
J ~~(NT-9te-f 1
FERMILAB~:~~

.lUi 10 1996

LIBRARY' _:~)�

Flexible Storage Services for Parallel Data�
Mining�

David M. Malon and Edward N. May

Argonne National Laboratory* Iir) Q 1\. Jt ~.
malon@anl.gov, may@anl.gov -

13 May 1996.__._w .. ·,·v

Abstract

The demands of mining and analyzing vast amounts of data often lead scien
tists to supercomputer centers, with their high-performance parallel processors
and large-scale hierarchical storage. Once there, however, clients quickly come
face to face with a number of harsh rf:!alities. Common constraints are:

•� disk space, while impressive in aggregate on machines with more than 100
nodes, generally amounts to only a couple of gigabytes per node;

•� local disk space is scmtch space--every query starts and ends with no
data on compute nodes' local disks;

•� mass storage is generally a (widely) shared resource, and is not llser
configurable;

•� machine use is scheduled-no daemon processes may be left running;

•� while some nodes may be "closer" than others (e.g., HIPPI-connected) to
mass storage, current schedulers tend nonetheless to allow users to specify
only the number of nodes desired, not their I/O topology;

•� mass storage access from multiple nodes may in fact be routed through a
single node (e.g., a distinguished I/O node per rack).

·The submitted manuscript has been authored by a contractor of the U.S. Government under
contract No. W-31-109-Eng-38. Accordingly, the U.S. Government retains a nonexclusive, royalty
free license to publish or reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes. ,

1�

One consequence of these conditions is that the efficacy of various ap
proaches to physical data organization-for example, clustering data segments
containing like objects versus striping them across multiple Unitree hierarchies
may depend, not only upon the computing platform's architecture, the data
model, and the nature of typical queries, but also upon dynamic storage system
configurations, and even upon the particular collection of compute nodes as
signed to process a given query. In the face of these considerations, a fundamen
tal requirement of storage management for persistence servers is flexibility
servers must support data storage across a heterogeneous mix of media and
access methods, and must be able to reconfigure their data storage efficiently.
This paper describes an architecture for storage management that addresses
such concerns, and an implementation that has been tested both on parallel
supercomputers and on networks of Unix workstations.

Introduction

On a dedicated parallel or distributed query processing platform, or even on a collec
tion of machines on which one owns local storage, one can often physically partition
data among processors, either disjointly or with judicious replication, and parallelize
queries accordingly. On many large-scale machines used by scientists and engineers,
however, all that a client may do is to request time on any P nodes, not one of which
has resident data, though each has local scratch space. In general, all nodes have
access to mass storage (e.g., Unitree) and to a shared, remotely-mounted file system
(e.g., the Andrew File System) through which home directory services are provided.
A parallel file system such as IBM's Vesta or PIOFS [6] may also be available; this
may, however, be configured to serve only as short-term or scratch space, and hence,
may need to be preloaded from multilevel mass storage.

It is characteristic of our motivating applications in high energy physics that
queries can often be parallelized almost arbitrarily in principle. We may seek, for
example, all events satisfying a certain criterion (whose determination may be quite
computationally intensive), but those events are often essentially independent, or
conditionally independent given experimental run parameters. Event collections, or
collections of runs, which correspond to series of events under fixed experimental
conditions, are candidates for implementation as ParSets [5], or for implementation
in other ways that make explicit the potential for parallelism. The problem, though,
is this: the appropriate number of processors for a query may not be a characteristic
of the query (an arbitrarily large number could be used), nor even of the physical data
store design (we may not be able to choose a set of n nodes that together provide
local access-disjoint or otherwise-to the data); rather, it may depend upon such
details as the accidental assignment of the query to a set of processors-8 processors

2�

in a single rack, for example, may be less effective than 4 in multiple racks because
of 110 bottlenecks.

To address these considerations, and to provide a testbed for alternative data or
ganizations in light of these issues, we have designed and implemented storage services
for an· object persistence manager, with the goal of efficient and flexible utilization of
parallel and distributed computational and storage architectures. Among our design
criteria are:

•� access to every persistent object from every query node;

• extensible� support for a variety of storage ~echanisms, including local and
remote disk, raw RAID, Unitree file systems, raw device access to DD2 and 8mm
tape, parallel file systems such as (formerly) IBM's Vesta and (currently) IBM's
PIOFS, and Internet data access via standard FTP and HTTP mechanisms or
cgi-bin scripts;

•� support for efficient reorganization of data, including striping and reclustering,
without knowledge of object schemata;

•� support for data replication;

•� support for multiple access paths to data;

•� portability to heterogeneous distributed architectures.

