four main reasons: i) The calculation of exact "plane waves" seems to support the 

existence of a dynamic solution. ii) Some current theories depend on the invalid assumption that a dynamic 

solution exists; otherwise it would be very difficult to justify, for instance, the notion of black wholes [3 J. 

iii) In general relativity many calculations in the past depend on the validity of a perturbation method [4,5 J . 

iv) Some relativists (who do not understand sufficient mathematical analysis to make an independent judge

ment) had accustomed to rely on Damour for the val idity of mathematics in general relativity [6 J. (Note that 

the compatibility between physical validity and mathematical rigor is a long standing problem in general 

relativity [7 J.) Therefore, to clarify this mistake, it seems also necessary to trace back the historical 

developments how related errors have managed to persist for more than 60 years. 

Historically, the theory of gravitational waves was initiated by Einstein [8,9 J, and the existence of such 

waves had been assumed a certainty to the first approximqtion. However, in 1936, Einstein [10J discovered 

that his field equation in general relativity does not admit a propagating wave solution. Subsequently, Einstein 

and Rosen [11 J investigated plane and cylindrical gravitationql waves. Thus, Einstein and Rosen correctly 

recogni;led the investigation on plane waves is a Clr-Ucia,.{, initial step in understanding gravitatational waves. 

Then, ROSien L12) c<Jme to the conclusion tryat there w~re no exact plane-wave metric filling <Jll spqs:::e-time. 

However, Rosen's argument w9s not convincing becapse his result that there had to b~ q 2--"pace on 

which the determinant of the metric tensor vanished, may not be valid. Bondi, Pirani and Rqp.iijson [13 J , 

believed that Rosen's demand is too severe. For a general plane-wave satisfvirg the v1Fcum EinQeJn 
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equation, Gil\) = 0, they believed in the less stringent conditions by Lichnerowicz (14] and Petrov (15 J. 

Thus, Einstein's discovery seemed wrong and the Einstein equation of 1916 would admit a propagating wave. 

However, from the viewpoint of physics, the question of plane-wave should be considered beyond the 

mathematical characteristic of planeness. Surprisingly, even the well-known physical requirement of bound

edness on the amplitude of metric components, which has already been clearly pointed out by Einstein (16), 

was not utilized or simply ignored. As manifested by the weak field approximation [17], a propagating gra

vitational wave from an isolated system far away, is a periodic (almost periodic to be exact) function of time 

at a point of space. But, all existing exact uplane-waveu solutions do not reflect these characteristics [13, 

17,18) although some authors explicitly declared that a gravitational plane-wave, simi lar to the electromag

netic plane wave, is also an idealization of a wave from a distant source. Thus, to address the problem of 

dynamic solution, the physical meaning of the exact plane wave should be clarified fi rst (§ § 2 & 3). 

In this paper, based on these physical requirements, it will be shown that there is no plane-wave solution 

for the equation Gil\) = 0 (§ 6), Le., Rosen (12) is essentially right. In term of physics, this failure is due 

to that Gil\) = 0 (which has no energy-stress source) is invalid for a physical gravitational wave because it 

carries energy (13). Moreover, the results of investigating the plane-waves unequvocally support the need of 

modifying the Einstein equation [18}, and the modified equation of 1995 (1] (§§ 4 & 5). 

Besides Einstein's remark, the need of modifying the Einstein equation can go back at least to Hogarth's 

[19) 1953 conjecture in which he stated clearly a gravitational energy-stress tensor in the source term is 

needed. However, due to the lack of experimental evidences, this conjecture has not resulted in a more 

concrete proposal. Note that Lo's proof for the modified Einstein equation is based on the binary pulsar 

experiments [20-22) which confirmed the linear field equation as the first order approximation [1]. 

Clearly, Lois proof implies unequivocally that the 1990 claim of Damour and Schmidt [2] on the exist

ence of bounded solutions for an isolated radiation source, is incorrect in mathematics. Moreover, based on 

examples, it is found directly that thei r claims are incorrect. In particular, their "proof" of boundedness was 

essentially by assuming boundedness implicitly on a vacuum solution. However, as pointed out by Weinberg 

[17], the initial data is restricted by the four components of the Einstein equation (see § 7). Thus, the 

initial data cannot be as arbitrary as suggested by Damour & Schmidt. 
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2. Physical Considerations and the Plane Wave as an Idealization 

Relativity suggests the existence of gravitational waves because physical influence must be propagated 

with a finite speed [23]. Thus, the existence of the gravitational wave is actually a physical requi rement for 

a val id field equation. The Einstein equation of 1916 [16] is 

(1 ) 

where GJlV is the Einstein tensor, RJlV is the Ricci curvature tensor, T (m) JlV is the energy-stress tensors for 

massive matter, and K (= 8TrlCc2, where K: is the Newtonian coupling constant) is the coupling constant. 

