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Abstract

Starting from classical la.ttice systems in d ~ 2 dimensions with a regular
zero-temperature phase diagram, involving a finite number of periodic ground
states, we prove that the addition of asmaJI' quantum perturbation and/or
increasing the temperature produee only smooth deformations of their phase
diagrams. The quantum perturbations can involve bosOns or fermions and
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can be of infinite range but decaying exponentially fast with the size of the
bonds. For fermious, the interactions must be given by monomials of even
degree in creation and annihilation operators. Our methods can be applied
to some anyonic systems as well. Our analysis is based on an extension of
Pirogov-Sinai theory to. contour ~ansions in d + 1 dimensions obtained by
iteration of the Duhamel formula. . . . .

I{eyword$: Phase diagrams; quantum lattice systems; Pirogov-Sinai theory;
contour ~ansionsi low-temperature ~ansions.

Contents

1 Introduction

..

3

2 Hypotheses and results
2.1 .A formalism for quantum lattice systems
2.2 Assumptions on the interactions . . .
2.3 Examples .....
2.4 The main theorem .

3 Low-temperature expansion for quantum perturbations
3.1 'the classical contours. The Peierls Condition .. . .
3.2 The Duhamel expansion . . . . .
3.3 Quantum Contours . . . . . • . . . . . . . . . . . . . . .

4 FaCtorization p~operties

4.1 Factorization of the i-integrals.
4.2 Factoriiation of the weights ..

5 Contour expansions
5.1 Contour expansion for the partition functions
5.2 Contour expansion for the· quantum expectations . . .

6 Cluster expansion for the symmetrici or the single-phase regime
6.1 The result . . . . . . . . . . . . . . . . . . .
6.2 COmbinatorics of the cluster expansion '.. . . . . . . . . .
6.3 The key estimate . . . .. . .. . . . . . . . . . . . .
6.4 Convergence of the expansion for the free energy . .
6.5 Stability of phases in the symmetric regime.
6.6 Differentiability of the expansion .

2

5
5

13
16
21

24
24
29
32

36
36
37

41
41
42

45
45
47
48
54
55
57



7 Pirogov-Sinai theory for quantum perturbations
7.1 Overview. The initial trick . . . . .
7.2 Criterion for the stability of phases
7.3 Stability of phase diagrams .

57
. " . •. 57

59
67

1 Introduction

The study of phase diagrams of quantum lattice systems is a·much less developed
subject than its cl~sical counterpart. There has been extensive numerical work
on quantum phase diagrams at zero temperature, but rigorous studies~ which are
often unexpectedly difficult and rich in surprises, have been very few In number.
A systematic exploration, of the different types of .ground states has been carried
out only for one-dimensional systems - chains - (see for instance [11, 20, 1] and
references therein).

Our present understanding of phase diagrams at low, but nori.zero temperature is
very limited, as well, although many important quantum-spin lattice systems have
been rigorously studied at low temperatUres (see for instance'[31, 14, 10, 12, 36, 37,
18, 19, 22, 24, 23, 3, 2]). These studies provide useful illustrations of some of the
phenomena involved, but they focus on extracting detailed information for special
models, rather than on developing a general formalism of wider·applicability. In
this paper, we take the opposite attitude: We present some general black-box type·
results which, although typically far from optimal for each specific model, ~ow us
to understand the broad features of some regions i~ the phase diagrams of quantum
lattice systems dominated by a classical interaction.

Usually, the study of low-temperature phase diagrams involves a two-step pro
cess: First., the zero-temperature phase diagram is drawn, and, second, one analyzes
which of the zero-temperature phases survive at nonzero temperatures. For clas
sical systems, there is a general theory to handle the second part of this process,
namely Pirogov-Sinai theory [29,30,35,39,4]. The bottom line of this theory can
be summarized as follows:H the zero-temperature phase diagram is a regular phase
diagram (in the sense of satisfying the Gibbs phase rule) involving a finite number
of periodic ground states, and if i~ addition, the excitations of these groundstates
have an energy proportional to the size of .their boundaries (Peierls condition), then
the phase diagrams for IQw enough temperatures are only small deformations of the
zero-temperature phase diagrams. In other words, the theory iays that for systems
with finitely degenerate ground states and obeying the Peierls condition, the entropy
contribution to the free energy, present at non-zero temperatures, is only a small
correction to the internal energy at low temperatures.

In this paper we extend this theory to systems with small quantum perturba
tions, and ~e conclude that the addition of these perturbations only leads to small
deformations of the phase diagram if the temperature is low (in particular equal to
zero). It is somehow surprising that, except for a pioneer announcement (28] which
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was never followed byfuU proofs, t~ natural extension of Pirogov Sinai theory has
never heen considered previouslyl. One may argue that this is because the exten
sion (apparently) refers to the least interesting regions of a quantum phase diagram,
namely those where the quantum part does not trigger any new effect. This is, how
ever, a poor reason on two accounts: First, a "no-go" result is needed and useful,
because it allows people hunting for quantum effects to rule out large regions of the
phase diagram, saving effort and misunderstandings. Second, and more importantly,
some quantum effects can, in fact, be studied by using our results. Indeed, we shall
show in a subsequent paper [8] how, by combining the present theory with a per_
turbation scheme, one can analyze degeneracy-breaking effects induced by quantum .
perturbations and the associated phase transitions.

A noteworthy difference between our approach and many of the previous ones
(eg. (31, 14, 18]), is that, inste'ad of using the Trotter formula, 'we resort to an
imaginary-time Dyson expansion based on an iteration of Duhamel's fbrmula. The
resulting expansion roughly corresponds to performing part of the limit involved in
the Trotter formula, so a sum over'a large number of small subintervals isrepla.ced
by an integral. Thus, we work in subregions of Zd X (0,,8]; the last coordinate
- the "time-direction" - being a continuous one (with periodic boundary condi
tions), and our contours are piecewise-cylindriea.lsurfaces whose "time"-sections are
ordinary Pirogov-Sinai classical contours. We think that this approach· has several
advantages: On one hand, contour considerations are based on the surfaces natu
rally associated to the expansion, without the additional projection introduced in
approaches based on the Trotter formula. Tl:iis allows for simpler and clearer geo
metrical and combinatorial arguments, a fact also exploited, for instance, in (1]. On
the other hand, the effects of quantum perturbations have a nice visualization: they
change the sections of contours. If the system were purely classical, the contou,rs
would be straight cYlinders of constant section;' the quantum terms produce defor
mations or the appearance of "vacuum fiuctuations" in the form of contours that
appear and/or disappear at 'intermediate Values of the "time" coordinate.

These observations permit us to make rigorous. the usual heuristics about quan
.tum perturbations having an "entropy effect" comparable to temperature. Indeed,
all our bounds are in terms of the maximum of the quantum-coupling parameter,
A, and a temPerature-parameter of the form e-IJ~, for some coupling J > 0. In
particular, by letting,8 -+ 00 our formalism yields information about ground states:
the "classical-like" contours extending all the way along the interval [0,,8] disappear,
and all that remains are vacuum fiuctuationsin, a "sea. of spins" configur.ed as in a
classical ground state. The fact that these expected features are exhibited in such
a simple and immediate way is, we believe, a nice feature of our approach.

For the convenience of the reader we summarize the hypotheses and results in
the following section, which can be read as a "recipe" section. Readers interested in

1We have recently been informed by C~ Borga ~d R. Kotecky that they have also constructed
an ~D8ion of Pirogov-Sinai theory to systems of the type analyzed in this paper.
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•
the'method itself can continue with the proofs and technicalities of the remaining

sections.

2 Hyp'otheses and results

2.1 A formalism for quantum lattice systems

We consider particles with a finite number, N, of internal degrees of freedom, on a
d-dimensionallattice 7ld• The Hilbert space associated with each site of the lattice
is isomorphic to eN. The system is governed by a Hamiltonian of the form

(2.1)

where ,Bel is interpreted as the. "classical part", and V as the "quantum pertur
bation". The former consists of finite range interactions, and is assumed to have
a finite number of periodic ground states. The interactions constituting V can be
of infinite range, provided their strengths decay exponentially with the size of their
supports. To make these assumptipns precise, we need some standard definitions.

A quantum lattice model can be interpreted either as a spin system or as·a la.ttice
gas. In a quantum.spin system, there is a particle at each site of the lattice having
a finite number of ;intemal degrees' of freedom. In describing such a syste~ there
is no need to refer to the statistics of the particles. In contrast, the particles in
a lattice gas are allowed to hop from site to site. Hence their statistics .. plays an
important role, and it is necessary to introduce Fock spaces to describe them. The
mathematical framework required to describe these systems has been introduced in
[5, 15, 32]. We summarize the essential features below. ' .
.Quantum Spin Systems:

For a quantum spin system the Hilbert space, llA, associated with a finite subset
A of the lattice is given by the tensor product

(2.2)

where each ~ is isomorphic to eN [An infinite tensor' product of Hilbert spaces
is intentionally a~oided, .since it is not uniquely defined and is complicated to deal
with. Infinite volume limits are considered only at· the level of observable algebras
and states].

Bases of llA can be put in correspondence with configurations on A in the fol
lowing way: We choose an orthonormal.basis

{e:}~EI with 1:= {I, ... , N} (2.3)

in 1£zo Let {lA be the set of configura.tions {WA} in A, defined as the set of all
assigq.ments {O'Z}ZEA of an element liz E I to each x. If X C A, then Wx denotes
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the restriction of· ~he configuration WA to the subset X. For each configuration
WA = {O'~}%eA E OA, let ec.,A be the vector defined as

-t".--., #(

(2.4)

The set of vectors {e""A}""AEOA is an orthonormal basis of llA.
A state of a quantum lattice system is defined as a positive linear functional on

a suitable C·-algebra. To construct the latter, we start with the algebra AA of all
bounded operators (matrices), acting on 'H.A., with the usual operator norm and with
hermitian conjugation as the *-involution. The algebras AA can be considered to be
partially nested, Le.,

AAI C .AA2 if At C A2 , (2.5)

by identifying each operator At E AAI with the operator Al~lA2\Al E AA2,;where 1
denotes the identity operator. Moreover, the algebras AA are local, i.e.. if At E AAI
and A2 E AA2' and At n A2 =0, then

(2.6)

(2.9)

Quantum lattice gases:
In order to describe the itinerant particles. of a quantum lattiCe gas, one starts

with the one-particle Hilbert space

1/.(1) := l2(7L.d) ~ eN (2.10)

·6



It represents a single particle which has N internal degrees of freedoID'and is confined
to a lattice Ztl. A basis 'of this space can be obtained from the bases {e:s}CTsEI of
1£:, introduced above, (eqn.(2.3». We shall also use e:

s
to denote the vector in 1/,(1)

which has all other summands equal to zero.
. To incorporate the statistics of the particles we construct Fock spaces

where

:Fp(1/,(l») = p E9 (fi(l») n

n~O

(2.11)

(1£(1») n = 1£(1) ® 1l(1) ® ... ® ?l(1) (2.12)

denotes the n-fold tensor product of 1£(1), with itself, (1/,(1»0 := C, and P is the
orthogonal projection onto the subspace with the rig)lt symmetry properties. We
shall consider bosons and fermions.
(i) For bosons, P is the projeCtion onto the symmetric subspace, ·defined on each
('U(l)) n by

(2.13)

where e:~ E 1/.(1), for all i, and 7l" ranges over all permutations of the indices (1, ... n).
(ii) For fennions, P is the projection onto the antisymmetric subspace

(2.14)

where sgn(w) is +1 if the permutation 11' is even and -1 if it is odd. The RHS of
(2.14) vuiishes if any vector e;: appears mote than once in the tensor product. This
implies that it is impossible to create two fermions in the same state, in accordance
with the Pauli' exclusion prin,ciple.

Identical constructions can be made for finite volumes, i.e. when 1/,(1) is replaced
by

1l~) .- peA) ® eN
,.., E9~,

zEA

for finite A C 7l.tl• The fermion. Fock space for a finite volume A is given by ,

.rPv.nDi (1/,~» = Ji;.enDi Ef) (1l~») n
n~O

.(2.15)

(2.16)

It follows from the Pauli principle that the direct sum in (2.16) terminates at
n=NfAI·

The formulae (2.13) and (2.14) can be used to define some bases in the Fock
spaces. One must take into account the fact that different vectors of (1l(I») ft, namely
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(2.17)

5 4 3• • •
6 1 2• .(O~O) •
7•

FigUre 1: Spiral order in 7L.2

So

those which differ only in a permutation of the factors e~~, are mapped by the
I •

projection operator P onto the same vector of the Focie space (up to 8: sign).
To avoid ambigUities, we choose a total ordering of the sites in Zd. For future

convenience, we choose the spiral order, depicted in Figure 1 for d == 2. We shall
say that (Xl, 0"1) is earlier than (X2' 0"2) - and write (XI' 0"1) ~ (X2' 0"2) - if XI ~ X2

and, for XI = X2, 0"1 < 0"2. The spiral order has the convenient property that

the set of sites earlie~ than those. in a given, finite set B is
also a finite set B(~).

This property will be useful in defining states corresponding to "classical" boundary
conditions. [See discussion followi~g (2.46)].

An orthonormal basis of Fp('H,CI» is given by the vectors

(2.18)

where "( ... )~" indicates that the braced factors must be ordered such that each
subscript (XiO"i) is" earlier than the ones to its right. The vectors (2.18) involve in
finitely many occupation numbers n_, but only finitely many, namely the indicated
ones, are nonzero. By restricting the sites Xi to those ina finite region A C Zd, one
obtains a basis of .rp(llr» in a similar manner. For fermions, each n_ is either 0
or l.

Having introduced the Fock spaces appropriate for the description of bosons and,
fermions, we proceed to define suitable O·-algebras of observables. The O·-algebras
are g~nerated by· the creation and annihilation operators on" Fock space obeying the
canonical anticommutation relations (CAR), for fennions, and the Weyl fonn of the
canonical commutation relations (CCR), for bosons.

The annihilation and creation operators on :F'p('H.(I» are defined as

(2.19)

and
(2.20)

8
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with
(2.21)

(2.22)

(
:1:1 101 101:1:") • r:: (:& :&1 ) :&2 101 lOI:l:n8.:r:<J' e<J'l '01 ••• '01 eO'" .= V n eO', e(1'1 e(1'2 '01 ••• '01 e<J'ft'

a· (e:&i 101 ••• 101 e:l:n ) := vn+I e:& ® e:&1 ® ... ® e:l:ft
:1:(1' 0'1 '01 '01 O'n, 0' 0'1 O'n

where (e;, e;~) denotes the scalar product of the vectors e; and e~~. Furthermore,

8:r:O'to >:= 0 (2.23)

and
(2.24)

(2.25)
where

IO} := (I, 0, 0" · .) E 61(1£(1»)'1
n~O

denotes the vacuum, i.e., the zero-particle state.
For bosons, lhe opera.tors defined through eqs.(2.19) and (2.20) satisfy the canon

ical commuta.tion relations (CCR):

(2.26)

where 1 is the identity operator. For fermions, the corresponding operators satisfy
the ca.nonica.l anticommutation relations (CAR):

{C:l:IO'I' C:l:20'2} -. {C;10'1' C;2~2} = 0

{C:l:10'1' C;'0'2} - (e::, e::)l (2.27)

It follows from the CAR that IIcl:O'Ii = flc:O'II = 1: ,
The basis vectors, Inl:10'1 ~ •• n:l:~O'~)' defined by eqn.(2.18),can be alternatively

expressed in terms of the'action of the creation opera.tors on the vacuum.

