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Abstract 

In search for the possible long range force between hadrons, S-wave phase shift 

data of the proton-proton scattering are analysed. In the analysis, the once subtracted 

Kantor amplitude is calculated, and the one-pion exchange contribution is separated. 

The remainder of the Kantor amplitude has a huge cusp at the threshold with the 

attractive sign. It is shown that such a cusp cannot be fitted by the spectral function 

of the two-pion exchange, since it starts at t =4;.t~·.  The cusp is fitted by a potential 

of the long range type with the asymptotic form of VCr) ...., _GirO. After the chi 

square search, it turns out a is 6.1 ...., 7 and G is positive and has the strength of 

the strong interaction. It is consistent with the potential of the strong van der Waals 

force. The transition from the London type to the Casimir-Polder type of the van der 

Waals interaction is examined. Possible experiments to observe directly such a long 

range force in the nuclear force are also indicated. 

Sixty years ago, Yukawa[l] proposed to understand the nuclear force in terms of the 

"heavy quanta" , which satisfied the Klein-Gordon equation with mass, and at that time the 

only particle which mediated the force was the light quanta, the photon. The experimental 

dicovery of the pion was regarded as a triumph of his idea, and people believed that the 

nuclear potential V(r) would be constructed from the meson theory, namely from the N-1I" 

vertex and also from the four-pion vertex, in short time. The calculations of the two-pion 

exchange potential by purterbation turned out to be too small compared to what was 

required in experiments, and the original programms turned out too ambitious. Efforts 

in such a direction are still going on in a little retreated form. In the recent works[2], 

which seem to be closest to the original programm, the amplitudes of the pion-nucleon 

and the pion-pion are used as inputs to caluculate the spectral function At(s, t). And in the 

calculation, the analytic continuation. and the use of the generalized unitarity relation are 

necessary. There are another type of successful approaches[3, 4, 5], which are something 

between the dispersion approach and the original one-boson exchange model. The most 

important difference is that .D. is treated as an independent particle, and therefore the 

.D.-N -11" vertex is added to the original vertices. 

Although there are a variaty of approaches to the nuclear potential from the meson 

theory, people have shared a view in common that in the outermost region of the potential, 

the one-pion exchange (OPE) term dominates. Therefore we can expect to observe the 

'pure' OPE contribution in the very low energy phenomena of the P-wave. In terms of the 

language ofthe r-space, tius is because the centrifugal force prevents for the very low energy 

particle to approach to the inner domain and the particle picks up only the information 

of the one-pion exchange potential in the process of the scattering. If we restate the same 

process in terms of the spectral function At ( s, t'), the partial wave amplitudes hi ( v) are 

the projections with factors Q({l + t'/2v)/2v, which damp as O(4vlt')(i+l», therefore 

the spectral function are suppressed in t' > 4v a.nd the suppressions are more effective 



for higher e. Since the phase shift data of the very low energy are available only for S 

snd P waves, people expected that the P-wave phase shift traces the one-pion exchange 

(OPE) curve when the incident energy T1ab decreases to zero. People were surprised when 

the Wisconsin data[8] did not show such behavior ( see figA in Section 4). Instead, the 

P-wave phase shift behaves as if there were no pion pole. Reactions of physicists at that 

time range from an optimistic one, that when we fully understand the two-pion exchange 

potential the difficulty will be solved simultaneously, to a pesimistic one that the pion does 

not exist. However I believe it is possible to adopt a third point of view[ll] that there 

exists a long range force of attractive sign which cancells the repulsive OPE potential. 

Notwithstanding the beautifulness of Yukawa's idea and subsequent discovery of the pion, 

there is no apriori reason that the nuclear force is strictly short range. This is so, especially 

when the nucleon is composite and the basic force between the constituent particles is the 

Coulombic type. In such a case, it is not surprising that the dispersive force of the long 

range nature appears as the secondary force. Therefore it must be a good idea to ask to 

Nature what the real world is. 

In this paper we shall consider the fundamental problem whether the hadron-hadron 

interaction involves the long range force. Because of the high precision, the low energy 

POp data provides an ideal place to search for the possible long range potential. In terms 

of the spectral function At ( s, t'), we are going to determine the functinal form for small 

t', especially in t' < 411-;' where in the meson theory At(s, t') is strictly zero, except for the 

C-functin of the one-pion exchange. Although it is desirable to analyse the P- or higher 

partial waves[12], almost all of the precise data of the very low energy region are available 

only in the S-wave. Therefore, instead, we shall analyse the once subtracted S-wave 

amplitude (ho{v) - ho{O»/v, and whose projection function is {QoO +2v/t')/2v - lit'} 

which damps as O({4v/t')2), namely the suppression is the same as that of the P-wave. 

The very high precision[13] of the scattering length of ISO of the Pop scattering, which is 

0.06 %, permits us to introduce the once subtracted S-wave amplitude. Since the accuracy 

of the effective range is still high, namely 0.6 %, we can even use the twice subtracted 
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S-wave amplitude, and the effect of suppression for large t' of A t {s, t') is the same as that 

of the D-wave. 

There are two prominent features in the low energy Pop scattering. The first one is the 

interference minimum[14] at Tlab = 0.38248 ± O.OOOIOMev., and which is useful in making 

the high precision determination of the coefficients of the effective range expansion. The J 
second one is the appearace of the pole of the "anti-bound state" in the S-wave amplitude 

whose location is very close to the threshold. Such a pole causes the rapid change of the 

phase shift in the very low energy region and requires a special technique when we calculate 

the pricipal value integration of the imaginary part of the S-wave amplitude without losing 

the precision of the original data. Contrary to the pole of the ordinary bound state on the 

complex v-plane, poles of the "anti-bound states" appear on the second Riemann sheet of 

v. In terms of T1ab, which is proportinal to v, the location of the pole is 'nab = -1.031Mev. 

on the second sheet, and therefore it dominates the rapid change of the phase shift of the 

S-wave of the Pop scattering in the very low energy region. 

In the present article, we shall analyse the S-wave amplitude ho{v) in search for the 

possible long range force. The first thing to do is to select a quantity which is analytic 

in the neighborhood of v = 0 when all the forces are short range. The best-known such 

quantity is y'Vcotco(v) which accepts the effective range expansion of v. However there 

is another such quantity, the Kantor amplitude[15] Ko{v), which is defined by subtracting 

the contribution of the right hand cut from the amplitude ho{v). The Kantor amplitude 

is more suitable for our aim to observe the possible singularity at v = 0 arising from 

the long range force and to determine the strength C' and the power I of the spectral 

function At ( s, t') at t' = O. Moreover I relates to the power of the asymptotic form of the 

long range potential by VCr) '" _C/r2-r+3 • Another merit to use the Kantor amplitude 

is that we can eliminate the nearest singularity arising from the short range forces, the 

one-pion excange force in our case, and we can prepare the wider domain of analyticity, 

which enables us to observe the singularity of the long range force at v = 0 more easily 

when it actually exists. 
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In Section 2, we shall introduce the Kantor amplitude and rewrite it to the form of 

the contour integration. In Section 3, the Kantor amplitude is generalized to include the 

Coulombic distortion, in order to apply to the proton-proton scattering. In Section 4, 

the Kantor amplitude of the S-wave of the p-p scattering is calculated from the phase 

shift data of the energy dependent analysis. The once subtracted Kantor amplitudes 

(Ko(v)-Ko(O))/v minus the one-pion exchange contribution are tabulated, which indicate 

a sharp cusp at v = O. In Section 5, the relation between the potential and the spectral 

function is explained. As a preliminary study, the Kantor amplitude is fitted by one 

or two poles of the one-boson exchange type. In Section 6, the once subtracted Kantor 

amplitude of the S-wave is analysed, the chi square minimum is searched to determine 

the threshold behavior of A t ( 4m2 , t') at t' = O. The results of the fits indicate the strong 

van der Waals interaction between protons. In Section 7, in order to confirm the van 

der Waals interaction, the transition from the London type to the Casimir-Polder type 

is examined. Possible new experiments to observe the strong van der Waals interactoin 

directly, is suggested. Section 8 is reserved for comments and discussions. One of the 

topics discussed is the reason why the long range force in the nuclear force has escaped 

our observation for such a long time when the strength of such a force is not a small 

correction to the short range interactions. 

2. The Kantor Amplitude 

In this section, we shall consider scatterings by a short range potential, and inclusion 

of the Coulombic potential will be done in the next section. It is well-known that 

Xt(v) = vt+1/2 cot Ot(v) (1) 

is regular at II =0, and can be expanded in terms of II, where II is the momentum in the 

center of mass system squared. Partial wave amplitudes relate to the phase shifts Ol(II) in 

the elastic region by 
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v'm2 + v ·0 ( ) •
hl(v) = ~e' l smc5t (v). (2)1/ 

From Eqs.(l) and (2), 

ht(v) ~  

(3)
~ = Xt(v) - iy'V vt 

Since we analyse the S-wave amplitude in this article, we set e = 0 hereafter, however 

equations for the higher partial waves are recovered if ho(v) is replaced by h[(v)/vl . The 

integral representation of the partial wave amplitude is 

1j-a/4 fm ho(v')d' lloo fm ho(v')d ' h () v+- (4)oV=- v 
"K -00 (v' - v) ?l" 0 (v' - v) 

where va is the smallest mass of the exchanged states. The right hand cut ( v > 0 ) is the 

unitarity cut and whose spectral function fmho(v') is determined directly from the phase 

shift data. By collecting the terms, which are calculated from the experimental data, in 

the integral representation of Eq.(4), the Kantor amplitude Ko(v) is introduced by 

Ko(v) =c ho(v) _.!. 100 

fm ho(v') dv' (5)"Kio (v'-v) 

, and Eq.(4) becomes 

_.!.j-a/4 f m ho(v') ,
Ko(v) - (') dv . (6) 

11' -00 V - v 

Equation(6) indicates Ko(v) is regular at v = 0, and the nearest singularity occurs 

at v = -a/4. For p-p scattering, a = I-'~, where j.Lo is the mass of the neutral pion. 

When we need the wider domain of analyticity, we subtract the contribution of the one­

pion exchange, then a moves to 41-'5, which corresponds to the threshold of the two-pion 

exchange spectrum. When we calculate Ko(v) for real positive values of v, we must 

evaluate the pricipal value integration in Eq.(5), however the direct numerical integration 

is extemely difficult because the "anti-bound state" causes the rapid change of oo(v), and 

it does not respect the ordinary threshold behavior except in the region of extremely small 

value of II. 

However the difficulty is bypassed, if we first calculate K~fJ  (II). We introduce a poly­

nomial X~fJ(v), which is the effective range expansion of XO(II) defined in Eq.(l). h~JJ(II) 
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and J(~JJ(v)  are obtained from Eqs.(3) and (5) simply by substituting Xo(v) by X~JJ(v). 

We point out .that from Eq.(3) h~JJ(v)  is a meromorphic function· on the k-plane, where 

k == ..,jV. The upper half k-plane corresponds to the first sheet of v. We claim 

J{~JJ(v) == L Res(h~JJ (Vj )) (7) 
j (v-Vj) 

, where Res(h~fJ(vi)) are the residues of the poles, and the sum extends to all the poles 

on the first sheet of v. This is shown by writing the Kantor amplitude in the form of the 

contour integration : 

Ko(v) == _~ [ dv,ho(v') (8)
21rt ic v' - v 

, where the contour C is given in Figure 1. When Xo(v') is a polynomial of v', such 

as X~ff  (v'), then the singularities in the closed contour C are the poles of ho(v').t 

Therefore we can evaluate the contour integration by using the positions of the poles 

and their residues. The numerical evaluation of the correction to J{~JJ(v) to obtain 

Ko(v) is straightforward, because the spectral function of the principal value integration 

is Im(ho(v') - h~fJ(v')), which does not involve the dominant effect of the "anti-bound 

state" . 

Finally, in order to guarantee the convergence ofthe integral representation Eq.(4) of 

the S-wave amplilude, we shall consider the once subtracted form of the Kantor amplitude 

Ka1)(v), which is 

K~l)(V)  == Ko(v) - Ko(O) (9)
v 

From the effective range parameters and the phase shift data, we can determine the precise 

values of the once subtracted Kantor amplitude Ka1)(v) by 

K(l)(V) == " Res(h~ff (Vi)) + [~K(l)(V)]R + [~K(l)(V)lr 	 (10)
o� ~ Viv-vi) 0 0� 

1� 

·Strictly speaking, this is true in the nonrelativistic approximation in which ../m2 + II in Eq.(3) is 
replaced by m. 

tThis is true for more general case, where XO(II') is a meromorphic function of...;v; . 
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, where the corrections consist of two terms, which come from the real and imaginary part 

of (ho(v) - h~JJ(v)) respectively. They are 

[~Kal)(v)]R  = Re(ho(v) - ho(O) _ h~Jf(v) - h~Jf(O))  (11) 
v v 

, and 

[~K(l)(V)lr  == !:.. [00 Im(ho(v') - h~ff (v')) dv' (12) 
o 1r io v'(v' - v) 

, where P stands for the principal value integration. 