However, gravitational waves have not been di rectly observed [24] although there are indi rect observational 

evidences [20-22]. Theoretically, the existence of gravitational waves had been assumed a certainty to the 

first approximation [1,3,13,17,25-27]. The linear field equation is 

(2a) 

1 
where Yab = Yab - 2 ll ab Y, Yab = gab - llab , Y = llcdYcd , and llab is the flat metric. Eq. (2a) has a 

mathematical structure simi lar to that of MaxweWs equation. An inhomogeneous solution of eq. (2a) is 

3 
where R2 L (Xi - yi) 2 • (2b) 

i=1 

Solution (2b) would represent a wave if Tab has a dynamical dependency on time e (= t - R). The implicit 

gauge condition is that the flat metric llab is the asymptotic limit at infinity. 

However, Einstein himself discovered [10] in 1936 that linearized gravity is not reliable and that his 

eq. (1) does not admit a propagating wave solution. However, Bondi, Pirani and Bobinson [13], believed 

that a general plane-wave, which they considered to be valid [14,15], is 
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where <1>, f3, a are functions of u (= T ... ~). It satisfies the differential equation (i.e. thei r eq. [2.8]), 

2<1>1 =U(f3 J 2 + 8 12 sh2 2f3). (4 ) 

But, metric (3) is not bounded, because this would require the impossibility of I u2 1 < constant. Note that an 

unbounded f(u) grows anomaly large as time goes by, and is therefore questionable. 

From the viewpoint of physics, however, a gravitational wave must satisfy at least, three requirements: 

i) The amplitude of a gravitational wave must be bounded (i.e. t gab I < constant) as weak gravity 

condition requires (16]. 

ii) Moreover, if eq. (2a) gives a first order approximation, 8a Yab should be of second order [-1,28) 

due to the conservation law, Va Tab = 0 (which is independent of the notion of gauge). 

iii) As manifested by solution (2b), a gravitational wave is a propagating wave, and is an almost pE~riodic 

function of time for a source in an almost periodic motion. 

Note that conditions i) and iii) are also satisfied by the electromagnetic wave and conditon ii) is similar to 

the Lorentz gauge. Thus, a gravitatioinal wave should have a fruitful analogy with electromagnetism (17). 

But, Rab = 0 in all space-time would lead to a violation of these requirements (see §§ 3... 7). 

Bondi et al. claimed that "0ur interest in plane waves derives not, of course, from the expectation that 

such waves might exist in nature, but from the presumption that at agreat distances from a finite source of 

gravitational waves, these waves must appear to be approximately plane." Thus, one would expect that their 

metric (3) satisfies these requirements. However, for metric (3), not only i) is violated, ii) is not satisfied 

since 8a Yab is also clearly not bounded. Moreover, metric (3) is not even an almost periodic function. Thus, 

metric (3) fails all three physical requirements (which cannot be criticized as too severe). Since metriic (3) 

satisfies eq. (1), this is a clear evidence that eqs. (1) and (2) are not dynamically compatible [1]. 

Nevertheless, since metric (3) may not be the most general form of a plane-wave, we examine another 

general plane-wave form proposed by Misner, Thorne, and Wheeler (3) as the follows: 

_ ds 2 = L 2 ( e 2 f3 dx 2 + e- 2 f3 ely 2) + dz 2 _ dt 2 , (5) 
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where both L (background factor) and f3 (wave factor) are functions of u(= t - z). Form (5) would be 

incompatible with relativistic causality [29 Jwhich requires: 

and (6 ) 

However, since L = 1 and f3 :\: 0 is a weak wave Iimit according to Misner et al., relation (6) may not be 

possible. Also, form (5) cannot accommodate a circularly polarized wave [18 J. As pointed out by Wald 

[30] , there is insufficient evidence to support the decomposition in form (5) as natural. 

Although form (5) manage to avoid an appearance of obvious unboundedness, the problem remains. 

Plane-wave form (5) reduces the Ricci curvature to zero except 

(7) 

However, no exact wave solution has been obtained for R = 0 [7J. As mentioned above, the difficulty isuu 

not only in mathematics, but that no phY6iea-t solution for Einstein equation Rab = 0 exists (see §§ 4-6). 

In fact, = 0 is incompatible with the notion of weak gravitational waves (see §§ 3-6). To see this,Rab 

it would be enl ightening to consider the weak field approximation eq. (2) further, since it is supported by the 

observations [20- 22] on the radiation lost of binary pulsars. 

3. The Weak-Field Approximation of Waves and Modification of the 1916 Einstein Equation 

The inability to recognize Gj.lV = 0 as invalid for waves is due to that eq. (2) is ma:thematica-Uy mis

taken as a fi rst order approximation of eq. (1). In spite of Einstein1s discovery of the incompatibi Iity between 

eq. (1) and eq. (2) is not proven until 1993. Eq. (2) is actually an approximation of the modified equation, 

(8 ) 

where t(g) J.lV is the energy-stress tensor for gravity. Eq. (8) is the Einstein equation of 1995 version. Then, 
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V~T(m) ~v = 0, and V~t(g) ~v = 0, (9) 

Eq. (9) implies that the equivalence principle would be satisfied [1]. In light of eq. (2) being an 

approximation of (8), let us consider the weak waves generated by massive matter. 

According to eq. (2), at vaccum, a weak plane-wave satisfies the following two equations: 

(10a) 

and 

8a lab = 0 . (10b) 

Note that the zero in (10) should be understood as representing a second order term (27] but not exactly 

zero; otherwise (10b) and (2a) imply no radiation [30,31]. However, the periodic nature of gravity and 

boundedness of a gravitational wave are dearly manifested only in solution (2b). Eq. (10) is the equation for 

the plane wave and implies that the pure gravitational plane-waves are transverse waves [17]. 

Also, one should not consider condition (1 Ob) as a linearization of the harmonic gauge [3,17] which 

was not accepted by Eddington [28] and questioned by Einstein [16] and can be incompatible with the 

equivalence principle [1,29,32]. One may argue that (10b) would be satisfied by using the transformation, 

x~ - > Xl~ =x~ + p~ (11 a) 

which gives 

(11 b) 

By solving 

ac Be ~ b - 8 a y-ab (11 c)- , 

it seems, a gauge function ~ a can be obtained. But, the mathematical similarity to the gauge in classical 

electrodynamics stops at this point because, as implicitly questioned by Einstein, a derivation of the gauge 

function 8 bPa may not be be bounded [29]. An unbounded metric would be invalid in physics [1,29]. 
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The incompatibility between eq. (1) and eq. (2) can be proved by using Einstein1s radiation formula. If 

one decomposes the Einstein tensor as a sum of the fi rst order and the second order as follows [16]: 

1 _ 
where G(1) = -a ac y + H(1) ( 12)ab 2 c ab ab 

where 

Eq. (10) implies G(1)ab O. One might argue [30J that Gab 0 although G(2)ab 4= 0 is that 

(13) 

where y(2)cd is the second order approximation. But, eq. (13) is not valid if eq. (2) is the first order appro

ximation; and consequently G(2)at ,... 0 (1 jr 2 ) 4= 0 [17]. If gab is an almost periodic function of t', then it is 

alway possible to find a time-average of G(1)at such that it has no term of 0 (1 jr 2 ) [1 ] . Thus, it is invalid 

to consider a possible dynamic solution of eq. (1) as suggested by Wald [30 J. It follows that the plane-

wave is actually an approximation of the Einstein eq. (8) of the 1995 version (see also § § 4, 5 & 7). 

Moreover, from the viewpoint of physics, Einstein1s notion of gravitational energy-stress [27] actually 

implies the need of modifying eq. (1). Although Einstein's notion is not localizable, his radiation formula 

impl ies the existence of radiation in vacuum. However, physically it is impossible to transform a radiation 

away by changing the space-time coordinate system. Thus, Einstein1s notion cannot be exact, but is an appro

ximation of the gravitational energy-stress tensor for some coordinate systems. It follows that this imposs.ibility 

means a necessary modification of eq. (1) which implies the exact validity of Einstein's conservation law 

[17J. This impossibility means also that eq. (1) is incompatible with radiation and therefore eq. (2). 

4. Field Equation for the Exact Plane-Wave Idealization 

To consider the most general exact plane-wave form, we must first derive the exact field equation for 

such an idealization. According to eq. (8), the field equation in vacuum should be 
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G!J\} :: R!Ju - 2"
1 

glJ\}R = K t(g) !JU' (8)' 

However, if one assume Einstein equation (1) were valid, then the field equation to be considered would be 

R~\} = 0 (14 ) 

For simplicity, we consider a plane-wave propagating to the z-direction. As in the literature, the velocity of 

the gravitational wave is assumed to be c, the light speed in vacuum. This is justified by the facts that an 

accompany gravitational wave of the light must have the papagation speed as the light and that in a weak 

field, the light speed would be very close to c. Thus, the metric gab is a function of u (= ct -z), i.e., 

glk = glk ( u) • (15 ) 

Let pk be the momentum of a graviton. (For simplicity, the units is selected to have c =1.) Because the wave 

speed is 1, the mass of a graviton is zero; and one obtains (18] the conditions, 

pz = pt, px = Py = 0, and pm gmk :: Pk = 0 , (16a) 

for k = x, y, and v (:: t + z). Eq. (16a) is equivalent to 

9xt + 9xz = 0, 9yt + 9 yz = 0, and gtt + 2gtz + gzz =°, ( 16b) 

or 

gxt _ 9 xZ =° I gyt - gYz = 0, and gtt - 2gtz + gZZ :=: O. (16c) 

Eqs. (15) and (16) imply also the validity of the geodesic. Then, the tensor Rab is reduced to 

( 17a) 
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and the other components are zero. Then, Rab = 0 is simplified to a differential equation of u, 

( 18a) 

where 

(18b) 

where 

(19 ) 

is the determinant of the metric. The metric elements are connected by the following relation: 

(20) 

Note that eq. (4) of Bondi et al. and eq. (7) of Misner et al. are special cases of eq. (18). 

