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Abstract

Starting from classical lattice systems in d > 2 dimensions with a regular
zero-temperature phase diagram, involving a finite number of periodic ground
states, we prove that the addition of a small quantum perturbation and/or
increasing the temperature produce only smooth deformations of their phase
diagrams. The quantum perturbations can involve bosons or fermions and
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can be of infinite range but decaying exponentially fast with the size of the

bonds. For fermions, the interactions must be given by monomials of even -

degree in creation and annihilation operators. Our methods can be applied
tc.: some anyonic systems as well. Qur analysis is based on an extension of
Pirogov-Sinai theory to contour expansions in d + 1 dimensions obtained by
iteration of the Duhamel formula. . :

Keywords: Phase diagrams; quantum la.ttice systems; Pirogov-Sinai theory;
contour expansions; low-temperature expausions.
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1 Introduction

The study of phase diagrams of quantum lattice systems is a much less Qeveloped
subject than its classical counterpart. There has been extensive numenca:l work
on quantum phase diagrams at zero temperature, but rigorous studies,. which are
often unexpectedly difficult and rich in surprises, have been very few in numb.et.
A systematic exploration of the different types of ground states has been carried
out only for one-dimensional systems — chains - (see for instance [11, 20, 1] and
references therein).

Our present understanding of phase diagrams at low, but nonzero temperature is
very limited, as well, although many important quantum-spin lattice systems have
been rigorously studied at low temperatures (see for instance [31, 14, 10, 12, 36, 37,
18, 19, 22, 24, 23, 3, 2]). These studies provide useful illustrations of some of the
phenomena involved, but they focus on extracting detailed information for special
models, rather than on developing a general formalism of wider applicability. In
this paper, we take the opposite attitude: We present some general black-box type
results which, although typically far from optimal for each specific model, allow us
to understand the broad features of some regions in the phase diagrams of quantum
lattice systems dominated by a classical interaction. |

Usually, the study of low-temperature phase diagrams involves a two-step pro-
cess: First, the zero-temperature phase diagram is drawn, and, second, one analyzes
which of the zero-temperature phases survive at nonzero temperatures. For clas-
sical systems, there is a general theory to handle the second part of this process,
namely Pirogov-Sinai theory [29, 30, 35, 39, 4]. The bottom line of this theory can
be summarized as follows: If the zero-temperature phase diagram is a regular phase
diagram (in the sense of satisfying the Gibbs phase rule) involving a finite number
of periodic ground states, and if in addition, the excitations of these ground states
have an energy proportional to the size of their boundaries (Peierls condition), then
the phase diagrams for low enough temperatures are only small deformations of the
zero-temperature phase diagrams. In other words, the theory says that for systems
with finitely degenerate ground states and obeying the Peierls condition, the entropy
contribution to the free energy, present at non-zero temperatures, is only a small
correction to the internal energy at low temperatures.

In this paper we extend this theory to systems with small quantum perturba-
tions, and we conclude that the addition of these perturbations only leads to small
deformations of the phase diagram if the temperature is low (in particular equal to
zero). It is somehow surprising that, except for a pioneer announcement [28] which



was never followed by full proofs, this natural extension of Pirogov Sinai theory has
never been considered previously'. One may argue that this is because the exten-
sion (apparently) refers to the least interesting regions of a quantum phase diagram,
namely those where the quantum part does not trigger any new effect. This is, how-
ever, a poor reason on two accounts: First, a “no-go” result is needed and useful,
- because it allows people hunting for quantum effects to rule out large regions of the
phase diagram, saving effort and misunderstandings. Second, and more importantly,
some quantum effects can, in fact, be studied by using our results. Indeed, we shall
show in a subsequent paper [8] how, by combining the present theory with a per-
turbation scheme, one can analyze degeneracy-breaking effects induced by quantum
perturbations and the associated phase transitions.

A noteworthy difference between our approach and many of the previous ones
(eg. [31, 14, 18]), is that, instead of using the Trotter formula, we resort to an
imaginary-time Dyson expansion based on an iteration of Duhamel’s formula. The
resulting expansion roughly corresponds to performing part of the limit involved in
the Trotter formula, so a sum over a large number of small subintervals is replaced
~ by an integral. Thus, we work in subregions of Z¢ x [0, 8]; the last coordinate

— the “time-direction” — being a continuous one (with periodic boundary condi-
tions), and our contours are piecewise-cylindrical surfaces whose “time”-sections are
ordinary Pirogov-Sinai classical contours. We think that this approach has several
advantages. On one hand, contour considerations are based on the surfaces natu-
rally associated to the expansion, without the additional projection introduced in
approaches based on the Trotter formula. This allows for simpler and clearer geo-
metrical and combinatorial arguments, a fact also exploited, for instance, in [1]. On
the other hand, the effects of quantum perturbations have a nice visualization: they
change the sections of contours. If the system were purely classical, the contours
would be straight cylinders of constant section; the quantum terms produce defor-
mations or the appearance of “vacuum fluctuations” in the form of contours that
appear and/or disappear at intermediate values of the “time” coordinate.

These observations permit us to make rigorous the usual heuristics about quan-
tum perturbations having an “entropy effect” comparable to temperature. Indeed,
all our bounds are in terms of the maximum of the quantum-coupling parameter,
. A, and a temperature-parameter of the form e~#’, for some coupling J > 0. In
particular, by letting 8 — oo our formalism yields information about ground states:
the “classical-like” contours extending all the way along the interval [0, §] disappear,
and all that remains are vacuum fluctuations in a “sea of spins” configured as in a
classical ground state. The fact that these expected features are exhibited in such
a simple and immediate way is, we believe, a nice feature of our approach. ‘

For the convenience of the reader we summarize the hypotheses and results in
the following section, which can be read as a “recipe” section. Readers interested in

1We have recently been informed by C. Borgs and R. Kotecky that they have also constructed
an extension of Pirogov-Sinai theory to systems of the type analyzed in this paper.
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the method itself can continue with the proofs and technicalities of the remaining

sections.

-2 Hypotheses and results

2.1 A formalism for quantum lattice systems

We consider particles with a finite number, N, of internal dégrees ?f freedom, on a
" d-dimensional lattice Z%. The Hilbert space associated with each site of the lattice
is isomorphic to CV. The system is governed by a Hamiltonian of the form

H=H+V (2.1)

where H< is interpreted as the. “classical part”, and V as the “quantum pertur-
bation”. The former consists of finite range interactions, and is assumed to have
a finite number of periodic ground states. The interactions constituting V can be
of infinite range, provided their strengths decay exponentially with the size of their
supports. To make these assumptions precise, we need some standard definitions.

A quantum lattice model can be interpreted either as a spin system or as a lattice
gas. In a quantum spin system, there is a particle at each site of the lattice having
a finite number of internal degrees of freedom. In describing such a system there
is no need to refer to the statistics of the particles. In contrast, the particles in
a lattice gas are allowed to hop from site to site. Hence their statistics plays an
important role, and it is necessary to introduce Fock spaces to describe them. The
mathematical framework required to describe these systems has been introduced in
[5, 15, 32]. We summarize the essential features below. ’ '
‘Quantum Spin Systems:

For a quantum spin system the Hilbert space, H,, associated with a finite subset
A of the lattice is given by the tensor product

Ha = QH- (2.2)
- T€A
where each # is isomorphic to €V [An infinite tensor product of Hilbert spaces
is intentionally avoided, since it is not uniquely defined and is complicated to deal
with. Infinite volume limits are considered only at the level of observable algebras
and states). |

Bases of 44 can be put in correspondence with configurations on A in the fol-
lowing way: We choose an orthonormal basis

{}oer with I:={l,...,N} (2.3)

in ;. Let Q4 be the set of configurations {ws} in A, defined as the set of all
assignments {0;}zex of an element o; € I to each z. If X C A, then wy denotes
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the restriction of the conﬁguratibn wp to the subsét X. For each configuration
wp = {0z} zeh € Qa, let e., be the vector defined as

€y = ®R=zea e:, ‘ (24)

The set of vectors {e,, }uaena is an orthonormal basis of H,. :
A state of a quantum lattice system is defined as a positive linear functional on
a suitable C*-algebra. To construct the latter, we start with the algebra A, of all
bounded operators (matrices), acting on H,, with the usual operator norm and with
hermitian conjugation as the x-involution. The algebras .4, can be considered to be
partially nested, i.e., ’ ’

. Ap, CAp, if A C A, (2.5)
by identifying each operator A; € A, with the operator 4,1 A2\A; € An,, where 1
denotes the identity operator. Moreover, the algebras A, are local , i.e..if A; € A,
and A; € Ap,, and A; NA; =0, then

A1 Az = Az Al v v . (2.6)

The norm closure of Ur sz¢ Aa ‘deﬁh»es an algebra which we denote by A. It is the
quasilocal C*-algebra of observables associated to the infinite lattice Z%. All local

algebras A, are subalgebras of A. . ‘
The group Tz« of space translations acts as a *-automorphism group {7, : a €
Z%} on A, with | ,
’ AA+¢ =Ta AA, : (2.7)
for A ¢ Z°. (The definition of 7, is obvious.) .
An interaction of a quantum spin system is a function @ from finite, nonempty
subsets B of Z? to selfadjoint observables ®5 € Ap. The set of interactions, {®5},
constitutes the Hamiltonian of the system. We shall assume that the interactions

are translation invariant, i.e,
7.9p = ®p4a, for eacha € Zé BcC z°, , - (2.8)

An interaction will be called classical if we can choose a basis {eZ},¢s in H, such
that, for every finite A C Z*, the matrices &, B C A, are diagonal in the ba-
sis {ew, }{wa}eq,, defined through (2.4). In this case the interactions are uniquely
defined by the numbers .
#B(w) = (ews|®aleus) .
= ,(eNAJQBlch> ', VADB. (2'9)

Quantum lattice gases: , )
In order to describe the itinerant particles of a quantum lattice gas, one starts

with the one-particle Hilbert space

HOY = 2(ZY) e CV . (2.10)



It represents a single particle which has N internal degrees of freedom and is confined
to a lattice Z°. A basis 'of this space can be obtained from the bases {€Z_},,er of
H., introduced above, (eqn.(2.3)). We shall also use €Z_ to denote the vector in HO)
.whxch has all other summands equal to zero.

" To incorporate the statistics of the particles we construct Fock spaces

Fp(HO) = P (V)" (211)
n>0
where n
(’H(l)) =HVQHDV Q... @ HW - (2.12)

denotes the n-fold tensor product of H(") with itself, (H®)° := C, and P is the
orthogonal projection onto the subspace with the right symmetry propertws We
shall consider bosons and fermions.

(i) For bosons, P is the projection onto the symmetric subspace, defined on each

1 n
(H®)" by 1
Poowe(€5; ® -+ ®€5) = — 3 €5 ® - ® e, (2.13)

where eZi € H(), for all i, and x ranges over all permutations of the indices (1,...n).
(ii) For fermions, P is the projection onto the antisymmetric subspace '

1
Promi(e2 @+ @ ¢20) = = sgn(x)e“:@ ‘@, (214)

where sgn(w) is +1 if the permutation x is even and —1 if it is odd. The RHS of
(2.14) vanishes if any vector ef appears more than once in the tensor product. This
implies that it is impossible to create two fermions in the same state, in accordance

with the Pauli exclusion principle.
~ Identical constructions can be made for finite volumes, i.e. when H(") is replaced

by

#HY = ) ech
~ DHe, '(2.15)

z€EA

©

for finite A C Z4. The fermion Fock space for a finite volume A is given by
 FroemiH) = Prews @ (HY)" (2.16)

n>0

1t follows from the Pauli principle that the direct sum in (2.16) terminates at
n = N|A|.

The formulae (2.13) and. (2.14) can be used to define some bases in the Fock
spaces. One must take into account the fact that different vectors of (’H(U)n, namely
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Figure 1: Spiral order in Z2

those which differ only in a permutation of the factors eZi, are mapped by the
ptOJectxon operator P onto the same vector of the Fock space (up to a sign).

To avoid ambiguities, we choose a total ordering of the sites in Z%. For future
convenience, we choose the spiral order, depicted in Figure 1 for d = 2. We shall
say that (z,,04) is earlier than (z,,0,) — and write (21,01) X (z3,02) —if 7; X z,
and, for z; = z3, 01 < 0;. The spiral order has the convenient property that

the set of sites earlier than those.in a given, finite set B is (2.17)
~ also a finite set B, ) : )
This property will be useful in defining states corresponding to “classical” boundary
conditions. [See discussion following (2.46)).
An orthonormal basis of Fp(H(!) is given by the vectors

Intxv: sixs nt‘kﬂk) = (fz: ®---® eﬁi@ v ®f:: ®--® e:;)_( (2'18)

fzy oy times Nz, 0, times

where “(---)<” indicates that the braced factors must be ordered such that each
subscript (z;0;) is earlier than the ones to its right. The vectors (2.18) involve in-
finitely many occupation numbers n.,, but only finitely many, namely the indicated
ones, are nonzero. By restnctmg the sites z; to those in a finite region A C Z*, one
obtains a basis of f'p(’HA ) in a similar manner. For fermions, each n., is either 0
or 1.

Having introduced the Fock spaces appropriate for the descnptxon of bosons and
fermions, we proceed to define suitable C*-algebras of observables. The C*-algebras
are génerated by the creation and annihilation operators on Fock space obeying the
canonical anticommutation relations (CAR), for fermions, and the Weyl form of the
canonical commutation relations (CCR), for bosons.

The annihilation and creation operators on Fp(H()) are defined as

Czo := Pa, P (2.19)
and
c;, :=Pa;P, sy ' (2.20)

8



with

a(e5 ® - ®e5n) = Vn(e],e5}) €3 @~ Qe (2:21)
a (el @ --@er):=vn+le;®c; ® - ®e;n (2-22)
where (eZ,eZ!) denotes the scalar product of the vectors 7 and €7}. Furthermore,
A |0 >:=0 | (2.23)
and ‘ .
az,l0>=¢; . (2.24)
where : ' | '
10) = (1,0,0,---) € PHM)* (2:25)
n20

denotes the vacuum, i.e., the zero-particle state.
For bosons, the operators defined through eqs.(2.19) and (2.20) satlsfy the canon-

ical commutation relations (CCR):

[ctlvl ’ cﬂ’?] = [c;101 L] c;‘:dg] = 0
[c1101 ’ czgo:] = (edl ’ edz)l . (2‘26)

where 1 is the identity operator. For fermions, the corresponding operators satisfy
the canonical anticommutation relations (CAR):

{cqa“czgcz} = ) {c:ad';’c;z'dz} = O
{cz101: 5,0, = (€5}, €53)1 : (2:27)

It follows from the CAR that ||cz. || = ||z, || = 1.
The basis vectors, |ng,q, - - s,0,), defined by eqn.(2.18), can be a.lternatlvely
expressed in terms of the action of the creation operators on the vacuum.

,n::xa/'l oo n-ﬁ‘&) = —ﬁ\/—"}'—;—_ ((c;lﬂx )"'"1 see (C,k“ )u"“"‘)ﬁ |0) . (2.28)
s=1 ‘*zioq°

The labelling is consistent with the fact that these vectors are simultaneous eigen-
vectors of the number operators

Neo =€ Coo | - (2:29)

with the eigenvalues n., taking values 0 or 1 for fermions, and 0 or any natural
number for bosons. More generally

c;.'a.' ln&‘lﬂl T nzk’k) = eiai \Y} Nzio; _+ 1 Inrldx g+ 1 nzkﬂ) (2°30)

and similarly
Czioi|Pe1o; " Nrpy) = et Vzio; [nzy0; ++* Pzgoy — 12+ Nrpar) (2.31)

9



where a< is a phase which depends on the n.;,, with (z;,0;) strictly earlier than

(zi,00):

agx = 0 for bosons, (2.32)
asx = 0,x for fermions. - (2.33)

Let B, be the x-algebra generated by the identity and the fermionic annihilation

operators, €5, With 'z € A. It is referred to as the field algebra and is larger than
the algebra of observables. The algebra A, of local observables is the subalgebra of
B, consisting of all those operators which can be expressed as sums of monomials
of even degree in the creation and annihilation operators associated with the lattice
sites £ € A.2 For A; € A), and A; € Ay,

[A, A2] =0 if Ay A, =0 C o (2.34)

and hence the algebras A, are local. For bosons the creation and annihilation
operators are not bounded. This is because there is no bound on the number of
particles in the same one-particle state. The technical difficulties posed by this
unboundedness can be avoided by considering bounded functions of these operators.
One such choice yields the Weyl operators which are defined as

Weo(a,b) = exp (1a®,, + 1bll,,), a,b€ER (2.35).
where , g
c’q C
P, = —=% 2.36
7 (2.36)
and . . v , .
H::u = ‘c’w — c.z_c (2.37)

| V2i
The operators ¢, and c;, are the bosonic annihilation and creation operators sat-
isfying the CCR, (2.26). The Weyl operators satisfy the commutation relations

Weo (0,5) Weror(a', ¥) = exp(i(al — a'b)bses Sy Wiros(a', B) W (a,)  (2.38)

2]t is often reasonable to demand that observables are gaugé invariant. A gauge transformation
G4 is defined by its action on the annihilation operators , ’

Gy :Coo — €%ceo; $ER

The algebra A, of local observables could also be defined as the subalgebra of B consisting of all
those elements which are invariant under the above transformation, i.e.,

A€ Ax if A€ By and Gy(A) = A.

Consequently a gauge invariant observable is given by a sum of terms each having an equal number
of creation and annihilation operators.

10



which are called the Weyl form of the CCR. A quasilocal C*-algebra suitable for the
description of bosons can be generated from these Weyl operators.

In both cases, the fermionic and the bosonic case, the local algebras are nested
w.r.t. inclusions of the localization regions, i.e.,

An, € A, if Ay C A, . | (2.39)

and the quasilocal algebra of local observables is the norm closure of Uy »zv Aa, in
complete analogy with quantum spin systems. Furthermore, let B be the quasilocal

C*-algebra defined as

. B= Bx (2.40)
_ ApzZv
where B, is the *-algebra generated by the identity and annihilation operators for
fermions, and by the Weyl operators for bosons.

As in a quantum spin system, an interaction in a quantum lattice gas is given by
selfadjoint operators &5 € Ap, for finite subsets B of the lattice. It is to be noted
that it is implicitly assumed here that the ®p are bounded operators. This imposes
severe restrictions on the allowed interactions in a bosonic lattice gas. For fermions,
the interactions @p are given by sums of monomials of even degree in creatlon and
anmhxlatlon operators We write this symbolically as :

o = 2% (2.41)

where each ®p is an even monomial and 3°5 denotes the sum over all such monomials
(with support in B) compnsmg the mteractlon ®5. In our formulation of the low
temperature expansion, it is necessary to express the fermionic interactions in terms
of their constituent monomials, in order to arrive at a precise definition of quantum
contours [see Sect. 3.3]. In order to have a unified treatment for bosons and fermions,
we shall denote all quantum interactions in the seque] by $3, with the understanding
that, for fermions, ®3 is an even monomial (as mentioned above), whereas for bosons

23} = ®%. Moreover, the notations
B30 ;BAA#0 | (2.42)

will be used to denote that the set B, corresponding to the monomials 3 (for
fermions), and to the interaction ®} (for bosons), satisfies the above condmons,
(2.42). For simplicity we shall assume that the interactions are translation invariant.
However, our formalism can be easily extended to periodic interactions.

If an interaction, ®p, is diagonal in the basis formed by the vectors defined in
(2.18), then it is called classical and is denoted by ®3.

A bond is defined as a set B C Zd for which ®p 96 0. In particular, a quantum
bond is deﬁned as follows:

11



Definition 2.1 4 qua.ntum bond is a set B for wluch ®3 # 0. In the sequel, the
symbol B will often be used to denotc the support of ®p and will also be referred to
asa qua.ntum bond. ‘

The range of the interactions is defined as the maximum of the diameters of -
the bonds (defined with any convenient translation invariant notion of distance on
Z%). ‘The classical part of the interactions will be assumed to be of finite range.
The quantum perturbation can be of infinite range, but is assumed to satlsfy a
summabxhty condition of the form

:; I8glle"¥*F < oo (2.43)
B30

for & > 0 large enough
If the occupancy of every site of the lattice Z¢ is chosen to be one then the lattice

gas reduces to a spin system.

We now introduce the notion of boundary conditions which is of crucial impor-
tance in the determination of phase diagrams. As mentioned before, we restrict
our attention to finite subsets A of the lattice Z%. We choose some periodic con-
figuration s on Z°, which is defined by the occupation numbets Nge = 8y, for
z € Z%,1 < ¢ < N. The exterior conﬁgura.txon, 3pc, with A° := Z9\ A, is called a
boundary condition.

It is evident that our i'orma.hsm must be generalized, because the configuration
s does not correspond to a vector in the Fock space Fp(H(!)). The vectors in Fock
space are square-summable superpositions of vectors with finite total occupation
number, whereas, for the vector |s), corresponding to a configuration s, this number
is infinite, (unless s;, = 0, for all z,0).

- Thus, instead of considering the Fock space fp(ﬂm) we consider a Hilbert

space of states corresponding to local alierations of the configuration s. Technically,
this means that we construct a space F3(#H()) which has |s) as a cyclic vector.
This construction is possible if we can prove that s defines a state, i.e., a positive,
normalized linear functional on the quasilocal C*-algebra B. Since B is generated
by the identity and the annihilation operators, this amounts to showing that we can
define expectation values of the form

([baeyes - Brnonls) - (2.44)

where by, = Cgiai, OF by = €y for 1 < i < n. We do this through the
following limiting procedure: We consider the vectors lsa) € fp('){“)) defined by
the occupation numbers

_ As,, ifz € A
ntﬂ - { 0 ‘ else , v (2-45)
and we set C '

(slbeyes -+ Busenls) = lim, (salbiese, -+ Brncalon) (2.46)

C 12
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This limit exists due to property (2.17) which implies that the phases of the matrix
elemerits on the RHS of (2.46) stabilize once A D {z1,*++,Zn}(<). Our procedure
defines the Hilbert spaces Fa(H™) via the standard GNS construction [6, Section
- 2.3.3]. For A C Z°% and boundary condition s, we define the finite-volume partial

trace for A € B, as
TriA == ) (va ® sac|Ajva ® Spe), (2.47)
7Y X
where {Jva)} is an orthonormal basis of Fp(H.') of the form (2.28). (Note that
lvA ® sAc) € f}(%(l)).) ,
We define the Hamiltonian, H,, associated with a finite subset A of the lattice

as follows: ‘ ,
Hy :== Y PidpP;, . (2.48)
’ BnA#0
where ®p € Ap, and P} is the orthogonal projection operator onto the subspace
{Als): A € Bs}

of Fp(HWM). That is, we eliminate those matrix elements of the operators ®p,
with B intersecting both A and its complement, that would lead to a change in the

configuration outside A.
The finite-volume free energy density for a set of interactions {®g}, boundary

condition s, and inverse temperature f is given by the expression

fi(A) = ﬁl A lnTr zc"ﬂn“ . (2.49)
Its infinite-volume limit : :
f = Al}zg‘ fi(A), (2.50)

is the freec-energy density. The limit may be taken in the sense of van Hove.
The finite-volume Gibbs state for a set of interactions {®p}, boundary condmon

s and inverse temperature g is the linear functional on B, defined by

Tri A e PHa

2.2 'Assumptions on the interactions

We consider interactions of the form <I>“ g = 04 B + <I> which give rise to a class of

Ha.mxltomans of the form

- Hy = Hj+V,
= [Bn%o od5] + [ﬁr\;ﬁ 83 . (2.52)

13



Note: We remark that the self-adjointness of the interactions plays no essential
role in this work. Hence we do not assume it. In particular, this means that the
eigenvalues of the classxcal interactions, < B are allowed to be complex.

We requires the following hypothm: |

(H1) {995} is a set of classical, finite-range interactions parametrized by p :=
(#1,-- -, ip—1)- The “coordinate axes” of the phase diagram are labelled by g;, 1 <
i < P—1. The range of the interactions is assumed to be independent of . We shall
assume translation invariance, but analogous results can be obtained for periodic
interactions as well. The “classical” Hamiltonian HS, is assumed to satisfy the
standard hypotheses of Pirogov-Sinai theory, namely: '
There is a non-empty open set O C IRF~? such that the following propertl&s are
satisfied:

(H1.1) Ezistence of a common ezgenbas:s There is a basxs of the form given in
(2.18) in which all operators 9 uB ate simultaneously diagonal, for all u € O.

(H1.2) Smoothness properties. The functions O 3 p > <I>,°}B are differentiable in

operator norm. The functions, as well as their derivatives, are uniformly bounded
in norm. Typically, O is a bounded region. If the functions ®95 have a linear
dependence on g, the parameters Hi correspond to ﬁelds or chemical potentials.

(Hl 8) Finite degeneracy.’ The set formed by all periodic ground states of
{<I> B}, for all g € O, is a finite family

KJ = {81,...,8P} . - "~ (2.53)

In the present sitgation, a periodic configuration s isa ground state for {Qg g} if

s

Recﬁ(s) = 3mche£(§) ) : (2.54)
where ) |
i) = i, i 5 050 259)

The symbol |A] denotes the cardinality of the set A, and the limit is taken, for
instance, via sequences of growing parallelepipeds. [Note: The definition of classical
ground states is more complicated in the presence of infinite degeneracy or non-
periodicity. See for example [38, Appendix B] and references therein.]

For periodic configurations the limit (2.55) exists, and the specific energy is
equivalently given by the average energy oontnbutlon of each fundamental cell of

~ the configuration, i.e.,

€W

eu(s) = |W| > e,f,(s) v (2.56) |
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where W C Z° is a choice of a fundamental cell of s, [i.e., a parallelepiped in which
the length of each side is a multiple of the corresponding period of s], and

‘ ‘I’ﬁls(s)
c!'_‘z(s) ?= BZB: IBI

(2.57)

can be interpreted as the contribution of the site z to the energy. It will be referred
to as the specific energy “at z” of the configuration s.

(H1.4) Peierls condition. For all u € O the Peierls condition is satisfied, for
some p-independent Peierls constant J > 0. Roughly speaking, this means that
the insertion of an excitation corresponding to a ground state configuration that is
different from the one on the rest of the lattice costs an energy proportional to the
surface area of the inserted droplet. The constant of proportionality is the Peierls
constant. For a precise statement of this condition, see Definition 3.1 below.

(H1.5) Regulan'ty of the phase diagram. The zero—temperaturei phase diagram
for p € O is regular. We shall explain this notion below.
At zero temperature, the phase diagram is drawn using the set of ground states

Q(oo,o)(ﬁ) = {s, € x: . Reeﬁ(sp) = gleulé Ree_,_,_('su)} (2.58)

for each value of y. The superscripts (oo, 0) correspond to the values of 8 (propor-
tional to the inverse temperature) and the quantum perturbation parameter A. The
classical zero-temperature phase diagram is the family of manifolds '
S{(:::) s} {F Q(oo o)(ﬁ) {spn 7st}} ) (2'59)
for 1< k< P, sp,...,8p, € K. These manifolds are called the strata of the phase
diagram. The phase diagram defined by these strata is regular if the map

g — (Re eu(s1) — lxé}isx}, Reey(si), ... , Reey(sp) — 1132}!’%%(3‘)) (2.60)

is a homeomorphism of @ into the boundary of the positive octant in the space IRF.
This means that the stratum of maximum coexistence, Sk, is a single point (£ the
origin of IRF), the strata with P — 1 ground states are curves emanating from it
(= the coordinate semiaxes), and so on. The strata with P — k ground states are
k-dimensional manifolds bounded by the strata with P — k 4+ 1 ground states. (This
geometry is also known as the Gibbs phase rule.)

(H2) The quantum perturbation {®}} is a translation invariant interaction satis-
fying ezponential decay. The precise expression of this decay is based on a choice of
sampling plaguettes W,(z) = {y € Z*: |z; — yi| < a for 1 < i < d}. [The constant
a is chosen so as to have a one-to-one correspondence between configurations and
classical contours, (see Section 3.1 below).] For a finite B C Z¢, let

g(B) := minimal number of plaquéttes needed to (2.61)
cover B with a connected set. ' )
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Then the decay condition is given by
II‘I>q | < cx® (2.62)

for some constant ¢ and some 0 < A < 1.

2.3 Examples

In this section we give some sunple examples of models to which our theory can be
applied. For simplicity we consider models in Z?, but analogous results hold for
" models on Z¢%,d > 2. :

Example 1: Fisher antiferromagnet. This is an example of a quantum-spin system.
For simplicity we choose the spin at each site to be 1/2. Hence H; =~ C2.- The system
has a Hamiltonian given by ’

Hyo= [ 3 o®®-K T o®6®_hY ql® - hes $(— l)lzla(a)]
<z,y> hA <z, 4> hA z€A Z€EA
+Ht X (a(l)a(‘) + ,(2) (2)) +h. c.] . | : (2.63)
<zy>hA »

o), i =1,2,3, are the spin operators (Pauli matrices); <z, y> and <z, y>> denote
nearest neighbour and next-nearest neighbour pairs, respectively, and the notation
B A is used to refer to the set:

{BcCZ:BnA+#0}. (2.64)

Finally, ¢ is an exchange coupling constant.

Note: In this and the following examples we use square brackets to separate the
classical and quantum parts of the Hamiltonian (as in (2.52)). Moreover, any pei-
turbation satisfying hypothesis (H2) can be added to the quantum parts.

This model gives rise to phase diagrams of different degrees of complexity de-
pending on which of the couplings are varied. Let us first consider g = (h, h**8).
The parameter h***88 modulates a staggered field whose sign changes as the parity
of |z] := |z1|+ - -+ |zd| changes. The ferromagnetic coupling K is assumed to have
a fized non-negative value. We use the symbols “4+” and “~” to denote spm up and
spin down respectively.

For K > 0, the set of ground states of the classical part is
K = {‘3+7 SeyS4—y S_.+} a-. (2'65)

where s, is the all-“4” conﬁgurétion, s_ the all-“—", and s,_ and s_, are the two

Néel configurations with “+” spins in one sublattice and “—” spins in the other one. -
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| Figure 2: Zero temperature phase diagram of the Fisher antlferromagnet (Example
1) for (a) K > 0 (b) K =0 and |A]| < 2.
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The fundamental cell of these periodic conﬁgurations can be chosen to be a 2 x 2
square. Hence we write symbolically: -

wn(33) e (22) e (23) m (3 2)

(2.66)
The corresponding zero-temperature phase diagram is depicted in Figure 2(a). The
oblique lines for h > 0 are given by the equation

h=2+ A, o (267)

£

The corresponding lines for k < 0 are given by the equation
| h = —2 — |h™"e5), (2.68)

To construct the ground state pha.se diagram, it is convenient to rewrite the

.classical part of the Hamiltonian as a sum over terms oorrespondmg to 2 x 2 blocks,
M ie. EM Q M Wlth

1 h —
=5 T P - K ¥ o730
. <z,y>CM : <=.y> cM zeM

- -— %;(-1)"'0(3) | (26) |

and find the minimal energy configurations over any such block M. This is because
the operators ®¢, constitute an m-potential, [16].

This diagram is regular in the vicinity of the maximal-coexistence points P and
Q. At zero temperature, this model exhibits a transition between ferromagnetic and
antiferromagnetic order when any one of the oblique coexistence lines in the phase
diagram is crossed. Qur theory will show that this transition survives at nonzero
temperatures and/or in the presence of small quantum perturbations, like the spin-
flipping term added in the second line of (2.63). An alternative proof of this fact is
presented in [2].

If we set K = 0, the oblique coexistence lines emanating from P and Q acquire

infinitely many periodic ground states. For the upper lines these ground states result
from penodlc arrangements of the configurations:

() (D ED G ew

For the lower lines the configurations which contribute are the ones obtamed from
the above set by a spin-flip. These sectors of the phase diagram, therefore, lie outside
the scope of our theory [violation of (H1.3)]. Nevertheless, we can still analyze the
regions around the open vertical segment joining P with Q. This corresponds to
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fixing the parameter & at some value, such that |k| < 2, and considering the model
to be parametrized by A**€¢ alone. This yields the phase diagram of Figure 2 (b).
The fact that in each case the relevant classical part of the Hamiltonian satisfies
the Peierls condition follows from a general theorem of Holsztynski and Slawny [16]
and the stability of the Peierls condition under perturbation (Proposition 3.2 below).

