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Abstract
L~RRARY

We analyze the stationary spherically symmetric Einstein-massless-scalar-

field equations and show numerically that the solutions, especially the scalar

field, are globally regular up to the lapse function which is singular at infin-

ity. Nevertheless, several curvature invariants are globally regular and vanish

asymptotically. The asymptotic space has a deficit solid angle. The rotation

curve and the density let suppose a matter model for dark halos of galaxies.

High values of the redshift speak in favor of a quasar model.,--------
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Introduction. Spherically symmetric astrophysical objects are described by the Ein

stein equation. The only possible vacuum solution is the Schwarzschild one, interpreted as

black hole, possessing a singularity at the center and an horizon at r = 2M. Self-gravitating

(ideal) fluids prevent such irregularities as known in the cases of white dwarfs and neutron

stars [1]. Self-gravitationally bound states using photons, Le., the Maxwell field, so-called

geons, were found by Wheeler [2]. For constructing the spherically symmetric solutions it

was necessary to have a combination of several frequencies of electromagnetic waves.

By taking scalar matter both singular and regular solutions can occur. Scalar matter,

as represented by a scalar field, describes the ground state of all scalar particles which can

possess mass, self-interaction, and stationarity: The stationarity is related to the conserva

tion of particles and prevents irregularities (if one chooses the right central conditions). The

so-called boson stars are the best example, which consist of stationary massive scalar parti

cles [3-6]. If one adds an additionally repulsive self-interaction for each bosonic particle, the

boson star can reach the size of a neutron star [7,8]. Real nlassive scalar particles cannot

prevent singularities [9]; the same is valid for real massless scalar particles [10]. It was shown

that the singularities at the center correspond to a pointlike singular event horizon whereas

static, bare black holes (no naked singularities) can be endowed with no exterior scalar field

[11]. Time dependent real scalar fields with regular boundaries can save the regularity, as

in the case of the oscillating soliton stars [12]. In our Letter we show that 11lassless station

ary scalar particles produces a globally regular scalar field solution. Only one frequency is

necessary in contrast to the geons.

Einstein-scalar-field equations. The Lagrange density of a massless self-gravitating

scalar field reads

(1)

where R is the curvature scalar,1'\;= 87rG, G the gravitation constant (li = c = 1), 9

the determinant of the metric gp,v, and q> the massless complex scalar field. Then we find

the coupled system Rp,l! - !9p,vR = -1'\;T'LlJ(~) ,D~ = 0 , where Tp,v = (ap,~*)(av~) -
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9I'V (gUK (Ou <1>*) (OK <I> )) /2 is the energy-momentum tensor and 0 = 01' ( .;rgTgl'VOv) / .;rgT
the generally covariant d'Alembertian.

For spherically symmetric solutions we use the following static line element ds2 ==

ev (r)dt2- eA(r)dr2-r2( d192+sin2 19 d¢2), and for the scalar field the ansatz q>(r, t) == P(r )e-iwt ,

where w is the frequency.

The non-vanishing components of the energy-momentum tensor are Too == p == -TIl ==

Pr == [w2p 2(r)e- v + p I2(r)e-A]/2 ,T22 == T33 == -Pl. == -[w2p 2(r)e- v - p I2(r)e-A]/2 , where

I == d/dr. As equation of state, we find p = Pr == Pl. + p I2 (r)e- A .

The decisive non-vanishing components of the Einstein equation are

V' + )..' == K(p + Pr )reA
,

1
)..' == KpreA - _(eA - 1) ,

r

(2)

(3)

and two further identically components which are fulfilled because of the Bianchi identities.

The differential equation for the scalar field is

pII(r) + G(v' - ).') + ~) P'(r) + e~-vw2P(r) = 0 . (4)

A typical behavior of the solutions is demonstrated in Figs. 1-3; for the rest of our paper,

we employ the redefined quantities x := wr and (7 := JK/2 P. For the numerical calculation

we used a Runge-Kutta-routine of the Fortran-library fMSL. In order to get regular solutions

at the origin for the system of differential equations (2), (3), and (4), we have to put the

following initial conditions: (71(0) == 0 and >"'(0) == O.

An inlportant feature of this solution class is that the initial value v(O) scales only the

solution for a fixed (7(0), Le., an independent solution is parametrized by the square root

of the central density, (7(0). For example, take the solution for (7(0) == 0.3 together with

v(0) == -lor v(0) == 1, respectively, the minima and maxima of the scalar field or the

saddle points of the density (see below), respectively, are only different by a factor rv 2.71

and, hence, the whole solution.
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At (1(0) ~ 0.375, saddle points appear within the metric function e\ and for smaller

initial values of (1(0), one recognizes an oscillating behavior as for the scalar field; cf. Fig. 4.