Equations (16) - (20) allow gxtl gytl and gzt to be set to zero (or equivalently guk = 0 for k = x, y, u). 

These orthogonal conditions are valid because there is no physical reason to suggest otherwise. In any case, 

these assigned values have Iittle effect in subsequent calculations. In the above derivation, periodicity has not 

been used. Note that equation (16) allows the possibi lity of gtt to have a wave component as in metric «3). 

Now, there are four metric elements (gxx' gxy' gyy' and gtt) to be determined. However, there is only 

one differential equation (since eq. [20] is not really an equation if g is not specified by other means). 

Nevertheless, to show that there is no physical solution, eq. (18) is sufficient. 

5. The Circularly Polarized Exact Plane-Waves 

For an isolated system, Newtonian theory manifested the orbits are periodic functions. In general relativi

ty' gab can be considered as an almost periodic function of e (= t - R) since the radiaton is so small [17]. 

Thus, in a plane-wave idealization, gab can be considered as a periodic function as in the literature [3, 17J . 

Moreover, for some cases, the periodicity of a plane wave can be proven as intrinsic. 

A graviton of spin 2 is often identified with a circularly polarized wave [17J. Here, it will be shown 
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that a circularly polarized exact plane-wave does not satisfy eq. (14), but it would satisfy eq. (8) '. For this 

purpose, it is necesary to derive the circularly polarized wave from the expression of R in eq. (18b) (but,tt 

ignores the relation Rtt == 0) instead of based on the usual linear equation (10). It is interesting to note that 

periodicity is also a result. For such a wave, the rotational invariants with respect to the z-axis are constants. 

These invariants are: C, (gxx + gyy), Ru ' T(E)tt' gtz' g, gtt' and etc. let us assume the invariant, 

gxx + gyy = - 2 - 2C , then gxx· -1 - C + B ,and gyy = -1 - C - B. (21 ) 

Then, the expressions of Ru and C in eq. (18) and eq. (19) imply, 

B 2 + g 2 == (1 +C) 2 - C , (22)xy 

and 

(23) 

are constants. It follows that eqs. (22) and (23) imply 

B = Sa cos(Wu + el), and gxy = ±Sa sin(Wu + el) , (24a) 

where 

(24b) 

Thus, the circularly polarized metric is exactly 

gxx = -1 - C + Ba cos (Wu + el), gyy = -1 - C - Ba cos (Wu + a). 

and 

gxy = ±Ba sin(Wu + 0) ( 24c) 

Wave (24c) satisfies the linear eq. (10). However, eq. (24b) implies that Ru = 0 only if 'W = 0 or Bet = O. 
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This means that eq. (14) cannot have a circularly polarized wave. Moreover, wave (24c) implies R > o.tt 

This requi res an antigravity coupl ing, and thus wave (24c) is associated with eq. (8) I but not eq. (1). 

Thus, in spite of the popular speculation of associating a graviton with eq. (14) [17], there is no 

possibi lity, within the current theory of eq. (1), to construct an acceptable metric representing the circularly 

polarized gravitational wave. Moreover, the other polarizations of plane waves also result in R =1= O.tt 

6. A Ceneral Proof for the Non-existence of Plane-Waves for Rab = 0 

In general, it can be shown that there is no bounded wave solution for eq. (14) by using the requi red 

boundedness and periodic nature of the metric (see also § § 2 & 3). Then, the curvature tensor component 

Rtt , on the time average, is necessari Iy non-negative for a plane wave. (This reflects the fact that, on the 

time average, -C(2)tz is positive as manifested by Einstein's radiaton formula.) In the subsequent derivation, 

weak gravity is utilized. If a time average is taken over multiple periods, a time average of derivatives of a 

metric element must be zero. For simplicity, we assume also that the wave components are essentially 

monchromatic although one can see in the following derivations that such an assumption is not necessary. 