Example 2: Simple fermionic model. We consider spinless fermions with interac-

tion ‘

Hy = [ Y nn,-K 3 n,ny—pzn,—-p“‘“z:(-—l)l‘ln,]

<z,y> hA ' <z,y> hA zEA zEA
+[t/ T cle,+ h.c.] . (2.71)
<z, y>hA ;

A lattice site can either be empty, or occupied by a single fermion. Hence H, =~ C2.
This model can be obtained from the one of the previous example by a transforma-
tion of spin variables to lattice gas variables. By suitably transcribing the results
of Example 1, we obtain, for K > 0, the zero-temperature phase diagram shown in
Figure 3 (a). :

The latter involves the ground states
K‘ =‘ {8.,8.0, 30.} N (2.72)

where se¢ is the configuration with exactly one fermion at each site, while seo and
Soe are the half-filled configurations having one fermion at each site of one of the
sublattices and no particle in the other sublattice. Diagrammatically, -

w=(22)vmo=(22) me=(20) @79

The oblique lines in Figure 3 (a) are given by the equation
p=4-2K + |u™ees|, o (279)

- This diagram is regular in the vicinity of the maximal-coexistence point P. For
K = 0 the oblique lines become lines of infinite degeneracy, with ground states
having, in addition to the above configurations, (2.73), the following one:

and the three others obtained from it by rotations. Hence our theory can only be
applied in the region around the vertical coexistence line up to, but ezcluding, the
point P, i.e., to phase diagrams as in Figure 3 (b). The stability of these phase
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Figure 3: Zero-temperature phase diagram of the simple fermionic model of Example
2 (a) for K >0 and (b) for K =0and 0 < p <4 —2K.
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diagrams at low, but nonzero temperatures, and under quantum perturbatibns, has
been studied in [22], in which the K = 0 model was introduced, and in 3], where
the analogous region of the K > 0 model was analysed.

Example 3: Simple model of fermions with spin. By combining elements from the
previous two examples, we can easily generate simple models involving itinerant par-
ticles with spin, which satisfy the hypotheses of Section 2.2. For instance, consider
spin-1/2 fermions with Hamiltonians

3).,(3) \ 1 (3) (3
[ (1"‘0 gy )n,ny—K z (.&_g!__)n:ny

<zy>hA <zy>hA 2
—puY n,—pt2e8Y (—1)Fln, —h Y oPn, — hetees Z(—l)"'af’)n,]
z€A z€A TEA. €A
+V,. B : (2.75)

We have defined n, := 3 ,__;;Nz. In the most génera.l case, namely when we
choose some fixed K > 0 and consider the other four constants as parameters, the
phase diagram is regular around the maximal-coexistence point

where there are five degenerate ground states:

T 2 DR e D
++ + + Y V4- _+a-+ + =/

34-.0=(:- :_) ,30+=(:_ -:). v (2.77)

In Figure 4 we present the cross section of the & > 0 region of the phase diagram
through the plane A*266 = ;266 = ().

The validity of the Peierls condition is again a consequence of the results of Holsz-
tynski and Slawny [16] and Proposition 3.2 given in Section 3.

In subsequent papers [8, 13] we consider a broader class of Hamiltonians whose
classical part need not have a finite number of ground states (and hence may vi-
olate the Peierls condition). In [8] we develop a perturbation technique which,
together with the contour expansion methods of this paper, permits us to study the

“degeneracy-breaking effects of a quantum perturbation on the classical part and to
analyse the phase diagram of the Hamiltonian at low temperatures.

2.4 The main theorem

Our results show that, under the hypotheses listed in Section 2.2, the phase diagrams
obtained at low temperatures, and for small quantum perturbations, are only small -
deformations of the zéro-temperature diagram oorresponding/ to the classical part
{‘P 5}. The precise statement of this result requires a notion of stabnlnty of phases.

21



n

(DG}

{52.29.20,69)

2-2K

Figure 4: Zero-temperature phase diagram of the model of fermionic spins of Ex-
ample 3. ‘ '
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Definition 2.2 We shall say that a configuration s, € K defines a stable phase (or
that the s,-phase is stable), for the interactions {®,p}, if there erists a neighbour-

hood, D, of the origin of R?, such that, for each pair (e ?,1) € D and any local
- operator A, the infinite-volume limit

Tri? A e~ PHa . . '
A = (A) (2.78)

N e
ezists and satisfies | .
61}_}% (A)gh = (splAlsy) - (2.79)
* a0 ,
In analogy to (2.58), we introduce the sets
QBN (y) := {3,, : the s,-phase is stable for {®, 5}} : (2.80)
to define the strata | o
SEN oy = {r: QPN = {sp---»5n}} - (2.81)

Our paper presents a proof of the following theorem:-.

Theorem 2.3 Under the hypotheses of Section 2.2, there are constants J> 0 and
€0 > 0 such that, for each B and X in the region

ma.x(e"ﬂ y A) < &, - (2.82)

there ezists a non-cmﬁty open set Opy € R~ such that:

(i) The phase diagram defined by the strata Ogy N S{(f;l‘ on) is regular [in the

sense described below (2.60)] and these strata are differentiable manifolds.

(i) Aseo — 0, the strata Op N S{(f;l) wtn} tend to the zero-temperature classical
strata O N S(°°'° ) ntny}? pointwise in y. In particular, the distance between the

max:mal—coeztstence manifolds ST and S& is O(eo).

We shall say that a zero-temperature, classical phase diagram is stable, under
temperature and quantum perturbations, if the conclusions (i) and (ii) of the theo-
rem hold.

Using our contour expansion methods, we can further prove that, for a fixed value
of u corresponding to a single-phase region of the phase diagram, the free energy
density and the quantum expectations, defined in (2.78), are analytic functions of
B and ), provided (Re 8)~! and |)| are small enough.

As an illustration, let us describe the consequences of this theorem for the exam-
ples of Section 2.3. For the Fisher antiferromagnet, we conclude that, for K > 0 and
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€0 small enough, the phase diagram around maximal-coexistence points looks like a
smooth deformation of the diagram of Figure 2(a) in the vicinity of the points P and
Q. Symmetry considerations imply that the coexistence line between Néel phases
remains at h**88 = 0. These results have also been obtained in [2], using model-
tailored dressing transformations. Likewise, our theory implies that for K = 0 and
|h| < 2 the phase diagram of Figure 2(b) remains valid for small €. In fact, the
diagram remains unchanged because, by symmetry, the coexistence point stays at
hetagg — (),

Similar conclusions apply to the spinless fermion system of Example 2. In par-
ticular, we conclude that, for K = 0, the phase diagram of Figure 3 (b) remains
unchanged when small kinetic terms (i.e., quantum perturbations) are added and
the temperature is increased, as already proven in [22, 3]. Besides, we derive the
stability of the phase diagram for K > 0 [Figure 3(a)] around the point P.

For the spin-1/2 fermion model of Example 3, we obtain the stability of the
phase diagram around the maximal-coexistence point (2.76). By symmetry, the
coexistence between Néel phases (defined by boundary conditions sy. and s_,)
remains at h**6¢ = 0, and that of the half-filled phases (boundary conditions s4o
and so,) at u*t*68 = 0. Hence we also obtain the stability of the (non-regular) phase
diagram of Figure 4 around the point P.

The implications of Theorem 2.3 for more interesting, t-J-type, models will be
the subject of a forthcommg paper [13].

3 Low—temperature expansmn for quantum per-
turbatlons

The first step in-the proof of our main result, Theorem 2.3, consists in constructing
a suitable low-temperature expansion. This is the content of the present section.
Our expansion is a type of polymer expansion in which the polymers are called
quantum contours (and the consistency rules are more complicated than plain non-
intersection). They are a generalization of the well-known classical contours of
Pirogov-Sinai theory (see eg. [35, Chapter II]). We first recall the definition of these
classical contours and of the associated Peierls condition.

In this and the following section we work with a fized value of the parame-
ters p € O. Consequently, the parameters play no role and are hence not dis-
played. The definition of the contours depends only on the reference configurations
K = {s1,...,sp} and on the range r of the interactions. The parameters will be
reintroduced in Section 7, where we will study the effect of varying them.

3.1 The classical contours. The Pe_ierls .condit.ion

To define these contours we start with a set of periodic reference configurations
K = {s1,...,sp} and a number r > 0 which is an apriori bound on the range of the
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classical interactions to be considered. We fix sampling plaquettes W,(z) = {y €
p/Ag |zi —yi| < a for 1 < i < d}. The size a must be strictly larger than (i) the
periods of the reference configurations s;,...,sp, and (ii) the range r.

Condition (i) implies the following extension property:

Ifw coincides with the configuration s, on a plaguette-W,(z) (3.1)
and with s, on W,(y) with dist(z,y) <1, then s, = s,. -

To simplify the notation, we shall henceforth measure the cardinality of subsets
A of Z% in units of sampling plaquettes:

card A
|A] = — | 3.2)

Two sets, A and B, in Z¢ are said to be connected if dist(4, B) < 1 in lattice units.
A subset M of a set A C Z% is called a component of A if M is a maximal connected
subset of A, i.e., M is connected and M C M’ C A, M # M’ imply that M’ cannot
‘be connected. o

The classical contours are constructed out of “incorrect” plaquettes. A site z is
said to be p-correct, for a configuration w, if the latter coincides with s, on every
sampling plaquette that contains z. The set of sites that are not p-correct for any
P, 1 < p < P, are referred to as “incorrect”. The set of plaquettes for which at least
one site is “incorrect” form the defect set, dw, of the configuration w. Note that

w= |J {W.(a:) D W, (<) 75 (8p)wuz) forall1 <p< P} . (3.3)
zeZd ‘ ' \

Typically we will consider configurations w equal to some reference configuration
s € K almost everywhere, i.e., w differs from s only on a finite set of lattice sites.
In this situation Qw is a finite set. We shall refer to the plaquettes belonging to the
defect set as ezcited plaquettes and the components of the defect set as ezcitations.

A (classical) contour of a configuration w is a pair 4 = (M,wy) where M is a
~<component of the defect set dw. The set M is the support of 4, to be denoted by
supp 7. We shall often refer to the support of a contour 4 again using the symbol «
and use the abbreviation ‘
[7] = [supp7l.- (3.4)

According to our definition, the smallest contour is the one obtained when only
a single site is “incorrect”; e.g. for a quantum spin system this results when one
spin is misaligned, the corresponding contour being formed by all the plaquettes
containing this spin. Hence the minimal nonzero value of |v| is given by

(2a —1)%/a® > 1. (3.5)

Each configuration defines a imique family of contours from which it can be re-
constructed, but not all families of contours correspond to admissible configurations.
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The additional restrictions are that contours must not intersect and that configu-
rations in the interiors and exteriors of nested contours must match. A family of
contours which corresponds to an admissible configuration will be called compatible.
Henceforth, we shall only consider finite contours (i.e., |supp9| < o0). For each
such contour, 4, the space Z¢ \ supp~ is divided into a finite number of compo-
nents. Moreover, by the extension property (3 1), we can extend the configuration
on a single plaquette in a component to a unique configuration of K in that com-
ponent. In this way we can label each connected component of Z¢ \ supp«y by a
particular reference configuration. Thus, we obtain the unique configuration w” that
‘has 4 as its only contour. We shall refer to such a configuration as a one-contour
- configuration. The only infinite component of Z\ v is called the ezterior of the
contour, Ext(y), and the union of the other components constitute the interior,
Int('y) The union of components of Int(y) labelled by a reference configuration Sq
is called the g-interior, Int,(y). The contour is called a p-contour if its exterior is
labelled by the configuration s, € K.

A contour 7 of a configuration w is called an ezterior contour of w if its support
is not contained in the interior of any other contour of w, i.e., if v C Ext(v’) holds,
for any other contour 4’ of w.

Let {®$} be a set of classical interactions of ra.nge not exceeding r. The one-
contour conﬁguratlons can be used to compute energies of any allowed oonﬁguratlon,
as we now explain.

Let & be a one-contour conﬁguratlon which has the p-contour 7 as its only
contour. The energy cost of v, relative to its exterior configuration s,, is given by

1'1’X‘(w"|sp)’== > [23w") - 95(s)), T (36

B d\{Int(-y)Usupp1]

where we have used the notation of (2. 64) It is convenient to use the decomposition
(see [39])

> %W) = %:'Bmuppﬂ‘l’ (") + ZIBnIntﬂ ®p(w”)

B filnt{7) Usupp-] |B| B IBI
BN Ext ~
+ L—B—"' ®p(w”), (3.7)
B tInt(~)Usupp~] I |
to write (3.6) in the form |
Hw"s,) = E('Y) + 2 2 les(su) - ex(sy)] - (38
u=1 z€lnty(v)
where e.(s,) is the specific energy “at z”, (see (2.57)), of the configuration s,, and
BNsu '
z I PP’Y! [Q (w '7) - q,d(sp)] (3.9)

5  |Bl
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is the contour energy of « relative to the energy of its exterior conﬁguration
In obtaining (3.9) we have proﬁted from having chosen the plaquette size a larger
than the range r, so that

(w")B = (s4)B, if BNInt,(7) # 90, (3.10)
for any B with ®§ # 0, and, since « is a p-contour,
(W")s = (3,)5 if BN Ext(7) # 0. (3.11)

Hence the latter bonds do not contribute to the contour energy E(v). In situations
of maximal coexistence, all the reference configurations s, € K are groundstate
configurations and have the same speaﬁc energy. In this case, it follows from (3.8)
that the energy cost of a contour 7 is simply given by E('y)

Consider a region A such that

(W")za\a = (Sp)z4\a o (3.12)

The total energy of the configuration w?” [needed for the partial trace of Hyin (2.47)]

is given by 4 B
H, (@) = HY(w"ls;) + 3 ®5(sy)- - (3.13)
BhA

We notice that a decomposition analogous to (3.7) yields

T 8(s) = Teslep)+ 3 BOAT

g (sp) - (3.14)
BhA z€A sea B ’ ,

However, the last term of (3.14) is a boundary term which does not contribute to
the free energy density or to the expectation values of observables, (2.51), and is
independent of the configuration w. Hence we shall neglect it.

The energies of configurations with a finite number of contours (which are the
only ones relevant in the sequel) can be reconstructed from energies of its contours.
Let w = w' be a configuration corresponding to a compatible family of contours,
I' = {7,, -7k}, and coinciding at infinity with some reference configuration s,.
This implies that the exterior contours of the configuration w are p-contours. Let
wM,...,w"™ be the corresponding one-contour configurations. The energy cost -

HY(Ws,) = Y[R - 88(sp)] - (3.15)
B f\{Int(~;)Ueupp;]

of W, relative to the exterior configuration s,, is simply the sum of one-contour
energy costs:

B lsy) = SHWS (), | (3.16)

‘=1
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where s(v;) is the reference oonﬁg'uratlon in' the exterior of 7;. It follows from
eqs.(3.13),(3.14) and (3.16) that the total energy of w' is glven by

Hw) = zez(s,)+E(r)+z ) [ez<s..)—e,(s,)] (3.17)

TEA " u=l €l

whefe o : ' o
ko o
E(T) = 3 B(x), @

and £, is the set of sites in A that are either u-correct or belong to a u-contour. This
expression is to be used for the pa.rtla.l trace Try” in (2.47). Hence the configuration

T must be such that ) .
- (@)zes = (8p)zeva . (3.19)

Remark: The contours 4; may extend outside A. This happens if w has some
incorrect site on the boundary, dA. In this case all those plaquettes which contain
this site, but extend outside A, also belong to a contour. Hence, in general, the
contours are contained in the larger set formed by the plaquettes that touch A:

A= Uw (=) : W) A £0}.  (320)

‘This means that in E(v;) one may be counting bonds B C A€ that are not counted
in HY, . However, the identity (3.17) remains valid, because these bonds do not
contnbute to the energy of a contour, [see sentence following (3.11)).

Note: We use the letter 4 to denote mdxwdua.l contours and I" to denote families of
contours.

" The Peierls condition can now be stated in terms of- the contour energies deﬁned in
(3.9).