(2.28)

The labelling is consistent with the fact tha.t these vectors are simultaneous eigen
vectors of the number operators

(2.29)

with the eigenvalues nl:O' taking values 0 or 1 for fermions, and 0 or any natural
number for bosons. More generally

(2.30)

and similarly

C In ...n ) - eiCt~ Vn-•.-.. In-I-I"· n_•. _." - 1 ... n_Ic - Ic ):l:i<J'i :1:10'1 rJcO'Ie ... v ... v ... v ... u (2.31)

9



where Q~ is a phase which depends on the nZj<Tj with (Xj, O'j) strictly earlier than
(Xi,O'i):

•

0:'5 - 0' for bosons,

Q~ - 0, 1(" for' fermions.

(2.32)

(2.33)

Let 13A be the *-algebra generated by the identity and the fermionic annihilation'
operators, CZ<T' with 'x E A. It is referred to as the fi~ld algebra and is larger than
the algebra of obserVables. The algebra AA of local observables 'is the subalgebra of
BA consisting of all those operators which can be expressed as sums of monomials
of even degree in the creation and annihilation operators associated with the lattice
sites X E A.2 For A1 E AAI and A2 E AA~

(2.34)

and hence the algebras AA are local. For bosons the creation and annihilation
operators are not bounded. This is because there is no bound on the number of
particles in the same one-particle state. The technical difficuities posed by this
unboundedness can be avoided by considering 1;>ounded functions of these operators.
One such choice yields the Weyl operators which are defined as

where

and

WZ<T(a, b) = exp(ia~Z<T+ ibITz<T), a, bElt (2.35)

(2.36)

(2.37)

The operators CZ6 and c:6 are the bosonic annihilation and creation operators sat
isfying the CCR, (2.26). The Weyloperators satisfy the commutation relations

WZ<T (a, b) W~61(a', b') =exp(i(ab' - a'b)Szz' J66/}.Wz/61 ( a', b' ) WZ6 ( a, b)
, .

(2.38)

2It is often reasonable to demand that observables are gauge invarian~. A gauge transformation
g. is defined by its action". on ,the, annihilation operators

g. : ~C1 t---+ e··ctl:C1; ., e JR

The algebra AA of local observables could also be defined as the subalgebra of SA consisting orall
those elements which are invariant under the above transformation, i.e.,

Consequently a gauge invariant observable is given by a sum of tenDs each having an equal number
of creation and annihilation operators.

10
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which are called the Weyl form of the CCR. A quasiloca.l C·-algebra suitable for the
description of bosons can be·generated from these Weyl operators.

In both cases, the fermionic and the bosonic case, the local algebras are nested
w.r.t. inclusions of the localization regions, Le., '

(2.39)

(2.40)

and the quasilocal algebra of local observables is the norm closure of UA/,ZI' AA' in
complete analogy with quantum spin systems. Furthermore, let B be the quasilocal
C·-algebra defined as

where BA is the *-algebra generated by the identity and annihilation operators for
fennions, and by the :Weyl operators for bosons.

As in a quantum spin system, an interaction in a quantum lattice gas is given by
selfadjoint operators ~B E As, for finite subsets B of the lattice. It is to be noted
tha.t it is implicitly assumed here that the ~B are bounded opera.tors. This imposes
severe restrictions on the allowed interactions in a bosonic lattice gas. For fermions,
the interactions ~B are given by sums of monomials of even degree in creation and
annihilation operators. We write this symbolically as

(2.41)

where each ~B is an even monomial and LA! denotes the sum over all such monomials
(with support in B) comprising the interactioI! ~s. In our formulation of the low
temperature expansion, it is necessary to express the fermionic interactions in terms
of their constituent monomials, in order to arrive at a precise definition of quantum
contours [see Sect. 3.3]. In order to have a unified treatment for bosons and fermions,
we shall denote a1l quantum interactions in the sequel by ~1, with the understanding
that, for fermions, ~1 is an even monomial (as mentioned above), whereas for bosons

. ~1 = ~1· Mo~eover, the nota.tions

(2.42)

will be used to denote that the set B, corresponding to the monomials .~ (for
fermions), and to the interaction .1 (for bosons), satisfies the' above conditions,
(2.42). For simplicity we shall assume that the interactions are translation invariant.
However, our fonnalism can be easily extended to periodic interactions.

H an interaction, f>B, is diagonal in the basis formed by the vectors defined in
(2.18), then it is called classical and is denoted by .~.

A bond is defined as a set B C Zd, for which f>B ::f: O. In particular, a quantum
bond is defined as follows:

11



Definition 2.1 A quantum bond is G set B for tDhich .1 :f= o. In the sequel, the
symbol B tDill often be used to denote' the 8Upport of.~ and tDill also be referleA to
as a quantum bond. ' -

The range of the interactions is defined as the maximum of the diameters of
the bonds (defined with any convenient transla.tion invariant notion of distance on
Zci). ·Thecla.ssical part of the interactions will be assumed to be of finite range.
The quantum perturbation can be of infinite range, but is assumed to satisfy, a
summability condition of the form

E 'lI~l1l1elCdiamB < 00

l!~O -
(2.43)

for Ie > 0 large enough. ,
H the occupancy of every site of the lattice 7l.ci is chosen to be one then the lattice

gas reduces to a spin system.
We now introduce the notion of boundary conditions which is of crucial impor~

tance in the determination of phase diagrams. As mentioned before, we restrict
our attention to finite subsets A of the lattice Ztl" We choose some periodic con
figuration 8 on 'Ztl, which is defined by the occupation numbers n%V = S~t1 Jor
x E 7ltl,1 < tr < N. The exterior configuration, SAc, with AC:= Zci \ A, is called a
boundary condition. -.

It is evident that our formalism must be generalized, because the configura.tion
s does not correspond to a vector in the Fock space .rp(1l(1). The vectors in Fock
space are square-summable superpositions of vectors with finite total occupation
number, whereas, for the vector Is), corresponding to a configuration s, this-number
is infinite, (unless s~ =0, for all %,tr).

Thus, instead of considering the ,Fock space Fp(ll(l», we consider a Hilbert
space of states corresponding to loco.l alterations of the configuration s. Technically,
this means that we construct a space t:';'(1l(l» 'which has Is) as a cyclic vector.
This construction is possible if we can prove tha.ts defines a state, i.e., a positive,
normalized linear functional on the quasilocal C·-algebra B. Since 8 is generated
by the identity and the annihilation operators, this amounts to showing that we can
define.e~tation values of the form

(2.44)

where b~iC"i = C2:iC"U or b~iC"i = C:'C"i' for 1 < i < n. We do this through the
following limiting procedure: We consider the vectors ISA) E .rp(ll(l» defined by
the occupation numbers '

nzO' = {, $02:<1 ifI' x E A (2.45)
, ese,

and we set
(2.46)

12



This limit exists due to property. (2.17) which implies that the phases of the matrix
elements on the RHS of (2.46) stabilize once A :::> {z\,···, x~}(~). Our procedure
defines the Hilbert spaces Fj,(fl(l» via the standard GNS construction [6, Section
2.3.3]. For AC 7l.tl and boundary conditions, we define the finite-volume partial
trace for A E BA as

Tr~A := L(VA @ sAclAlvA ~ SAc) ,
"A

(2.47)

where {IvA}} is an orthonormal basis of Fp(ll~» of the form (2.28). (Note that
IVA ® SAc) E Fj,(1i(l».)

We define the Hamiltonian, HA' associated with a finite subset A of the lattice
as follows:

HA:= E PA~BPl , (2.48)
IJ.nA~'

where 4\B E As, and P Ais the orthogonal projection operator onto the subspace

{AIS) : A E BA }

of Fj,(1-/,Cl». That is, we eliminate those matrix elements of the operators .B,
with B intersecting both A and its cOmplement, that would lead to a change in the
configuration outside A.

The finite-volume free energy density for a set of interactions {• .!!}, boundary
condition s, and inverse temperature fJ is given by the·exptession

-1
I.(A) := PIA,lnTrle-PBA

• (2.49)

Its infinite-volume limit
f:= lim I.(A) , (2.50)

A.,14Ztl

is the free-energy density. The limit may be taken in the Sense of van Hove.
The finite-volume Gibbs stete fora set of interactions {.B }, boundary condition

S .and inverse temperature fJ is the linear functional on BA defined by

(2.51)

(2.52)

2.2 'Assumptions on the interactions

We consider interactions of the form .pB = .~B +.1, which give rise to a class of
Hamiltonians of the form - - -

HA - H~A+VA

- [:E ~:B] + [ :E .h].
BnA~1 - l1.nA#;I-

13



Note: We remark that the selj-adjointness of the intera~tions plays no essential
role in this work. Hence we do not assume it. In particular, this means that the
eigenvalues of the,classical interactions, ~~B, are allowed 'to be cqmplex.

We requires the following hypotheses:

(HI) {~~B} is a set of classical, finite-range interaction's parametrized by J!:. :=

(Pl, ... ,PP-:l). The "coordinate axes" of the phase diagram are labelled by Pi, 1 <
i < P -1. The range of the interactions ,is assumed to be independent of p. We shall
assume translation invariance, but analogous results can be obtained for periodic
interactions as well. The "classical" Hamiltonian H~A is assumed to satisfy the
standard hypotheses of Pirogov-Sinai theory, namely: -
There is a non-empty open set. 0 C m.P- 1 such that the following properties are
~atisfied:

(Hl.l)&istence of a common eigenbasis. There is a basis of the form given in
(2.18) in which all operators 9~1J, ~e simultaneously diagonal," for all p E O.

(Hl.2) Smoothness properties. Thefunctions 03 f. .-+ 9~B are differentiable in
operator norm. The functions, as well as their derivatives, are 'uniformly bounded
in norm. Typically, 0 is a bounded region. If. the functions .:B have a linear
dependence on P, the paranieters fl- correspond to fields or chemiCal'potentials.

(Hl.3) Finitedegenerocy.' The set formed by GIl periodic ground states of
{~:B}' for all J!.. EO, isa finite family

. (2.53)

In the present sit~ation, a periodic configuration s is a ground state for {f)~B} if

(2.54)

(2.56)

(2.55)

l' ,
- IWI L: e,ez(s)

sEW

where
. ' 1 ~ d

ep(s) := lim, IAI ~ 9 pB(S).
- A-"ZCI. -, BnA¢'

The symbol IAI denotes the cardinality of the set A, and the limit is taken., for
instance, via sequences of growing parallelepipeds. [Note: The definition of classical
ground states is more complicated in the presence of infinite degeneracy or non
periodicity. See for example [38, Appendix B] and references therein.]

For periodic configura.tions the limit (2.55) exists, and'the specific energy is
equivalently given by the ~verage energy contribution of each fundamental cell of
the configuration, i.e., .
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(2.57)

where We Zd is a choice of a fundamental <;ell of B, [i.e., a parallelepiped in which
the length of each side is a multiple of the corresponding period of B], and

f)~B(.s)
e,ell:(s) := E IB I

' B3:&

can be interpreted as the contribution of the site x to the energy. It will be referred
to as the specific energy "at x" of the configuration s.

(Hl.4) Peierls condition. For all f. E O'the Peierls condition is satisfied, for
some f.-independent Peierls constant J > O. Roughly speaking, this means that
the insertion of an excitation corresponding to a ground state configuration that is
different from the one on the rest'of the lattice costs an energy proportional to the
surface area of the inserted droplet. The constant of proportionality is the Peierls
constant. For a precise statement of this condition, see Definition 3.1 below.

(HI.S) Regularity of the phase diagmm. The zero-temperature phase diagram
for P:. E 0 is regular. We shall explain this notion below.

At zero temperature, the phase diagram is drawn using the set of ground states

Q(oo,O)V!) := {s" E K, : Ree,,(B,,) = min Ree,,(su)} (2.58)
- .t1EA: -

for each value of J!.: The superscripts (00,0) correspond to the values of P (propor
tional to the inverse temperature) and the quantum perturbation parameter~. The
classical zero-temperature phase diagram is the family of manifolds '

S~:::~~..,.PIc} := {p : Q(oo,O)(f) = {s"1' ... ,sP,J} (2.59)

for 1 < k ~ P, BPI' ••• ' s"le E K.. These manifolds are called the strata of the phase
diagram. The phase diagram defined by 'these strata is regular if the map

1! t-----+ (Ree,,(St) - ~in Ree,,(si), •.. , Ree,,(sp) - ~in Ree,,(si») (2.60)
- lStSP - - lS'SP-

is a homeomorphism of 0 into the boundary of the positive octa.t1t in the space m,p.
,This means that the stratum of maximum coexistence, SIC, is a single point (~ the
origin of lRP ), the strata with P - 1 ground states are curves emanating from it
(~ the coordinate semiaxes), and 80 on. The strata With P - Ie ground states are
k-dimensional manifolds bounded by the strata with P - k +1 ground states. (This
geometry is also known as the Gibbs phase rule.) .

(H2) The quantum perturbation {~~} is a translation invariant interaction satis
fying uponential decay. The precise expression of this decay is based on a choice of
sampling plaquettes Wa(x) = {y E 7l.d : IXi - Yil ~ a for 1 < i < d}. [The constant
a is chosen so as to have a one-to-one correspondence between configurations and
classical contours, (see Section 3:1 below).] For a finite Be 7l.d , let

g(B) :=' minimal number of plaquettes needed to
cover B with a conneeted set. (2.61)
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Then the decay condition is given by

(2.62)

for some constant c and some 0 < ,,\ < 1.

2.~ . Examples

In this section we give some simple examples of models to which our theory can be
applied. For simplicity we' consider models' in 71.2 , but analogous results hold for

, models on 71.4, d > 2. So .

Example 1: Fisher antijerromagnet. This is an example of a quantum-spin system.
For simplicity we choose the spin at each site to be 1/2. Hence 1-l: !:= C2

•o The system
has a Hamiltonian given -by

HA = [ :E (T~3) (T~3) - K :E (T~3)(T~3) - h :E q-~3) - h""- :E(-1 )FI(T~3)]
<%.~>'A <%t~>rflA %EA %EA

+[t .:E ((T~1)(T~1) + (T~2)(T~2») +h.c.) . (2.63)
<%t~>IfIA '

O'~i), i = 1,2,3, are the spin operators (Pauli matrices);' <x, y> and<:x, y> denote
nearest neighbour and next-nearest neighbour pairs, respectively, and the notation
B tflA is used to refer to the set:

{B c Zcl : B n A # 0}. (2.64)

Finally, t is an exchange coupling cons~ant.

Note: In this and the following exampleS ~e use square brackets to separate the
classical and quantum parts of the Hamiltonian (as in (2.52». Moreover, any per
turbation satisfying hypothesis (H2) can be added to the quantum parts.

This model gives rise to phaSe diagrams of different degrees of complexity de
pending on which of the couplings are varied. Let us 'first consider ~ = (h, h").
The parameter h8t.aa modulates a sto.ggetT-d field whose sign changes as the parity
of Ixl :=')X1) +...+ IXcll changes. The ferromagnetic coupling K is assumed to have
a pea. non-negative value. We use the symbols "+" and "-" to denote spin up and
spin down respectively.

For K > 0, the set of ground states of the classical part is

(2.65)

where s+ is the all-"+" configuration, s_ the &11-"-", and s+_ and s-+ are the two
Neel configurations with "+" spins in one sublattice and "-" spins in the other one. -
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2

{ t+of:),~ {(:j::P, cr;:), Crof: )}
--+~+~--~=+--'--.--f""':"++~-+---:~hstagg

{ (:: ), (+-+ ), Cr-t: )}L ..
Q

(a) .