It wi II be shown that, on the time average, R > O. For clarity, we definett 

(25) 

where f 1 is the time average of f, F1 is of the fi rst order and F2 is of the second order. It follows that 

(26) 

and 

(27) 

Note that all terms in (27), except pos~'Rly f a'1~ f 2 
1 

, are at least of second order in the derivations. Simply 

algebraic calculation gives 
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e ll I I ( I) 2 (F F II) (F" F")y fy f Iy III 1\ - gxx gyy + gxy := 2 + 1 - 1 + 2 xx - xx - 2 xx 

(28) 

Now, it is clear that in R the only term which can be of first order in the deviations is f/. Note that (28)tt 

Includes all terms (from the curvature tensor) in the lowest order equation. 

To approximate eq. (14), it would be useful to drive some mathemtical relations for later usage. A 

periodic function A(Wu) can be expressed by 

00 

A(Wu) = Ao + 1: An cos(nWu + On)' ( 29a) 
n=1 

It follows that 
00 

AI = -W l:: nAn sin(nWu + On),� 
n=1� 

and 
00 

(AI) 2 := W2 L An n2/2 + W2 F(A), (29b) 
n=1 

where 
00 00 

F(A) = L mn AmAn sin(mWu +Om)sin(nWu +On) - L n2An2 cos2(nWu + 0n)/2. 
m=#:n n=1 

00 

The time average of F(A) is zero. Since A" = -W2 L n2An cos(nWu + an)' 
n-1 

00 

AA II = -W2 l:: n2An2/2 + A" Ao - w2F1 (A), (29c) . 
n=1 

where 
00 00 

2F 1 (A) == L (m2 +n2] AmAn cos(m'Wu +Om)cos(nWu +a ) + L n2A 2 cos2(nWu + an), 
m=#:n 

n 
n=1 

n

whose time average is also zero. Eqs. (29) implies. 

(X) 

(A' )2 + 2AA" = -'W2 L n2An2/2 + 2AIl Ao - W2 (F(A) - 2F1 (A)], ( 29d). 
n=1 
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Since all the constant terms in equation (29d) are negative, (28) is positive on the time average.� 

Now, let us consider the case where f 2 1 is of fi rst order, then the fi rst order equation is� 

F II ( 30a) o1 

Since F1 is a periodic function, the only possibi lity is F1 O. This contradiction implies f 2 
1 is of second 

order. The second order equation is 

F II (30b}
2 

From eq. (26), one can see easily that the constant terms in eq. (30b) have the same sign. Consequently, eq. 

(30b) is not val id unless the wave components of [xx and 'Yxy are zero. Since the above arguments are 

symmetric toward x and y, the wave component of 'Yyy are also zero. Thus, the order of f / is at least three. 

In general, one may assume that the constant f 1 is of order n, and the least order of [xx· and [xyl is m 

if they are not zero. Then the lowest order equation is 

11
f 2 - f 1 [XXII (30c) 

If n is smaller than m, the order of the left hand side is at least of order 2m. But, this also not possible since 

the time average of the left hand side is zero, but the right hand-side is non-zero. If n is large than m, a 

similar problem would arise. Thus, it is not possible to have a wave components in [xx' , 'Y l
, or [yy'.yy 

In conclusion, Rosen (12J is essentially correct, i.e., there is no physical plane-wave solution for Rab = 

O. Note that all existing IIplane-wavell solutions are not bounded and that eq. (1) must be modified, otherwise 

it has no dynamic solution (see also § 7). It seems, before 1993 theorists were unaware of that such plane 

waves are not bounded, and therefore unphysical. For example, even Griffiths [33] wrote a book about col

liding plane waves. A root of the problem is that linearized gravity was incorrectly accepted as generally 

valid [34], and therfore the linear field equation (2) were considered as derivable from eq. (1). 
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7.� The Question of Dynamic Solutions in Ceneral Relativity 

General relativity, being a theory which abandoned naive visualizations in favour of a conceptual analysis 

of the correspondence between observational data and the mathematical quantities in a theoretical formalism 

[27], can be a victim of over extrapolation without adequate analysis in physics. In particular, there are 

confusions on what is a physically valid solution because the equivalence principle was not well-understood 

[35]. In physics, deriving of a valid solution for a field equation is possible only if the physical requirements 

are clearly identified [1,18,29]. On the other hand, if the physical requirements are inadequate, an unphy

sica! solution such as metric (3) would be incorrectly accepted as a "plane-wave ll solution (see § 2). 

In 1936, Einstein discovered that his eq. (1) does not admit a propagating wave solution. Its incompati

bility with eq. (2) has been shown in § 3 and it has been proven that there is no plane wave solution for eq. 

(1 ). Based on these, Lo [1] has derived the 1995 version of Einstein equation (8), which clearly has a 

dynamic solution. However, one might sti II argue that equation (1) does mathematically admit a propagating 

wave solution [36]. Was Einsteinls discovery wrong, and therefore Lois derivation invalid? To clarify this 

question, one must understand that Einstein is a physicist, and thus would concern only physical solutions. To 

do justice to Einstein, one must check whether any of such mathematical solutions is valid in physics. 