Definition 3.1 An interaction &9 3atasﬁcs the Peierls condition with Pezcrls con-

stant J if
ReE(y) 2 Jl, (3.21)

where E(v) is the contour energy defined through (3.9), and |v| is as in (3.4). _

In general it is not simple to prove that the Peierls condition is satisfied for a par-
ticular model. One way of doing so is to show that the excess energy of each excited
plaquette of the configuration is nonzero, irrespective of the particular configuration
on the plaquettes surrounding it. However, this is true only in severely constrained
systems or for highly symmetric situations (as in the Ising model [15, 9]). In most
systems, it is often energetically favourable for a plaquette to have an “incorrect”
configuration if the surrounding plaquettes are already excited. Hence, calculat-
ing the excess energy of a single excited plaquette is not sufficient for verifying the
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Peierls condition. Instead, one may need to compute the energy balance of a pos-
sibly complex arrangement of plaquettes. However, one can avoid the complicated
calculations that this involves by resorting to a theorem due to Holsztynski and
Slawny [16], which states that the Peierls condition is satisfied if the interaction can
be written as an m-potential, i.e., a potential admitting a finite number of ground
states that minimize the contribution of each bond simultaneously. The only draw-
back of this important result is that its proof does not provide any estimate of the -
Peierls constant, a fact that in turn prevents one from explicitly estimating the range
of temperatures for which our results concerning the phase diagram, are valid.

In this paper we have the additional complication of having to verify the Peierls
~ condition simultaneously for a whole family of interactions, parametrized by p [Hy-
pothesis (H1.4)). However, the condition imposed on the size of the sampling pla-
quettes, namely a > r, simplifies the situation, since it allows us to make use of
some perturbative results (discussed for instance in [38, pages 1126-1127]) which
can be summarized in the following statement:

 Proposition 3.2 Consider a family of interactions {<I> g} differentiable in p. As-
sume that, for some value p of the parameters, the interaction {<I>!_‘o B} has a finite
number of periodic ground states K = {s1,...,3p} and that it satisfies the Peierls
condition with Peierls constant Jo. Then, for § > 0 small enough, there ezist open
neighbourhoods Os > o such that all the interactions {<I> B} with p € Oj satisfy
the Peierls condition with Peierls constant Jo— 8 and for the same set of reference
configurations K. :

For instance, to verify the uniform-Peierls condition hypothesis [(H1.4) in Section
2.2] for the examples of Section 2.3, it is enough to check it at the points of maximal
coexistence, which is an easy application of Holsztynski-Slawny theory.

3.2 The Dubhamel expansion |
We start by establishing a low-temperature expansion for the partition functions .

Z4(A) = TrjePHa B (3.22)

for finite regions A C Z* with boundary condition s = s, € K. To compute this
‘trace we use the basis of F5(H(!)) spanned by the vectors |vs ® sac) corresponding.
to configurations v, s, which coincide with s, outside A. This basis is chosen because
H¢ is diagonal in it [Hypothesis (H1.1)]. In turn, each of the configurations v, s,
is uniquely determined by a compatible family of contours I'’ = I'’(vss,). The
" superscript, p, indicates that the exterior contours, i.e., the contours of I'” whose
supports are not contained in the interior of any other contour of I'?, are p-contours.
- We can, therefore, relabel the basis in terms of these contours and write

S(A) = g(f"le"’n“lf"), (3.23)
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' (henceforth we shall denote Z,, = Z;). The presence of A in the above formula
implies that all the contours involved must have supports contained in the larger set

A defined in (3.20).

Our starting péint for the expansion is the (formal) series
. | .
—BH, —_— -ﬁn d PP : -— " .
e | € + ; / Ty _[) dr, 9(}9 ):ml?r.)
x e~ B-ZHEL (_V,) e L. (2V,) e BE | (3.24)
which is obtained by iterating Duhamel’s formula ' )

e—BEIHVAL e-ﬁﬂ — / dr e~ (B-TVHI 7, e~THI+Va] (3.25)

We perform the following manipulations:
(a) Take Trj of (3.24) as in (3.23).
(b) Insert Lpap iy = Tre II“’)(I"[ around each operator V, in (3.24).

(c) Use formula (3.17) to compute the (diagonal) matrix elements (I"Ie""nil |T?).

(d) Expand each V), as a sum of ¥} ’s In this way, at each time step, we ob-
tain matrix elements involving only one quantum bond, or, for fermlons, one
creation-annihilation monomial.

The result is

Z,(8) = exp[-83 euloy)] X

z€EA
{1 + ?_)_:l . ‘"’")":bﬁ"m / dry - / dr, 6(B — Tiym)
, cont

I"—l" supportedon A

x (2] = 3, [T%1)- - (T3] - 8, IFENTE| - 3, )
x exp{ (8~ TRam)E(T)) — nE(TY) -+ — mE(T3)]

XuEIICXP{—[(ﬂ—ELlTs) Y 4n Y At m Y

T€L(T])  z€lu(TT) z€Lu(TR)

[ez(éu) "‘et(sp)]} )
(3.26)
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where © is the step function [i.e., O(t) = 1 if t > 0 and 0 otherwise], and £,(I%)
refers to the set of sites {z} in the subset v

U [supp TU Int7]
~ver?

of the lattice, which are either u-correct or belong to a u-contour:
Expression (3.26) can be interpreted as a “sum” of terms each of which is labelled

by a sequence of the form
P = (I‘O’ BhI‘l’Th :erzﬁn), (3'27)

where n is zero or a natural number. Each I'? is a compatible family of classical
contours in A having s, € K as its exterior oonﬁguratlon The 7; are real numbers
in the interval [0, 8] with . ‘
I TS (3.28)
=1 ’
and each B; is a quantum bond. The sequence (3.27) can be visualized as a piecewise
cylindrical surface in d + 1 dimensions formed by cylindrical pieces of sections I'
and “flat” bridges corresponding to the quantum bonds B;, defined in Sect. 2.1.

We shall refer to [0, ] as the “time” axis, and to Z¢ ~ Z¢ x {0} as the “spatial”
coordinates. In our construction, the boundary.condition in the spatial direction is
defined by one of the ground states. We always impose periodic boundary conditions
in the “time” direction, i.e., throughout our analysis, the interval [0, 8] is endowed
with the structure of a circle. This corresponds to taking the trace of the Boltzmann
factor ePH4 as in (3.23).

Let V be a piecewise-cylindrical region in d + 1 dimensions of the form

V =A x[n,7), AcC Z!, m,melo,f) (3.29)

In the followmg we shall use the symbol fi; to denote a summation over sites z in
A (divided by a? in accordance with our choice of sampling-plaquette units) and
integration over the continuous variable 7, i.e.,

/ / drf- o (330

The surface T? can be considered to be constructed in the following manner: T?
has a section I'} at “time” zero, which grows cylindrically during a “time” interval
of length (8— X7, 7:) at the end of which B, is placed transversely, and the section
changes suddenly to I'f. This results from the action of 3 . The section I'{ then
grows cylindrically during a “time” interval 71 and so on. . 'The action of the last
quantum interaction <I> restores the section to I'j. This section propagates un-
changed over a final “txme interval of length Ta. This space—tlme picture motivates
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us to rewrite(3.26) in the following abbreviated form

(A) = exP[—/Ax[o.a] e’(s")]

“E”w(’r') M|~ [ felo) sl

u=l

g

(3.31)

The spa.ce-tune region L, is the union of cylmders of bases ¢, (I"’ ) and helghts 7.
Its volume is given by

IL“I = ZT.llu(Ff)l . (3.32)

where we have denoted 7o := f — T, 7. Hence, using the notation of (3. 30), we

have that ‘
/‘ z['dr S (3.33)

xel‘.(f" )

The definition of the weights w(T?) can be readily inferred from (3.26). By conven-
 tion, the case n = 0 corresponds to T? = @, and we define w() = 1 and I,() = 0.
Following the analogy with classical contours, it would be natural to refer to the
maximally connected components of the surface Y? as quantum contours. This is
meaningful only if the “sum” (3.31) can be written as a “sum” over compatible
families of such putative contours. This is possible if the integrals over 7;’s factorize,
and if the weights w(Y?) can be written as a product of weights corresponding to
individual, disjoint contours. In Section 4 we shall prove that these factorization
properties are mdeed satlsﬁed

3.3 Quantum Contours

In this section we give a precise definition of quantum contours, discuss their prop-
erties and introduce the quantum Peierls condition.

Definition 8.3 A p-quantum contour for an interaction satisfying the hypothesis
H2 of Section 2.2 is a sequence of the form

- . Cp = (I‘z’ 'E_li'rfa Tlv o '. ’Qn, I‘(’;’ Tﬂ) . (3°34)

where n is a natural number (1o be referred to as the number of transitions). Each I'}
is a compatible family of classical contours having s, € K as ezterior oouﬁguratton
Each 7; is a non-negative real number such that 3|, 7; < ﬁ, and each B; is a
quantum bond. In addition we have the restrictions:
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(i) T; arises from I';_; through the action of ¢I>q . This action can change the
“spins” or the occupation numbers only in a subsct of B; (which can even be
‘empty). Therefore :
| 0 < l!l‘el—ll‘.-_lll < |Bi. (3.35)

(i) The surface resulting from the toroidal boundary conditions in [0, f] is con-
nected [Figure 5(a)] or linked [Figures 6(b)]. [The condition of linking is rele-
vant only in the case of anyons.]

We shall omit the superscript indicating the exterior configuration whenever it

plays no role in our discussion.

Due to the periodic boundary condition, the “ime” axis has the topology of a
circle. We make a distinction between contours that extend from “time” zero to
“time” B and ones which do not. The former will be referred to as long contours,
while the latter will be called short contours. Some examples of these have been
illustrated in Figures 5 and 6.

As mentioned above, a contour (? represents a surface in d+1 dimensions formed
by successive cylinders of spatial sections I'; and time-height ; and flat pieces B;,
t=1,...,n, located at each transition. A quantum contour may have no connected
section [Figures 5(a2), (a3) and 6 (bl1), (b2)], but the different connected components
cannot be very far away from each other, because they must become connected or
linked through the actions of 3 ,...,®} . As a consequence

Sections of a quantum contour are such that no more than
|By| + - -+ + |Bn| additional plaquettes are needed to make (3.36)

them connected

. (This statement is false in d = 1.) Because of this, we shall think of the quantum
bonds B as “glue”, and we shall refer to their cardinality |B| as the “number of
glue plaquettes”. Note that observation (3.36) is also true for contours with no
connected projections [Figure 6]. This is because if |By|+ - - - 4+ | Bs| glue plaquettes
are needed for one component of a quantum contour to encircle another one, then an
even smaller number of glue plaquettes is required to connect the two components.

A quantum contour, (, also has a well-defined notion of exterior and interior,
with a unique configuration corresponding to each of its connected components. In
analogy with the classical case, we shall use the notations Ext(¢) and Int,(() to refer
to them. We also define the support, supp (, of a quantum contour { as the union
of the corresponding defect set (in Z¢ x [0, 8]) and the sites occupied by each of the

quantum bonds B;. Let _
[T := " Il (3.37)
~€li )
Then the area |(| := |supp (| is computed by adding

[¢le = Tol (8~ 3o7) + ITalr+ -+ + 7l , (3.38)

=1
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(e | | (a2)

PR = | ,
(a3) - : . (a4)

Figure 5: Examples of quantum contours: (a) Connected contours: (al) Long con-
tour (a2) Long contour with no connected section; (a3) Long contour (connectedness
results from periodicity in the “time”-direction) (a4) Short contour.
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0 —— &L=
(b3) O— — -

(c)

" Figure 6: Examples of quantum contours: (bl), (b2), (b3) Linked contours (b4)
A linked contour whose projection is not connected; (c) A surface that is not a
quantum contour, even though its spatial projection (= orthogonal projection onto
Z? x {0}) is connected.
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which is the sum of the areas of the cylmdncal portions, to the number of sites only
contained in the glue plaquettes. This last number is bounded above by the total
number of glue pla.quettes

hence

K| = lsupp¢] < Kl +IBQ)I. (3.40)

A quantum contour ( is said to be an erterior contour of a family of contours if
its support is not contained in the interior of any other contour of the family. As
in the classical case, we shall say that two contours are compatible if their supports
do not intersect or form linked surfaces, and the labels of the configurations match,
i.e., the exterior labels are the same if the contours are mutually exterior or, if
they are nested, the exterior label of the internal contour coincides with the label
of the component of the interior of the larger contour that contains it. A family of
- contours is compatible if its members are pairwise compatible. Such families can be

associated to configurations on Z* x [0, A]. :
Note: The condition of non-linking of surfaces is not relevant for bosons or fetmmns
However, in view of applications of our theory to particles with other statistics, we
shall include this condition of non-linking in the definition of compatibility.

The weight of a quantum contour ¢ is given by

w(() = [fll(l‘el - <I>z,;.|r.-_‘;>]
x exp{~ [E(To)(8 ~ Tiym) + E(Tu)ru + -+ + ECo)rl} . (3.41)

The decay law (2. 62) and the Peierls bound (3.21) [a.long with the linearity of E(T'),
Eq. (3.18)] imply the bound

lw(¢)] < ABE exp[—J|¢]L] - (342

“This bound is the quantum Peierls condition.

4 Factorization properties

4.1 Factorization of the T-infegrals

This property follows from the fact that each quantum interaction 9%, affects a bond
B; in only one component of T?. Hence, at the end of each “time” mterva.l 7;, only
the section of one of the components changes. The other components are not affected
by the action of the quantum interaction at time 7;, and hence their sections, and
the corresponding exponential welghts, remain unchanged. We shall expla.m this
statement through a simple example: Let us assume that we are “summing” over
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a surface T” consisting of two connected components, which we shall label by the
symbols ‘ ~’ and ‘ ~’. We also assume that only four bonds are affected by the
quantum mteractlons, successive ones belongmg to different components. This gives
rise to sequences of the form:

‘(f‘ofwo,:B_lsf‘lf03Tl’.Blaflflar2’E1f2fl)T3’—E-zaf2f‘2?74) (4‘1)

[We have omitted the superscript p to simplify the notation]. We note that we do
not assume that T, = T 0. We need to consider integrals of the form

= / dry --- / :h@(ﬂ_2‘4—17{)e-(o-z:r.-)mfo)+f(m1 e~ +1(o)]
o 0 - ‘

x e~ "2lf (T1)+1(11)) e~ [ (T2)+£(T1)] e~ [ (T2)+£(T2)) , (4.2)

where f is some contour energy. _
By regrouping the exponentials and performing the change of variables

‘ ?1571+Tz;?2=1'3‘+7‘4;?1=-1'2+Ta;?2‘—‘7’4,v (4.3)
we find that I factorizes as follows:
=77 (4.4)
with
I= /o ’ in /0  dr, ©(8 — 1y — 1) e~ B-hIER) IE) ~BIE)  (45)

and T being given by a similar integral, but with the ‘ ~’ replaced by ‘ ~ .

4.2 Factorization of the weights

For bosons it is easy to see that the weights w(T) can be written as a product of
' welghts of pairwise disjoint, connected components. In this case the phase a< in
(2.30) and (2.31) is zero. Hence we can absorb the matrix elements of the operators

@3 in the states (2.28) into contour weights.
The situation for particles with other statistics is more complicated because the

action of each @3, gives rise to a phase that depends on the other contours present.
However, in the case of fermions, the weights factorize because the interactions are

assumed to be of the form ,
% =) 93, (4.6)
B

where each ¥} is a monomial of even degree in the fermionic creation and annihila-
tion operators.
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Figure 7: A space-time surface, T?, with two connected components, (g and (c.
The sections of (g and (¢ at “time” zero are denoted by 7§ and 72 respectively. -
The corresponding sections at “time” § are denoted by 75 and ~5.

We explain the factorization argument for a periodic space-time surface, T?,
consisting of two connected components. An example of such a surface is given in
Figure 7. ‘ . )

The surface corresponds to the successive actions of a sequence of operators
®%, --- @5, belonging to the quasilocal algebra A. Let {p and (¢ be the two con-
nected components of the surface T?. They correspond to the two families of opera-
tors B = {93 ,.. ,®3 }and C = {2 ,...,2¢_}. The sequence (Ql?. ey Dpym) is
a permutation of the sequence (By,...,B,,C,,---,C..) and is uniquely determined
by the surface TP. We assume that, for any subsequence of D;’s, the corresponding
subsequences of B;’s and C;’s maintain an increasing order in t.
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The surface T? corresponds to a product,

n+m '
IT (7125, 1T24), (4.7)

=1

~ of matrix elements of the operators ®§ b.s with em =T5. In (4. 7), I'? is a compatible
family of contours describing the conﬁguratxon that corresponds to the section of
TP at “time” 7, with 7; < T < 7iy1. Our definition of the operators <I> _ guarantees
that if (I'7|®3 |T7_;) # O then the family I of compatible contours is uniquely
determined by the operator ¢I>_., and by I'?_, and hence by &2 Dys"* -, 09 p, and by I3,
for all i = 1,...,n + m. Moreover, since we are computing traces, I“,",.,,m =T3.
The periodicity and the disjointness of the components (g and (¢ implies prop-
erties (P1) and (P2) described below. To state them we introduce the following

nomenclature:

We shall say that an operator ¢z, (resp. c;,) occurs in @3 , if the operator is
part of the monomial defining $3 . We shall also say that the pair (z,0) occurs
in B; if czs (resp. cl,) occurs in ‘I’;;.- The phrase “occurrence of (z,0) in B” shall
mean that the corresponding creation or annihilation operator occurs in some factor
<I> , with D; = B,, for some 1 < k < n. A site z is said to belong to a space-time
surface ¢ at a particular lnstant of tlme, if it is contained in the spatial section of ¢
at that time.

The following propertles are satlsﬁed

(P1) Given the vector |T3), there exists some complex number wg # 0, depending
on I'§ such that
QE“ e @Lll‘{;) = w3|rg) . ) (4.8)

This follows from the remarks after (4.7), in particular from the periodicity of
the component (p corresponding to the action of the ®%,’s. We get a similar
relation for the action of the ®¢ 's.

(P2) Between two subsequent occurrences of (z,0) in B there is an even number of
occurrences of (z,0) in C. This corresponds to the non-intersecting character
of the components: If a site z belongs first to the components (g, then to (¢
and then once again to (p, the operators ¢ must be such that, at the end
of the intermediate period, they transform the configuration at the site z to
what it was before they started acting. .

With these properties we can prove the following result.

Proposition 4.1 Consider two families B and C of operators, and an operator
Pp = @b_ﬁm -++ 8} , defined as above, where (Dpym -+ D,) is a permutation of
the sequence (By,--->Bn;Ci,- -+ Com). Assume that properties (P1) and (P2) stated
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above are satisfied and that the operators QE‘ are monomials of even degree in the
creation and annihilation operators, i.e., ‘ ' :

[5,,83]1=0 and [c,,83]=0 @9

whenever (z,0) does not occur in B;. Then, for any vector |IG), there exists a
' complez number we such that ~

(Toley,, -+ @ |T3) = wsuc. (4.10)

Proof We ﬁrst note that the result is obviously true if the operator ®% = = [T
is identically zero. Hence we may assume that this is not the case. In pa.rtlcula.r,
this implies that the creation and annihilation operators corresponding to a pair
(z,0) necessarily occur alternately in the sequence of operators constltutmg o5.
This observation allows us to restrict our attention to a situation in whlch no
pair (z, ) occurs in both sets, B and C. Indeed, if (z,0) occurs in B and C, then by
(P2) there is an even number of occurrences in the latter between two subsequent
occurrences in the former. Therefore the occurrences of (z,0) in C can be grouped -
into pairs not having any intermediate occurrence in B. In this situation, if we
use the anticommutation rules to move the first element of each pair to a position
" immediately preceding the second element, the commutation through intermediate -
operators in B does not produce any non-trivial phase because of (4.9). Hence
we obtain a product of the form c,,c,, (or cl,c;,), which we can replace by the
identity operator 1 by using the anticommutation relation. This is because the
opposite order of the opera.tors would necessa.nly yleld zero. In this way we obtain

i) = ¥, - (@)

where €z’ is a phase and the symbol ¢ ~’ has been used to indicate that C no longer
consists of creation or annihilation operators corresponding to the pair (z,0). We
should point out that the operators constituting <I>" also satisfy propertlm (P1)
and (P2) and the commutation relations (4.9). Note that the operators in B are
unchanged. We can repeat this procedure for all the remaining pairs which occur in
both sets, B and C. At the end we obtain

BHI2) = e BHITE) , | (4.12)

where ¢ is the product of the phases, €°, for all pairs occurring in B and in C,
and the symbol ¢ ~’ is used to indicate that the operators in C have been stripped
of creation and annihilation operators oorrespondmg to these pairs. Hence we no
longer have any creation or annihilation operator in C correspondlng to a pair (z,0)
occurring in B, and we can move the remaining operators in C through the operators
in B, without producing any further phases. This results in an equation

o - DL ITE) = ¥ - BL 93 - 93 |TT), (4.13)

Qn-{»m
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which, given (4.8), yields
| (T3195,.,.. -+ ®5,IT8) = wsec(THIBL --- BE, ITE) |
wgwe . B (4.14)

This proof can be extended to surfaces with more than two connected compo-
nents. The situation is more complicated for anyons. In particula.r, ford =2, it
is necessary to demand that the component formed by the <I> ’s is not only dis-
_joint but is also not linked with the one formed by the action of the <I> ’s. For the
sake of generality and in preparation for further studies, we shall cons1der this extra
condition of non-linking as part of our definition of independent contours.

5 Contour expansions

5.1 Contour expansion for the partition functions

To construct the partition function corresponding to a boundary condition s,, (de-
fined in (3.26)), contours are added by summing over the “spatial” degrees of freedom
and integrating over the “time” axis. We shall denote this sum-integral operation
by a combined symbol: if g is a oomplex-va.lued function on quantum contours, then

o) =1+ T T 16,6
4

121 (B;,..oB,) (Foseenl'n)
x [ [ dn 1082 T o(6) (5.)

We sum each B; over all quantum bonds, and each I'Y over all possible families
of compatible classical contours (with exterior p—contours) By I[E] we mean the
indicator function of the event E; in particular, I[(i), (ii)] in (5.1) vanishes unless
the sections I'; satisfy the following conditions [see Definition 3.3):

@) 0 < It = I0ial| < 1B

(ii) I'f =

, We are interested in the “sums” corresponding to partition functions for piecewise-
cylindrical finite regions V in d + 1 dimensions. For such regions we define the

volume, |V|, to be the sum of the volumes of the constituent cylindrical regions,

where, however, in consistency with our choice of units for areas in Z4, the areas

of the bases of the cylinders are measured in units of the sampling plaquette. Sim-

ilarly, we obtain the area of the internal boundaries, 3V, by adding the surface

areas of these piecewise-cylindrical regions to the area of the bases. Again, we use
sampling-plaquette units in Z¢.
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From now on, the symbol V will indicate a ﬁiecetbise-cylindrical region of Z¢ x
[0, B). The partition function for such a region V, with a spatial boundary condition
3p, is (formally) defined by the series

Zp(V) = exp [— /V e,(s,)]

[IIw(ck)][u flon{- [ foa—esl], 62
{Gc? ‘
compatible )

where the exterior contours of each compa.tiblé family are p—contburs The weights
w are given by expression (3.41), and the reglon V is obtained from V by adding to
each spatial section the plaquettes touching V| i.e.,

V=Ax][0, ,B], | ‘ | (5.3)

where A is as defined in (3.20). The region L, = L,({¢i}) consists of the set of

points in V that are either u-correct or that belong to a u-quantum contour. We

shall call such a series a contour ezpansion of the partition function =,(V). For V

of the form A x [0, 5] we recover expression (3,26). We shall use the letter V for

space-time regions, A for spatial ones, and the abbreviation ....,,(A) = Zp(A x [0, 8])-
We shall be interested in the quantity

V) = TrlogZ(V), )

 whenever the series (5.2) converges to a nonzero va.lue, and in the limit

f = S(V), - (65)

Vfl" x[0,]

whenever it exists.

Note that we have used the same symbols in the above definitions as those used
in (2.49) and (2.50) to denote the free energy densities. This is in a.ntlapatxon of the
fact that, in the regimes analyzed in this paper, both definitions agree for regions of
the form V=Ax[0,8].

<«

5.2 Contour expansion for the quantum expectations

An expansion for the expectatlons

Tr"A e"mA _EMN)

TryePBa  E,(A) (50)

can be constructed by expanding the numerator and the denominator. For the
latter we have the previously developed expansion, (5.2). A similar expansion can
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be obtained for the numerator by proceeding as follows: We expand Ae~#H¥4 with
the help of the iterated-Duhamel formula (3.24) and perform steps (a)—(d) of Section
3.2. Let us assume, without loss of generality, that A = Ap € Ap for some finite
D C Z°. Moreover, for fermions, we can also assume that A is an even monomial in
creation and annihilation operators. Therefore we can view the operator A as giving
rise to an extra “quantum bond” D. We then obtain an expansion for Z2(A) which -
is exactly of the same form (3.31), but where the terms of the sum are labelled by

sequences of the form . ‘
(P{;,Bl’rla‘rl) :Em I‘f‘,Tu,_I_)_, Pﬁ) (5.7)
with weights |

w(Yh) = (P5|A|F§)(P:’,|—QE"II“,",_I)---(I‘H—(I)“ IT8)
xe-(ﬁ—Eﬂ)E(l") -nE(}) . -r..E(F,,) i (5.8)

Note that the factor (I'5|A|?) plays a role analogous to (I'j| — 3 | ), with
Boy = D.

To obtain a contour expansion, we must exhibit factorization of the expansion
for Z2(A) over the components of T%. The “time” integrals involved are the same
as for the partition function Z,(A), hence the factorization illustrated in Section
4.1 remains valid. For bosons the weights factorize as before. For fermions too, a
factorization of the weights can be exhibited if we use the following manipulations:
We group into a single entity all the components of Y%, whose sections at “time” f
intersect the set D. In this way, we obtain a special component {4 corresponding
to the action of A. We shall refer to {4 as the quantum contour associated with A.
It is defined by a sequence of the form (5.7) and has a weight given by (5.8). An
example of such a contour is given in Figure 8, below.

All the other components of T are quantum contours defined as in the previous
“section, i.e., their weights do not involve the operator A. The factorization result
of Proposition 4.1 applies. [In Figure 7, an example of a surface for which this
proposition is valid is given. Note that the component (¢ in this figure is a contour
associated with a local observable.]. The weight w(Y7%) can hence be written as a

product
w(TR) = [{H} w(G)] w(éa), (5.9)
) (¢% :
where :
(LkJ G)Uda = Ta. (5.10)

Factorization implies that we can expand the numerator of the expectations (5.6)
in the form ;

SAV) = exp[- /V ex(sy)] gf‘ w((a)

¢acv
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Figure 8: A quantum contour, (a, associated with a local observable A € Ap where
D is a finite subset of the lattice.

« o [ut)] (Lol [, letsr-eten]

{GlcV
compatible v . .
X I[{( As {Ck}} compatible; exterior contours are p—contours], .(5.11)

The starred sum-integral refers to an expression of the form (5.1), but where in
condition (ii) we demand :

ATz > o %, >, with TI%,, =T3. (5.12)
The weights w((a) satisfy a Peierls bound: |
L |lA
[w(¢a)l < APCAN exp[—J|¢al4] I—J\Tﬁl,l', ' (5.13)
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where

~ als =1Ll (B— Yom) +ITalm + -+~ + 7Tl , (5.14)
ci=1
|B(Ca)| :=Ba| + -+ + |Ba| + | D] (5.15)
and || - || denotes the usual operator norm.

6 Cluster expansion for the symmetric or the single-
phase regime

6 1 The result

Having formulated a convenient low-temperature expansion in terms.of contours,
we must address the task of proving its convergence for some open set of values
of # and A\. The main mathematical complications arisé from the requirement of
compatibility of the contours in expression (5.2). Compatibility is a highly non-local
condition (two arbitrarily far away nested contours can be rendered incompatible
by a mismatch between the labels of their exterior and interior configurations).

In this section we analyze the simpler case in which compatibility reduces to non-
linking (or non-intersection), i.e., when the labels of the configurations outside the
support of the contours become irrelevant. The results of this section form the basis
for the full-fledged theory which is to be discussed in Section 7. We are concerned
with an expansion of the form ,

(V) = gf T, CEY

{(’}CV
m—

with weights as in (3.41) satisfying the quantum Peierls condition (3.42). This type
of expansion is obtained when there is a single ground state for an open set of
parameters g, or, more generally, for values of g for which the ground states are
related by some symmetry operation. In the latter case, the removal of any contour
‘of a compatible family leads to another compatible family of contours. These have
been among the first situations treated by contour arguments [9, 15]. Among our
examples of Section 2.3, this symmetric situation occurs at the coexistence point
h**&& =  for the Fisher a.ntiferroma.gnet with K = 0 and |k| < 2 [Figure 2 (b)],
and at the coexistence point piaagg = 0 for its lattlce-gas transcription, [i.e. Example
2], with K = 0 and g < 2 [Figure 3 (b)].

There is a well established technology to analyze (the log of) “volume-exclusxon
expansions like (6.1), namely the methods of cluster-expansion [32, Chapter 4]. The
method involves some standard combinatorics (reviewed in Section 6.2 below) and
a bound on the sum of the weights of contours containing a fixed point.
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Let

= —-log Zp(V .
fr V}‘;I‘x[o,p] |V| ogZ,(V) | (6.2)

In Sections 6.4 and 6.5 we shall prove the following key result.

Theorem 6.1 There ezist strictly posztwe constants J and €q such that, for each B
and ) in the region

~ max(e” 83 y A) < éo, - (6.3)

the cluster ezpansion (6.1) converges absolutely for all ptecewtse-cyhndncal regions

V. The free-energy densily f, exists in thts region and is jointly analytic in e -8J

and A. Moreover it sattsﬁcs ’ , _

| f = O0)s | (6.4)

and

|IVIf, +1055(V)| < 18V10Ge0) - . (65)

Corollary 6.2 There exists a positive constant € such that, in the region
max(e=#7, \) < &, the limit

m 2 (A) =: (A)ga | (6.6)
gl — '
- eztists and is ]omtly analytzc as a funct:an ofe? and A for any local observable A.
Moreover
ﬁlgg"(A)ﬂA = (3P|A|3P) - _ (6-7)
A—+0 / )

This pfoves the stability of all the phases occurring in the present situation. In
particular, this proves that the phase diagrams of Figures 2 (b) and 3 (b) remain
undeformed at low temperatures and under small quantum perturbations.

“Remark: In the arguments that follow we shall impose conditions of the form “J
sufficiently large” and “) sufficiently small”. As long as the temperature is suffi-
ciently low and X is sufficiently small, we can choose J large enough simply by a
rescaling. This is because the Hamiltonian H,, which depends on the parameters J
and ), appears in the partition function in the form S H, which we can write as

B+ Vi) = £ omg+ vy 69

Upon rescaling, §'J — J, we see that a large §' leads to a large J. The product
B'A, which is the rescaled perturbation parameter, is small if A is sufficiently small.
Once ' is fixed we adjust £ such that 8/’ is sufﬁciently large.
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6.2 Combinatorics of the cluster expansioh

We summarize some results on cluster expansions, adapted to the case where con-
tours are discrete in all dimensions, except one. We can extend the conventional
proofs for the convergence of cluster expansions (applicable when the compatibility
relation corresponds to non-intersection) to the more general situation when the con-
tours are either disjoint or non-linked. For the usual proofs the reader may consult
for instance [33], [7] or [27]. o .

We use the notation (tZ , see_[21], to denote the condition that supp( either
intersects or is linked with supp (. In the following, we shall use the term linking
to refer to both intersection and linking. A cluster is a finite family {(;,---,(a} of
contours that cannot be decomposed into two non-linked subfamilies. To simplify
our notation we have omitted the superscripts of the contours ¢ refernng to their

exterior configurations.
The following theorem gives the condition for the convergence of a cluster ex-

pansion.

Theorem 6.3 If

C = s‘é"l'c’l g‘ lw(¢)| e < 1, - (6.9)

then the ezpansion (6.1) is absolutely converyent and log._.(V) has an absolutely
convergent expansion of the form

og=(V) = X p F - F Gl L (610)
M e

(the cluster expansion), where wT is a function on families of contours with the
properties that

wT({Cl""aCN})’ = 0‘ if{Cla""CN} is not a cluster, (6-11)

and satisfying the bound | '
i ,wT(Ch E) CN)'

up GU-— UG = W (6.12)

T CarnlN}IE)

where ay is a constant of the order of

N
sup [T [w(¢)l,

=1

the supremurﬁ beiny taken over all sets of N contours (not necessarily compatible).
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[The notation {(,..., CN} 3 (%, t) means that (&,1) belongs to the union of the
supports of the quantum contours (3,...,{n.] From this and the periodicity of the
contour ensemble one obtains an expression for the quantity f defined in (5.5).