_____."..._O,~-----........:>~hstagg

{G-~)'C+-;)} (b)

Figure 2: Zero temperature phase diagram of the Fisher antiferromagnet (Example
1) for (a) K > 0 (b) K = 0 ~ndlhI < 2. -
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The fundamental cell of these periodic configurations· can be chosen to be a 2 x 2
square. Hence we write symbolically:

( ++) (--) (+-) (-+)8+ = + + ,8_ = _ _ . ,8+- =. _ + ., 8~+ = + _ .
(2.66)

The corresponding zero-temperatureph~diagram is depicted in Figure 2(a). The
oblique lines for h > 0 are given by the equation

h =2 + Ih8bal..

The corresponding lines for h <: 0 are given by the equation

h =-2 -lhaUgl.

. (2.67)

(2.68)

(2.69)

To construct the ground state phase diagram, it is convenient to rewrite the
.classical part of the Hamiltonian as a sum over terms corresponding to 2 x 2 blocks,
M, i.e., ~M ()~ ~th

K ~ 0'(3)0'(3) _ ~ ~ 0'(3)
L.i ~. 4.L.., ~

<c,,>cM cEM

.ha&aa: .I:(-1 )1~IO'l3)
4 ~eM

and find the minimal energy configurations over any such block M. This is because
the operators ~~ constitute an m-potential, (16).

This d~agram is regwar in the vicinity of the maximal-coexistence points P and
Q. At zero temperature, this model exhibits a transition between ferromagnetic and
antiferromagnetic order when anyone of the oblique coexistence lines in ,the phase
diagram is crossed. Our theory will show that this transition survives at'nonzero
temperatures and/or in the presence of small quantum perturbations, like the spin
ilipping term added in the second line of (2.63). An alternative proof of this fact is
presented in [2].

H we set K = 0, the oblique coexistence lines emanating from P and Q acquire
infinitely many periodic ground states. For the upper lines these ground states result
from periodic arrangements of the Configurations:

( + -) (+ +) (+ +) (- +)+ + -+ + - + + (2.70)

For the lower lines the configurations which contribute are the ones obtained from
the above set by a spin..:flip. These sectors of the phase diagram,.therefore, lie outside
the scope of our theory [violation of (H1.3)). Nevertheless, we can still analyze the
regions around the open vertical segment joining Pwith Q. This corresponds to
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fixing the parameter h at some ~ue, such that Ihl < 2, and considering the model
to be parametrized by hst.agg alone. This yields the phase diagram of Figure 2 (b).

The fact that in each case the relevant classical part of the Hamiltonian satisfies
the Peierls condition follows from a general theorem of Holsztynski and Slawny"[16]
and the stability of the Peierls condition under perturbation (Proposition 3.2 below).

Example 2: Simple fermionic·model. We consider spinless fermions with interac
tion

HA - [ E 0 ..1ly - K E 0 ..0. - p E 0 .. - p"tag E (-1 )1"10 ..]

<:,11> rflA <:,11> 'flA :EA :EA

+[t. E c:c. +h.c.] . (2.71)
<:,1I>IflA .

A lattice site can either be empty, or occupied by a single fermion. Hence 11,: ~ C2
•

This model can be obtained from the one of the previous example by a transforma
tion of spin variables to lattice gas variables. By suitably transcribing the results
of Example 1, we obtain, for K > 0, the zero-temperature phase diagram shown in
Figure 3 (a).

The latter involves the ground states

1:. ,= {s. ,S.o, so.} , (2.72)

where s. is the.configuration with exactly one fermion at each site; while s.o and
so. are the half-filled configurations having one fermion at each site of one of the
sublattices and no particle in the other sublattice. DiagrammatiCally,

8. =(: :) \ 8.0 =(: ~) •80. = (~ :) .

The oblique lines in Figure 3 (a) are given by the equation

(2.73)

(2.74)

. This diagram is regular in the vicinity of the maximal-coexistence point P. For
K = 0 the oblique lines become lines of infinite degeneracy, with ground ,states
having, in addition to the above configurations, (2.73), the following one:

(: :);
and the three others obtained from it by rotations. Hence our theory can only be
applied in the region around the vertical coexistence line up to, but ezcluding, the
point P, Le., to phase diagrams as in Figure 3 (b). The stability of these phase
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(a) Jlstagg

(~~}O (:~)
----~--'-,-,-J-)-------JX-s.....,;ta:g~g

{(~ ~),(: ~)}

Figure 3: Zero-temperature phase diagram of the simple fermionic model of Example
2 (a) for K > 0 and (b) for K = 0 ,and 0 ~ Jl. < 4 - 2K.
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diagrams at low, but nonzero temperatures, and under quantum perturbations, has
been studied in [22], in which the K = omodel was introduced, and in [3], where
the analogous region of the K > 0 model was analysed.

Example 3: Simple model of fermions with spin. By combining elements from the
previous two examples, we can easily generate simple models involving itinerant par
ticles with spin, which satisfy the hypotheses of Section 2.2. For instance, consider
spin-l/2 fermions with Hamiltot;1ians

[ (1+ q~3)q~3») (1 + q~3)q~3»)
H A = E 2 DzDv-K E 2 DzDv

<z,v> rflA so . <z,v>rflA .

- p. L nz - p.~E(-l)'''lnz - hL q~3)nz - h~L(-1)fzlq~3)nz]
zEA zEA zEA zEA

+ VA. (2.75)

We have defined. D z := 2:6=-1,1 D Z6• In the most general case, namely when we
choose some fixed. K > 0 and consider the other four constants as parameters, the
phase diagram is regular Motind the maximal-coexistence point

p = (p = 2 - 2K, petag =0, h =2, hetaa .. 0) , (2.76)

where there are five degenerate ground· states:

8++ = (~ ~) , 8+- = (+ +), 8_+ = (+ +)
8~O = (~ :) , 80+ = (: ~). (2.77)

In Figure 4 we present the cross section of ,the h > 0 region of the phase diagram
through the plane hat.ag = p-.aa = o.
The validity of the Peierls condition is again a consequence of the results of Holsz
tynski and Slawny [16] and Proposition 3.2 given in Section 3.

In subsequent papers [8, 13] we consider a broader class of Hamiltonians whose
classical part need not have a finite number of ground states (and hence may vi
olate the Peierls condition). In [8] we develop a perturbation technique which,
together with the contour expansion methods of this paper, permits us to study the
degeneracy-breaking effects of a quantum perturbation on the classical part and to
analyse the phase diagram of the Hamiltonian at low temperatures.

2.4 The main theorem

Our results show that, under the hypotheses listed. in Section 2.2, the phase diagrams
obtained. at low temperatures, and for small quantum perturbations, are only small .
deformations of the zero-temperature diagram corresponding'to the classical part
{~~B}. The precise statement of this result requires a notion of stability of phases.
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H::),(62J,( ~~)}

4 -~K (:':)

h=4-2K-fL {(++) (+_) (_+) (+0:) (o+)}
++', - + , +- , 0+ , + 0

2K

2-2K

Figure 4: Zero-temperature phase diagram of the model of fermionic spins of Ex
ample 3.
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Definition 2.2 We shall say that a configuration s" E K, defines a stable phase (or .
that the s,,-phase is stable), for the interactions {4)"'1!}' if there ezists a neighbour
hood, V, of the origin ofJR?, such that, for each pair (e-P,'\) E 1) and any local
operator A, the infinite-volume limit

(2.78)

exists and satisfies

In analogy to (2.58), we introduce the sets

Q(P,'\)~) ._ {s" : the s,,-phase is stable for {4)e B }}

to. define the strata

S~~:~.".PIc} := {f : Q(P,>')<E.) = {8"1'· .. , s",,}} .

(2.79)

(2.80)

(2.81)

(2.82)

Our paper presents a proof of the following theorem:-.

Theorem 2.3 Under the hypotheses of Section f.f, there are constants J > 0 and
co > 0 such that, for each f3 and ,\ in the region

max(e-pj , ,\) < co,

th,ere ezists a non-empty open set Op,\ E lRP- t such that:

(i) The ph4Se diagram defined by the .strata Op,\ n S~~~!...'.PIc} is regular [in the
sense described below (f.60)] and these strata are differentiable manifolds.

(ii) As eo 4- 0, the strata Op>, n S~~:~.."'PIc} tend to the zero-temperature classico,l

strata 0 n S~:;;C:~.""Ic}' pointwise in J!:: In particular, the distance between the

mazimal-coezistence manifolds sf1''\) and sloo,O) is O(co).

We shall say that a zero-temperature, classical phase diagram is stable, under
temperature and quantum perturbations, if the conclusions (i) and (ii) of the theo
rem hold.

Using our contour expansion methods, we can further prove that, for a fixed value
of J1. corresponding to a single-phase region of the phase diagram, the· free energy
density and the quantum expectations, defined in (2~78), are analytic functions of
Pand '\, provided (Re f3)-1 and I~I are small enough.

As an illustration, let us describe the consequences of this theorem for the exam
ples ~f Section 2.3. For the Fisher antiferromagnet, we conclude that, for K > 0 and
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eo small enough, the phase diagi-am &round maximal-coexistence points looks like a
smooth deformation of the diagr.am of Figure 2(a) in the vicinity of the points P and
Q. Symmetry considerations imply that the coexistence line between Neel phases
remains at h·tagg = o. Th~ results have also been obtained in [2], using model
tailored dressing transformations. Likewise, QUr theory implies that for K = 0 ~d
Ihl ,< 2 the phase diagram of Figure 2(b) remains valid for small eo. In fact, the
diagram remains unchanged because, by symmetry, the coexistence point stays at
h-tau= O.

Similar conclusions apply to the spinless fermion system of Example 2. In par
ticular, we conclude that, for K = 0, the phase diagram of Figure 3 (b) remains
unchanged when small kinetic terms (i.e., quantum perturbations) are added and
the temperature is increased, as already proven in [22, 3]. Besides, we derive the
stability of the phase diagram for K > 0 [Figure 3(a)] around the point P.

For the spin-1/2 fermion model of Example 3, we obtain the stability of the
phase diagram around the' maximal-coexistence point (2.76). By sYmmetry, the
coexistence between Nee} phases (defined by boundary conditions 8+_ and 8_+)
remains at h~ = 0, and that of the half-filled phases (boundary conditions 8+0

and 80+) at p.tAu == O. Hence we alSo obtain the stability of the (non-regular) phase
diagram of Figure 4 around the point P.

The implications of Theorem 2.3 for more interesting, t-J-typ'e, models will be
the subject of a forthcoming paper [13].

3 Low-temperature expansion for quantum per
turbations

The first step in-the proof of our main result,Theorem 2.3, consists in constructing
a suitable low-temperature expansion.. This is the content of the present section.
Our expansion is a type' of polYmer expansion in which the polymers are called
quantum contours (and the consistency rules are more complicated than plain non
~ntersection). They are a generalization of the well-:known classical contours of
Pirogov-Sinai theory (see ego [35, chapter 11]). We first recall the definition of these
classical cont9urs and of the associated Peierls condition.

In this .and the following section we work with a fized value of the parame-
, ters p EO. Consequently, the parameters play no role and are hence not dis
played. The definition of the contours depends oniy on the referen<;e configurations
K:, = {81, ... ,8p} and on the range rofthe interactions. The parameters "fill be
reintroduced in Section 7, where we will study the effect of varying them.

3.1 The classical contours. The Peierls condition

To define these contours we start with a set of periodic reference configurations
JC = {81'" • , 8 p} and a number r > 0 which is an apriori bound on the range of the
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(3.1)

classical interactions to be considered. We fix sampling plaquettes WCl(z) = {y E
7l.d: IZi - 1/il < a for 1 < i < d}. The size a must be strictly larger than (i) the
periods of the reference configurations SI, ••• ,'Sp, and (ii) the range r.
Condition (i) implies the following extension property:

Ifw coincides with the configuratio~ 8" on a plaquette ·WCl (z)
and with 8 9 on WG (y) with dist(z, 11) $ I, then 8" =8 9 • .

To simplify the notation, we shall henceforth measure the cardinality of subsets
A of 7l.d in units of sampling plaquettes:

cardA
IAI:= d·a

(3.2)

Two sets, A and B, in Zd are said to be connected if dist(A, B) < 1 in lattice units.
A subSet M of a set A C 7l.d is called a component of A if M is a maximal connected
subset of A, i.e., M is connected and M c M'C A, M :F M' imply that M' cannot
.be connected.

The classical contours are constructed out of "incorrect" plaquettes. A site z is
said to be p-correct, for a configuration w, if the latter coincides with 8" on every
sampling plaquette that contains z. The set of sites that are not p-correct for any.
p, 1 < p < P, are referred to as "iDcorrect". The set of plaquettes for which at least
one site. is "incorrect" form the defect set, 8w, of the configuration w. Note that

8w = U {WG(x) : WW;.(z):F (8p)W~(~) for all ~ < p < p} . (3.3)
~EZ4 \

.
Typically we will consider configurations w equal to some reference configuration
8 E K, almost everywher~, i.e., w differs from s only on a finite set of lattice sites.
In this situation' 8w is a finite set. We shall refer to the plaquettes belonging to the
defect set as excited plaquettes and the components of the defect set as excitations.

A (classical) contour of a corifiguration w is a pair 'Y = (M,WM) where M is a
-component of the defect set 8w. The set M is the support of "1, to be denoted by
supp 'Y. We shall often refer to the support of a contour 'Y again using the symbol 'Y
and use the abbreviation

171 := 1supp 71 • (3.4)

According to our definition, the smallest contour is the one obtained when only
a single site is "incorrect"; e.g. for a quantum spin system this results when one
spin is misaligned, the corresponding contour being formed by all the plaquettes
containing this spin. Hence the minimal nonzero value of Iii is given by

(3.5)

Each configuration defines a unique family of contours from which it can be re
constructed, but not all families of contours correspond to admissible configurations.
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The additional restrictions are that' contours must not intersect and that configu
rations in the interiors, and exteriors of' nested contours must match. A family of
contours which corresponds to an admissible configuration will be called compatible.
Henceforth, we shall only consider finite contours (Le., Istipp "YI < 00). For each
such contour, 'Y, the space Zd \suPP"Y is divided into a finite~numberof compo
nents. Moreover, by the extension property (3.1), we can extend the configuration'
on a ,single plaquette in a component tQ a unique configuration of K. in that com
ponent. In this way we can label each connected component of Zd \supp "Y by a
particular reference configuration. Thus, we obtain the unique configuration w~ that
has 'Y as its only contour. We shall refer to such a configuration' as' a one-contour '

,configuration. The only infinite component of Zd \ "Y is ca.lled the ezterior of the
contour, Ext(1), and the union of the other components constitute the interior,
Int("Y). The union of components of Int("Y) labelled by a reference configuration S9

is called'the q-interior, Int9 ("Y). ,The contour is called a. p..contour if its exterior is
labelled by the configuration s" E K.. '

A contour 'Y of a configuration w is 'called an ezterior conto.ur of w if its support
is not contained in the interior of any other contour of w" i.e., if 'Y C Ext(,.') holds,
for any other contour ,.' of w. ,

Let {~~} be a ", set of classical interactions of range not exceeding r. Theone
contour configurations can be used to compute energies of any allowed configuration,
as we now explain.