Regularity. We calculate here the quadratic curvature invariant RTnv = R>'U/LVR>,u/Lv .

In the case of the Schwarzschild-metric, it is RTnv r-..J 1/r 6 , Le., it exists no singularity at

the horizont r = 2M, but a physically important one at r = o. The numerical calculation

of the invariant of our nlodel shows its global regularity [13]. The same was found for the

two invariants R/LvR/LV of the Ricci tensor and R2 of the curvature scalar. The invariants of

the irreducible decomposition of Riemann's curvature tensor show also no singularity [13].

Hence our solutions possess no relevant singularity.

Asymptotic solution. From the numerical results and Eq. (4), we guess the following

asymptotic differential equation of the scalar field (4) (1" + ~(1' + (1 r-..J 0 (' = d/dx) which

has the solution

() A
Sin(x) BCos(x)

(1X~--+ ,
x x

(5)

where A, B are some constants. This asymptotic solution, together with ansatz cI>(r, t) =

P(r )e-iwt, describes asymptotically a spherical wave. Thus, our solution is a superposition

of massless scalar particles moving in- and outward the center.

The scalar field just as the energy density p and the pressures Pr and Pl.. vanish asymp

totically. There, the energy density reads (for B = 0; cf. Fig. 5 with a Mathematica plot

of)

( )
r-..J A2 [~ _ sin(2x) Sin

2(X)]
px - 2 3 + 4 •

X X X
(6)

(7)

For B f:. 0 the same correspondence between asymptotic formula and numerical results can

be found, only the formula (6) is more complicated.

The general solution of Eq. (3) is e->' = 1 - M(x)/x with the mass function M(x) =

J; p(()(2d( . Asymptotically, we find (cf. Fig. 6)

M(x) '" A2 [x + cos(~~ - 1]
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A linearly radial increase of the nlass function exhibits also the gravitational field of a global

nl0nopole or global texture, cf. [14,15]. But in our case, the mass function does not only

diverge linearly but it also oscillates around the linear increase. The result is an infinite

mass which corresponds to a boson star with an infinite number of nodes.

Because the numerator and the denominator of the quotient M (x) / x diverges for x ---7

00, we can use de I'Hospital's rule. At infinity, the metric potential approaches the value

e-A
---7 C2 :== 1 - A2, where C2 < 1. After a redefinition of the coordinate x ---7 C-IX , the

space has a deficit solid angle. The area of a sphere of radius x is not 41TX2 , but 41TC2X2 ; cf.,

e.g., analogous results for global monopoles and global textures [14,15].

Following equation (2), the second metric potential behaves asymptotically like eV
---7 xK ,

where K == 2A2/C2 == 2(1/C2
- 1) > O. By looking into the curvature invariants, we recog

nize that only v', v", and (no-inverse) powers of them appear; they vanish asymptotically.

Energy density and tangential pressure. A further investigation of the solutions

shows that the energy density p or the radial pressure Pn respectively, decrease terracedly

(Fig. 5). A similar behavior shows the energy density of a rotating neutron star (cf. [16]).

We find also the relation I p I ~ IP.l I, where the tangential pressure P.l as the scalar field

oscillates sinusoidally around zero. From the equation of state, one recognizes that at each

extremum of the scalar field (J" the difference between radial and tangential pressure vanishes.

Then, the equation of state p == P of a stiff fluid arises (Fig. 5).

Scaling of the solutions. As we have seen from the redefined quantities, w scales the

physical dimension of the solution. Table I shows for different values of w the density and the

mass at different radii. For very high energies w of the scalar field our stars possess a high

density and their mass is low at small distances of the center. But for very low energies w

the density is very low and the mass approaches values of galaxies or galaxy clusters within

scales much smaller than the ranges of galaxies or galaxy clusters. It is remarkably that

all values of central densities are possible, among them values for molecule clouds, white

dwarfs, neutron stars, and extremely beyond them.

Rotation curves. A spherically symmetric mass distribution M(x) gives in Newtonian
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theory the gravitational acceleration (left side) M(x)/(2x2
) == v2(x)/x, where v(x) (in units

of c) is the circular rotation velocity within the centrifugal force (cf. Fig.7). This equation

determines the so-called rotation curve. This approximation is valid for small initial values

0"(0). The velocity depends also only on the initial value 0"(0) as the density, for example.

By investigating the radial dependence of the rotation curve for large 0"(0), first a maximum

at a maximal value Vmax ~ 0.521 c is reached going over into a minimum and thereafter we

find a limit value near 0.5 c. These values can be interesting for accretion disks or quasars.