3. The Kantor Amplitude with Coulomb Interaction 

In this section, we consider the more practical case of the electric plus short range 

interactions. The electric interaction means the Coulombic interaction modified by the 

vacuum polarization effect, whose potential is 

21"00 -rYi 2 2 ~2VVGC(r).== A~ dt _e-(1 +~)  1-~  (13) 
r 4m~  2t t t 

, where me is the mass of the electron, and A = 2a:/31r = 1.549 x 10-3 . It is well-known 

that the quantity Xo(v) which accepts the effective range expansion of v is modified to 

C2..,jV
Xo(v) == ~[(1 + Xo) cot cC: - tan TO] + me2h(1]) + me21o(1]) (14)

1- '/'0 

, where 

me2 

2 ~, with 1]= 2..,jV� (15)Co == e21r1J _ 1 

, and 

00 1 
h(1]) == 1]2 L £(£2 ?\ -log 1] - 0.57722···. (16) 

l=l + 1] 

TO is the S-wave phase shift due to VVGC(r), and three other functions Xo , <Po and 10(1]) 

appeared in Eq.(14) are also small quantities of order of magnitude of the vacuum polar­

ization potential. These functions are defined in [17]. Since these four functions are quite 

small, we shall neglect them, or treat them by perturbation, if it is necessary. 

The S-wave amplitude ho(v) is also modified to 
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1 Jm2 +vei8f(v)sin~~(v)ho(v) = CJ v (17) 

, and which relates to Xo(v) by 

Jm2 +v 
(18)

ho(v) = Xo(v) - me2h(TJ) - i.ji/CJ" 

When Xo(v) is a polynomial of v, inclusion of the Coulombic interaction causes small 

shifts of poles of ho(v) on the k-plane, which is related to v by k =.ji/. However an 

additional series of poles and a logarithmic cut appear on the lower half k-plane, namely 

on the second sheet of the v surface. On the other hand, the analytic structure of the first 

sheet of the v surface remains the same. 

The situation will become clear if we introduce", by '" = (e- i"'v)I/2, which maps the 

real negative axis of the first and the second sheet of the v-surface to real positive axis and 

real negative axis of the'" plane respectively. Two terms in the denominator of Eq.(18) 

are rewri tten as 

2 2me me
-me2 h(TJ) - iy0C5 = '" +me2{log ~ - tP(1 +~)} (19) 

, where tP(z) is the digamma function and has poles at nonpositive integers of z. In between 

such poles, the denominator of ho(v) given in Eq.(18) vanishes. It is also worthwhile to 

notice that ho(v) is a real function of", where v = _",2. Since no additional singularities 

appear in the first sheet of the v-surface, when we include the Coulombic distortion of the 

scattering, we can use the same technique in computing the Kantor amplitude as that of 

the previous section. 

There is another way to make the principal value integration manageable. We can 

arbitrarily subtract a function of zero-Kantor amplitude such as 

iC 
(20)f(v) = k + ia ' with a> 0 

, or its generalization, where C is real and k is (v )1/2. Since the pole stays on the second 

sheet of v, its Kantor amplitude vanishes. However the spectral function does not vanish, 

rather Imf(v) = C.ji//(v +a2 ). Therefore if we choose the position of the pole of f(v) at 

8 

or close to the location of the pole of the "anti-bound state" of ho(v), then the spectral 

function of (ho(v) - f(v)) becomes slowly varying function of v, as long as we select the 

residue iC suitablly. At any rate, our aim is to calculate the Kantor amplitude Ko(v) 

without reducing the precision of the input phase shift data. 

4. Numerical Results of the Kantor Amplitude 

In the previous two sections, we described the calculation of the Kantor amplitude from 

the phase shift data. In the data selection, following two points are important. Firstly, 

in order to observe possible singularity of the Kantor amplitude at v = 0 , precise data 

in the very low energy region are required. Secondly, the input phase shift. must he a 

smooth function of v , because of the principal value integration involved in evaluating 

the Kantor amplitude. In the present paper, we shall analyse the energy dependent phase 

shift data of the Nijmegen group in the low energy region ( T1Clb ~ 30Mev.) [21). Data of 

the intermediate energy region ( 50 ~ T1Clb ~ 350Mev.) are those of the same group in a 

different paper [22). In the higher energy region, the data of Arndt et.al.[18)[19]{20] are 

adopted, and which are used to estimate the contribution from the higher energy tail of 

the principal value integration of Eq.(12). 

Since the low energy data of the Nijmegen group involve the precise and detailed table 

of 0.1Mev. ~  7lClb ~ 3.0Mev. region, we can use these data to obtain the effective range 

parameters of Xo(v). However if the long range force is exerting, Xo(v) is actually not 

analytic at v = 0, but rather it has a singularity of the form C'v2 Iog(v) for the case 

of the van der Waals potential of the Casimir-Polder type in paticular. Therefore we fit 

to the Nijmegen data in Tmin ~  T1Clb ~ 3.0Mev. when we determine the effective range 

parameters Cj' Because the lowest precise experimental data analysed by the Nijmegen 

group are those at T 1Clb ~ 0.35Mev., we consider three cases of T min = 0.25 , 0.30 and 

0.35Mev. , and the effective range curves X~ff (v) of these fits are labeled as [.c25] , [.c30] 

and [.c35] respectively. In Table 1, the effective range parameters of the cubic fit 
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X~ff (v) = Co + CIV + C2V2 + C3V3 (21) 

are tabulated. Three columns correspond to the different fits. K~ff  (v) has a real pole 

and a pair of complex poles on the first sheet of the complex v surface, (see figure 1). The 

location of the poles and their residues are given in the same table. 

By using Eq.(10), the Kantor amplitudes are calculated for the three sets of effective 

range parameters. In Table 2, the once subtracted Kantor amplitudes J(~I)(v)  minus the 

one-pion exchange contributions are tabulated, in which the 1I"-N coupling constant is 

assumed to be g2/411" = 14.4. In the same table, Xo(v) are given for convenience. The 

last column is the error of the S-wave partial wave amplitude divided by v obtained from 

the error of 00(v)[22] , and which serves to estimate the errors of our Kantor amplitudes. 

As explained in section 2, h~ff(v) is added and then subtracted in the process of the 

calculation of Ko(v) in order to make the principal value integration manageable, therefore 

we may expect that Ko(v) must be independent ofthe effective range parameters. However 

there are slight differences among the Kantor amplitudes given in columns 3 , 4 and 5 

of Table 2. The differences come from our assumption that (ho(v) - h~J J(v» = 0 in 

o $ Tlab $ 3.0Mev.. And these differences can be used in the estimation of the error of 

the Kantor amplitude in the very low energy region. 

In figure 2 , _{K~l)(v)  - K~I)tl1r(v)} is plotted against Tlab' The curve is the column 

[.c30] of Table 2. The dash curve in the same figure is the one pole fit to the data in 

50Mev. < Tlab < 240Mev. with a back ground constant, which will be explained in the 

next section. Figure 4 is the much expanded graph of the same quantity, in order to 

see the cusp at II = 0, the open circles and the closed circles in the figure correspond to 

columns [.c25] and [.c35] of Table 2, respectively. These figures already indicate that the 

once subtracted Kantor amplitude K~I)(V)  has a huge cusp of attractive sign at v = 0, 

and which are very different from what are expected in the meson theory of the nuclear 

force. In the following three sections we shall analyse the Kantor amplitude to find the 

characteristic feature and the type of the extra force. After the searches of the minimum 

of the chi square values, we shall find that the extra force is the van der Waals force with 

the strength of the strong interaction. 

In the previous paper, the Kantor amplitude KI,c(v) ofthe central combination of the 

P-waves was calculated from the phase shift 6.I ,G, which is shown in fig.4. The dash curve 

is the coritrbution from the one-pion exchange. In fig.5, -{KI,c(v)-Kf:G(v)}/v is plotted 

against T lab . In the figure, the dash curve 211" is the two-pion exchange contribution, and we 

can already recognize the cusp of the attractive sign at v =0, even in the P-wave Kantor 

amplitude. If we compare figures 3 and 5, differences of the accuracies of the curves are 

evident. Therefore we expect that we can extract much more information on the threshld 

behavior of the spectral function At (4m2 , t') from our once subtracted Kantor amplitude 

of the S-wave compared to what was obtained from the analysis of the P-wane Kantor 

amplitude. In Section 6, we shall make chi square search to determine the parameters of 

the threshold behavior of At (4m2 , t') with much higher accuracy. 

5. Potential and the Pole Fit to the Kantor Amplitude 

Let A t ( s, t,) be the spectral function of the t-channel of the scattering amplitude A(s, t) 

A(s,t) = .!. [00 dt,At(s,t') ±.!. [00 du,Au(s,u') (22)
11" ito t' - t 11" ito u' - u 

,where the u-channel spectral function Au is the same as that of the t-channel, namely 

Au ( 8, *) = At ( s, *). The plus and minus signs between the integrations of Eq.(22) corre­

spond to the spin singlet and the spin triplet states respectively. The nuclear potential of 

the central combination V(r) is related to the spectral function by a kind of the Laplace 

transformation: 

11100 
V(r) =---- dt'A (8 t')e-r.;ti (23)1I"m2 rot , . 

In Eq.(23), s is set equal to its threshold value 4m2 in order to avoid the energy dependency 

of the potential V (r), with the understanding that the potential can be useful when the 
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kinetic energy is much smaller than the energy of the rest mass, namely v ~ 2m2 
• The 

coefficient appeared in front of the integration of Eq.(23) can be checked by making the 

Fourier transformation Jd3 rexp[-iK . TJ··· of Eq.(23) to obtain Eq.(22), in which the 

momentum transfer vector K relates to the Mandelstam variable t by 

t = -IKI2 = -2v(1 - cos 0).� (24) 

The second term of the r.h.s. of Eq.(22) is obtained by simply replacing t by u,. where 

u = -2v(1 +cos 0). 

On the other hand, the partial wave projection of Eq.(22) results in 

1 1 t'ht(v) = -
00 

dt' At(s, t')Qt{1 +-) ± ( crossed term)� (25)
2v to 2v 

The left hand cut of ht(v) comes from the cut of Qt(Z) , the location of which is -1 ~  z ~ 1, 

whereas the right hand cut, namely the unitarity cut, comes from the s-cut of the spectral 

function At(s,t'). To obtain the Kantor amplitude Kt(v), we must set s appeared in 

At(s,t') in Eq.(25) equal to 4m2. Therefore the potential and the Kantor amplitude are 

related by Eqs.(23) and (25) with the mediation of the spectral function At(4m2 , tf). Our 

problem is to determine A t ( 4m2, t') from the data of the once subtracted Kantor amplitude 

K~l)(v):  

()� 1 1 4v 1 
K 1 (v) = 

00 

dt'At(4m2,t')-[-log(1 +-) - -].� (26) 
o to V 4v tf t'1

Before we determine the spectral function At (4m2 , t'), let us try the one-boson ex­

change type fits to K~l)(V)  - KJl),h(v): 

At (4m2 ,t') = ~g;  ·t12 h(t' - mJ). (27) 
i 

1.� One pole fit to the data of 50Mev. ~  Tta.b ~ 240Mev. is carried out. Chi square 

minimum (0.35)2 appears at m~  = 9.48 in the unit of the neutral pion mass.t The 

coeffient g~ is 1.91. The curve of the one-pole fit is shown in fig.2 and 3 of Section 4 

tHerea.fter we sha.1l use the mass of the neutral pion as the unit of the energyy, except when it is 
explicitely sta.ted otherwise 
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as the dash curve. This pole corresponds to the (1 meson exchange in the one-boson 

exchange model (OBE) . Deviation of the OBE fit from our Kantor amplitude in the 

very low energy region is clearly seen. 

2. One pole fit to the low energy data of T1a.b < 60Mev. is made. Chi square minimum 

(2.22)2 occurs at m~  =2.05 with coefficient g~ = 1.62. 

3.� Two-pole fit to the wide range data of Tla.b < 250Mev. is done. The chi square attains 

its minimum values of (1.29)2 at mi = 0.78 and mi = 15.3, whose coefficients are 

g~  = 0.96 and g~  = 1.66 respectively. 

These pole fits indicate that results are different from what is expected in the meson 

theory of the nuclear force. Since in the meson thory, the nuclear force is due to the 

exchanges of a pion and a set of pions. In our data in Table 2, the one-pion exchange 

contribution was already subtracted. Therefore the nearest spectra must be due to the 

exchanges of-two-pion states, whose threshold is t = 4. Our fits, especially the fit (3), 

require an effective pole around .,fi ~  1, whereas the location of the nearest effective pole 

of the meson theory must be much larger than .,fi = 2. A new mechanism other than the 

exchanges of mesons must exist, which produces a longer range nuclear force compared to 

the force arising from the two-pion exchange. In the next section we shall determine the 

type and strength of such a new force. 