According to Einstein [16], a metric must satisfy the equivalence principle. For a physical solution, a 

weak source would produce a weak gravity. Furthermore, for a massive source, according to observations of 

the binary pulsars, linear field eq. (2) is the fi rst order approximation [1]. Moreover, existing perturbation 

theories and weak gravity necessarily assume that a solution is bounded (4). 

However, as manifested by metric (3), eq. (1) has no bounded physical solution for a dynamic situation. 

This can be proven by contradiction. If there were a bounded solution for an isolated system, according to the 

corresponding principle, eq. (1) should have a weak gravity if the source is not too strong. Let us assume that 

y(1)ab = Yab - y(2) ab and define y(i)ab = y(i)ab - flab (y(i)cdTl cd ), where i = 1, 2. If 

(31) 

then� y(2) ab is of the second order a6 'r£qtMed i>y the ~n l,cYunuA,a. Then, from eq. (1), one has 
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1 -a2 Be y(2) ab + H(1)ab = -G(2)ab . (32)c 

For a static problem, eq. (32) can be satisfied since both sides of eq. (32) would be of 0(K2/ r4). But, for 

an isolated dynamic system, Tab and Yab are t1Ilmo6t peJtiodic functions of time since the effect of gravita

tional radiation is extremely small (17). Then, it can be shown that eq. (32) cannot be satisfied. It follows 

periodicity that G(2)at ;s of 0(K2/r2) (see a1so § 3). But, a non-zero time-average of the left hand side is 

of O(K2/ r3). Thus, the two sides of eq. (32) cannot be matched. The impossibility of satisfying eq. (32) 

implies that the initial assumption of boundedness is not valid. 

Note that G(1)at contains only first order time derivatives, and thus the equations, Gat = -KT(m)at (a = 

X, y,z,t) restrict the initial data. For the idealization of an exact plane wave, it is obvious that eq. (32) 

cannot be satisfied. On the time average, G(1)tz = 0, -G(2\z > 0, and -Ctz > 0, according to eq. (18). 

Thus, for a dynamic problem, the basic assumption of boundedness for solutions of eq. (1) in the pertlJr

bative methods [4] is invalid. From the above analysis, the only possibility of having a bounded solution 

could be that eq. (2) is not a valid approximation. But, such a solution, if existed, would be unphysical since 

it is at odd with radiation experiments as well as the physical principles. There is no evidence for such an 

unphysical solution. On the other hand, the non-existence of a bounded piane-wave solution for eq. (1), 

supports the non-existence of a bounded dynamic solution (see §§ 5 & 6). If one takes the viewpoint of 

Bondi, Pirani and Robinson (see § 2), the impossibility of having a bounded plane wave solution can be con

sidered as another conclusive evidence that eq. (1) does not admit a physical solution of propagating waves. 

To illustrate the non-existence of a bounded radiating physical solution, let us examine a recent solution 

of Rab = O. For example, the cylindrical symmetry solution of Au, Fang & To [35] is 

(33) 

where 

1 
N2 = p4 exp(-4X4>dP) exp (2n1), 

and 

M2 = exp (2 ~ ~dP ) where 
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are resepectively arbitrary functions of (ct -z) and of p. The function n1 (ct - z) makes N2 a propagating 

wave. If solution (33) were a physical solution, M should be a bounded function of p, i.e., 

exp ( 2 ~ <PdP) < c 1 2 (34) 

for some positive constant c1 . But, this also means that N2 is not bounded for small p. Moreover, if light 

velocity is not larger than its vacuum velocity c, one should have N2jL2 and N2jM2 :::; 1. It thus follows that 

(1 + p<p)2 ~ p4 exp(2S<Pdp)exp (2n1 ), and exp(6S<PdP) ~ exp (2n1 )p-4. (35) 

Hence, 

(1/P + <p)2 ~ p2/3 exp (8n1/3) (36) 

and therefore 

(37) 

But conditon (37) is also inconsistant with condition (34). Thus solution (33) is not a physical solution. 

Another example is that Damour and Schmidt [2] claimed the existence of bounded physical solutions 

for an isolated radiating source. Their claims are shown in the abstract of their paper as follows: 

The relation between perturbation theory and exact solutions in general relativity is tackled by investigating 

the existence and properties of smooth one-parameter families of solutions. On the one hand, the coeffi

cients of the Taylor expansion (in the parameter) of any given smooth fami Iy of solutions necessari Iy 

satisfy the hierarchy of perturbation equations. On the other hand, it is the converse question (does any 

solution of the perturbation equations come from Taylor expanding some family of exact solutions?) which 

is of importance for the mathematical justification of the use of perturbation theory. This converse question 

is called the one of the " re liabili ty " of perturbation theory. Using, and completing, recent results on the 

characteristic initial value prooetm, the local reliability of perturbation theory of general relativity in 

vacuum is proven very generally. ~is reSM't is then generalized to the Einstein-Yang-MHls equations (and 

therefore, in particular, to Einstein-Maxwell ones). These local resufts are then partially extended to the 

17� 



global ones by: (i) proving the existence of semigtobal vaccum space-time (respectively, Einstein-Yang

Milis solutions) which are stationary before some retarded time uo' and radiative after uo' and which 

admit a smooth conformal structure at future null infinity: and (ii) constructing smooth one-parameter 

families of such solutions whose Taylor expansions are of the "multipolar post-Minkowskian ll type which 

has been recently used in perturbation analyses of radiative space-times. 