The rotation curves for galaxies or galaxy clusters should show a decrease v ~ /IF at

the point where the visible matter ends. Instead one observes flat rotation curves within and

beyond the galaxies [with the help of neutral hydrogen (HI) which surrounds galaxies] [17].

A linear increase of the mass function of galaxies and galaxy clusters can be derived from

these observations [18]. Several models are discussed where either the Newtonian gravity

[19] or new non-interacting matter (dark matter) [20] are introduced to solve this problem.

For several classes of gravitational theories, it was recently shown that the introduction of

dark matter is necessary [21]. For the dark matter one expects a 1/x2 behavior of its density.

But this is just what our model provides.

For the initial value 0"(0) == 0.0007 we find a limit value of about 150 km/s for the

rotation velocity as it is reached by HI in the galaxy NGC3198 [22]. Our model provides for

the inner sphere with radius 130 pc a mass of about 100 M 0 . This is too few in order to

explain the observed central masses in galaxies which are associated with black holes [23].

For our Galaxy, newest results [24] let expect a mass of 106 M 0 within 0.1 pc.

Gravitational Redshift - Quasars. The gravitational redshift z of a static spheri

cally symmetric mass distribution is determined by z == e(v(AI}-v(Ao))/2 - 1, where Ao corre

sponds to the emitter and A1 to the receiver, both in rest. Typical redshifts for quasars are

about z rv 2 which needs e(V(Al)-v(Ao» rv 9. It is a well-known fact that the redshift-distance

relation is only valid up to z rv 0.46 [25]. Furthermore, Arp had found some 'bridges' between

bright galaxies and quasars where both objects have very different redshift values [25]. From

our model it is no problem to find such large redshift values; take, for example, the solution
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in Fig. 3 with ell(l) = 3.406 and ell (7.72) = 30.654, the nine times higher value. It provides

also a natural explanation for the 'bridges'; while the Doppler effect is responsible for the

redshift of the bright galaxy, the neighbor, the quasar, has an enormous redshift produced

by the mass (where we have omitted the influence of the Doppler effect).

Discussion. We have presented a solution class where one can find both Newtonian and

general relativistic objects. The Newtonian creation could be responsible for the dark matter

which is nlissing in galaxies and galaxy clusters expressed by their flat rotation curves. The

general relativistic objects provide large gravitational redshifts because of their mass. They

could be a model for quasars. The high rotation velocities possible for these objects could

be an explanation for the large energy contributions seen in quasars. Both objects have in

conUTIon the behavior of the energy density and the tangential pressure, the form of the

rotation curve and the with the distance linearly increasing mass.
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TABLES

TABLE T. Order-of-magnitude estimation for non-self-interacting massless scalar matter. We

put the frequency l/w = 1 em, 109 em (radius of earth), 1011 em (radius of sun), 1015 em (radius

of our solar system), 1018 em = 1 Ly. Further: w in units of eVj the density p at the center and at

a distance of x = 200; the mass at a distance of x = 10. The values of the density and the mass

are taken for the solution in Figs. 5 and 6.

w (l/cm] w (eV] p(O) [g/cm3] p(200) [g/cm3] M(10) [g]

1 10-5 1027 1021 1028

10-9 10-14 109 103 1037

10-11 10-16 105 10-1 1039

10-15 10-20 10-3 10-9 1043

10-18 10-23 10-9 10-15 1046
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FIGURES

FIG. 1. The stationary massless scalar field (J = J ",,/2 P depending on the dimensionless

coordinate x = wr under the initial values 0'(0) = 1 and 1/(0) = 1. Figures 2-6 are generated for

the same initial values. The frequency w scales here the radial coordinate r whereas, in the case of

the boson star, the mass of the scalar field takes on this role [6].

FIG. 2. The gravitational potential e'\(x) .

FIG. 3. The gravitational potential ell(x).

FIG. 4. The gravitational potential e'\(x) for the initial values 0'(0) = 0.2 and v(O) = o.

FIG. 5. The energy density p (-) and the tangential pressure P..L (- -) [both in units of w2/ ""]

in the interval of x = 200 up to x = 300. One recognizes very clearly the terraced decrease of the

energy density. The matter behaves like stiff matter for dp/dx = O.

FIG. 6. Overall linear radial growth of the mass M(x) [1/(wK)]. The function oscillates around

the linear radial increase.

FIG. 7. The rotation curve for (J(O) = 0.0007 and 1/(0) = O. The curve is fiat for large x. The

linlit velocity is about 150 km/s.
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