Let wY be a one-contour configuration which has the p-cont~ur'Y as its only
contour. The energy cost of "Y, relative to its exterior configuration s", is given by

(3.6)

,

E .B(W~)
B tf(hath)U8upp'Y]

to write (3.6) in the form

_ '" IB nsupp"Yl .... ('1) ~ IB nInt'Yl .... ( '1)'it IBI '"'B W + 1t ,IBI '"'B W

+ E IB n Ext"Yl ~B(W'Y) , (3.7)
Blf(lnth)UlIupp'Y) IBI

p

HcI(w~ls,,) - E('Y) + L E [ez(s,,) - ez(sp)]
,,=1 zeInt.('Y)

(3.8)

where ez(s,,) is the specific energy "at .z", (see (2.57», of the configuration 8", and

(3.9)
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is the conto'ur energy of 'Y relative to the energy of its exterior configuration.
In obtaining (3.9) we have profited from having chosen the plaquette size a larger
than the range r, so that .

(3.10)

for any B with 911 :f:. 0, and, since i is a p-contour,

(3.11)

Hence the latter bonds do not contribute to the contour energy E(7). In situations
of maximal coexistence, all the reference configurations sp E .A, are groundstate
configurations and ha.ve the same lJpecific energy. In this .case, it follows from (3.8)
that the energy cost of a contour i is simply given by E(i).

Consider a region A such that

(3.12)

The total energy of the configuration w" [neededJor the partial trace of HIa. in (2.47)]
is given by .

Ht.p(w") =Ht(w'YJsp) + L 9~(sp).
Brflla.

We notice that a decomposition anaJogous to (3.7) yields

(3.13)

(3.14)

(3.15)

However, the last term of (3.14) is a boundary term which does not contribute to
the free energy density or to the expectation values of observables, (2.51), and is
independent of the configuration w. Hence we shall neglect it.

The energies of configurations with a finite number of contours (which are the
only ones relevant in the sequel) can be reconstructed from energies of its contours.
Let w =Jbe a configuration corresponding to a compatible family of contours,
r = {il'. ~ . , ilt}, and coinciding at infinity with some reference configuration 81'.
This implies that the exterior contours of the configuration w are p-contours. Let
w'Yl, ••• ,w..,1e be the corresponding one-~ntour configurations. The energy cost

Hd(wrlsp) = L [9~(Wr) - 9~(Sp)]
B 4(Int("'j)u.u.pP"'j]

of wr ~ relative to the exterior configuration sp, is simply the sum of one-contour
energy costs:

Ie

Hd(wrlsp) = L: Hd(w"'jls(ij» ,
j=1
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where S(7j) is the reference configuration in'the exterior 'of 7j. It follows from
eqs.(3.13),(3.14) and (3.16) tha~ the total energy of J is given by

where

p

Hf(w) =1: ez(sp) + E(r) +1: E [ez(su}- ez(sp)] ,
zeA ; u=1 zel"

k

E(r) = EE{7j),
j

(3.17)

(3.18) .

and lu is the set of sites in Athat areeitheru~rrector belong to au-contour. This
expression is to.be used for the partial trace 'IlZ in (2.47). Hence the configuration
J must be such that '

(3.19)

Remark: The contours 7j may extend outside A. This happens if w has some
incorrect site on the boundary, 8A. In this case all those plaquettes which contain
this site, but extend outside A, also belo~ to a contour. Bence, in general, the
contours are contained in the larger set formed by the plaquettes that touch A:

,A := U{W.(z): w.(z)nA#0}. (3.20)

. \

.This means that in E(7j) one may be counting bonds B CAe that are not counted
in Hr.p • However, the identity (3.17) remains valid, because these bonds do not
contribute to the energy ora contour, [see sentence following (3.11)].

Note: We use the letter 7 to denote individual contours and r to denote families of
contours.

. The Peierls condition can now be stated in terms of- the contour energies defined in
(3.9).

In general it is not. simple to prove that the Peierls condition is satisfied for a par
ticular model. One way of doing so is to show that the excess energy of each excited
plaquette of the cop.figuration is nonzero, irrespective of the particular configuration
on the plaquettes surrounding it. However,this is true only in severely constrained
systems or for highly symmetric situations (as in the Ising model [15, 9]). In most
systems, it is' often energetically favourable for a plaquette to have an "incorrect"
configuration if the surrounding plaquettes are already excited. Hence, calculat
ing the excess energy of a single excited plaquette is not sufficient for verifying the

28



•

Peierls condition. Instead,. one may need· to compute the energy balance of a pos
sibly complex arrangement of plaquettes.However, one can avoid the complicated
calculations that this. involves by resorting to a th~rem due to Holsztynski and
Slawny [16], which states that the Peierls condition is satisfied if the interaction can
be written as an m-potential, i.e., a potential admitting a finite number of ground
states that minimize the contribution of each bond simultaneously. The only dra'Y
back of this important result is· that its proof does not provide any estimate of the
Peierls constant, a fact that in tum prevents one from explicitly estimating the range
of temperatures for which our results concemi"ng the phase diagram, are valid.

In this paper we have the additional complication of having to verify the Peierls
. condition simultaneously for a whole family of interactions, parametrized by J!:.. (Hy

pothesis (H1.4)]. However, the condition imposed on the size of the sampling pla
quettes, namely a > r, simplifies the situation, since it allows us to make use of
some perturbativeresults (discussed for instance in [38, pages 1126-1127]) which
can be summarized in the following statement:

Proposition 3.2 Consider a family of interactions {~:B} differentiable in J!:: As

sume that, for some value I!:.o of the parameters, the int~ction {~~B} has a finite

number ·oJ periodic ground states ~ = {SI' ••• ' S p} and that it satisfies the Peierls
condition with Peierls constant Jo• Then, for J > 0 small enough, there ezist open

, neighbourhoods 01 3 & such that all the interactions {~:B} with J!:.. E 0, satisfy
the Peierls condition with Peierls constant Jo - J and for the same set of reference
configurations K,.

For instance, to verify the uniform-Peierls condition hypothesis [(Hl.4) in Section
2.2] for the examples of Section 2.3, it is enough to check it at the points of maximal
coexistence, whi~ is an easy application of Holsztynski-Slawny theory.

3.2 ,The Duhamel expansion

We start by establishing a low-temperature expansion for the partition functions

E.(A) = Trl e-PBA (3.22)

for finite regions A C Ztlwith boundary condition S = s" E~. To compute this
'trace we uSe the basis of :Fj,(ll(l») spanned by the vectors IVA 0 SAC) corresponding
to configurations VAS" which coincide with s" outside A. This basis is chosen because
Ht is diagonal in it [Hypothesis (Hl.1)]. In turn, each of the configurations VAS"

is uniquely determined by a compatible family of contours r" = r"(VAS,,). The
. superscript, p, indicates that the exterior contours, i.e., the contours of _r" whose
supports are not contained in the interior of any other contour of I'P, are p-contours.
We ~, therefore, relabel the basis in terms of these contours and write

3,(A) = L:(r"je-PHAlr"),
I"JJ
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(henceforth we shall denote E.p == Ep). The presence of A in the above formula
implies that all the contours involved must have supports contained in the larger set
Adefined in (3.20).

Our starting point for the expansion is the (formal) series
.

e-PHA = e-PH'1 + ~ foP dTt ..• foP dT.. e(.0 - Ei'=tT;)
. ft~l 0 0 . .

x 'e-(~-E.,.e)B~ (-'VA) e-TJH~ ••• (-VA) e-"'nH~ ,

which is obtained by iterating Duhamel's formula

(3.24)

(3.25)

~
r:J'ft..~

rf compatible family
r:=rt aupporiedOD A

e-PlH'1+vAl = e-PB't. - foP dT e-({J-T)~ VA e-TlH'1+v AI .

We perform the following manipulations:

(a) Take Tr Aof (3.24) as in (3.23).

(b) Insert IFP"(-W,i» = EI'P Irp)(J'P1 around each operator VA in (3.24).

(cl Use formula (3.17) to compute the (diagonal) ,matrix elements (I'J'le-"'s:,:r").

(d) Expand each VA as·a sum of 91's. In this way, at each time step, we ob
tain matrix elements involving oDly one quantum bond, or, for fermions, one
creation-annihilation monomial.

The result is

E,,(A) = exp[-p~ e~(sp)] x
~eA

{I +~

x (r:1 - 91.Ir:-1) •• • (~I ~ 91IIi)(rrI- 91Ir~)

X exp{-(.0 - UIT;)E(I'l:) - TtE(I!) '" - T..E(~)}

(3.26)
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where e is the step function [i.e., 6(t) = 1 if t > 0 and 0 otherwise], and lu(rf)
refers to the set. of sites {x} in the subset

U [SUPP7 U Int7]
-yErr

of the lattice, which are either u-correct or belong to au-contour.
Expression (3.26) can be interpreted as a "sum" of terms each of which is labelled

by a sequence of the form

(3.27)

where n is zero or a natural number. Each rf is a compatible family of classical
contours in Ahaving 8" E 1(;. as its exterior configuration. The T, are real numbers
in the interval [0, Pl with .

(3.28)

and each B, is a quantum bond. The sequence (3.27) can be visualized as a piecewise
cylindrical surface in d + 1 dimensions formed by cylindrical p~eces of sections rr
and "flat" bridges corresponding to the quantum bonds lJ..c, defined in Sect. 2.l.

We shall refer to [0, Pl as the· "time" axis, and to Ztl ~ Ztl X {O} as the "spatial"
coordinates. In our construction, the boundary.condition in the spatial direction is
defined by one of the ground states. We always impose periodic boundary conditions
in the "time" direction, i.e., throughout our analysis, the interval [0, P] is endowed
with the structure of a circle. This corresponds to taking the trace of the Boltzmann
factor e-PB" as in (3.23).

Let V be a piecewise-cylindrical region in d +1 dimensions of the form

(3.29)

In the following we shall use the symbol Iv to denote a summation over sites .z in
A (4ivided by ad in accordance with our choice' of sampling-plaquette units) and
integration over the continuous variable 1', i.e.,

(3.30)

The surface Til can be considered to be constructed in the following manner: Til
has a section r~ at "time" zero, which grows cylindrically during a "time" interval
of length (P - Ei=l Ti) at the end of which III is placed.transversely, and the section
changes suddenly to rr. This results from the action of (»h . The section rr then

-1
grows cylindrically during a "time" interval 1'} and so on. The action of the last
quantum interaction 9h restores the section to r~. This section propagates un-

_n

changed over a final "time" interval of length T". This space-time picture motivates

31



us to rewrite(3.26) in, the following. abbreviated form

2p(A) [f ( )]- exp - JAx[o.!Jl ez sp ..

(3.31)

The space-time region Lu is the union of cylinders of bases lu(rf) and heights Ti.

Its volume is given by
"ILul =LTillu(rf)1

i=O
(3.32)

(3.33)

where we have denoted TO := f3 - Ei:l Ti. Hence, using the notation of (3.30), we
have that

l "f' 1=E dTd E
L. i=O ,0 a zEI.<rf>

The definition of the weights w(TP) can be readily inferred from (3.26). By CODven
tion,the case n = 0 corresponds to T" = 0, and we define w(0) = 1 and 1.(0) = 0.
Following the analogy with classical contours, it_woUld be natural to refer to the
maximally connected components of the surface TP as quantum contours. This is
meaningful only if the "sum" (3.31) can be written as· a "sum" over compatible
families of such putative contours. This is possible if the integrals over Ti'S factorize,
and if'the weights w(TP) can be written as a product, of weights corresp0l!ding to
individual, disjoint contours. In Section 4 we shall prove that these factorization
properties are indeed satisfied.

3.3 Quantum Contours

In this section we give a precise definition of quantum contours, discuss their prop
.erties and introduce the quantum Peierls condition.

Definition.3.3 A p-quantumcontour for an interaction satisfying the hypothesis
H2 of Section !.! is a sequence of the form

(3.34)

where n is a natural number (to be referred ~o as the number of transitions). Each rf
is a compatible family of classical contours having sp E ~ as exterior configuration.
Each Ti is a non-negative real number such, thatL:."=l Ti 5 P, and each B..e is a
quantum bond. In addition we have ,the restrictions:
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(i) ri arises from r i;""l through the action of ~l. This action can change the
"spins" or the occupation numbers only in 0. subset of B; (which can even. be

.empty). Therefore '

o < ',ri' ~ Iri-tll $ IB;I. (3.35)

(ii) The surface resulting. from the toroidal boundary conditions in (0,,8] is con
nected [Figure 5(0.)) or linked [Figures 6(b)). [The condition of linking is rele...
vant only in the ~o.se of anyons.]

We shall omit the superscript indicating the exterior configuration whenever it
plays no role in our discussion.

Due to the periodic boundary condition, the "time" axis has the topology of a
circle. We make a distinction between contours that extend from "time" zero to
"time" fJ and ones which do not. The former will be referred to as lQng contours, .
while the latter will be called short contours. Some examples of these have been
illustrated in Figures 5· and 6. .

As mentioned above, a contour (I' represents a surface in d+1 dimensions formed
by successive cylinders of spatial sections ri and time-height Ti and fiat pieces Bi,
i =1, ... ,n, located at each transition. A quantum contour may have no connected
section [Figures 5(&2), (&3) and 6 (bI), (b2)] , but the different connected components
cannot be very far away from each other, because they must become conn~ted or
linked through the actions of ~~ , ... , ~~ . As a consequence

~ =oft

Sections of 0. quantum contour are such that no more than
IBtl + ... + IBnl additional plaquettes are needed to make (3.36)
them connected.

(This statement is false in d = 1.) Because of this, we shall think of the quantum
bonds B as "glue", and we shall refer to their cardinality IBI as the "number of
glue plaquettes". Note that observation (3.36) is also true for contours with no
connected projections [Figure 6J. This is because if fBtl +...+ IBnl glue plaquettes
~e needed foroQ.e component of a quantum contour to encircle another one, then an
even smaller number of glue plaquettes is required to connect the two components.

A quantum contour, (, also has a well-defin~ notion of exterior and interior,
with a unique configuration corresponding to each of its connected components. In
analogy with the classical case, we shall use the ~otationsExt«() and Intq«() to refer
to them. We also define the support, Stipp', of a quantum contour' as the union
of the corresponding defect set (in 7l.d. x [0, PD and the sites occupied by each of the
quantum bonds Bi. Let

Ir.1 := E I"YI·
~Er.

Then the area 1(':= Isupp (I is computed by adding
n

1(1.1. := Irol{,s - LT;) + 1ftITt + ... + TnlrOI ,
. ;=1
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Figure 5: Examples of quantum contours: (a) Connected contours: (al) Long con
tou.r (a2) Long contour with no connectedsectioD; (a3) Long contour (connectedness
results from periodicity in. the "time"~direction) (a4) Short contour.
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0--

(b I )
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p--
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0--
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(c )

Figure 6: Examples of quantum contours: (bI), (b2), (b3) Linked contours (b4)
A linked contour whose projection is not connected; (c) A surface that is not a
quantum contour, even though its spatial projection (= orthogonal projection onto
7ld x {O}) is connected.
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which is the sum of the areas of the cylindrical portions, to the number of sites only
contained in the glue plaquettes. This last number is bounded above by the total
number of glue plaquettes:

(3.39)

hence
1(1 := Isupp(J < I(b. + IBC()I·

A quantum contour ( is said to be an ezte-nor contour of a family of contours if
\

its support is not contained in the interior of any other contour of the family. As
in the classical case, we snall say that two contours are compatible if their supports
do not intersect or form linked surfaces, and the labels of the configurations match,
i.e., the exterior labels are the same if the contours are mutually exterior or, if
they are nested, the exterior label of the internal contour coincides with the label
of the component of the interior of the larger· contour that contains it. A family of
contours is compatible if its members are pairwise compatible. Such families can be
associated to configurations on 7l.d x [0,,8]. .
Note: The .condition of non-linking of surfaces is not relevant for bosons or fermions.
However, in view of applications of our theory to particles with other statistics, we
shall include this conditiop; of non-linking in the definition Qf compatibility.

The weight of a quantum contour' is given .by

w«() = [y(f.l- .1Ir.-1>]
x exp{- [E(ro)(,8 ~Ei::l'Ti) +E(r1)rl + ... + E(ro)'T,,]} . (3.41)

The decay law (2.62) and the Peierlsbound (3.21) [along with the linearity of E(r),
Eq. (3.18)] imply the bound

Iw«()1 < ~IB«()I exp[-JI{fJ-l ~ (3.42)·

.This bound is the· quantum Peierls condition.

4 Factorization properties

4.1 Factorization of the T-integrals

This property follows from the fact that each quantum interaction <bL. affects a bond
Bi in only one component of TP. Hence, at the end of each "time" futerval, 'Ti, only
the section of one of the components changes. The other components are not affected
by the action of the quantum inter~tionat time ri, and hence their sections, and
the corresponding exponential· weights, remain unchanged. We shall explain this
statement through a simple example: Let us assume that we are "summing" over
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a surface TP consisting of two connected components, which we shaIllabel by the
symbols' - '. and ' -. '. We also assume that· only four bonds are affected by the
quantum interactions, successive ones belonging to different components. This gives
rise to sequences of the form:

.(foro, BI, fIfo, Tt, Bt , ftr t ,T2, lk, f2i\, 'T3, lb, f\r2, 'T") (4.1)

[We have omitted the superscript p to simplify the notation]. We note that we do
not assume that i\ = f o. We need to consider integrals of the form

I = foP dTl ••• foP 'ilT4e (fJ - Et=ITi) e-(p-E .,.;)l!(f'.)+l(f.» e-Tt l!(f'.)+I(t.)]

x e-~rf(tl)+J(i\)] e-~3(J(t2)+J(i\)] e-~dJ(i'2)+J(r2)] , (4.2)

where f is some contour energy.
By regrouping the exponentials and performing the change, of variables

(4.3)

we find that I factorizes as follows:

(4.4)

(4.6)

with

1 = foP dTl ~p dT2 8(fJ - 7-1 - 7-2) e-({J-fl-+.r)J(t·) e-f,J!(t.) e-+.I1(f·) (4.5)

and I being given by a similar integral, but with· the ' -. , replaced by , - '.

4.2 Factorization of the weights

For bosons it is easy to see that the weights weT) can be written as a product of
, .weights of pairwise disjoint,connected components. In this case ,the phaseae(in

(2.30) and (2.31) is zero. Hence we can absorb the matrix elements of the operators
~1 in the states (2.28) into contour weights.

The situation for particles with other statistics is more complicated because the
action of each 91. gives rise to a phase that depends on the other contours present.
However, in the case of fermions, the weights factorize because the interactions are
assumed to be of the form

~1 = L:~1,
l!

where each ~1i is a monomial of even degree in the fermionic creation and annihila
tion operator~
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f3--

~8 ~c

-y,f3
c

yo
c

Figure 7: A space-time surface, TP, with two connected components, (B and (c.
The sections of (B and (c at "time" zero are denoted by ,~ and ,g respectively.
The corresponding Sections at "time", pare denoted by ~. and,g.. .

We explain the factorization argument for a periodic space-time surface, TP,
consisting of two connected. components. An example of such a surface is given in
Figure 7.

The sw1ace corresponds to the successive actions of a sequence ofoperaiors
~b ... ~b belonging to the qtiasilocal algebra A. Let (B and (c he the two con-
~ =--+- .

nected'components of the surface TP. They correspond to the two families of opera-
tors 8 = {~~ ,... ,~~ }and C = {~b ,... ,~b }. The sequence (Dt , •• · ,l2.n+m) is

-1 =oft ::::...J --...n' .

a permutation of the sequence (BI , ... ,I1.",,!21 , ••• ,C.m) and is uniquely determined ,
by the surface TP. We assume that, for any subsequence of l2.a's, the corresponding
subsequences of ll./s and Q; '8 maintain an increasing order in i.
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The surface TP Corresponds to a product,

ta+m

II (rfl~Q.lrf_I)'
i=l

(4.7)

, of matrix elements ofthe operators 91,., with r:+m = r~. In (4.7), rf is a compatible
family of contours describing the configuration that corresponds to the section of
TP at "time" T, with Ti < T < Ti+l. Our definition. of the operators ~h. guarantees

=-4

that if (rrl~b.lrr-l) # 0 then the family rr of compatible contours is uniquely..... .

determined by the 9perator ~h. and by rf-l and hence by ~h., ... ,~b and by rg,
=-4 =-4 ~ .

for all i = 1, ... ,n + m. Moreover, since we are computing traces, r:+m = r~.

The periodicity and the disjointness of the components (B and (c implies prop
erties (PI) and (P2) described below. To state them we introduce the following
nomenclature:

We shall say that an operator C~C1 (resp. C;(1) occurs in ~~., if the operator is..... ,

part of the monomial defining ~~ .. We shall also say that the pair (x,O") occurs
=,a

in lL if c~cr (resp. C:(1) occurs in ~1. The phrase "occurrence of (x, q) in B" shall
mean that the corresponding creation or annihilation operator occurs in some factor
9b., with Il..i == ILe, for some I < Ie <n. A site x is said to belong to a space-time

=-4

surface ( at a particular instant of time, if it is contained in the spatial section of (
at that time.

The following properties are satisfied:

(PI) Given the vector Ir~), there exists some complex number Ws # 0, depending
on'r~ such that . .

91. ...•llr~} -= wslr~) . (4.8)

This. follows from the remarks after (4'.7), in particular from the periodicity of
the component (s corresponding to the action of the 9~.'s. We get a similar

. =-4

relation for the action of the .h.'s.
, .....

. (P2) Between two subsequent occurrences of (x, iT) in B there is an even number of
occurrences of (x, iT) in C. This Corresponds to the non-intersecting character,
of the components: If a site x belongs first to the components (B, then to (c
and then once again to CB, the operators .h. must be such that, at the end

-J

of the intermediate period, they transform the configuration at the site x to
what it was before they started acting.

With these properties we can prove the following result.

Proposition 4.1 Consider two families Band C of operators, and an operator
C1>L := ~b -.. 91, , defined as above, where (l2n+m' ... D 1 ) is a permutation of

- =--+m -1

the sequence (B1,. _. ,lL.., C 1 , ••• ,!2m). Assume that properties .(Pl) and (P£) stated
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above are satisfied and that the operators (11 are monomials of even degree in the
creation and annihilation operators, i.e.,

(4.9)

whenever (x, 0') does not occur in IL. Then, for any vector Ir~), there uists a
, complex number we such that

(r~14)h ·.. ()~ Ir~) = WB we .
~+m .

(4.10)

Proof. We first note that the result is obviously true if the operator (II> =m~m 9b.
- =-4

is identica.llY zero. Hence we may assume that this is not the case. In particular,
this implies that the creation and annihilation operators corresponding to a pair
(x, 0') necessarily occur alternately in the sequence of operators constituting 91>.

This observation allows us to restrict our attention to a situation·in which no
pair (x,O') occurs in both sets, B and C. Indeed, if(x, 0') occurs in BandC, then by
(P2) there is an even number of occurrences in the latter between two subsequent
occurrences in the former. Therefore the occurrences of (x, 0') in Cca.n be grouped .
into pairs not having any intermediate occurrence in B. In this situation, if we
use the anticommutation rules to move the first element of ea.ch pair to a position
immediately preceding the second element, the commutation through intermediate
operators in B does not produce any non-trivial phase because of (4.9). .Hence
we obtain a product of the form CSC1c;O', (orc;C1cSC1)' which we can replace by the
identity operator 1 by' using- ~he anticommutation' relation. This is because the
opposite order of the operators would necessarily yield zero. In this way we obtain

(4.11)

where teO' is a phase and the symbol ' - , has been used to indicate that Cno longer
consists of creation or annihilation operators corresponding to the pair (x, 0'). We
should :R~int out that the operators constituting iL,' also satisfy properties (PI)
and (P2) and the' commutation relations (4.9). Note that the operators in B are
unchanged. We can repeat this procedure for all the remaining pairs which occur in
both sets, ~ and C. At the end we obtain'

(4.12)
I'

where ec is the product of the phases, teO', for all pairs occurring in B and in C,
and the symbol ',... , is used to indicate that the operators in C have been stripped
of creation and annihilation operators.corresponding to these pairs. Hence.we no
longer- have any creation or annihilation operator in C corresponding to a pair (x, (T)
occurring in B, and we can move the remaining operators in C through the operators
in B, without producing any further phases. This results in an equation

(4.13)
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..

which, given (4.8), yields

(r~l()b ... • h Ir~) - Ws ec (r~l~b ... ~b Ir~)
=-n+m ~ =-m -1

.- wswc .• (4.14)

This proof can be extended to surfaces with more than two connected compo
nents. The situation is more complicated fot: anyons. In particular, for d = ,2, it
is necessary to demand that .the component formed by the ~~.'s is not only dis-

=-t

joint but is also not linked with the one formed by the action of the (J)h. 'so For the-...
sake of generality and in preparation for further studies, we shall consider this extra
condition of non-linking as part of our definition of independent contours.

5 Contour expansions

5.1 Contour expansion for the partition functions .

To construct the partition function corresponding to a boundary condition sp, (de
fined in (3.26», contours are added by summingover th~ "spatial" degrees of freedom
and integrating over the "time" axis. We shall denote this sum-integral operation-
by a combined symbol: if 9 is a complex-valued ~nction on quantum contours, then

1 + ELL I[(i), (ii)]
ft~l ~,•••~) (ro,...,rn )

(5.1)

We sum each JL over all quantum bonds, and each rf over all possible, families
of compatible classical contours (with exterior p-contours). By I[E] we mean the
indicator function of the event Ej in particular, I[(i), (ii)] in (5.1) vanishes unless
the sections fi satisfy the following conditions [see Definition 3.3]:

(i) 0 $. Irr,f-Ir.-lll < IBil.

(ii) r~ = r~

We are interested in the "sums" corresponding to partition functions for piecewise
cylindrical finite regions V in d+ 1 dimensions. For such regions we define the
volume, lVI, to be the sum of the volumes of the constituent cylindrical regions,
where, however, in consistency with 'our choice of units for areas in 7l.tl , the areas
of the bases of the· cylinders are measured in units of the sampling plaquette. Sim
ilarly, we obtain the area of the internal boundaries, 8V~ by adding the surface
areas of these piecewise-cylindrical regions to the area of the bases. Again, we use
sampling-plaquette units in 7l.tl •
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From now on, the symbol V will· indicate a piecewise-cylindrical region of Ztl x
[0,.8]. 'The partition function for such a region V, with a spatial boundary condition
Sp, is (formally) defined by the series

Ep(V) = exp[- [ ez(sp)}

p

x '# [IIW«(k)] lIJ exp{-k. [ec(s..)- ec(sp)l}], (5.2)
{(JI}cP Ie -1

compatible

where the exterior contours of eacbcompatible family are p-contours. The' weights
w are given by expression (3.41), and the region V is obtained from V by adding to
each spatial section the plaquettes touching V, i.e.,

•

V =A x [0,.8], (5.3)

where A is as defined hi (3:20). The region Lu. = Lu ( {(Ie}) consists of the set of
points in V that are either u;,.correct or that belong to a u-quantum contour. .We
shall call such a series a contour ezpansion of the partition function 2,,(V). For V
of the form A x [0,.8] we recover expression (3~26). We shall use the letter V for
space-time regions, A for spatial ones, and the abbreviatioD E,,(A) := Sp(A x [0, ,8]).

We shall be interested in the quantity

~1

fp(V) := IVllogE,,(V),

whenever the series (5.2) converges to a nonzero value, and in the limit

f:= lim fp(V) ,
V.l'z41 x[o.p]

(5.4)

(5.5)

whenever it exists.
Note that we have used the same symbols in the above definitions as those used

in (2.49) atid (2.50) to denote the~ energy densities. This is in anticipation of the
fact that, in t,he regimes analyzed in this paper, both definitions agree for regions of
the form V ' A x [0, ,8]. '

5.2 Contour expansion for the quantum expectations

An expansion for the expectations

(5.6)

can be constructed by expanding the numerator and the denominator. For the
latter we have the previously developed expansion, (5.2). A similar expansion can
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be obtained for the numerator by proceeding as follows: We expand Ae-fJBA with
the help of the iterated-Duhamel formula (3.24) and penorm steps (a)-(d) of Section
3.2. Let us assume, without loss of generality, that A == AD E .AD for some finite
D C iL4

• Moreover, for fermions, we can also assume that A is an even monomial in
creation and annihilation operators. Therefore we can view the operator A· as giving
rise to an extra "quantum bond" D. We then obtain an expansion for 3:-(A) which
is exactly of the same form (3.31), but where the terms of the sum are labelled by
sequences of the form

with weights

W(l'~) - (r~IAlr~)(r~l- ~h Ir~_l}··· (rrl- CJ.)h Ir~)...... ~

x e-(fJ-ETi)E(r:> e-1"JE(rf) ... e-T"E(r~:> •

(5.7)

(5.8)

Note that the factor (r~IAlr~) plays a role analogous to (r~1 - ()~ Ir~), with
......+1

Jk+l = D. -
To obtain a contour expansion, we must exhibit factorization of the expansion

for 3:-(A) over· the components of T~. The "time" integrals iri:volved are the same
as for the partition function Ep(A), hence the factorization illustrated in Section
4.1 remains valid. For bosons the weights factorize as before. For fermions too, a
factorization of the weights can be exhibited if we use the following manipulations:
We group into a single entity/all the components of T~ whose sections at "time"fJ
intersect the set D. In this way, we obtain a special component (A corresponding
to the action of A. We shall refer to (A as the quantum ~ntour associated with A.
It is defined by a ~uence of the form -(5.7) and has. a weight given by (5.B). An
example of such a contour is given in Figure B, below.

All the other components of T~ are quantum contours defined as in the previous
,section, i.e., their weights do not involve the operatorA. The factorization result
of Proposition 4.1 applies. [In Figure 7, an example of a surface for which this
proposition is valid is given. Note that the c:omponen~(c in this figure is a contour
associated with a local observable.]. The weight w(T~) can hence be written as a
product .

w(T~) = [II W«k)] W«(A), (5.9)
{Ct}

where
(U(k~ U(A = T~. (5.10)

k

Factorization implies that we can expand the numerator of the expectations (5.6)
in the form

:::::(V) = exp[- .Iv e.,(sp)] #. W«(A)
CAeV'
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Figure 8: 'A quantum contour, (A, associated with a local observable A E .AD where
D is a finite subset of the lattice.

x # [Ifw«(.)] lft exp,[-k. [e.:(B~) - e.:(Bp)]]]

{(Ir}CV
compatible

. X I[{(A, {(k}} compatible; exterior contours are p-contours]. (5.11)

The starred sum-in~gra1 refers to an expression of the form (5.1), but where in
condition (ii) we demand

(5.12)

(5.13)
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where
n

"All.:= Irol(p - LTi}+ IrlJTl + ... + Tnlrnl,
i=l '

IB('A)I := IBII + ... + IBnl + Inl
and II . II denotes the usual operator nonn.