With such drastic claims, one would expect them to provide a few examples to illustrate the results. However, 

there is no example of a solution even for a radiating wave. They, just like Damour (4] in 1987, seemed 

not aware of that the existing waves of Rab == 0 are unbounded. Consequently, there is no discussion on the 

problem of unboundedness; and inadvertently they implicitly assume that the waves were bounded. Some theo

rists might even argue that a physical solution in vacuum need not be bounded. However, this is not an issue 

here since Damour and Schmidt claimed in (ii) that eq. (2) provides the first order approximation. 

In view of that all eXisting wave solutions of Rab = 0 are unbounded, from the viewpoint of physics, a 

radiating physical solution should be due to false arguments. Note that the mentioned remote possibility (of 

having a bounded solution for which eq. (2) is not a valid approximation) is not an issue here because of ii). 

It is known that there is no possibility, within orthodox general relativity, to construct a physically acceptable 

(Le. bounded) metric representing the gravitational wave necessarily accompanying a plane electromagnetic 

wave [18,29]. Therefore, their generalization to Einstein-Maxwell equations also cannot be valid in physics. 

It is also known that, for a circularly polarized wave, the linearized field equation does not provide an app

roximation (34}. Moreover, there is no excuse for not justifying, in terms of physics, the questionable 

situation of a sudden switch on radiation if it is excusable for not prOViding examples solved in close-forms. 

Note that the local reliability is actually trivial since a continuous function is always locally bounded and 

a Minkowskian metric is locally diffeomorphic to the flat metric nab. Moreover, the existence of a smooth 

one-parameter family gab(Xi,A) for Rab = 0 has meaning to the II reliability" of perturbation theory only if 1) 

globally gab(xi,O) ~ flab' the flat metric, and 2) the family is bounded, i.e. f gab(Xi,A) 1:5 constant. 

To illustrate this, let us consider metric (3) of Bondi et al. Since metric (3) is not bounded, it is 

impossible to have a meaningful first order approXimation. Nevertheless, a one-parameter family gab(Xi,A) 

can be obtained if one substitutes <I> and 8 in metric (3) respectively with <1>+ A and 8+ A since they satisfy 
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the same differential equation (4). However, not only gab(xi,O), but the expansion of A order terms such as 

-h( 1)~~ 2u2sh2f3 sin28, and h(1)Tl ~ = - 2u 2sh2f3 cos28, (38) 

where f3 and 8 are function of u (=T-~), are not bounded. In fact, any plane wave can easily become a 

family of solutions since eq. (18) is homogeneous in the metric elements. If gab(xi,O) is not bounded, no 

matter how small A is chosen, one cannot joint gab(Xi,A) with some stationary metric to form a solution of 

= 0. In short, a one-parameter family of solutions of Rab = °may have no physical meaning at all. Rab 

Thus, Damour and Schmides claim of validity due to the freedom of choosing a very small A is mis

leading and requires a rigorous proof. In particular, the validity of their choice of data for the purpose of a 

union (as mentioned) is itself an implicit dubious assumption. To say the least, the proof of thei r claim i) is 

incomplete and therefore their claim ii) is misleading since local reliability has little meaning in perturbation. 

One may argue, however, thei r assumed validity is reasonable in physics since this only means a small 

deviations about some stationary metric. But, one should not confuse over the physical requirements as the 

mathematical characteristics of a solution of an equation which is under investigation. If a field equation is 

inappropriate, it may not be able to accommodate the physical requirements no matter how reasonable. The 

investigation of plane-waves in this paper shows that even necessary physical requirements are not satisfied 

by eq. (1). A II plane wave ll of eq. (1) must have an amplitude increasing with time. The existence of only 

unbounded waves would imply that equation (1) is not valid for a dynamic problem. Experiments verify, 

however, the existence of bounded waves and thus reject eq. (1). Note also that some time-dependent 

solutions of eq. (1) even have unexplainable singularities [37]. 