6. Threhold Behavior of the Spectral Function 

In Section 5, we observed that the once subtracted Kantor amplitude minus the one­

pion exchange contribution, namely K~l)(V)  - K~l).1lr, cannot be fitted by the spectral 

function arising from the exchanges of two or more pions. Rather it requires an extra 

meson whose mass is smaller than the pion mass. However such a meson is not observed 

in Nature. Therefore we must consider other possibilities. In order to understand the 
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characteristic feature of the extra force more closely, we would like to determine the extra 

spectral function A t (4m2, t') for small t'. We are especially interested in the threshold 

behavior of such a spectral function at t' = O. It must be remembered that in the meson 

theory of the nuclear force, such a spectral function is strictly zero in t' 5 4. 

Equation (23) indicates that rVer) is the Laplace transformation of the spectral func­

tion At ( 4m2 , t') with respect to the variable..;ii. Therefore the asymptotic form of V (r) 

for large r is determined solely by the threshold behavior at t' = 0 of the spectral function. 

On the other hand, from Eq.(26), the singularity of the once subtracted Kantor ampli­

tude Ka1)(v) at v =0 is also determined by the threshold behavior of the same function 

Ate4m2, t/). In particular, when the spectral function is At = 1rC't'\ then the potential 

becomes 

VCr) = _C/2f(2')' +2) 1 (28)
m2 r 2-r+3 

,whereas the threshold behavior of the once subtracted Kantor amplitude is 

CII
K(l) v ={ V-r-

1 + ... C'Y :f: ~nteger) (29)o ( ) Cllv-r-llogv +... C'Y = mteger) 

, where CII is proportional to CI. 

In general, the asymptotic behvior of the potential and the threshold singularity of 

the Kantor amplitude at v = 0 is related each other through the spectral function. In 

particular, the van der Waals potential of the Casimir-Polder type, whose asmptotic form 

is VCr) '" -C/r1
, corresponds to')' = 2 ofthe threshold behavior of the spectral function, 

and the singularity is K~l){v) = Cllv log v +.... In the same way, the potential of the 

London type corresponds to ')' =1.5, and the threshold behavior is Ka1)(v) =CII../V+ .... 

In order to find the power')' of the threhold behavior from our once subtracted Kantor 

amplitude, the chi square minimum is searched with the spectral function of the form: 

At(4m2 , t') = 1rC1t!-Ye-{3t' (30) 

in which the exponential factor is necessary to make the integration of Eq.(26) convergent, 

and the parameter 13 must be small compared to the size squared of the composite system. 

The projection factor appeared in the integrand of Eq.(26) is 

1 1 t' 1 1 1 4v 1
-{-Qo(1 + -) - -} = -{-log(1 + -) --} (31) 
v 2v 2v t' v 4v t' t' 

for the once subtracted Kantor amplitude, and which dampes as (4v /t')-2 for large t'. 

Because of such damping property of the projection factor in Eq.(26), the value of the 

spectral function At (4m2 ,t') in t' ;;: 4v does not sensitively relate to Ka1 )(v). Therefore 

when we fit to Ka1 )(v) in the domain of 0 < v < V max to extract information about 

At ( 4m2, t'), we can not expect to obtain precise information on the spectral function in 

the region of t' ;;: 4vmax . In this paper we are going to analyse the Kantor amplitude in 

05 Tlab 5 30Mev. , namely in 0 5 v 5 0.77, we can expect to obtain reliable information 

about the spectral function At ( 4m2 , t') only in 0 < t' < 3. 

In fig.6, on the ')'-13 plane the chi values per data point X(')',13) are plotted as the contour 

curves. Since the fitting function of Eq.(30) involves three free parameters, namely C' , ')' 

and 13, the minimun value X of the function xC'Y,13) is obtained by varying the coefficient 

C1 with')' and 13 fixed. Because the differences of the Kantor amplitudes of columns 3, 4 

and 5 of Tabie 2 are small, we analyse only the data of column 4, namely [.c30] , and in 

the chi square search we used the error estimation of Ka1)(v) 

(1) { 0.005/../V (32)D.(Ko (v» = 0.02, if v < 0.0625 . 

This error estimation was already used in the pole fits in section 5. We carried out the 

chi square fit to the once subtracted Kantor amplitude in various domains [ 0, Tmax], and 

the fig.5 is an example for Tmax = 26 Mev. among such fits. When we change the fitted 

domains, the graphs of the contour curves also change slowly, however there remains a 

pattern in common, that is on the 1-13 plane, there is a narrow trench of X(')',13). Therefore 

it is convinient to introduce a function Xmin(')') : 

XminC'Y) = min xC'Y,13). (33)
(3 

Curves in fig.7 are the plots of XminC'Y) against')' for different fitted domains [ 0, Tmax]' 

In the figure, values of Tmax are witten in the unit of Mev.. We can observe in the figure 

that as the fitted domain shrinks the bottom of the curve becomes shallower and therefore 
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the minimum point "I cannot be sharply determined. However this fact is not so surprising, 

because the shrink of the fitted domain means the decrease of the number of the data to 

be fitted, while the number of the free parameters remains the same. What is really 

important is that the minimum point "I increases slowly as the fitted domain shrinks. In 

section 7, physical meaning of such phenomena will be considered. 

7. Van der Waals Potential and the Transition from the London to the 

Casimir-Polder Type 

The chi square search in the previous section indicates that the power "I of the threshlod 

behavior introduced in Eq.(30) turns out to be 1.55 < "I ~ 2., and the coefficient C 1 is 

positive. From these results, the asymptotic behavior of the potential VCr) ~ -C/rOt is 

determined. Equations (23) and (28) indicate that the sign of the potential is attractive, 

and 6.1 < 0: ~ 7. Before we conclude that the extra force is the van der Waals force, it is 

desirable to examine the transition from the London type (0: = 6) to the Casimir-Polder 

type (0: = 7), which is expected in the general theory of the van der Waals interaction.[24] 

There is a characteristic length re , which is around the Compton wave length of the 

excitation energy to the states which are accesible from the ground state by the absorption 

of a vector particle. For our case of the proton, using the mass difference of the d-particle 

and the nucleon, r c ~ 0.6fm.. In the region r ~ re , the potential behaves as the Casimir­

Polder type, whereas the region ro ~ r ~  Tc is that of the London type, where ro is the 

size of the composite particle. 

The neighborhood of r = Tc belongs to the transient region. In terms of the spectral 

function, te , which is the excitaion energy squared and separates the two types of spectra, 

is equal to 4.8. Therefore when we fit to the Kantor amplitude in the relatively low energy 

domain, only the spectral function of the Casimir-Polder region contributes, because the 

factor in the integrand of Eq.(26) damps as (4v/n2
• As the fitted domain [O,Tmar] 

expands, the contribution from the London region of the spectrum becomes more and 

more important, and the power "I of the minimun point of X must approaches to 1.5 . In 

fig. 7, we can see such a behavior of the moving bottom point. 