Corollary 6.4 If

C=spz F lo(@led <1, (6.13)
¢ Kl 2 | -
: (574
then the quantity f, defined in (5.5), ezists, and is given by
| 1 : o ((17 -q(N)
f= -2 w2 GU-—OGn]
: N21 (ZO)EW (¢, . .(N}B(i'o) ! SN
= ad, : . (6.14)

where W is a fundamental cell of the conﬁguratwu and o is a constant of order C.
Moreover,

IvIf +10gE(V)| < vio©). (6.15)

The contour ensembles we are considering in this paper are all periodic, rather
than just translation-invariant. That is why in (6.12) we have taken a supremum over
sites and in (6.14) we have summed over a fundamental cell W of the configuration.
Nevertheless, the relevant estimates will be done majorizing the contour weights via
the Peierls condition (3.42). This majorizing ensemble is then translation-invariant,
and hence this supremum over sites is superfluous in the key estimate that follows.

The limit f can be interpreted as a free energy of the ensemble of contours
(6.1). The coefficient on the RHS of (6.15) can be interpreted as a surfacc tension
representing a finite-volume correction.

6.3 The key estimate

In view of Coro]larj 6.4 and the freedom of rescaling discussed at the end of Section»
6.1, we see that the following lemma is the key step needed to prove Theorem 6.1.

 Lemma 6.5 There ezist Ao > 0 and flo < 00 such that, for A < Ao and 8 > fo,
f  NEOlepl-Jicl] < O +00). " (616)
mpp(a(ﬁ.O) .

Proof. We use the fact that the integrand on the LHS of (6.16) depends on the
sections I'; and the quantum bonds B; only through their sizes, to write it as a sum
of contributions of “entropy” and “energy” factors. We first decompose the LHS as

ANBO exp[—J|¢|u] = S°+5>°, (6.17)
supp (3(0,0) ' ' |
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where S° is the contribution due to contours without transition (perfectly cylindrical
contours), and S>° is the rest. The bound on S° is exactly as in the usual Peierls -

argument:

S° < anrd{l‘ : [T = 1,suppT > 0} e~

>1

= 0(6_51). ‘ (6.18)
" Regarding S>°, we have:
$° < 3 ¥ w5 NGuhyeidn )

121 (j1,043n) (l11-ln)
"l_'u—ll<jn (lO“‘n)

x [Pan-o- [Cdn 118> T .
exp{—J [lo(8 — Tym) + b + -+ + lara]} (6.19)

where
N1, b1y -+, nsla) == card{(To,...,Tx) : (a) and (b) below} : (6.20)
(a.) II‘;] = l,'; Po = I‘,..

(b) There exists a sequence (B,,...,B,) of quantum bonds with |B;| = j;, such
that there_.is a contour { formed by the sections I'; and the bonds B;, with
supp ¢ 3 (0,0). Conditions necessary for this property to be satisfied are:

(b.1) T; is obtained from I';_; by acting w1th some @} , with |B;| = j;, on
ITi-1). .

 (b.2) There exists one section I'; or one quantum bond B; such that 0eTl;or
0 € B.. ~ . v

We can distinguish a contribution due to “entropy” [the factor N(j,...,1,)], and
another due to energy (the exponential and the powers of ). To prove (6.16), we
must show that “energy” overwhelms “entropy”.

The two contributions on the RHS of (6.16) arise from two different types of
quantum contours, namely the long contours and the short contours defined in
.Section 3.3. A long contour extends all the way from “time” zero to 8, i.e., none
of the sections I'; are empty. We shall denote the set of such contours by Q;. A
short contour has a “time”-height strictly smaller than B. It appears and disappears
under the action of the quantum interactions ®3 ,..., 2% . Hence, under the action
of one of these n interactions, the section size of the contour reduces to zero, i.e.,
there is one (and only one) value of i, [1 < ¢ < n], for which

QE‘ T — Iy, with |F;-1| ;é 0 and |F.| =0.
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The set of short contours will be denoted by Q,.

Bound for long contours.
We start with the entropy bound, that is the bound on N (]1, ll, <»Jnyln). By

condltlon (b.2) above, ‘ ‘
N(o,---,12) < (lmax + Jmax) NGty - oy dmy In) s (6.21)

where lpax = max;l;, jmax = max;j;, and ﬁ(jl,ll,...,j,.,l,,) is the number of

“pinned” contours, that is, contours with the given section and quantum bond
sizes for which (0,0) is the first point (e g. in lexicographic order) of its support
[0 € I}, or 0 € Bi]. To evaluate N we imagine that we “construct” the quantum
contour by starting from a section with minimal size lnin:

.N(jlills"'ijﬁaln) S
v NF—-)I‘(ji_i.é-h Iini.+11 R 3jim—llin;.—1,jini.) .
I'€CC(lminsi1 1--+1dn) :
: (6.22)
Here, imin satisfies I, = min; l; := lin

CC(l,715---53n) == {T:|I'| =1, andT is a section of a quantum contour
with n transitions given by the actions of Q_}‘_;J, ey @3}

and

NroaTa(G1s 11y« < s Ine1y Ine1, Jn) = number of ways of choosing sections
I,.. I‘,,-l of areas ly,...,l,-; and quantum bonds B,,...,B, of
" areas ji,...,Jjn such that two consecutive sections I'; and I';_; of the
sequence I'g,I'y,...,[q—3,I'y are obtained from each other by acting
with 93 .

By inductioh one can see that
'YNFo-#l‘.‘ (jlis ll: )Jn-l, n—la]n) (azd)“ H(I + ]s) Jl : (6-23)
=1

‘where cqis a dlmenslon-dependent constant (the one for the Konigsberg bndge
lemma). The proof of this fact i is preeented at the end of this subsectlon Thus

N(Jlall’-“ajm ﬂ) ‘ .
card (Cc(lmmajls :Jﬂ)) (a2d)n (I +J')Jl C‘; . (6‘24)

1=l

The bound on card (CC(I,,’,in, Jiseevs j,.)) must take care of the fact that the section of
area I, need not be connected [see discussion following (3.36)], but its components
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cannot be too dispersed . More precisely, property (3.36) implies that for each ly,
there is a connected set formed by a number of plaquettes ranging from I, to
lmin + j1 + + -+ + jn. Therefore (by the Kénigsberg bridge lemma), there exists a
constant c¢g > 1, depending only on the spatial dimension, such that

. ca.rd(CC(lm,jh Ve ’jn)) S cldmin 4 +'cimin+jl+-~+):n
< (h4---+int1) Cflms..+jz+---+j,, . (6.25)

Substituting (6.21), (6.24) and (6.25) in (6.19) we obtain the bound

Sslo S E(a2d)n 572 | (jl + cee +j“ + 1) AJ.!*'""H';

“;1 (G14eeuadn) 2 3i21
> (huac+ Jmae) e [T+ 5i) di (o] R(bs -3 00)
(11 yrendn) 1521 . i=1
“-‘-{a-: I€3: (lo=la)
(6.26)
with
Rlly.sl) o= [ dneee [ dr, 1082 Ty
Iyee+9én) = A 1 A Tn 2 2.i=1Ti | |
x exp—J [lo(B—Tim) + hn+--- + o] . (6.27)

‘'In order to obtain a bound on this last integral, the energy bound, we proceed as
follows: We use the bound '

e—-Jal.- S e-JaI-i./2e-JaI.-/2 , ) v (6-28)
for a = 7,...,7n, (B — T, 7), to extract an overall factor e~#7imin/2 outside the
integral on the RHS. of (6.27). The remaining integral is the same as the original
. one, but with J replaced by J/2. By neglecting the indicator function and the term
proportional to lp in the exponent, and extending the limits of integration to infinity,

- one obtains

2 2 .
R(ll,. .o ,I,.) < (71:) e (J_I,‘) e-ﬁ-"mﬁ y ‘ (6.29)

which, by (6.26), implies that .

2d\ ® ) . .
S& < 2 (2aT) 2 Gidee et 1) At
g n>1 (F15-dn) :5i 21 .
) lmin hid . . ;.
(has + Jemax) (ca€™®%)™ [T1(1 + i) 3i (ca) ] -

(l1yeeerdn) 121 =1
Wi=li—11<3i (lo=ln)

(6.30)
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The sum over the I;, 1 < i < n, can be written purely in terms of Iy (= 1) and
J1- - -»Jn- Indeed, for each [;, there are only 2j; + 1 possible values for /;4;. Hence,
once lmin is given, the sum over the remaining l;’s yields an extra factor [1;(25: +1).
One now notes that the maximum size, lnax, of 2 'section of the contour satisfies the

bound -

lmx S lmn+]l +""+jn- . ) (6'31) .
This is because the section of “area” l...; is obtained from the section of “area”
lmin by the action of at most n quantum interactions, ®F <I> , the latter cor-

responding to quantum bonds By,..., B, of sizes j,---, J,, Also,

Jmax < J1tcr+in. o (6.32)
Thus | .
>0 .2_.aﬁ " 14+24:) 25| \J1+tin
S& < 2|5 > Gt +J..+1)[H( +2j:) J.(ca) ]
n>1 (31 4eenrdn) 13i 21 =1 :
{min )
X Y (hin+ 2+ - 230 (cae“’”’) -
Imin21
= 0(e™P?) . | - (6.33)

Bound for the short contours. '

There are two types of short contours. There is a “collapsed” type, correspondmg .
to actions of all the @} that do not alter the configuration. By the exponential bound
(2.62), the oontributi;n of these fluctuations to the expansion (6.16) is simply given
by - | -

eX M < oSy
B33 21
< 0O(X) , ‘ v (6.34)

The remaining short contours have a finite extension in the “time”-direction. We
shall assume, without loss of generality, that the quantum interaction <I>f‘.;l reduces
the section size of the contour to zero, i.e., we assume that I'; = @ and hence [; = 0. .

The entropy bound can be obtained in.a way similar to that for long contours,
but with the following modifications: '

¢ lnin is the minimum of the sizes of the non-empty sections, la, .. n( - lo).
e the “area” /; on the RHS of (6.24) is zero.

e The entire contour (which includes the sections of areas lmin and lmax), corre-
sponds to the actions of ®3 ,..., 25 .

N
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Hence

Imazs jmaz < 1 + -+ -+ Jus | (6.35)
which implies that : :
' Imaz +jm¢z S 2(.71 +...+ jn)- (636)

Moreover, in place of the bound (6.25), we have that
card (CC(Itm'n,jl: s :ju)) S (.71 +...4+ jn)c(j1+.‘.+j") (637)

With the above modifications, we obtain that

N(jl, 01 j27 l2$ e »j'u lﬂ)
< 2jr et ) G (@) [T+ GGl (6.38)
. =1 -
In calculating the energy bound, we make use of the inequality e~/ < e=J/2 ¢=Jok/?
for 1 # 1. Proceeding as in the case of long contours, we obtain the bound

" 2 (2 (8
. < —_— e — o=(B-n1)J/2
R(o’ 12s 3 In) = (le) (Jlﬂ) -/0 d‘fl (1 '

c@-@E. e

where the last inequality results from extending the limit of mtegratlon to infinity.
Hence ,

s < o+ e (X)) ¥ it )

n22 J (J1120mdn) :3i 21

x [H(l + 2]‘)2 ji (cd)b.] \d1+etin

=1

< 0(N)+0(X).m | | (6.40)

Proof of the claim (6.23). The proof follows by induction in n. The induction step
is carried out as follows: '

Nl‘o-)f‘..(_]la 117 o= ’jn-la ln—lajn) =

) Nl‘o-w.._, (jla 117 e aj‘n-2y In—2, jn-l) 9 (6.41)
Pn—l GCC(n_‘ ,j,‘(r‘n) o

where

CCi,_1.in(Ta) = {T' : |T| = lp—1, and T differs from I, through the
action of some 83 with |B,| = Jn}- .
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By the inductive hypothesis
L n-1

NI‘o—»l‘n(lela a]n-—la n—l) < ca.rd(CCz,‘_,,,,,(I‘ )) (a“)"—l H(l +J:)]:C.Jg .
’ l-l
(6.42)

We have to consider two cases:

(i) ln-1 2 ln. In this case, the bond B, must intersect supp I‘,._l The number
of such possibilities is bounded by the product of the number of sites in T'n—; (=
ln-14a%), the number of sites in Bn—; (= ji-1a ) and the number of bonds B,, with
| Ba| = jn. The latter is less than or equa.l to ci*, for some constant ¢; depending on
the dimension d.

(i1) lp-1 < lp. In this case, B, must intersect suppI',. Hence we can use the
preceeding argument, with I',_; replaced by I',.

Therefore, in both cases,

card(CCi,_ jn (r »)) (a'i)2 maX(l,.-l, In) Jn ar

<
< 2d (I +Jn)Ju ' ' (6.43)
where we have used that I,_; < I, + j. because of (3.35). m '

6.4 Convergence of the -e;ipansion for the free energy

- Estimate (6.16) proves (6.13) and hence Theorem 6.1 for non-intersecting (as op-
posed to non-linked) contours. Expression (6.14) shows that the free energy is
ana.lytxc in e"‘” X on a region of C? of the form

max(le#|,[X]) < eo. (6.44)

We use tildes because J and A must be rescaled as in (6.8); in order to absorb the
extra factor ekl in (6.13). A small additional argument is needed to establish a
comparable bound when contours are also formed by components whose supports
are linked. The argument goes as follows: If a contour { winds around (, so as to
yield linking, then there must exist points (Z,) € ¢ and (#,t) € ¢ such that |B(¢)| >
2dist(Z, ). Moreover, |B;|+- - -+ |B,| must exceed the number of plaquettes needed
to turn around a single plaquette, which is a large dimension-dependent number. A
safe lower bound is for instance j; + ««- + ja 2> 16 (for the more demanding case
d =2). Hence ; ‘

T @Ol < F (o]

KI 13 supp ¢3(3,0) . ,
+T o jw(¢)] X!
fezd . ﬂlpp(a(f,‘))
1B(¢)|2max{2 dist(,0) , 16}

= C+G. | (6.45)
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The a.rgumenté used in the proof of the key estimate also prove that

lw(¢)| e < Q(max(dzD) 16}y , (6.46)
supp(3(2.0) :
|B(C)|>max{2dist(2,0) ,16}

and hence

C < Zd(xw{d"‘(*‘m-“*}) - (647)
1< 2

which is only a negligible correction to C.

In some cases we shall restrict our attention to a smaller family, F, of contours
and consider the partition function

(V) = g[ TIw(G - (6.48)
{(g} pairwise non—linked k
CV
(kEF

Repeating the arguments of Sections 6.2 and 6.3, we obtain an analogue of Theorem
6.1, but where the convergence parameter is

cf = O(Lf) + O(LY) (6.49) -

where LT [resp. L7] is the lowest-order term in the sum (6.33) [resp. (6.40)] for
contours of the family F. We already invoked this fact in (6.46). Another case, used
in Section 7 below, is when F is the set of (“large”) contours with lpnt i1+ +in >
m. In this case we can replace the constant & in (6.4) and (6.5) by (¢0)™.

6.5 Stability of phases in the symmetric regime

Here we prové Corollary 6.2. Our proof is based on the original Peierls argument,
but uses the cluster expansion technique to get around the fact that weights may

be negative and imaginary. We choose an observable A € Ap. From the discussion
of Section 5.2 we have that

. EA A -
E:((A)) = # w((a) Uv({a), | ~ (6.50)
CaCV
where
# )P [nk w(Ck)] I[Ck non-linked to CA]
© Uy(¢a) := —Benclinked | , (6.51)
):'{c.}ci" [H" w(d )}

for V =A X [0, B]. The quotient on the RHS of (6.51) is amenable to the cluster-
expansion technology: The logarithm of the numerator produces clusters for which
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‘1:110 Qontoul: is linked thh a, while the logarithm of the denominator produces all
usters, w:th 1o restrictions. The quotient corresponds to the clusters with at least
one contour linked with (,,. Hence, ‘

gUv(la) = X o wi(g,...,cx), (6.52)
. NZI {cl ""'(N) 4 (A
GCV

and we have the bound

Vaa(V)l < expliCalO(e)) (6.53)
uniformly in A, and, due to the Peierls bound (5.13), -
roavv(eal < Lol yisca eo_jic, ., (6:50)

again uniformly in A. We use the notation X = AeQ) and J= J — O(eo).

As a consequence, expression (6.50) can be treated by cluster-expansion methods,
as the key estimate (6.16) is valid. The “dominant” contribution in (6.50) arises from
terms for which (4 corresponds to (splA|sp) and has a support

supp(s = D.
We obtain that

=A A
20 _ (splAlsp) +81(8,A) + S2(8,1), (6.55)
5(4) _
where S;(8,)) is the contribution of short contours which intersect tl:.ne set D. at
the “time” B, whereas S;3(8,)) is the contribution of long contours intersecting
D at “time” B. The key estimate given in Lemma 6.5, and the fact phat all the
- components of (o must intersect some site in D, imply that S;(8,2) and S2(B, )
are bounded by :
A :
ol o).