Another major problem is that there seems no physical situation corresponds to a switch-on radiation. To 

complete their proof, Damour and Schmidt must do the impossibility, to show unexpectedly a family of 

bounded wave solutions gab(Xi,A) for Rab = °with gab(xi,O) = flab and to prove, in spite of using the har

monic gauge [16,28,30,31), such a metric s~tisfying the ~quivalence prindple. The futility of such an 

effort has clearly been demonstrated in the analaysis of plane waves. From t~ viewpoint of. physics, this 

futility is even c1ea(~r. The impossi~Uty of havi~ a bounded, plane wave solutiQ.~ for Rq~ = °manifests that 



a physical gravitational wave implies Rab ~ 0 (see also § 5). Physically, this means that a gravitational wave 

carries the gravitational energy-momentum as shown in eq. (8), the Einstein equation of 1995 version. 

8. Discussions and Conclusions 

In Einstein's presentation (16], linear field equation (2) was derived as a consequence of the Einstein's 

equation (1). But, as Einstein discovered in 1936, his derivation is not generally valid. Then, Rosen (12] 

conceived the notion that the exact plane wave would be crucial in understanding general relativity. However, 

due to the lack of experimental support, the importance of Rosen's notion and Hogarth's conjecture [19] of 

1953 on the need of modifying eq. (1), was not recognized. The explanation of the perihelion of Mercury 

and the work on exact "plane-waves" [13] provided a seemingly unshakable appearance for eq. (1). 

Moreover, the confusion on the exact plane waves [14,15] played a crucial role in disregarding Ein

stein's discovery; and the incompatibility between eq. (1) and (2) was not proven until 1995 [1]. Although 

the weak wave was analyzed, the intrinsic differences between the weak gravitational wave and the exact 

"plane-wave" [13] were not addressed since eq. (2) were believed to be an approximation of eq. (1). 

The investigation of plane waves has played a crucial role on the need of modifying eq. (1). First, when 

the gravity of an electromagnetic plane wave was considered [18,32J, according to the principle of equi

valence and the principle of causality, there is no possibility of having a physical solution within the theo

retical framework of eq. (1). Thus, the validity of eq. (1) became finally questionable and the need of an 

antigravity coupling term in the source was apparent. In the studies of exact plane waves, as declared by 

Bondi et al. [13], a crucial point is that an exact plane wave must be considered as an idealization of a 

weak wave from a distant isolated source. Thus, the characteristics manifested in the weak gravitational 

waves (16] should serve as guidiances in the investigation of exact gravitational plane waves. This necessary 

connection in terms of physics, as shown, clearly leads to the modified Einstein eq. (8). 

The physical picture on the need of modifying eq. (1) due to radiation, can be seen more clearly through 

an exact plane wave because, as an idealization, it has discarded the non-essentials. Thus, it can be shown 

that there is no possibility to have a circularly polarized plane wave within the framework of eq. (1), and 

that there is no bounded plane waves for Rab = o. A crucial non-mathematical error of Damour and Schmidt 
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[2]� seemed to be that they were unaware of the non-existence of a bounded wave for Rab = O. 

Moreover, Einstein1s radiation formula implies the existence of radiation which also leads to the need of 

modifying eq. (1). Although Einstein's notion of gravitational energy-stress [27] is not localizable, physic

ally it is impossible to transform a radiation away by changing the coordinate system. Thus, Einstein's notion 

can only be an approximation of the gravitational energy-stress tensor for some coordinate systems. It follows 

that eq. (1), which implies the exact validity of Einstein's conservation law [16], must be modified. 

Experimentally, it is the Hulse-Taylor observation on the binary pulsar PSR 1913+ 16 leads to the 

unequivocal support of eq. (2) as the fi rst order approximation for a dynamical problem that eq. (1) must be 

modified. Nevertheless, this experiment (and other subsequent observations) is not a theoretcal necessity in 

justifying eq. (2) because the val idity of eq. (2), as a fi rst order approximation, could have been derived and 

justified in terms of physical principles which led to general relativity if one utilizes earlier experiments such 

as the bending of light or the time delay of light [38]. Being independent of eq. (1), eq. (2) has been 

called the Maxwell-Newton Approximation [1]. Also, the Maxwell-Newton Approximation would be further 

confirmed by the Gravity Probe-B gyroscopes [39] experiment in the near future. 

In conclusion, there is no dynamic solution for the Einstein equation of 1916. Therefore, it is necessary' 

to modify the 1916 version, and conclusions drawn from this equation must be reviewed to determine the 

need of revision. On the other hand, the Einstein equation of 1995 version does have dynamic solutions since 

it has the Maxwell-Newton Approximation. However, since the exact form of the gravitational energy-stress 

tensor t(g) ab remains to be known, general relativity remains an incomplete theory as Einstein stated [16]. 

Also, the pure gravitational plane wave is mathematically similar to the plane wave in electromagnetism 

[17]. In terms of physics, however, this similarity implies that the gravitational energy-stress tensor with 

the antigravity coupling must be added to the source of the Einstein of 1916 version. 
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