(5.14)

(5.15)

6 'Cluster expansion for the symmetric or the single
phase regime

6.1 The result

Having formulated a convenient low-temperature expansion in terms. of contours,
we must address the task of proving its convergence for some open set' of values
of P and~. The main mathematical Complications arise from the requirement of
compatibility of the contours in expression (5.2). Compatibility'is a highly non-local
condition (two arbitrarily far away' nested contours can be rendered incompatible
by a mismatch between the labels of their exterior and interior configurations).

In this section we analyze the simpler case in which compatibility reduces to non
linking (or non-intersection), i.e~, when the labels of the configurations outside the
support of the contours become irrelevant. The results of this section form the basis
for the full-fledged theory which is to be discussed in Section 7. We are concerned
with an expansion of the form

Sp(V) - IIwe,:) ,
Ie

(6.1)

with weights as in (3.41) satisfying the quantum Peierls condition (3.42). This type
of expansion is obtained when there is a single ground state for an open ~t of
parameters J!:., or, more generally, for values of J!:. for which the ground states are
related by some symmetry operation. In the latter case, the removal of any contour
of a compatible family leads to another compatible family of contours. These have
been among the first situations treated by contour arguments [9, 15]. Among our
examples of Section 2.3, this symmetric situation occurs at the coexistence point
h·tag = 0 for the Fisher antiferromagnet, with K = 0 and Ihl <2 [Figure 2 (b)],

.and at the coexistence point /L.tag = 0 for its lattice-gas transcription, [i.e., Example
2], with K = 0 and p, < 2 [Figure 3 (b)].

There is a well established technology to analyze (the log of) "volume-exclusion"
expansions like (6.1), namely the methods of cluster-expansion [32, Chapter 4]. The
method involves some standard combinatorics (reviewed in Section 6.2 below) and
a bound on ,the sum of the weights of contours containing a fixed point.
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Let

fp ,= lim IVII log Sp(V) ,v /'zc!x[0,11]

In Sections 6.4 and 6.5 w~ shall prove the following key result:

(6.2)

Theorem 6.1 There uist strictly positive constants J antI'eo such that, for each fJ
and A.in the region

max(e-pj
, A) < eo, (6.3)

the cluster upansion (6.1) converges absolutely for all piecewise-cylindrical regions
V. The free-energy density fp uists in this region and is jointly analytic in e-pJ

~ .

and -X. Moreover it satisfies
fp = O(eo), (6.4)

and
(6.5)

Corollary 6.2 There ezists apDsitive constant eo such tha,t, in the, region '
max(e-pj

, A) < eo, the limit

, . . ":'A(A)
bm .-:! (A) =: (A)p.\

A/'Zc! ::.p
(6.6)

uists and is jointly analytic as a function ofe-{J and 'A, for any local observable A.
Moreover

lim (A}p.\ = (splAlsp) ..
(J-+oo
.\-+0

(6.7)

This proves the stability of all the phases ocCurring in the present situation. In
particular, this proves that the phase diagrams of Figures 2 (b) and 3 (b) remain
undeformed at lowtempetatures and under small quantum perturbations.

•Remark: In ·the arguments that follow we shall impose conditions of the form "J
sufficiently large" and "A sufficiently small". As long as the temperature is suffi
ciently low and -X is sufficiently small, we can choose J large enough simply by a
rescaling. This is because the HamiltonianHA, which depends on the parameters J
'and -X, appears in the partition function in the form fJ H A which we can write as

(6.8)

Upon rescaling, fJ'J ~ J, we see that a large fJ' leads to a large J. The product
fJ'A, which is the rescaled perturbation parameter, is small if A is sufficiently small.
Once /3' is fixed we adjust fJ such that fJ/P' is sufficiently large.
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6.2 Combinatorics of the cluster expansion

We summarize some results on' cluster expansions, adapted to the case where con-'
tours are discrete in all dimensions, except one. We can extend the conventional
proofs for the convergence of cluster expansions (applicable when the compatibility
relation corresponds to non-intersection) to the more general situ~tion when the con
tours are either disjoint or non-linked. For the usual proofs the reader may consult
for ins.tance [33], [7] or [27]. '

We use the notation (1(, see [21], to denote the condition that supp ( either
intersects or is linked with 8UpP (. In the following, we shall use the term linking
to refer to both intersection and linking. A cluster is a finite family {(I,' .. , (n} of
contours that cannot be decomposed into two non-linked subfamilies. To simplify
our notation we have omitted the superscripts' of the contours ( referring to their
exterior configurations.

The following theorem gives the condition for the convergence of a cluster ex
pansion.

Theorem 6.3 If

C := sup : '4 Iw«()1 el(1 < 1, (6.9)
(' '(I (.< .

then the expansion (6.1) is absolutely convergent and log E(V) has an absolutely
convergent expansion oj the form

log 3(V) = E N
1

, -d ... -d wT ( { (1, ... , (N} )
N>1 ..If-. ' ~ .....

, - (ICV (HCV

(6.10)

(the cluster expansion), where wT is ~ function on families of contours with the
properties that

(6.11)

and satisfying the bound

(6.12)

where aN is a constant of the order of

N

sup II Iw«(.)I,
i=1

the supremum being taken over all sets of N contours (not necessarily compatible).
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[The notation {Ch ... , (N}3 (x, t)means that (x, t) belongs to'the union of the
supports of the quantum contours (1, .• ~ ,(Nit] From this and the periodicity of the
contour ensemble one obtains an expression for the quantity f defined in (5.5).

Corollary 6.4 If 1 ~

C := sup -=- #' Iw«») elCI < 1,
, 1(1 CI'

then the quantity I, defined ,in (5.5), ezists, and is given by

(6.13)

- 0', (6.14)

(6.15)IIVII+logS(V)1 < 18VIO(C).

where W is a fundamental cell of the configuration and 0' is a constant of order C.
Moreover,

The contoUr ensembles we are considering in this paper are all periodic, rather
than just translation-invariant. That is why in (6.12) weha~e taken a supremumover
sites and in (6.14) we have summed over a fundamental cell W of the configuration.
Neverthelesa, the relevant estimates will be done majorizing the contour weigh~s via
the Peierls condition (3.42). This majorizing ensemble is then translation-invariant,
and hence, this supremum over sites is superfluous in the key estimate that follows.

The limit f 'can be interpreted as a free ,energy of the ensemble of contours
(6.1).' The coefficient on the RUS of (6.15) can be interpreted asa surface tension
representing a finite:.volume correction.

6.3 . The key estimate

In view of Corollary 6.4 and the freedom of rescaling discussed at the end of Section
6.1, We see that the following lemma is the key step needed to prove Theorem 6.1.

Lemma 6.5 There ezist Ao, > 0 and Po <00 such that, for A <,Ao and fJ >·fJo,

#'. AIB«()I exp[-JI(IJ.l ~0(e-PJI2)+ 0(.\) .
IRlPP(3(O,0)

(6.16)

Proof. We use the fact that ,the integrand on the LHS of (6.16) depends on the
sections ri and the quantum bonds 1L only through their sizes, to' write it as a sum
of contributions of "entropy" and "energy" factors. We,first decompose the LHS as

#' .>-IB(C)I exp[-JICI.1.] = SO + S>o ,

8Upp (3(0,0)

(6.17)
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where SO is the contribution due to contours without transition (perfectly cylindrical
contours), and 5>0 is the rest. The bound on SO is exactly as in the usual Peierls
argument:

so < Ecard{f: If) = l,suppf 3 O} e-fJJI

I~I

_ O(e-PJ).

Regarding 5>0, we have:

(6.18)

where

(6.20)

I

(b) There exists a sequence ('lb, ... ,]&)of quantum bonds with I~J = ii, such
that there is a contour' formed by the sections f i and the bonds l1c, with
supp ( 3 (0,0). Conditions necessary for this property to be satisfied are:

(b.l) fi is obtained from fi-I by acting with some ~1, with I~I = ii, on
Iri - I }. .

(b.2) There exists one section f. or one quantum bond IL such that 0E f. oroE JL. . '

We can distinguish a contribution due to "entropy" [the factor N(;l, ... , In)], and
another due to "energy" (the exponential and the powers of ~). To prove (6.16), we
must show that "energy" overwhelms "entropy".

The two contributions on the RHS of (6.16) arise from two different types of
quantum contours, namely the long contours and the short contours defined in

.Section 3.3. A long contour extends all the way from "time" zero to fJ, i.e., none
of the sections fi are empty. We shall denote the set of such contours by Q,. A
short contour has a "time"-height strictly smaller than 'fJ. It appears and disappears
under the action of the quantum interactions.~ , ... ,.~ . Hence, under the action

-1 =oft

of one of these n interactions, the section size of the contour reduces to zero, i.e.,
there is one (and only one) value of i, [1 < i < n], for which
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The set of short contours will be denoted by Q•.

Bound for long contours.
We start with the entropy bound, that is the bound on N(ih 11, ... ,i", I,,). By

condition (b.2) above, .

(6.21)

where lmax = maJCi Ii, imax =maJeiii, and N(ih 11, •.. ,i", 1,,) is the number of
"pinned" contours, that is, contours·with ihe given section and quantum bond
s~for which- (0,0) is the first ·point (e.g. in lexicographic order) of its support
[0 E ri, or 0 E Bi]. To evaluate N we imagine that we "construct" the quantum
contour by starting from a section with minimal size Imi,,:

N(il, 11, .. . ,in, I,,) <
,E Nr -t-r(iilllia+1 , liaai.+h .. · , ii.bt-t Iimia-t, iiaai.) .

reCC(IIlliaJl t •••Jn)

(6.22)

Here, imin satisfies Ii • i • = IIlint Ii := lmin ,

CC(l,;I, ... ,;,,) := {r: IfI = I, and r is a section of a quantum·contour
with n transitions given by the actions of.j , ... ,.j }

~ =-fa

and

Nro-+rn(ih 11, •.• ,;,,-1, 1"-1';") := number of wa.ys of choosing sections
r 1, ~ •• , r ,,-1 of areas 11'.:'.' 1"-1 and quantum bonds l1.h ••• ,lJ.. of
areas il,. ~. ,i" such that two consecutive sections ri and ri-l of the
sequence r0, r I, ... ,r1&-1, r" are obtained from each other by acting
with 4.»1.

By induction one can see tha.t

".N'ro-+rn(il, II, ... ,;,,-1,1,,-1,;,,) < (424
)" IT(li + ;i);i et-

i=1

(6.23)

where Cd is a dimension-dependent const~t (the one for the Konigsberg bridge
lemma.). The proof of this fact is presented at the end of this subsection. Thus

N(il,It,···,i",I,,) <
"

card (CC(lmin,ih ... ,i,,)) (a24
)" II(li +Ji)ii c!I- .

i=1

(6.24)

The bound on card (CC(lmin, iI, ... ,j,,») must take care of the fact that the section of
area lmin need not be connected [see discussion following (3.36)], but its components
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cannot be too dispersed. More precisely, property (3.36) implies that for each lDUn
there is a connected set formed by a number of plaquettes ranging from lDUn to
lmin + it + ... + in. Therefore (by the Konigsberg bridge lemma), there exists a
constant Cd > 1, depending only on the spatial dimension, such that

card (CC(lmin,it, ... ,in») < c~mi. + + C!r-+;l+··-+~"

< (il + +in +1) c~miD+jl+· ••+;" • (6.25)

Substituting (6.21), (6.24) and (6.25) in (6.19) we obtain the bound

S~~ < 1:(a2tl )n !o L: (it +... + in + 1) A;l+..-+;"
"~1 (;1 ,•...;,,) :;i~1

\
n

(lmax + imax) C~miD [II(h + i.) i. (Cd)2;i] R(11., ••• ,1,,) ,
. i=l

(6.26)

with

.In order to obtain a bound on this last integral, the energy bound, we proceed as
follows: We use the bound .

e-Ja1i < e-Jalmia/2e-Jali/2- , (6.28)

(6.29)R(I 1 ) < (~) ... (~) e-fJJlmia/2 .
h· •• , n - Jl

t
Jl

n
'

for a = T}, ... ,Tn, (P - Ei'=lT.), to extract an overall factor e-fJJlmia/2 outside the
integral on the RHS. of (6.27). The remaining integral is the same as the original

lone, but with J replaced by J /2. By neglecting the indicator function and the term
proportional to 10 in the exponent, and extending the limits of integration to infinity,
one obtains

which, by (6.26), implies that

(
2 2d)"S~~ $ L: _a_ L (i1 +... + in + 1) A;1 +..-+j"

,,~1 J (;1 •..•.;..) :;i~t

(6.30)
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The sum over the 'I., 1 :5 i < n, can be written, purely in terms of lmin (> 1) and
it, ... ,in. Indeed, for each I., there are only 2i. +1 possible values for 1.+1 • Hence,
once lmiD is given, the sum over the remaining It's yields an extra factor ll.(2i. +1).
One now notes that the maximum size, 'max, of a section of·the contour sa.tisfies the
bound

(6.31)

Thi$ is because the section of "area" ,mAX is obtained from the section of "area"
lmin by the action of at most nquantum interactions, ~~ ,,; •• , ~~ , the latter cor
responding to quantum bonds BI , ••• ,~of sizes it,···In. Also7

(6.32)

Thus

(6.33)

'(2 2d)ft nL: ~ . ~. (it +... + in + 1) [II(1 + 2i.)2 j. (Cd)2ji] Aj1+···+i "
n~l (,1 ,...",,) :'i~l _=1

X L: (lmiD + 2jl + ... + 2in)(Cde-PJ/2)'mia ,
laaia~1

_ O(e-fJJ/ 2) •

s>o <
Q, -

Bound for the short contours.
There are two types of short contours. There is a "collapsed" type, corresponding ,

to actions of all the ~~ that do not alter the configuration. By the exponential bound
_(2.62), the contribution of these fiuctuations to~he expansion (6.16) is simply given
by

c 'E AIB1 < c E(CcIA)j
B~ j~1

< O(A) (6.34)

The remaining short contours have a fulite extension in the "time"-direction. We
shall assume, without loss of generality, .that the quantum interaction ~j redU:ces

~

the section size of the contour to zero, i.e., we assume that f t =" and hence 11 =o.
The entropy bound can be obtained· in,a way similar' to that for long' contours,

but with the following modifications:
,

• lmin is the minimum of the sizes of the non-empty sections, 12 , ••• , 1ft(= 10 ).

• the "area" lIon theRHS of (6.24) is zero.

• The entire contour (whi~ includes the sections of areas lmiD and lmax), corre
sponds to the actions 'of ~1 '... ,~1..
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Hence

which implies that
Ima:t: +ima:t: ~ 2(il +... +in).