In Table 3, the dependency of "I , the minimum point of the chi value, on the fitted 

domain [0, Tmax] is given. The first column is the fitted domain. Columns 2, 3 and 4 are 

"I, /3 and C 1 respectively. In fig.8, "I , at which Xmin("() attains its minimum value X[min), 

is plotted against Tmar , the upper bound of the fitted domain. The dashed curves are 

the "I'S at which X are 5 per cent larger than the minimum value of Xminb), namely the 

solutions of 

(1 + O.05)X[min] = Xmin("(). (34) 

For small shift, the solution of Eq.(34) is l::i:y = (X~in/2Xmin)-1/2J0]5, and the coefficient 

of the right hand side is tabulated in column 5 of Table 3. The last column is X[minJ. 

Figure 8 shows that "I increases slowly as the domain [0, Tm =] shrinks, and which is 

consistent with the transition from the London type to the Casimir-Polder type of the van 

der Waals interaction.[24] However at present, data are not accurate enough to confirm 

that "I approaches to 2 as Tmar goes to zero, or in terms ofthe potential the relevant region 

r tends to infinity. From Table 3, the coefficient C1 of the spectral function at "I = 2 is 

C1 = 0.483 for "I = 2 (35) 

, which is to be compared with C1 =0.64 obtained from the analysis of the P-wave phase 

shift in the previous paper.[12] In view ofthe lower accuracy of the P-wave phase shift data, 

these values are not inconsistent. If we use Eq.(28), the coefficient C of V(T) '" -C/r7+... 
is 

C = 2.40 (36) 

in the unit of the Compton wave length of the neutral pion, and which will become an 

important constant when we construct a new nuclear potential based on the strong van der 

Waals interaction as well as the meson exchanges. It is interestig to see that the spectral 

function of Eq.(30) has a peak at tl ="1//3, and which is numerically around 20 if we take 
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average of data in 7Mev. < Tmax < 30Mev. of Table 3 , where the region stays away ofthe 

Casimir-Polderregion. The peak at v'ipeak ~  600Mev. gives another interpretation of the 

fictitious (T-meson in the one boson exchange model of the nuclear potential. Investigations 

of this direction and the potential making will appear in a separate paper. 

It is desirable to observe directly the effect of the strong long range force as the dif­

ference of the interference pattern with the Coulombic peak from what is expected in the 

case of the short range nuclear potential. The most favorable incident energy is around 

T'ab = 15Mev. '" 30Mev., and the required precision of the measurements of the angular 

distribution of the cross section is 0.2% . Since we are going to observe the singularity at 

t = 0, data of the smaller angular region are necessary, and the ordinary angular domain 

of the data taking, which is usually 120 ~ (J'ab ~ 1680 
, is not sufficient. Details will be 

given also in a separate paper. 

In general, as the incident energy Tlab decreases the the required precision of the 

measurements increases, although the requirement on the angular domain becomes some 

what less severe. As an extreme example, we shall mention the p-p scattering in 0.35 

Mev.< T'ab < 2 Mev.. In such a low energy scattering, data are usually fitted by the 

amplitude which is the sum of the terms of Coulomb, vacuum polarization and the S­

wave plus P-wave terms arising from the short range potential. The term of the vacuum 

polarization is not negligible, since it is around 0.5% of the Coulomb term. If P-wave 

phase shift 6. t ,c(v) is brought from the phase shift of higher energy, only free parameter 

is co(v). However if there is the van der Waals intera~tion with the strength determined in 

this paper, the angular distribution of the cross section cannot be reproduced by varying 

the single free parameter co(v). Rather, roughly speaking, the effect ofthe attractive van 

der Waals force is to reduce the repulsive term of the vacuum polarization in some extent. 

Wassmer and Miihry(16] claimes that their data of the p-p cross section at T'ab = 1Mev. 

measured with accuracy of 0.1% can be fitted well if the term of the vacuum polarization 

is reduced by a factor 0.4 . However the situation is not settled well, since the angular 

distrbution of the cross section at the same energy measured by Thomann, Benn and 
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Miinch[14] can be fitted without reducing the vacuum polarization term. 

8. Discussions and Comments 

In the present paper, it is shown by analysing the once subtracted S-wave Kantor 

amplitude that the nuclear potential must involve the long range potential whose asymp­

totic form is VCr) '" -GirO. The power a is determined, which turns out 6.1 < a .$ 7. 

, and moreover a increases slowly from 6.1 to 7 as the relevant value r of the potential 

increases. We can regard the phenomenon as the transition from the London type (a = 6) 

to the Casimir-Polder type (a = 7) of the van der Waals interaction. It is important to 

emphasize that the long range force is not a small correction to the short range force in 

the nuclear force. Because the total value of the once subtracted Kantor amplitude of the 

S-wave at v = 0 is -12.02, while the contribution from the one-pion exchange is -7.20 , 

and the remainder is -4.82 , which is tabulated in the first line of Table 2. We analysed 

the remainder by assuming that it came from the spectral functions of the long range 

interaction plus the short range interactions other than the one-pion exchange. 

It is instructive to consider why the long range force of the nuclear force has escaped 

our observation for such a long time, when the portion of the contribution from such an 

extra force is as large as around 40 % of the nuclear phenomena. When the predsins of 

the data are not very high, the pole of the (T-particle or in general the spectral function 

starting at t' =4, plays the role of the spectrum of the long range force, and reproduces 

approximately well the required amplitude. Therefore in such a case, in order to observe 

the effects of the long range force in a clear-cut way, we must calculate the spectrum 

of the two-pion exchanges and subtract it. Such situations are common in the hadron­

hadron scattering, where the measurements with a few per cent error are regarded as 

the ' accurate experiments '. However the nucleon-nucleon scatterings are prominent 

exceptions. Especially, the low energy data of the proton-proton scatterings attain the 

accuracy of 0.1 % f"V 0.2%, and therefore it is not necessary to subtract the contributions 
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from the two-pion exchanges, in order to observe the long range force. It is sufficient to 

subtract only the singularity of the one-pion exchange. 