The expression (6.55) and the above bound together prove Coro}lafy;6.2. Tl.ley

prove' that the quotients E2(A)/Z,(A) are analytic functions of (e™#7, A) in a region

max(je=#|, (X)) < & . (6.56)

where £ is a constant independent of V. Each term of these series converges tf) .the
corresponding term of the series (6.50) without the condition (‘:; C V. In addxtapn,
the finite-volume series and this infinite-volume limit are ma.,].orfzed by t}'xie same
absolutely convergent series. By dominated convergence, the limit A * Z* of the
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series is the series of the limits, throughout the region (6.56), which, therefore, is also
the region of analyticity of the limit. We conclude that the quantum expectations
satisfy

. _ . :‘A(A)
(Alor = by %
= (slalsy) + D)k o (cy). (6.57)

This proves equation (6.7). .

6.6 Differentiability of the expansion

Let us reintroduce the parameters g in the interaction and hence in the weights
w, and discuss the consequences of the smoothness hypothesis (H1.2) (Section 2.2).
This hypothesis implies that the derivatives of the weights satisfy a Peierls condi-
tion analogous to the one obeyed by the weights themselves, except for a factor
proportional to |(|. This factor can be absorbed in a rescaling of J and \; so we can
assume that B,(0) ‘

Vu Bl 8T
| ¥y l (6.58)
Therefore, from the preceding results, we conclude that the series formed by the
derivatives of the weights converge uniformly in a small interval around each 4 € O
(and absolutely in e~ and A). This implies that the series for the partition function
can be differentiated term by term, and thus it and its loga.nthm are differentiable
functions of p. Using the cluster expansion we obtain

‘%h,;'—.—:,(V) < [V]O(eo) - (6.59)

and, writing =, = exp(log Z,),
; .
==

These observations will be useful in Section 7.3 below.

< VIE(V)|Oeo) - | (6.60)

7 Pirogdv—Sinai theory for quantum perturbations

7.1 Overview. The initial trick

We now turn to the proof of the main Theorem 2.3 in the general (non-symrhetric)
situation. This involves dealing with the contour expansions (5.2) [which we repeat
in (7.1) below for the reader’s convenience] with a non-local compatibility condition
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among contours (the matching of the labels of nested interiors and exteriors). Fol-
lowing the standard approach, going back to the original work of Pirogov and Sinai
[29 30), the theory is constructed in two parts: First (Section 7.2 below), a criterion
" is established to determine the stable phases for a fired interaction; second (Section
7.3), the stability of the phase diagram as a whole is determined. The parameters
g play a role only in the second part (and hence will not be displayed in the first
part).

In our treatment, we closely follow the excellent presentation of Borgs and Imbrie
[4]. Our proofs are basically a transcription of those in [4], except for some small
adaptations and simplifications. The starting point of our proof is the formal ex-
pression (5. 2) for the pattxtlon functions =,(V) and, more generally, the expressions
(5.11) for ZA(V'). For the convenience of the reader we repeat (5. 2) here:

(V) = exp[-— / q,(s,)]

>}f [Mw()] Lgexp{ A [e,<s,.)—e,(s,)1}]

{G}cV
oompotihle

(7.1)

where the exterior contours of each compatible fa.mlly are p-contours. Both quan- .
tities, the energies e.(s.) and the weights w((), are complex-valued, and the latter
satisfy the quantum Peierls bound (3.42). '

We follow the procedure, introduced by Minlos and Sinai [25, 26], to eliminate
the inconvenient compatlblhty condition in (7.1). We first resum (7.1) (formally?)
over the contours in the interior of the exterior contours,

..,(V) exp[-— / e.(s,)]

x [Hw(ck)nw(lntu(ck) Jexe{ [, e},

(34174
extenot

| (7.2)
and then multiply and divide the RHS by =, (Int.(¢})) to obtain -

Z(V) exp[ [ exles)] =
[HW(ck)Hup(lntu(cz)) exp{/ < »)}]

(54147
exterior

(13)
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with the new weights

Zu(Int.(¢?))

W((?) = P . 74
) “Emmm, 4
~ One can now repeat the same procedure for each factor,
% (Totu(D) exp{ [, e(on)}; (75)
in (7.3). This iteration finally yields the expression
5) = ew{-[ els)} Ff W
(54 }CV
- (7.6)

= QXP{— _/V;ez.(sr)} éxa(V)

Identity (7.6) yields an alternative formal expression for the partition function
Zp defined in (7.1). If either one of these two expansions converges uniformly, then
so does the other. In (7.6), however, the contours are only required to-be non-
~ linked, rather than compatible in the sense used in (7.1). Hence, at least from
a combinatorial point of view, (7.6) is simpler to deal with. Moreover, the factor
£,(V) is of the form (6.1) and hence is amenable to the cluster-expansion techniques
of Section 3.

However, one is confronted with the following problem: Whereas the original
weights w((?) satisfied the quantum Peierls condition (3.42), there is no a priori
bound on the new weights W((?), defined in (7.4). Hence, in order to prove the con-
vergence of the expansions in (7.1) and (7.6), we have to devise a method to control
the new weights. This is done in the following section. The same considerations

apply to SA.

7.2 Criterion for the stability of phases

A sufficient condition for the stability of the s,-phase is the absolute convergence
of the expansions for log=,(V), (with E,(V) as in (7.6)) and of the analogous ex-
pansions for log....A From the discussions in Sections 3 and 6 and the similarity of
the expansion (7.6) of Z,(V) to that of = Zp(V) in (6.1), we conclude that it suffices
to check that the new weights W((?) satisfy a quantum Peierls condition (3.42),
provided J is large enough and ) is small enough. Definition (7.4) of these weights
implies in turn that a sufficient condition for the Peierls condition to be valid is that
" there exist some constant z such that

«(Int(¢?))

:—(Im < explsl0ntu(¢?)] )
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for all u and all contours (. Hence, by choosing a sﬁfﬁciently large J and a small A,
we may attempt to ensure that the new weights W(({?) are exponentially damped.
The constant z will be fixed once and for all. Inspired by [4] we choose z = 4a,
where

a = 1'+,a lxgx:‘ags’ |e(s‘u’)| . (7.8)

(If the conﬁgurations s, all have period 1, i.e., are constant, a = 1 suffices.) In the
_expansion of :,, we also have to consider the special surface ¢} which is a quantum
contour associated with A (defined in Section 3 6). To cover all cases, we prove a
bound of the form

=-..(V)

Z(V)

© if s, is stable, for all reglons V c Zx[0,B). We interpret (7.9) as the condition
for the stability of a space-time region V. In particular, the bound (7.7) is used to-
define stable contours. Following [39], we require

< expldaldV]] - (7.9)

" Definition 7.1

(i) A regionV C Z? x [0,8] is p-stable zf E,(V) # 0 and (7.9) is satisfied for all

u.

(i) A p-contour (P is stable 1f each Int..((’) p-stable, for 1<u<P.

It is evident that the weights W(C ).of stable contours satisfy the quantum Peierls
condition. Hence, if we restrict the sums in (7.6) to stable p-contours then we can
- apply the cluster expansion technology of Section 3. This observation motivates us

 to define truncated contour partition functions, as in [39]:

Z(V) = exp{ /e,(s,)} f nw«:)
» SR (44124 ‘

stable
non-linked ‘

= e{- [ e} ZW),

- The cluster éxpa.nsnon for the truncated partition function =(V') converges abso-
lutely. In particular, by Theorem 6.1 we have that, for g la.rge and ) small, the
truncated contour free energies

(7.16)

£ o= V}g‘ o IVI — log Z4(V) . (11)

éxist, and are of the form | R \
fo=els)+fp (7.12)



where e(s,) is the specific energy (2.56), and the remainder f';’, is given by the cluster
expansion (6.14), with w replaced by the new weights W. Note that

= O(eo) , (7.13)

by (6.4), where & is the constant appearing in Theorem 6.1, and thus

V15 +10gZy(V)| < |- [ exles) +e(sp)IVI] + O(ea)loV]
< afdV]. (7.14)

This bound is precisely the reason for our choice of a. We also observe that

[ eston) = £VI| < |- [ eston) +e(sVI] + 1511V
< a|V|. - (7.15)
We see that if, for a given boundary condition s,, all contours are stable then
fo = f;- More generally, if all regions"V are p-stable we have that (._.A)’ = ::..p and
the pnmed quantum expecta.txons equal the unprimed ones. (The prime indicates
that the summation is over stable contours only.) The key observation of Pirogov-
Sinai theory, in the formulation due to Zahradnik [39], is that all regions V are

p-stable if and only if the truncated free energy corresponding to the boundary
condition s, is minimal Let

- ' e ' '
= Ref, }?Eu’éRe fo- (716)
Then the stability criterion can be stated as follows:

Theorem 7.2 If a, = 0 the s, phase is stable. Moreover, there is a region of C*
of the form ma.x(le""‘il |A]) < €0 where the free-energy density and all the quantum
ezpectations are analytzc functions of e~ and ).

The key lemma needed in the proof of this theorem is the following:

Lemma 7.3 The following statements are equivalent:

(i) ap = 0.
(ii) All regions V are p-stable.

Proof. We first prove that (ii)==>(i), assuming that (i)==>(ii) holds.. For this
purpose, we consider a boundary condition s, for which a, = 0. For each V, we have
that Z,(V) = Z(V), by a.ssumptlon, and E,(V) = (V) holds because (i)=>(ii).
Therefore

Z.(V)

Ep(V)
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where v is a constant of order €. The leftmost inequality expresses p-stability of
the region V, while the equality on the right is a consequence of (7.14). If a, > 0
the equation in (7.17) leads to a contradiction for regions V' with diverging volume-
to-surface-area ratio. Thus we conclude that a, = 0.

Proof of (i)==>(ii). In order to understand the steps and deﬁmtlons that follow, it is
useful to inspect the ratio of partition functions corresponding to different boundary
conditions. From (7.14) we have that, for any s,,s, € K,

=V - ‘ = '
‘:v (V) = exp[—(a, —a,) V| + Jlavll ' (7.18)
= GALC
where § is bounded by the constant €o. From (7.18) we conclude that if a, = 0 then
(V) ‘ |

for large B and small A. Hence, in this case, the proof would be complete if the
truncated partition functlons in (7.19) could be replaced by the untruncated ones

and (V)
v const|aV]). - (7.20
| =] < exploonstioVI), o)
~ More generally, for regions V' for which
a|V| < |9V], o (7:21)
we have from (7.18) that, for large § and small ), ‘ |
B < ,
I._., (V) exp(2 |3V|) _ (7.22)

" As a first step, we would like to show that the primes in (7.19) and (7.22) can be re-
moved for regions satisfying (7.21). If condition (7.21) were inherited by subregions
" of V then we could prove inductively, from (7.22), that Z,(V) = Z,(V). However,
it is not true that the bound (7.21) remains valid for arbitrary subregions. of V.
Therefore it is convenient to resort to a sufficient condition that has this hereditary
feature. For this purpose, we introduce the notion of small regions and small con-
tours, adopting the definitions of [4]. For a piecewise-cylindrical region V of spatial
sections V3,...,V,, we define the spatial diameter of V as follows:

spdiamV = maxdiamV; . | - (1.23)

Definition 7.4

(z) A region V is q-small if ‘ R ,
a,spdia.mV <1. (7.24)
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(ii) A contour ( is g-small if ‘
a spdiam( < 1; (7.25)

 otherwise the contour is called g-large,
[where V is as defined in (5.9)].

It is clear that smallness is inheﬁted by subregions. Moreover, the bound (7.21)
is valid for ¢g-small regions, because

- aq|V| \5 agspdiam V |3V |
< vl (7.26)

In particular, all contours mmde a g-small regxon are g-small contours. [It is for

the sake of this property that we used ¥ in (7.24)]. The hypothesis that a, =0

implies that all regions are p-small. As a consequence, the proof of the implication
(i)==>(ii) is completed by proving the following lemma [39]:

Lemma 7.5 For all g, g-small regions are g-stable. As a consequence, all q-contours
contained in g-small regions are stable.

We prove this lemma by induction in the spatial diameters of the regions.
Let us assume that, for all u, a,spdiam V <1 implies that ._...(V) # 0 and

=(7)
Z(P)

<esbaloVl, (20

for all v and for all regions V, contained in V, with spatial diameter less than or
equal to m. We pick some 8 € K and some ¢-small region V of spatial diameter
m + 1, and prove the bound (7.27), with u = ¢. All contours ¢ in this region are
g-small, hence their interiors are g-small and of spatial diameter strictly smaller than
m + 1. By the inductive hypothesis such interiors satisfy (7.27), and hence these
contours are stable, yielding

V) =5WV). (7.28)

We remark that if a, = 0 then the proof is complete. This is because 1f a, =0 all
regions are v-small, and, consequently, all v-contours in V are stable. This implies
that E,(V) = Z,(V), which, along with (7.28) and (7.22), implies that (7.9) is
true. :
Let us now consider a boundary condition s, for which a, # 0. To estimate
Zu(V)/Z4(V) we resort to maneuvres that are justified, a-posteriori, by the proof of
uniform convergence. We start with expression (7.2) for the partition function of an
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ensemble of mutually exterior contours with exterior configuration s,, in a space-
time volume V, and resum the contribution of v-small exterior contours. This y1elds

(V) _ Zml(Ext) " o (s} =(Tnt(c¥ ‘
=7 = «-?v = L@ exp{ / - " q)}u(lnt(ck)). (1.29) |

e
exterior

Here “Ext” is the region outside the v-large e;éterior contours {¢}}, the label “small”
indicates a restriction to configurations where all the exterior contours are v-small,
and E(Int(¢")) := I1; Zs(Ints(¢")). If we multiply and divide the RHS of (7.29) by

() =[S0, (7.30)

we obtain

(V) _ Y S Et) 2 (1nt) ex0f Tt egpi =(04)}

HY(C”) , (1.31)

R =)
with : In '
Y(G) = w(@) Hﬁ% (132)

- We observe that, by the inductive hypothesis,
2 =ll(Ext) = ==el(Ext) (7.33)

Identities (7 28) and (7 33) allow us to apply the finite-volume bound (7.14) to all
the factors in (7. 31), except [T Y((") We then obtain

S5 (Ext) Z,(I0t) exp{—Ei fupoicp) e=()]}
%) |
< exp[-Re(£™" - ) IV \ Int| + 2 0V]] He"‘*"““i‘ (134

We have used (7.15) and the geometrical bound {3 Ext |+|0Int | < [OVI+2d 3, G-
We now use the g-smallness, inequality (7.26), of V to bound

—Re(f™" - f)IV\Int| = (—af™"+4q,)|V \Int|
< —aPV\Int|+|8V]. (7.35)

- Furthermore, the quantum Peierls condition (3.42) and the inductive hypothesis
(7.27) for u = g (combined with the bound |8 Int(¢})| < 2d|(}|) imply that ‘

IY(CI‘:)I < A|B((;)! e"JK:l‘_ e3dalGl . . » (7°36)
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Substituting (7.34), (7.35) and (7.36) in (7.31), we get the bound

% < oVl # e—ov ™" IV\Int| H,\IB((*)I eIl e(10¢i+1)a.|('|
=4

v
v—large

exterior
= dalov] §[ o=t [V\Int| Hw‘((v) | (7.37)
| {G)c? <
. exterior

To show that ¢**®"1 is an upper bound for (7.37), and hence complete the proof
of the lemma, it is convenient to follow [39] and consider the quantity

Slarse(y7) = §f Hw (Cx) e2H], (7.38) -
{G)cV . , :
non—linked
where the label “large” indicates restriction to configurations where all the exterior
contours are v-large. This quantity can be interpreted as the partition function of
an ensemble of contours having wexghts

B(() = w*(¢) el | - (739)

and confined to a space-time volume V. It is evident that, for €, small enough, the
contour weights @(() satisfy the qua.ntum Peierls condition, and hence the cluster
expansion converges. Moreover, if flase js the corresponding free energy densxty
(defined as in (6. 2)) then it follows from Theorem 4.1 that -

BV < STV OV (140)
We claim that ‘ ’
L amall > _fuamse (7.41)
Indeed, by (7.12) and Theorem 6.1,
a™l — g, 4 O(C™*). ‘ | (7.42)

[see discussion after (6.49)]. Moreover, for every v-large contour

@y (lmin+ 51+ +Jn) 2 a,spdiam( \
- > 1, ‘ - (743)

* where the ﬁrst‘inequality follows from (the important) property (3.36), and the
second one is just the definition of largeness. Therefore, by the final comment in

Section 6.4,
e = O((eo)/*) . - (144)
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By the same argument, ‘ ' ,
| e = 0((eo)™) (1.45)

Hence ~
afel 4 flaree > g, +0((e0)"/*") (7.46)

which is non-negative for 8 large and A small, proving (7.41).

For future purposes, we summarize the rest of the argument in the following
lemma which shows that (7.41) causes the sum-integral in (7.37) to yield at most a
contribution exponential in the boundary. By substituting the bound (7.47), shown
below, into the RHS of (7.37), we obtain the bound (7.27). This completes the -

inductive proof. a

Lemma 7.6 Consider wg:’ghté_ w*(() éatisfying a Peierls bound (3.42), and let f
denote the contour free energy for the weights w(() = w*({) eI (well defined if o
is small enough). Then, for g > —f,

)j eV TT () < exp[O(ea)lOV] - (7.47)
{Glcv k .

exterior
Proof. (This is Lemma 3.2 of [4]. The proof given there applies verbatim; we tran-
scnbe it for the sake of completeness.) Multiply and divide the LHS of (7.47) by
- Ele(Int). Using the analogue of (7.40) for the region Int := U;; Ints(¢i), and the
bound |8Int | < 2d3; |Ck| we obtain

[E(Iat)]? < il [[ X L.kl (7.48)
. . k ‘
for €0 small enough. Thus the LHS of (7.47) satisfies
LHS < );[ eIV \int| flh*l—hm(lnt) Hw(g), (7.49)
{G)cV
exterior

and, since —g < f, we have that
LHS < /M 3 E=w(iat) [T 5(¢)
' {G)cV o
) exterior ‘
< efVIZbre(y) (7.50)
Hence, by the analogue of (7.48) for the region V, | |

LHS < OeiVl g | . (151)

66



"~

7.3 Stability of phase diagrams

Finally we are in a condition to prove Theorem 2.3. The proof of this theorem
involves two steps: .

Step 1: Prove that the exponential damping of the original weights w and. their
derivatives implies an analogous damping of the new weights W (for small
contours) and of their derivatives.

Step 2: Prove that these differentiability properties of the weights W imply that at
low temperature and small ), the contour free energies f, are so close to the
energy densities e(s,) that the manifolds defined by

Ref, =---=Ref,, <Ref, .,--,Ref; , (7.52)

k41?

[i.e., Sm A) } defined in (7. 52)] are close to those defined in terms of the

ceesBpy

energies e(s,,) [i.e., Sg:o) op jl» and have differentiability properties similar to

those of the weights W.

The proof of step 2, given step 1, is, in principle, an exercise in implicit-function
theorem technology. However, it is somewhat subtle in cases, as the one we are
interested in here, where the weights may fail to be positive or (even) real. As
pointed out in [4], there may appear zeroes of the partition functions that destroy
the continuity of the excess free energies a,.

In the sequel we shall only prove step 1; the proof of step 2 is a straightforward
adaptation of the argument given in [4, Section 6] (replacing “diam” by “spdiam”).

" Theorem 7.7 Assume that there is a non-empty open set © C RP-? such that, for

g € O, the quantities e,,,(s.,) and w, are contmuously differentiable functions of L
and, moreover,

| “(()l wu(C) < ABOI -JICLL (7.53)
for all contours (, and
| |  |Beas(sy)
|e£,_,(s.,) <a-1 ; --3-;— 1 (7.54)

forals, € K,1<i<P-1, for some a < 0. Then there ezists a constant J > 0
such that if o = max(e” 8J yA) ts sufficiently small, we have that, for all p € O and
all g-small contours (9,

W, (¢9 - ’ ’
AR l_a%gl < M (7.55)

with A = Ae!% qnd J = J — 15da.
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Remark: Conditions (7.53) and (7.54) express the uniform boundedness requirement |
of Hypothesis (H1.2). We can always rescale J, A and the parameters y; such that
there are no further constants in these bounds.

Proof. Pick a small q—contour ¢%. The bound on W((?) is immediate because of the
stability of small g-contours (Lemma 7.5). For the derivatives we would hke to use
the Leibnitz formula, :
W) _ () f =, (Inty(¢))

O Ok uE |

2 (E.,(Into(c'))) I E.-,(Int.-,(c'))_’
i S«ZI’“«"(C’)}
- (7.56)

and find suitable bounds for each term. This approach reqmres two arguments:
First, one must show that each of the factors is dxﬂ‘etentla.ble and, second, one must
exhibit bounds on the derivatives.

- The stability of g-small contours — already proven above — implies the correct
bounds for all factors |Z,(Int,(¢?))/Z,(Inty(¢?))], and the hypotheses take care of the
differentiability of w(({?) and of the bounds on these quantities and on |Gw({?)/dpu;|.
What remains is to prove the differentiability of the ratios

=, (Int.(¢)-
Z,(Intu(¢?))
and to find a bound on their derivatives. It is easy to treat Z,, ‘because it only
~ contains ¢g-small, and hence stable, contours, and we can apply the results of Section
6.6. For the numerators, however, we need to take into account v-large, and hence
, poss1b1y unstable, contours. It is imperative, at this point, to work with the quotient

Zv/Z,- In fact, proceeding very much like in the proof of Lemma 7.5, one shows the
_followmg

Claim. If V is g-small then, for any v, the quotient ._..,(V)/._.,(V) is differentiable,
and

(7.57)

ﬁ(?%ﬂ <SP, ()

It is clear that this claim implies the proposed inequality (7.55). Indeed, in-
serting the hypotheses (7.53)—(7.54), the stability condition (7.27) and the claimed
inequality (7.58) — for V' = Int,({?) — into (7.56), we obtain

W] \Be ol o [1 . 5T
opi - ,
< MBI o=IKs  8dalint(¢?)] (7KK
< MBI g=IKSls g15dalt] , (7.59)
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" where we have used the bounds
|0Int(¢?)] < 2d|¢°] ;5  |Int(¢*)] < |0Int(¢7)|?
and 1+ 522 < exp[7z/2). As [¢| < |B(¢)| + [¢|., this last bound implies (7.55).

To prove the claim we proceed, once again, by induction in the spatial diameter
of V. We assume that (7.58) is true for all u and for all u-small regions V with
spatial diameter m or less. We shall now prove (7.58).for some ¢ and some g-small
region V of diameter m + 1. We start with the resummed expresswn (7.31) which
we repeat for the reader’s convenience:

—-—= EmuE qut - Jeu, v) Cz\v
SR (Ext) (n)esxr("{,)f?kf eotcp) (2 )}I,‘IY(CZ)- (150)
(34147 ’

We shall use the product rule to calculate the u;-derivative of the RHS. For the
partition functions on the RHS we can use the cluster-expansion technology, because
only stable contours are involved (Lemma 7.5 for ™1, and the inductive hypothesis
for Z;). Thus, we conclude differentiability and a bound analogous to (6.60):

‘ =HEN)| < [exp{— / ce(on)}] FETm(Ext)
[—-exp{ L e,(s.,)}] (Ext)|
< Beelou) |mat Ex)
< 2z (7.61)

The first inequality makes use of (7.6), the second one is due to hypothesm (7.54),
and the third one follows from (6.60). Similarly,

Moreover, from the differentiability of the energy-densities and the bound (7.54),

lai/h exP{—Zk f.upp(c;) e,,-(;.,)}

< X1l lexp{~ T frugpicp) €(50)}] - (7.63)
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Finally, for the weights

| tu (Y
Y(Ci’ ) = w(() I'I1 E%I;t:%a—%

we use the hypotheses made on the ongma.l weights w and the inductive hypothesm
They 1mply that each factor is dliferentla.ble, and we can use the bound:

24(43) |aw(c,,) filE Eu(Intu(D) | ' (- (Intu(C")))
EZR KBS Opi \ E, (Intu((2)) bes
7.65

Using the q-stablhty of the interior regxons and the inductive bound we obtain the
upper bound - .

(7.64)

+ (C::)Z

IA

|6Y(Ci' ) ABEI c-.n(,,[,, [ 4a|8!nt(,,| +5| Int G| e4¢:|8]nt('|]

op;

< MBI ~Tis . we((D) . | (7.66)

[To obtain the last line we proceeded as in (7.59).] With the bounds (7. 61)—(7 66)
and the already known bounds (7. 34)—(7. 35), expression (7.60) yields

"""'(V) e2¢:r|8V| exp|— amall
a,,,_m w’iﬁ "P[ Re (£, f,)IV\Intl]
—

% HW'(G') e L [2(|Ext»| + |V \Int|) + zk:ﬂ(ﬂ + 1)] ) (7.67)

The square bracket is bounded by
4|V \Int| + 21 < 5|V| , - (7.68)

and the remaining sum is bounded by e*®V!, by Lemma 7.6. B

Acknowledgments

It is a pleasure to thank Claudio Albanese and Luc Rey-Bellet for comments and
criticism. R.F. is grateful to Elliott Lieb, Nicolas Macris, Bruno Nachtergaele and
Charles-Edouard Pfister for very valuable discussions and suggestions, and to the In-
stitut fir Theoretische Physik at ETH-Honggerberg and the Department of Physics
at Princeton University for hospitality while this work was being performed. The
research of R.F. was supported in part by the Fonds National Suisse and by a John
Simon Guggenheim Fellowship. ,

70. - ,



%

References

[1] M. Aizenman and B. Nachtergaele. Geometric aspects of quantum spin states,
1994. To be published in Commun. Math. Phys.

[2] C. Albanese. Coexistence and interfaces in classical and quantum spin systems
I. Phase dlagra.ms IAS preprint, 1994.

[3] C. Albanese and N. Datta. Quantum criticality, Mott transition and sign prob-
lem for a model of lattice fermions. Commun. in Math. Phg._s ., 167:571-591, me HA

1995

[4] C. Borgs and J. Z. Imbrie. A unified approach to phase diagrams in field theory

and statistical mechanics. Commun. in Math. Phys., 123:305-328, 1989. ( p) P4 A

[5] O. Bratteli and D. W. Robinson. Opemtor Algebras and Quantum Statistical
Mechanics II. Springer-Verlag, New York-Heidelberg-Berlin, 1981.

[6] O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical
Mechanics 1. Spnnger—Verlag, New York-Heldelberg.Berhn, second edition,

1987.

[7] D. C. Brydges. A short cluster in cluster expansions. In Critical Phenomena,
Random Systems, Gauge Theories, pages 129-183. Elsevier, 1984.

[8] N. Datta, J. Frohlich, L. Rey-Bellet and R. Fernandez Low-temperature phase
diagrams of quantum lattice systems. II. Convergent Perturbation Expansions
and Stabxhty in Systems with Infinite Degeneracy. ETH preprint: ETH-TH
95-10

[9] R. L. Dobrushin. Existence of a phase transition in the two-dimensional and
three-dimensional Ising models. Soviet Phys. Doklady, 10:111-113, 1965. < PHO A

[10] F. Dyson, E. H. Lieb, and B. Simon. Phase transitions in quantum spin systems
- with isotropic and non-isotropic interactions. J. Stat. Phys., 18:335-383, 1978. J?:T/oﬁ

[11] M. Fannes, B. Nachtergaele, and R. F. Werner. Finiiely correlated states on
quantum spin chaing, Commun. Math. Phys., 144:443—490, 1992. ¢ m P ] 4

[12] J . Frolich and E. H. Lieb. Phase transitions in anisotropic lattice spin systems.
Commun. Math. Phys., 60:233-267, 1978. "

(13] J. Frohlich and L. Rey-Bellet. Low-temperature phase diagrams of quantum
lattice systems. III. Examples. ETH preprint -

[14] J. Ginibre. Existence of phase transitions for quantum lattice systems. Com-
mun. Math. Phys., 14:205-234, 1969.

71



[15] R. B. Griffiths. Peiérls’ pi'oof of spontaneous magnetization of a two-
dimensional Ising ferromagnet. Phys. Rev., A136:437-439, 1964.

[16] W. Holszt.ynsk.f7 and J. Slawny. Peierls condition and the number of ground
states. Commun. Math. Phys., 61-177—190 1978. Qmw‘,q

[17] R. B. Israel. C’oubezzty in the Theory of Lattzce G’ases Prmceton Univ. Press,
Pnnceton, N.J., 1979.

[18] T. Kennedy. Long ra.nge order in the anisotropic quantum ferromagnetic Heisen-
berg model. Commun. Math. Phgs ., 100:447—462, 1985.

[19] T. Kennedy and E. H. Lieb. An'itinerant electron model with crystalline or
magnetic long-range order. Physu:a, 138A:320-358, 1986. 4 H }/S #

[20] T. Kennedy and H. Tasakl. Hidden symmetry breaking a.nd the Haldane phase
in S =1 quantum spin chains. Commun. Math. Phys., 147:431-484, 1992.

[21] R. Kotecky and D. Preiss. Cluster expansion for abstract polymer models.
Commun. in Math. Phys., 103:491-498, 1986.

[22] P. Lemberger and N. Macris. Long-range order in a simple model of interacting
fenmons Lett. Math. Phys., 28:295-305, 1993 Lm 'DH D

[23] A.E. Mazel and Y. M. Suhov. Ground states of a boson quantum lattice model.
Preprint, 1994.

[24] A. Messager and S. Miracle Solé. Phase diagram of the Falikov-Kimbal model
with a chemical potential near the half filled band. C.P.T. preprint, 1994.

[25] R. A. Mmlos and J. G. Sinai. The phenomenon of phase separation at low
temperatures in some lattice models of a gas. I. Math. USSR-Sbornik, 2:335—

395, 1967. MATS A

[26] R A. Minlos and J. G. Sinai. The phenomenon of phase separation at low
temperatures in some lattice models of a gas. II. Trans. Moscow Math. Soc.,

19:121-196, 1968. “TMmsP

[27] C. E. Pfister. Large deviations and phase separation in the two-dimensional
Ising model. Helvetia Physica Acta, 64:953-1054, 1991. _H,pA Ch

[28] S. A. Pirogov. Phase-diagra.ms of quantum lattice systems. Soviet Math. Dokl.,
19:1096-1099, 1978. 3 SV/}IDA

[29] S. A. Pirogov and Ya. G. Sinai. Phase diagrams of classical lattice systems.
_Theor. Math. Phys., 25:1185-1192, 1976.
Tm Py 4

2



[30] S. A. Pirogov and Ya. G. Sinai. Phase diagrams of classical lattice systems.
Continuation. Theor. Math. Phys., 26:39-49, 1976. ™" li H A

[31] 'D. Robinson. A new proof of the existence of phase transitions in the anisotropic
Heisenberg model. Commun. Math. Phys., 14:195-204, 1969. ’

.[32] D. Ruelle. Thermodynamic Formalism. Addison-Wesley, Reading, Mas-
sachusetts, 1978. , '

[33] E. Seiler. Gauge Theories as a Problem of Constructive Quantum Field Theory
and Statistical Mechanics. Lecture Notes in Physics #159. Springer-Verlag,
~ Berlin-Heidelberg-New York, 1982.

[34] B. Simon. The Statistical Mechamcs of Lattice Gases. Princeton Univ. Press,
Princeton, N.J., 1993.

[35] Ya. G. Sinai. Theory of Phase Transitions: Rigorous Results. Perga.mon Press,
Oxford-New York, 1982.

[36] L. Thomas and Z. Yin. Low temperature expansions for the Gibbs states
of weakly interacting quantum ising lattice systems. Commun. Math. Phys., Om
91:405-417, 1983. PHA

-

[37] L. Thomas and Z. Yin. Low temperature expansions for the Gibbs states of
quantum ising lattice systems. J. Math. Phys., 25:3128-3134, 1984. J“m A P A

[38] A. C. D. van Enter, R. Fema.ndw, and A. D. Sokal. Regula.nty properties and
pathologies of position-space renormalization-group transformations: scope and
limitations of Gibbsian theory. J. Stat. Phys., 72:879-1167, 1993. 7T’ STPA

[39] M. Zahradnik. An alternate version of Pirogov-Sinai theory. Commun. Math.
Phys., 93:559-5581, 1984. : .

73