Moreover, in place of the bound (6.25), we have that

d(CC(1 . . ») < ( . . ) (;1+...+;n)car min,1},··. ,1n _ 11 +... +1" c

With the above modifications, we obtain that

N(il, 0,}2' 12, ••• ,jn, I,,)
n

< 2( ' + .+ . )2 J1+"~+;n ( 2d)" n-(1. + '0) '0 Ji_ 11 . . . 1n C-d a • 1.}. C-d •
i=1

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

In calculating the energy bound, we make use of the inequality e-Ja1i $ e-J / 2e-Jal,/2
for i :f: 1. Proceeding as in the case of long contours, we obtain the bound

R(O, 12, ... ,1..) < (JzJ (},J l d'1"!e-(IJ-T
>lJ/2

< (JzJ (J~J e) ,
where the last inequality results from extending the limit of integration to infinity.
Hence

stl: < O(~) +~::n (~dr. ~. 2(it +... +;..)2
. . n~2 - b1,..."n) :Ji~1

"X [II(1 +2ii)2 i, (Cd)2;,] >';1+"+;n
i=1

< 0(>.) + 0(>.2) .• (6.40)

Proof of the claim (6.!9). The proof follows by induction in n. The induction step
is carried out as follows:

where

Nro-+rn(it, 11,'.' ,in-I, In-I,},,) =
E Nro-+r n-l (i}, It, ... ,i"-2,1"-2, in-I) ,

r n-1 eCC'n_l.in(rn)

(6.41)

CC'n _ J In(rn ) := {f : IfJ = In-I, and r differs from f n through the
action of some ~~ with IBnI= i,,}·

=--
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(6.45)

By the inductive hypothesis
. n-l

.N'rO-+rn(jtlt, .... ,jn-l,'ln-l) $ card(CC1n_ 1In(r,,») (a2d)n-l rr(li+ja)ji~.
i=1

(6.42)
We have to consider two cases:

(i) In-I > In. In this case, the bond Bn must intersect supp r ,,-t. The number
of such possibilities is bounded by the product of the number of sites in r"-1 (=
In_tad), the number of sites in Bn - I (= ji-la~) and the number'of bonds !La with
IBnI = in. The latter is less ·thaI) or equal to~n , for some constant Cd depending on
the dimension dJ

, .
(ii) In- 1 < 'ne In this case, Bn must intersect supp r ft. Hence we can use the

preceeding argument, with rn-l replaced by rn.

Therefore, in, both cases,

card (Ce'n..,1';n (r,,») ~ (ad)2 max(I"-h In) j" c!In
$ a2d (In + j")j,, cit , (6.43)

where we have used that 'n- 1 < In + j" because of (3.35).1

6.4 Convergence of the~xpansionfor the free energy

Estimate (6.16) proves (6.13) and hence Theorem 6.1 for non-intersecting (as op
posed to non-linked) contours. Expression (6.14) shows that the free energy is
analytic in e~{Jj, Xon a region of C2 of the form

max(le-PJI,IXI) < eo. (6.44)

We use tildes ~use J and ~,must be rescaled as in (6.8); in order to absorb the
extra factor elCI in. (6.13). A small additional argument is needed to establish a
comparable bound when contours are also formed 1>y components whose supports
are linked. The argument goes as follows: H a contour' winds around (, so as to'
yield linking, then there must exist p<)ints(i,t) E' and (y,t)E ('such that IB(')I >
2 dist(i, i). Moreover,IBtl+...+ IB"Imust exceed the number of plaquettes needed
to turn around a single plaquette, which is a large dimension-dependent, number. A
safe lQwer bound is for instance it + ·.. + jn ~ 16, (for the more demanding case
d =2). Hence

I~I i Iw(OI el<I < ,#lw«()1 el<1
c.( .upp(3(O,O)

+ E i '# Iw(')1 e lCI

zEZ#l . .upp(3(z,O)
IB«)I~max{2diat(z,O), 16}

.- C +Ct •
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t sed in the proof of the key estimate also prove that
The argumen s u .# \w«)\ elCI < O(~_{dHo&(s,il).16}),

aupp(3(Z",O)
'B«)I~max{2diat(!',0),16}

(6.46)

(6.47)C
1

< E O(AJP&X{diat(!,,0),16})

!'

which is only a. negligible correction to C.

In some cases we shall restrict our attention to a smaller family, F, of contours

and consider the partition function

and hence

(6.48)2,F(V) := # IT w«(II:) •
{ell P,airwUe DOD-linked II:

(keV
(JreF

Repeating the arguments of Sections 6.2 and 6.3, we obtain an analogue of Theorem
6.1, but where the convergence parameter is

CF = O(Lf) +O(L;) (6.49)

where Lr [resp. L:-l is the lowest-order term in the sum (6.33) [reap. (6.40)] for
contours of the family:F. We already invoked this fact in (6.46). Another case, used
in Section 7 below, is when:F is the set of ("large") contours with lmira+il+...+j. >
m. In this case we can replace the constant Eo in (6.4) and (6.5) by (eo)m.

6.5 Stability of phases in the symmetric regime

Here we prove Corollary 6.2. Our proof is based on the original Peierls argument,
~ut uses the cluster expansion technique to get around the fact that weights may
be negative and imaginary. We choose an observable A E AD. From the discussion
of Section 5.2 we have that .

(6.50)

where

,# {'Jr}~V [nkW«(k)] I[(k non-linked to (Al
UV«(A):= Don-linked.J [ ]. (6.51)

~(Jr}ev nk w((It)

for V = A x [0, ,8]. The quotient on the RHS of (6.51) is amenable to the cluster
expansion technology: The logarithm of the numerator produces clusters· for which
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no ~ntour is linked with (. whil the 1 . '. -
clusters, with no restriction:' Th e t. ogan,thm of the denominator produces all
one contour liDked with /" ·R e quo lent corresponds to the clusters with at least

~A· ence,

.,

(6.52)

and we have the bound

fUCA(V)I ~ exp[l(AIO(to)]

uniformly in A,' and, due to the Peierls bound.(5.13),

/W(A)Uv(A), "$ ~~l' lIB("')1 exp[-JI(AI.!.],

(6.53)

(6.54)

again uniformly in A. We use the notation X=leO(&'(I) and J =J ~ O(eo).
As a con~uence, exp~ession. (6.50) can be treated by cluster-expansion methods,

as the key est.lmat~ (6.16)18 valid. The "dominant" contribution in (6.50)arises from.
terms for which ('A co~pondsto (spIA,sp)' and has a support .

sUPP(A =D.
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We obtain that

(6.55)

(6.56)

where SI({:J,.\) is the contribution of short contours which intersect the set D at \
the "time" fJ, whereas S2(P, l) is the' contribution of long contours -intersecting
D at "time" p. The key estimate given in Lemma 6.5, and the fact that all the
components of (A must intersect some.site in D, imply tha.t 'Sl(fJ, l) and S2(fJ, l) .
are bounded by

IJAII .IDI AIDI O(eo)-.

The expression (6.55) and the above bound together prove Corollary 6.2. 'They
prov~that the quotients S:-(A)/E,,(A) are analytic functions of(e-fJ}, X) in a region

where lis a constant independent of V. Each term of these series converges to the
corresponding ·term. of the series (6.50) without the condition (A C V. In addition,
the finite-volume series and this infinite-volume limit are majorized by the same
absolutely convergent series. By dominated -convergence, the limit A )'4 Ztl of the



series is the series of the limits, throughout the region (6.56), which, therefore, is also
the region of analyticity of the limit. We conclude that the quantum expectations
satisfy

(6.57)

(6.59)

This proves equa.tion (6.7).' •

6.6 Differentiability of the expansion

Let us reintroduce the parameters l!:. in the interaction and hence in the weights
w, and discuss the consequences of the smoothness hypothesis (H1.2) (Section 2.2).
This hypothesis implies that the derivatives of the weights satisfy a Peierls condi
tion analogous to the one obeyed by the weights themselves, except· for a. factor
proportional to 1(1. This factor can be absorbed in a rescaling of J and~; so we'can
assume that

IOWP«() I < XIB«()I e-fJ1• (6.58)
.°Pi ~.

Therefore, from the preceding results, we conclude that the series formed by the
, derivatives of the weights converge uniformly in a small interval around each I! e 0

(and absolutely in e-fJ1 and ,\). This implies that the series for the partition furiction
can be differentiated term by term, and thus it and its logarithm are differentiable
functions of J!. Us~ng the cluster expansion we obtain

la: log Sp(V)1 < IVIO(eo)

and, writing s" = exp(log E,,),

I..!-: (V) < IVIIs,,(V)IO(eo).
°Pi-"

These observations Will be useful in Section 7.3 below.

(6.60)

7 Pirogov-Sinai theory for quantum perturbations

7.1 Overview. The initial trick

We now turn to the proof of the main Theorem 2.3 in the general (non-symmetric)
situation. Thisinvolves dealing with the contour expansions (5.2) [which we repeat
in (7.1) below for the reader's convenience] with a non-local compatibility condition
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among Contours (the matching of the labels of nested interiors and exteriors). Fol
lowing the standard approach, going back to the original work of Pirogov and Sinai
[29, 30], the theory is constructed in tw~ parts: First (Section 7.2 below), a criterion
is established to determine the stable phases for a fized interaction; second (Section
7.3), the stability of the phase diagram as a whole is determined. The parameters
~ play a role only in the second part (and hence will not be displayed in the first
part).

In our treatment, we closely follow the excellent presentation of Borgs and Imbrie
[4].' Our proofs are basically a tr~cription of those in [4], except for some small
adaptations and simplifications. The starting' pomt of our proof is the formal ex-

$>

pression (5.2) for the partition functions Ep(V) and, more generally, the expressions
(5:.11) for S:-(V). For the cOnvenience of the reader we repeat (5.2) here:

Ep(V) = exp[- Iv e~(8,)]

(7.1)

where the exterior contours of each compatible family are p-contours. Both quan- ,
tities, the energies e~(8,,) and the weights w((), are complex-valued, and the latter
satisfy the quantum Peierls bound (3.42).

We follow the procedure, introduced by Minl08 and Sinai [25, 26], to eliminate
the inconvenient coqlpatibility condition in (7.1). We first resum (7.1) (formally!)
over the contours, in the interior of the exterior contours,

I

Sp(V) = exp[- Iv e.,(Sp)]

x if. [IIw(c:> IiE,. (Int,.(a») exp{l e.,(8 p) }] ,

{(t}CV k . v=1 lId.(ct)
exterior .

(7.2)

and then multiply arid divide the RUS by s,(Int,,«(:») to obtain

Sp(V) exp[1v e~(sp)] =

(7.3)
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with the new weights

Ww) := wW) IT :-(Int"W») .
u=1 .::,,(Intu('P»)

One can now repeat the same procedure for each factor,

Sp(Int.,«(:)) exp{ f . e:r:(sp)},
lJm.«(:)

in (7.3). This iteration finally yields the expression

(7.4)

(7.5)

(7.6)

IIWe,:)
Ie

:= exp{- fv; e:r:(sp)} Ep(V)

Identity (7.6) yields an alternative formal expression for the partition function
Ep defined in (7.1). If either one of these two expansions converges uniformly, then
so does the other. In (7.6), however, the contours are only required to· be non
linked, rather than compatible in the sense used in (7.1). Hence, at least from
a combinatorial point of view, (7.6) is simpler to deal with. Moreover, the factor
8,,(V) is of the form (6.1) and hence is amenable to the cluster-expansion techniques
of Section 3.

However, one is confronted with the following problem: Whereas the original
weightsw('P) satisfied the quantum Peierls condition (3.42), there is no a priori
bound on the new·weights W«(P), defined in (7.4). Hence, in order to prove the con
vergence of the expansions in (7.1) and (7.6), we have to devise a method to control
the new weights. This is done in the following section. The same considerations
apply to S:-.

7.2 Criterion for the stability of phases

A s.ufficient condition for the stability of the sp-phase is the absolute converg~nce

of the expansions for logEp(V), (with 8,,(V) as in (7.6» and of the analogous ex
pansions for log=':-. From the discussions in Sections 3 a.nd 6 and the similarity of
the expansion (7.6) of 8,,(V) to that of Sp(V) in (6.1), we ~nclude that it suffices
to check that the new weights Weep) satisfy a quantum Peierls condition (3.42),
provided .1 is large enough and Ais small enough. Definition (7.4) of these weights
implies in tum that a sufficient condition for the Peierls condition to be valid is that
there exist some constant z such that

(7.7)
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for all u and all contours (I'. Hence, by choosing a sufficiently large J and a small A,
we may attempt to ensure·that the new weights Weep) are exponentially damped.
The constant z will be fixed once and for all. Inspired by [4] we choose z = 4a,

, where
(7.8)

1
'= (VJI. ~(V) ~ exp[4al8VI] (7.9)

if sp is stable, for all regions Vc Zit x '[0, Pl. We interpret (7.9) as the condition
for the stability of a space-time region v. In particular, ,the bound (7.7) is used to'
define stable contours. Following' [39], we require

a = 1+ ad maxle(su)l.
l~uSP .

(li the configurations Su all have period l,i.e., are constant, a = 1 suffices.) ID the
i. expansion of E~ we also have to consider the special surface {i which is a quantum
contour associated with A (d~fined in Section 3.6). To cover all cases, we prove a
bound of the form

Definition 7.1

(i) A region V C Zit x (O,P] is p~stab~e ilE,(V) :/: 0 and (7.9) ,is satisfied lor 011
u.

(ii) A p-contour (P is stable il each Int.,«(P) is p-stable, lor 1 < u <Po ,

It is evident that the weights W«().of stable Contours satisfy the quantum Peierls
condition. Hence, if we restrict the sums in (7.6) tostab'e p-contours then we can
apply the cluster expansion technology of Section 3. This observation motivates us
to defirie truncated contour partitiOnfunctions~ as in [39]:

(7.10)

. The cluster expansion for the truncated partition function E;,(V) converges abso
lutely. In particular, by, Theorem 6.1 we have that, for P large and ~ small, the
truncated contour free energies

I; .- lim ..!-log 2! (V)
v)"z4x[O'pl IVI . I'

(7.11)

exist, and are of the form
(7.12)
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(7.13)

where e(s,) is the specific energy (2.56), and the remainder 1;, is given by the cluster
expansion (6.14), with w replaced by the new weights W. Note tha~

1; = O(eo) ,

by (6.4), where eo is the constant appea.ring in Theorem 6.1, and thus

IIYII; + log~(V)I < 1- lv e.,(sp) +e(sp) IVII+ O(Eo)ICWI
<alaVI . (7.14)

This bound is precisely the reason for our choice of Q. We also observe that

Ilv e.,(sp) - I;IYII < 1- lv e.,(sp) +e(sp)IVII + I~I WI
< alVI·

We see that if, for a given boundary condition s" all contours are stable then
f, = f;. More generally, if all regions~'V are p-stable we have that (S:-)' = E~ and
the primed quantum expectations equal the unprimed ones. (The prime indicates
that the summation is over stable contours only.) The key observation of Pirogov
Sinai theory, in the formulation due toZahradm'k [39], is that all regions V are
p-stable if and only if the truncated free energy corresponding to the boundary
condition s, is minimal. Let

4, := Ref; - min Ref~ .
••E~

(7.16)

Then the stability criterion can be stated as follows:

Theorem 7.2 If 4, = 0 the s, phase is stable. Moreover, there is a region of c2

of the form max(le-PJI, I~I) < eo where the free-energy density and all the quantum
expectations are analytic functions of e-/J and ~.

The key lemma needed in the proof of this theorem is the following:

Lemma 7.3 The following statements are equivalent:

(i) a, =o.
(ii) All regions V are p-stable.

Proof. We first prove that (ii)=:>(i), assuming that (i)==>(ii) holds.· For this
purpose, we consider a boundary condition Sl1 for which 4 11 = o. For each V, we have
that E,,(V) == E;,(V) ,.by assumption, and E,,(V) = E~(V) holds because (i)=>(ii).
Therefore·

1

s,,(V) Iexp[4aO(loVI>] > 2
p
(V) = exp[ap IVI +71oVI] , (7.17)
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where'Y is a constant of order Eo. The leftmost inequality expresses p-stability of
the region V, while ,the equality on the right is a consequence of (7.14). If 4p > 0
the equation in (7.17) leads to a contradiction for regions V with, diverging volume
to-surface-area ratio. Thus we conclude thAt ap = o. '
Proofof (i)==:} (ii). In order to understand the steps and definitions that follow, it is
useful to inspect the ratio of partition functions corresponding to different boundary
conditions. From (7.14) we have that, for any Sv,8, eA., '

..