The most of the information of the low energy scattering with high precision are 

cocentrated in the phase shifts of the S-wave h!(v) , and to some extent in h1,c(v) , the 

central combination of the P-wave phase shifts. Since to recognize the long range force is to 

observe a new singularity at v = 0 in the partial wave amplitudes ht(v), we must prepare 

the wide analytic domain by eliminating the known near-by singularities. The nearest left 

hand singularity is that of the one-pion exchange amplitude h}'lI" (v). The eliminations of the 

unitarity cut of ht(v), which starts at v = 0, are performed by introducing the effective 

range function Xt(v) of Eq.(l). However because Xt(v) is essentially the invese of the 

partial wave amplitude ht(v), we can not eliminate the one-pion singularity from Xt(v) 

by using the mass and g2/41f of the 1f-N coupling alone. Therefore the use of the Kantor 

amplitude of Eq.(5) is essential. The numercal evaluation of the Kantor amplitude of the P­

wave is straightforward, because the principal value integration is only the small correction 

to Re(hI (v)) due to the threshold behavior of the phase shifts of the higher partial waves. 

On the contrary, in the evaluation of the S-wave Kantor amplitude, especially of the once 

subtracted Kantor amplitude, the numerical calculation of the principal value integration 

is prohibitive, because of the anti-bound state of the S-wave. To circumvent such difficulty, 

we have to use the technique explained in section 2. After we can overcome these hurdles, 

we obtain the once subtracted Kantor amplitude of the S-wave, where we can see the 

completely different scenary from what is expected in the meson theory of the nuclear 

force. 

Let us turn to the universality. If the van der Waals interaction is universal[25], we 

must expect to observe such forces in other types of hadron-hadron scatterings. However 

at present accuracies of measurements of such scatterings are much lower compared to 

the p-p scattering. Moreover since the scattering lengths are not determined with high 

accuracy, we must use the data of the P-waves. I analysed the pion-nucleon and pion­

pion scatterings. However because of the accuracy, I had to separate also the spectral 

function arising from the two-pion exchanges in order to make it easy to observe the effect 

of the van der Waals interaction. By assuming "y = 2 , the coefficients C~.N and C~''lI"  

were determined, and they were 0.16 and 0.031 respectively[26, 27]. These coefficients 

must satisfy the factorizability condition with the coefficient of the N-N scattering given 

in Eq.(35), namely 

(C~.N)2 = CN.NC~'1r'  (37) 

However at present there is 25% discrepancy between the numerical values of the right 

and the left hand sides of the equation. 

Finally, when the strong van der Waals force appears in the hadron-hadron interaction, 

and the van der Waals force arises as the secondary force of the basic Coulomb interaction 

between the constituent particles, it is tempting to regard the 'charge' of the basic Coulomb 

force as the colour. However after the strength C of the van der Waals potetial is known, 

there is a lower bound of the coupling constant *e2 of the basic Coulomb force, which is 

around 10. Therefore the coupling constant of the QeD seems to be too small. On the 

other hand Dirac's magnetic monopole, whose coupling constant is *e2 =137/4, will be a 

good candidate[28]. Details of such estimation will be published in a separate paper. 
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Figure Captions 

Fig.! The contour C of the integration on II' in Eq.(8). 

Fig.2 _{K~l)(II)  - K~l),l..-(II)}  is plotted against T'Bb' The curve is the column [.c30] 

of Table 2. The dash curve is the one-pole fit to the data in 50Mev. < T'Bb < 240Mev. 

with an additional back ground constant. 

Fig.3 Amplified graphs of the low energy region in the box of fig.2. are displayed. 

The curve is [.c30] of Table 2, whereas the the open circles and the closed circles are the 

column [.c25] and [.c35] of the Table 2, respectively. The dash curve is the same as that 

of fig.2. The cusp at II = 0 indicates the long range force with attractive sign. 

Fig.4 The central combination ~l,C  of the P-wave phase shifts is plotted against T'Bb' 

Open squares are Wisconsin data,[8] open circles are Kyoto data[9] and closed circles are 

Minesota data.[lO] The closed square and closed triangle are data of [6] and [7] respectively. 

Dash curve is the one-pion exchange contribution (OPE). 

Fig.5 The P-wave Kantor amplitudes with error bars are shown, namely {K1,c(v) ­

Kt:C(II)}/1I are plotted against T'ab' The graphs, especially the sizes ofthe errors, must be 

compred with the graphs of the same quantity of the once subtracted Kantor amplitude 

of the S-wave displayed in fig.3 . 

Fig.6 Contours of chi per data point on the -y-f3 plane. {K~l)  (II) - K~l).lll" (II)} is fitted 

using the spectral function of the form At(4m2, t') = 1rC't"'Ye-l3t'. The energy domain of 

the fitted data are 0 < T'Bb < 26Mev.. 

Fig.7 Curves of Xmin(-Y) are plotted against -y. Curves correspond to different fitted 

domains [0, TmBx]. Tmax are 26 Mev., 18 Mev., 12 Mev., 8 Mev. and 4.5 Mev. respectively. 

We can observe that the minimum point -y increases slowly as the fitted domain shrinks. 
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Fig.8 -y of the minimum point is plotted against Tmax, the upper bound of the fitted 

domain [0, Tmax]' The dash curves are the values of -y at which Xmin(-Y) are 5% larger 

compared to the minimum value X[min] to show the uncertainty of -y. 

Table Captions 

Table 1 Table ofthe coefficients Cj of the effective range expansion XO(II) =E;=o CjVj 

of the S-wave amplitude. K~ff  (v) has a real pole and a pair of complex poles. The location 

lip and the residue rp of the real pole, and also lip' and rp' of the complex pole are 

tabulated. Three columns correspond to different effective range fits which are obtained 

by fitting to the data in different domains Tmin :::; T'ab :::; 3.0Mev .. Tmin are 0.25 , 0.30 

and 0.35 Mev. , and whose labels are [.c25] , [.c30] and [.c35] respectively. 

Table 2 The first column is the incident energy T'ab in Mev.. The second column 

is XO(II) . The third, fourth and fifth columns are {K~l)(II)  - K~l),l1r(II)} , in which the 

adopted effective range parameters are obtained by fitting to the data in 0.25 :::; T'Bb :::; 3.0 

, 0.30 :::; T'ab :::; 3.0 and 0.35 :::; T'ab :::; 3.0 in Mev. respectively. The sixth column is the 

error of ho(II)/V, and which is useful to estimate the error of the once subtracted Kantor 

amplitude, namely ~K~l)(II)  . 

Table 3 The minimum points (-y, f3) of X(-y, f3) are tabulated for various fitted domains 

(O,TmBx )' The first column is the fitted domain. The second, third and fourth columns 

are -y , f3 and the coefficient C' respectively at the minimum point. The fifth column is 

(X~in(-y)/2Xmin(-y»-1/2 , which is proportional to the uncertainty of -y. The last column 

is the minimum value of chi X{minl: We can observe that as the fitted domain shrinks -y 

moves slowly from the London value (-y = 1.5) to the Casimir-Polder value (-y = 2.0). 
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Table 1. 