Each of these criteria will be addressed in the following sections.

Persistent Storage Access Model

The ODMG-93 Release 1.2 C++ binding defines the user interface to our persistence
manager-briefly, persistent objects reside in a database instantiated by the ODMG
defined class d_Database, and references to persistent objects of class T are made via
a template class d-Ref< T >. Complete details appear in the current ODMG draft
standard [1]. Argonne's portable ODMG-compliant frontend to object persistence
managers is described elsewhere [2]. Internal to the Argonne object persistence man
ager, data are organized logically into stores. Within each store, objects are allocated
in contiguous blocks of bytes called segments. Segments are the fundamental units of
data transfer to and from a query process-when a reference to a persistent object is
dereferenced, the corresponding segment containing the object is located and moved
or mapped into memory.

For a variety of reasons, segments are generally inappropriate as the highest-level
units for storage management-there are too many of them, and they are far too

3�

small for efficient storage and retrieval on high-latency devices (unless they are far
too large to be appropriate for memory caching when a single object is touched).

Segments may instead be aggregated arbitrarily to form folios, which are the units
in which storage devices will deal with the data. Examples offoHos include an ordinary
Unix file containing one or more segments, a raw DD2 tape partition containing n
consecutive segments of a store, a raw RAID partition contiguously containing every
kth segment of a store, and a Unitree file containing the k most frequently accessed
segments. Folios have appeared in other lightweight object persistence managers such
as PTool [3], but the design differences between PTool and the Argonne software are
substantial. In PTool, a persistent pointer names the folio in which the object is
contained. In our software, folios are orthogonal to persistent pointers. We can
reorganize segments into arbitrary folio arrangements, and all persistent pointers
will be unchanged and valid. A storage server is free to rearrange segments without
knowledge of segment contents, and without concern for external references to objects
within the segment.

Other object systems such as SHORE (Scalable Heterogeneous Object REposi
tory [4]) provide more fully featured persistence frameworks, but pay less attention
to matters of physical data reorganization on heterogeneous distributed multilevel
storage architectures. In SHORE, object data are stored on pages (corresponding
roughly to segments) allocated from disk volumes, each of which is managed by a
single server. In our software, segments are allocated as stores grow, but a store's
segments may be arbitrarily distributed across multiple folios and multiple storage
devices; moreover, they may be reshuffled as the need arises, and are not managed
by any single server.

Segment Locators, Segment Servers, and Retrieval
Rules

Physical location and access method identification for segments are maintained in
metadata-in this case, data about the storage configuration-represented by an or
dered list of retrieval rules. Dereferencing a pointer to a persistent object identifies
the store number and segment number containing the object data. A Segment Loca
tor, which is in general replicated on each compute node, provides a whohas() method
to map this ordered-pair segment identification into a segment retrieval rule, custom
arily the first retrieval rule in the list matching the segment id. A getSeruer() method
in turn accepts a retrieval rule as an argument, and returns a pointer to a segment
server capable of reading and writing the corresponding segment.

4�

,."

Segnaent Servers

An abstract SegmentServer base class defines the interface to the handful of meth
ods that all segment servers must provide, such as segment creation, retrieval, and
updating. Segment servers for particular devices are derived from this base class. To
add a new storage medium to the list of supported devices, one need only implement
the SegmentServer methods for the particular device, add a new reserved word to the
retrieval rule lexicon, and update the getServer method to associate the new reserved
word' with the new Segment Server-all other code continues to operate unchanged.

Retrieval Rules

What does a retrieval rule look like? For a single segment, it may be as simple as
associating a hostname (or localhost), a device type, and an address (for example, a
Unix file name, an offset for a raw device, or a partition number and an offset for
a tape) to a (store, segment number) pair. A single rule may define a placement
convention for all the segments in a store by use of a wildcard character in place
of the segment number. Such a rule might specify, for example, that each segment
k should be stored in Unitree with the pathname /mss/usemame/MyDatabase.k).
If a particular segment is to be handled differently, perhaps because it has been
locally cached, all that is necessary is to place a rule corresponding to that particular
segment number earlier in the rule list than the default rule for segments of that
store. Retrieval rules may also define segment-level striping (e.g., place segments in
contiguous blocks of four, in round-robin fashion, into three Unitree files, repeating
the process until the files are 32 segments long, then build three new Unitree files and
repeat the process).