(7.18)

(7.19)

where 6 is bounded by the constant Eo. From (7.18) we conclude that if a,= 0 then

'1'=' (V) "",
( ~(VJ ~ exp(18VI),

for larg~ p and small l. Hence, in this case, the,prOQf would be' complete if the
truncated partition functions in (7.19) could be replaced by the untruncated ones
and '

I-=' (V)I
~(V) < exp(constlaVJ).

More· generally, for regions V for which

4,IVI $ lavl,

we have from (7.18) that', for large P' andsmalll,

(7.20)

(7~21)

(7.22) ,,I~~~I < exp(218VI).

, As a first step, we would like to show that the primes in (7.19) and (7.22) can be re
moved for regions satisfying (7.21). If condition (7.21) were inherited by subregions

. of V then we could prove inductively, from (7.22), th~t E,,(V) =E;,(V). However,
it is not. true that the boUnd (7.21) remains valid for arbitrary subregions of V.
Therefore it is convenient to resort to a sufficient condition ,that has this hereditary
feature. For this purpose, we introduce the notion of small regions and small con
~ours, adopting the definitions of (4]. For a piecewise-cylindrical region V of spatial
sections ltl, ... ,~, we define the spatial diameter of V as follows:

Definition 7.4

spdiam V' = m~diam lis .
t

,(7.23)

(i) A region V is q-small if
4,spdiamV < 1.
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....

(ii) A contour' is q-small if
(I,spdiam( < 1;

otherwise the contour is called q-Iarge,

[where t:' is as defined in {5.9)J.

(7.25)

It is clear that smallness is inherited bysubregjons. Moreover, the bound (7.21)
is valid for q-small regions, because

(I, IVI ,< (I, spdiamV IBVI
< IBVI· (7.26)

In particular, all contours inside a q-sm....all region are q-small contours. ,[It is for
the sake of this property that we used V in (7.24)]. The hypothesis that (II' = 0 '
implies that all regions are p-small.As a consequence, the proof of the implication
(i):::::>(ii) is completed by proving the following lemma [39]: '

'Lemma 7.5 For all q, q-small regions are q-stable. As a consequence, all q-contours
contained in q-small regions are stable.

We prove this lemma by induction in the spatial diameters of the regions.
Let, us assume that, for all u, (lu spdiam V < 1 implies that ::U(V) :1: 0 and

(7.27)

for all v and for all regions V, contained in V, with spatial diameter less than or
equal to m. We pick some Sq e K, and some q-small region, V of spatial diameter
m + 1, and prove the bound (7.27), with u = q. All contours (' in this region are
q-small, hence their interiors are q-small and of spatial diameter strictly smaller than
.m + 1. By the inductive ~ypothesis such interiors satisfy (7.27), and hence these
contours are stable, Yielding

E~(V) = Eq(Y) . (7.28)

We remark that if (I" = 0 then the proof is complete. This is bec'a.use if (I" ..: 0 all
regions are v-small, and, consequently, all v-contours in V are stable. This implies
that E~(V) " a.,(V), which, along with (7.28) and (7.22), implies that (7.9) is
true.

Let us now consider a boundary conditions" for which (I" =1= o. To estimate
Ev(V)/E,(V) we resort to maneuvres that are justified, a-posteriori, by the proof of
uniform convergence. We start with expression (7.2) for the partition function of an
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ensemble of mutually exterior contours with exterior configuration 8 11 , in a space
time volume V, and resum the contribution ofv-small',ezferior contours. This yields

Here "Ext" is the region outside the v-large e}Cf;erlor contours {(ll, the label "small"
indicates a restriction to configurations where all .the exterior contours are v-small,
and E(Int«1I» := nti Ev(Intv«V». H we multiply and divide the RUS of (7.29) by

.Ef(Int) :=. ITITEq(Inti(G» , (7.30)
", ti

we obtain

with

( V) __ . ( ) IT Ev(Intv(('r»
y (" .- w. (; ti· ~(Inti(eZ» ,.

We observe that, by the inductive hypothesis,

.....,maaU ~=.v (Ext):::; =.v (Ext)

(7.3~)

(7.33)

Identities (7.28) and (7.33) allow us to apply the finite-volume bound (7.14) to all
the factors in (7.31), except II" Y«('r). We then obtain

s:-an(Ext) Ef(Int) exp{- E" f.me:) ee(8,,)}
Ef(V)

<: exp[- Re (f~mJAll - f;) IV \ Int I + 20: lavl] IT ~(2c1+1)Qle:l. . (7.34)
, " ,

We have used (7.15) and the geometrical bOUJld laExt 1+laInt 1<lavl+2dE" I(II.
We. now use the q-smallness, inequality (7.26), of V to bound

-Re(f~UDAD - f;) IV\ Int I = (~a:man+ af) IV \ Int I
< -a:manIV \ Int I+ lavi . (7.35)

Furthermore, the quantum Peierls condition (3.42) and the inductive hypothesis
(7.27) for u = q (combined with the bound JaInt«l)1 < 2dl(rl) imply that .

(7.36)
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Substituting (7.34), (7.35) and (7.36) in (7.31), we get the bound

< e3a18VI #, e-Cl~ID&IIIV\lntl IIAIB(C:)I e-J1C:1.L e(10tl+1)crIC:1

{q}CV k
v-larp
exterior

:= e3a18V) #, e-Cl~ID&IIIV\lntl IIW*«(:) .

{(:}CV k
v-larp

$. exterior

(7.37)

To show that e4crl8VI is an upper bound for (7.37), and hence complete the proof
of the lemma, it is convenient to follow [39] and consider the quantity

E~(V) := IIW*«(k) e2cilCIcI,
k

(7.38>' .

where the label "large" indicates restriction to configurations where all the exterior
contours are v-large. This quantity can ··be interpreted as the partition function of
an ensemble of,contours having weights

w(() := w*(() e2cilCI (7.39)

and confined to a space-time volume V. It is evident that, for eo small enough, the
contour weights w(() satisfy the quantum Peierls condition, and hence the cluster
expansion converges. Moreover, if J:rae is the. corresponding free energy density
(defined as in (6.2» then it follows from 'Theorem 4.1 that·

We claim that
a:man > -~.

Indeed, by (7.12) and Theorem 6.1,

a:man = av + O(CJarce) .

[see discussion after (6.49)]. Moreover, for every v-large contour

av (lmin + i1 + ... + in) > ,av spdiam(
> 1,

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

where the first inequality follows from (the important) property (3.36), and the
second one is just the definition of largeness. Therefore, by the final comment in
Section 6.4,
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By the same argument,
(7.45)

.,.

Hence
a:man +~> ,all +o(eo)I/CI.) (7.46)

which is non-negative for Pla:rge and .~ smaJI, proving (7.41).
For future purposes, we summarize the rest of the argument in the following

lemma which shows that (7.41) causes the sum-integral in (7.37) to yield at most a
contribution exponential in the boundary. By substituting the bound (7.47), shown
below, into the RHS of (7.37), we obtain the bound (7.27). This completes the
inductive proof. •

Lemma 7.6 Oonsider weights w·«) satisfying a ·Peierls bound {9..I!}, and let 1
denote the contour free energy for the weights wee) =w·«() e2dlCI (well defined if eo
is small enough). Then, for 9 > -I,

#, e';"gIV\1nt1 IIw·«J:) < exp[O(eo)loVI] .
{CA}eV J:
exterior

(7.47)

Proof. (This is Lemma 3.2 of [4]. The proof given there applies verbatim; we tran
~cribe it for the sake of completeness.) Multiply and divide the LHS of (7.47) by
E~(Int). Using the analogue 9f (7.40) for the region Int := Uv, Intv«,), and the
bound toInt I< 2dE, 1(,1 we obtain '

[S(Int)]-l < eiilDil IIe2dE. ICAI (7.48),
fo~ eo small enough. Thus the LHS o{(7.47) satisfies

LHS <#, e-·IV\1Di1 eiilDtl EJarae(Int)II wee,) , (7.49)

{~}ev '
exterior

and, since -9 < 1, we have that

LHS < eilV1 #,
{CIl}ev
exterior

sWp(Int) IIw((Ie)
Ie

Hence, by the analogue of (7.48) for the region V,

LHS < eO(co)I8VI ••
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7.3 Stability of phase diagrams

Finally we are in a condition to prove Theorem 2.3. The proof of this theorem
involves two steps:

Step 1: Prove'that the exponential damping of the original weights wand. their
derivatives implies an analogous damping of the new weights W (for small
contours) and of their derivatives.

Step !!: Prove tha.t these differentiability properties of the weights W imply that at
low temperature and small A, the contour free energies f; are so close to the

. energy densities e(8,,) that the manifolds defined by

(7.52)

(7.53)

[i.e., S~~;:~...t.P.} defined in (7.52)] are close to those defined in terms of the

energies e(s,,) [i.e., S~::;~!..'.P.}]' and have differentiability properties similar to
thOse of the weights W.

The proof of step 2, given step 1, is, in principle, an exercise in implicit-function
theorem technology. However, it is somewhat subtle in cases, as the one we are
interested' in here, where the weights may fail to be positive or (even) real. As
pointed out in [4], there may appear zeroes of the partition functions that destroy
the continuity of the excess free energies ave

In the sequel.we shall only. prove step 1; the proof of step 2 is a straightforward
adaptation of the argument given in [4, Section 6] (replacing "diam" by "spdiam").

.
Theorem 7.7 Assume that there is a non-empty open set 0 C ·lRP - t such that, for
~ E 0, the quantities eps(sv) and wp are continuously differentiable functions of~
and, moreover, - -

1 ( )1 oWp«() < A1B«)1 e-J1C1.L
we ( , a;, - ,

for all contours " and

(7.54)

for all svE K., 1 ~ i ~ P - 1, for some a < 00. Then there exists a constant J > 0
such that if eo =max(e-fJJ, A) is sufficiently small, we have that, for all Jl E 0 and
all q-small contours (9,

(7.55)

,

with :\ = Ae15cio and J = J - 15da.
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(7.57)

Remark: Conditions·(7.53) and (7.54) express the uniform boundednessrequirement
of Hypothesis (H1.2). We can always rescaJeJ, ~ and the parameters Pi such that
there are no further~nstantsin these bounds.

Proof. Pick a small q-contour (9. The bound on W«(9) is immediate because of the
stability of small' q-contours {Lemma 7.5). For the derivatives we would like to use
the Leibnitz formula,

aW«(') _ 810«(') Ii s..(Int.«('»)
Op,i Op,i v=1 Sq(Intv«(9»)

" 0 (E.,,(Int,,«('.»)) II Ev(Intv«(9»)+w«(') LJ - _ _.,
v:V¢u 0P,i .::.q (Int,,((,)) v:,¥" .::., ( Intv((9))

(7.56)

and find' suitable bounds for each term. This approach requires two arguments:
First, one must show that each of the factors is differentiable and, second, one must
exhibit bounds on the derivatives.

.The stability of q-small cont0ut:s - ·already proven above - implies the correct
bounds for all factors lEv(Intv(('»/Eq(Int,,(('» I, and the hypotheses take care of the
differentiability of w«(') and ofthe bounds on these quantities and on 18w«(')/Op,il.
What remains is to prove the differentiability of the ratios

Ev(Intv«('») .

s:.(Int,,«(,»)

and to find a bound on their deriva~ives. It is easy to treat Sq, because it only
contains q-small, and hence stable, contours, and we can apply the results of Section
6.6. For the numerators, however, we need to.take into account v-large, and hence I

possibly unstable, contours., It is imperative, at this point, to work with the quotient
Sv/E9. In fact, proceeding very much like in. the proof of Lemma 7.5, one shows the
.following: . .

Claim. H V is q-small then, for any v, the quotient Ev(V)/Eq(V) is differentiable,
and

(7.58)

It is clear that· this claim implies the proposed inequality (7.55). Indeed, in
serting the hypotheses (7.53)-(7.54), the stability condition (7.27) and the claimed
inequality (7.58) - for V = Int,,«(") -. into (7.56), we obtain

la~~;')I < .\IB(~I e,-.7\<·I.. e4a18Ia&(CO)l [1 + 51 Int«(')I]
< ~IB«(9}1 e-JK91.1. e8daI~«(9)1 e?dl(91

:5 ~IB«(9)1 e-JI(91.1.el54aI(91 , (7.59)
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where we have used the bounds

laInt«(q)l< 2dl(ql

and 1 + 5x2 < exp[7x/2]. As '(I < IB«()I + 1(1.l, this last bound implies (7.55).

To prove the claim we proceed, once again, by induction in the spatial diameter
of V. We assume that (7.58) is true for all u and for all u-small regions V with
spatial diameterm or less. We shall now prove (7.58).for some q and some q-small
region Vof diameter m +1. We start with"the resummed expression (7.31) which
we repeat for the reader's convenience:

We shall use the product rule to calculate ~helli-deriva.tive of the RHS. For the
partition functions on the RHS we can use the cluster-expansion technology, because
only stable contours are involved (Lemma 7.5 for s-mau, and the inductive hypothesis
for Eq). Thus, we conclude differentiability and a boun~ analogous to (6.60):

laa. s;"'oD(Ext)! <
. III I[exp{- lEx< ~(s.)}] a~;~(Ext)1

+ la: [-expUEx< e,,(s.>}] ~(Ext)1
/

< 13 ;-JI(Ext)IIExt I + lEx< la~;:.) II:=::-"(Ext)I
< 212;,lIIaJJ(Ext)f IExt I . (7~61)

The first inequality makes use of (7.6), the second one is due to hypothesis (7.54),
and ,the third one follows from (6.60). Similarly,

-!. (~(Int») < 2 ::(Int) IV \ Int I.
alli .::oq(V) '::'q(V)

(7.62)

Moreover, from the differentiability of the energy-densities and the bound (7.54),

Ia~; exp{- Ek Joupp(C:l e,,(s·)}1
< L 1(:llexp{-Ek !eupp«(:> ez(sv)}1 .

k
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Finally, for the weights

(7.64)

we use the hypothes~made on the original weights w and the inductive hypothesis.
They imply that each factor·is differentiable, and we can use· the bound:

l aY(~;:)1 < law(~;:) IT :-(lnt..(~») +w(mf ~ (;(lnt..(~)))j .
op, op, u=1 ':'q(Intu«(II») u=1 ~p, -q(lntU«(k»)

(7.65)
Using the q-stabilityof the interior regions and the inductive bound we obtain the
upper bound

IaY(~)I <.;\IB«(:)le-JI(:I.a. [e"oI81D&(:1 +51 Int (:le"oI8IDl(:I]
op. ~ .

< XIB«(:>I·e-JI(:I.a. =: W'*«(:). (7.66)

[To obtain the last line we proceeded as in (7.59).] With the bounds (7.61)-(7.66)
and the already known. bounds (7.34}-(7.35), expression (7.60) yields

a~i ~~~~ < e
2a18l1 "# _exp[- HAl (f.-» - r.) IV \ Int I]

{(:}CV
lI-laqe
exteriol'

.
x nW*«(:)e(2d+l)ol(:1 [~(IExtl+ IV \ IntI) + ~(IC:I +1)]. (7.67) /.

II II
The squ~e bra.cket is bounded by

41V \ Inti +~1 < 51VI,. II .

and the remaining sum is 'bounded by eol8VI, by Leinm.a 7.6.•
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