I curve I [.c25] 

Fitted .25 ::; Tlab ::; 3.0 
region (Mev.) 

Co 0.187156 
Cl 0.95666 
C2 -0.3482 
C3 1.0842 

lip -0.53315 
rp 4.2848 

~(lIp') 0.62701 
CS(lIp,) -0.84972 
~(rp,)  -0.80053 
CS(rp, ) 2.5913 

I [.c30] 

.30 ::; llab ::; 3.0 
(Mev.) 

0.187161 
0.95627 
-0.3389 
1.0174 

-0.54146 
4.3653 
0.64209 

-0.87519 
-0.82409 

2.6155 

I [.<:35] 

.35 ::; llab ::; 3.0 
(Mev.) 

0.187162 
0.95621 
-0.3376 
1.0079 

-0.54268 
4.3772 
0.64433 

-0.87899 
-0.82759 

2.6190 

Table 2. 

Tlab(Mev.) 

0� 
1� 
2� 
3� 
4� 
5� 
6� 
7� 
8� 
9� 
10� 
12� 
14� 
16� 
18� 
20� 
22� 
24� 
26� 
28� 
30� 
35� 
40� 
45� 
50� 
60� 
70� 
80� 
90� 
100� 
120� 
140� 
160� 
180� 
200� 
220� 
240� 

X O(II} 

.18716 

.21158 

.23610 

.25950 

.28315 

.30665 

.33008 

.35344 

.37677 

.40008 

.42344 

.47017 

.51702 

.56406 

.61135 

.65899 

.70704 

.75559 

.80471 

.85449 

.90502 
1.0379 
1.1766 
1.3218 
1.4735 
1.7949 
2.1749 
2.5366 
2.9706 
3.459 
4.662 
6.296 
8.66 
12.4 
19.3 
36.1 
142. 

K61)(II} - K61
),l1r (11) 

ti.hO(II}/1I
[.c25] [.c30] [.c35] 

-4.8701 -4.8238 -4.8172 ... 
-4.6629 -4.6344 -4.6303 .102 + i.223 
-4.4856 -4.4693 -4.4670 .061 + i.168 
-4.3394 -4.3293 -4.3279 .027 + i.121 
-4.2302 -4.2226 -4.2215 .001 + i.083 
-4.1402 -4.1343 -4.1335 -.019 + i.053 
-4.0502 -4.0453 -4.0446 - .028 + i.034 
-3.9752 -3.9710 -3.9704 - .028 + i.026 
-3.9084 -3.9047 -3.9042 -.022 + i.026 
-3.8447 -3.8414 -3.8410 -.014 + i.027 
-3.7858 -3.7829 ~3.7825  - .010 + i.026 
-3.6810 -3.6785 -3.6782 -.007 + i.018 
-3.5886 -3.5865 -3.5863 -.005 + i.014 
-3.5053 -3.5034 -3.5032 -.004 + i.012 
-3.4292 -3.4275 -3.4273 -.003 + i.Oll 
-3.3589 -3.3574 -3.3572 - .003 + i.011 
-3.2933 -3.2918 -3.2916 - .002 + i.Oll 
-3.2305 -3.2291 -3.2289 - .002 + i.011 
-3.1707 -3.1694 -3.1692 - .001 + i.009 
-3.1126 -3.1113 -3.1111 - .000 + i.008 
-3.0508 -3.0496 -3.0495 .0001 + i.0073 
-2.9226 -2.9215 -2.9214 .0007 + i.0058 
-2.8235 -2.8224 -2.8223 .0008 + i.0052 
-2.7391 -2.7382 -2.7381 .0008 + i.0048 
-2.6650 -2.6642 -2.6641 .0009 + i.0043 
-2.5299 -2.5293 -2.5292 .0014 + i.0030 
-2.4075 -2.4070 -2.4069 .0016 + i.0024 
-2.2962 -2.2958 -2.2957 .0016 + i.0022 
-2.1948 -2.1944 -2.1943 .0016 + i.0021 
-2.1019 -2.1015 -2.1015 .0016 + i.0019 
-1.9396 -1.9393 -1.9392 .0018 + i.0015 
-1.8009 -1.8006 -1.8006 .0019 + i.0012 
-1.6803 -1.6801 -1.6800 .0020 + i.0010 
-1.5742 -1.5740 -1.5739 .0019 + i.0007 
-1.4797 -1.4796 -1.4795 .0018 + i.0004 
-1.3951 -1.3949 -1.3949 .0016 + i.0002 
-1.3185 -1.3184 -1.3184 .0015 + i.OOOl 

26 27 



Table 3. 

fitted domain 

in Mev. 

min. point 

/' {3 

coefficient 

C' 

2x,,/,.ntl
Xm ... 'Y 

min. value 

X[min] 
1m 1/' ~' 

( O. ,4.0 ) 2.198 .2811 .5777 .7964 .2209 
( O. ,4.25) 2.048 .2173 .5048 .6999 .2696 
( O. ,4.5 ) 1.938 .1740 .4556 .6354 .3080 
( O. ,5.0 ) 1.815 .1298 .4049 .5218 .3386 
( O. ,6.0 ) 1.777 .1172 .3902 .3924 .3125 
( O. , 7.0 ) 1.759 .1116 .3842 .3140 .2902 
( O. ,8.0 ) 1.711 .0976 .3691 :2632 .2923 
( O. ,9.0 ) 1.681 .0893 .3602 .2261 .2885 
(O. , 10. ) 1.663 .0848 .3555 .1971 .2795 
( O. , 12. ) 1.633 .0773 .3479 .1596 .2709 
( O. , 14. ) 1.605 .0709 .3418 .1388 .2745 
(0. , 16. ) 1.584 ,0662 .3376 .1243 .2785 
(0. , 18. ) 
(0. ,20. ) 
(0, ,22. ) 
(0. ,24. ) 

1.569 
1.559 
1.554 
1.556 

.0632 

.0612 

.0602 

.0606 

.3349 

.3334 

.3326 

.3328 

,1120 
.1012 
.0915 
.0841 

.2776 

.2720 

.2627 

.2528 

.)1/ Vp' 
X 

(0. ,26. ) 1.566 .0623 .3339 .0842 .2615 
( O. ,28. ) 1.581 .0652 .3355 .0967 .3068 
( O. ,30. ) 1.616 .0716 .3385 .1605 .5036 

X

V;I 

Fig1 
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