How Storage Services Are Used

In practice, one often begins with a master retrieval rule list that describes the location
of data segments (often in mass storage). When segments are cached or copied or
moved to another storage location, a new retrieval rule list is derived from the original
by placing a rule for reaching the new location earlier in the retrieval rule list. A
segment locator using the new rule list will match the segment id to the retrieval rule
it encounters first. If the old rule described only the location of the relocated segment
(and not, for example, a rule for finding all segnlents in the store), it may be deleted
from the rule list.

Rearranging data is straightforward: a utility for that purpose can be built es
sentially by incorporating a segment locator to read the current retrieval rules, and
an array of segment servers"to read segments and write them elsewhere. The point

5�

is that no knowledge of the underlying object schemata is required-storage can be
managed orthogonally to the data store's content.

Local Caching and Replication

When a segment is copied, a corresponding updated retrieval rule list reflects its new
location. Since each query node may have its own segment locator, each may use
its own retrieval rule list. The consequence is that there is a choice---one could have
each node i retrieve data from node j rather than from mass storage, for example, by
sharing node j's rule list, or have each node talk only to its own disks and to mass
storage by not sharing retrieval rule lists.

Preloading Local Disks

Recommended policy on many massively parallel architectures is to preload data,
particularly shared read-only data, onto local disks before running the computational
portion of a job. This is important in order to avoid serial bottlenecks (often es
pecially paralyzing when hundreds of nodes are trying to read the same AFS- or
NFS-mounted file, or even different files from the same file system). Systems often
provide utilities to copy data to P parallel nodes in log P time. When data seg
ments are preloaded, corresponding retrieval rule lists are built to reflect the new
locations. As noted above, these lists may be different on every query node, but
when the same segment is replicated, things are generally simpler. If segment k of
a certain data store contains, for example, calibration data needed in the analysis of
each event, segment k may be replicated on each query node's local disk, and a cor
responding retrieval rule matching the segment id to, for example, a disk file named
/tmp/scratch/username/MyDatabase.k on localhost, would likely be identical on ev
ery node.

Multiple Access Paths

The architecture allows multiple retrieval rules for a single data segment. The design
is intended eventually to support, for example, finding the first matching retrieval
rule for a segment, trying it, and if it fails to return in an acceptable amount of
time, trying the next matching rule, or even associating estimated costs with each
candidate retrieval rule and optimizing the choice. We have implemented neither of
these approaches to date. Different processes may, however, follow different access
paths to the same data by using different retrieval rule lists.

6�

Status

We have implemented the architecture described above on the Argonne 128-node IBM
SP system, and on networks of Unix workstations. We have developed segment servers
for all of the storage devices mentioned in the text. We have used these facilities both
to provide access to storage on parallel and distributed platforms with a heteroge
neous mix of storage media, and as a testbed to begin study of the complicated issues
involved in physical data organization-alternative striping strategies, caching, repli
cation, use of multilevel storage, and the role of parallel file systems. The ability to
rapidly reconfigure our storage utilization without worrying about data store contents
has proven invaluable.

Future work on the storage server itself will involve tools for managing retrieval
rule lists, and smart (e.g., configuration-aware) tools for automating storage reorga
nization.

Acknowledgment

The authors gratefully acknowledge use of the Argonne High-Performance Computing
Research Facility. The HPCRF is funded principally by the U.S. Department of
Energy, Mathematical, Information and Computational Sciences Division (ER-31).

References

[1]� R.G.G. Cattell et aI, The Object Database Standard: ODMG-93 Release 1.2
(:v1organ Kaufmann, San Francisco, 1996).

[2]� D.M. Malon and E.N. May, On Persistence Interfaces for Scientific Data Stores
(submitted for publication, 1996).

[3]� R. L. Grossman and X. Qin, "Ptool: a scalable persistent object manager,"
Proceedings of SIGMOn 94, ACM, 1994, page 510. s R £ (D

[4]� M. Carey, D. DeWitt, .T. Naughton, J. Solomon, et aI, "Shoring up persistent
applications," Proceedings of SIGMOD 94, ACM, 1994. SiZE.'"D

[5]� D.J. DeWitt, J.F. Naughton, J.e. Schafer, S. Venkataraman, "ParSets for par
allelizing ,OODBMS traversals: implementation and performance," Computer
Sciences Department Technical Report, University of Wisconsin, Madison, 1994.

7�

[6]� IBM AIX Parallel I/O File System: Installation, Administration, and Use (In
ternational Business Machines Corporation, Document Number SH34-6065-01,
1995).

\<~<~-=~\===\

,; ~ ;,

~_ ..,..----.....
~A ... ~_.,.-,,~~ ..

8�

