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1.Introduction 

D-69469 Weinhei.,Germany
~ \J.l eo \f\ h -e., y"y) Ze.",+r VI. m Th (1& r. The purpose of this paper is to present a new approach to duality 

) Ph» 
I ~  I for two-dimensional field theories(thereafter 2DfTs).This,in turn, 

ABSTRACT 
will suggeat a new and rigorous view on integrability of 20fTs I ~ I 

as well as a generalization of the (black-holelsolution proposed by
We show that the duality propert~  far a two-dimensional field theo­

Witten 'a I 3 I some time ago. ry(2DfTlcan be naturally a~6aciated  to the corresponding Gauss map 

More precise1y,we shall show that the duality -viewed as a pro-This ,in turn,is Lagranglan(totally rea1)i.e. with vaniahing symplec ­

perty of the target space of a 2DfT - can be associated to the corres­tic form and trivial normal bundle.Owing on these properties we get a 

ponding Gauss map I ~ I. and this implies the appearance of the so-callenew integrability condition for 2DfTs,(higher dimenaionallclassical sa­

Lagrangia~  manifoldsl ~  I (special symplectic manifolds with va­lutions(that generalize Witten's black-hole solutionlas well as a no­

nishing symplectic forml.The integrability will be connected with the vel interpretation for the W-algebras(as affine algebras attached to 

fact that a Lagrangian immersion has a flat normal curvature(i.e. a Laxspecial symplectic(Lagraogianlmanifolds.)We point out that the Calabi-Yau 

systeml,while all the classical solutions of 2DfTs are Lagrangian mani­manifolds are Lagrangian,too, and this allows to interpret the mirror 

folds.(The precise definitions of Lagrangian manifolds,respectively Lagr­symmetry as a duality(in our sensel. 

angian immersions will be presented in the next Section .)A new approach to conformal invariance( via focal manifolds)and se-. .. '"\ Po s , 
L r, hf=;' ;..... ' 

The same Lagrangian manifolds picture will allow a new approachveral additional aspects are also dis~ussed.  ' 

to W-algebrBa I ~ I.We will show that the W-algebras naturally appearAUG r 19 c 
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as the affine a1gebr~of  the corresponding (special)sympleclic manifolds. 
~  

As additional byproducts of our approach we will briefly discuss 

the following facts :i) observing that lhe Kaehler form is proportional 

to the symplectic form it results that all the Calabi-Yau manifolds a~  

actually Lagrangian manifolds.;this will allow to interpret the Calabi­

Yeu mirror symmet~/  7t / as a duality thereof (see also / ~ I for 

a partial discU,sion ),ii) on a symplectic manifold the corresponding me­

tric ,say <. .) , can be written as 
) 

< ') .> '" Co J ') i- ....Q [') J ') r1.1) 
where (') • ) is the usual Euclidean metric 'and ~ the symplectic 

form ; above J denotes the complex structure .Therefore,a Lagrangian ma­

nifold is totally real ,i.e. it is the boundary of an appropriately de­

fined (complex)manifold.This suggests a possible solution of the (black­

hole)information problem I jr I.-We affirme that to ~o~telY  describe 

a black·hole one has to consider both the boundary and the core ,i.e. a� 

mixed state.(A detailed discussion of this point will be presented in a� 

separate paper .)� 

After this introduction we will proceed now to present our res­

Its. The layout of the (rest of the) paper is the following.In the Sect.2 

we will introduce our approach to duality and we will show how it naturally 

suggests the appearance of Lagrangian manifolds.Sect.3. is devoted to 

integrabilty and classical solutions for 20fTs in the context of the 

formalism we proposed in the ~  previous Section. Our approach to W­

n]anbroA wjJl £0 presented in the Se~t.4.  

B ­

A summary of the obtained results concludes the paper(Sect.S). 

2a. Duality and Gauss Maps 

Here we will present our novel approach to duality for 2DrTs. 

As it is well-known 1'1' / up to now the following forms of duality have 

been suggested : 

i)duality under the Hodge star - * -operator. This type of duality all 

(complemented with additional assumptions ) to get an action functional 

the considered 2DrT;however, the conformal and inegrebility properties 

(of the involved theory) are by no means evident. 

11)" f .. -duality , primarily discussed in solid state physics 

iii) the operational duality - via 8 Lagrange tran5fo~~s discussed 

Our approach to duality is intimately connected with the the type 

11) of duality. Essentially, the " ~ n - duality connects the speec
Jt,. 

truro of the Laplacian (of the considered Riemannian manifold) with the 

length spectrum of the same manifold (i.e. with the lengths of the 

-"periodic geodesics of the same manifold). For instance, for a torus I ~ 

- r,'}"
J a discrete subgroup of 11<, 1)~:1) the duality can be an 

lytically expressed via the Poisson summation formula 

t-<.
2 i >'i ~ Vd [Jii!) "2 4-6e 

(hi) "/~  -e. G
}.. Eo S?.6/ R.''jr ) LSf (/h. 

'. 

(~./,1)  
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Here 6 is the Laplacian of fR,)r with spectrum ~..()  (and >.. 

a generic element of ~.AnalogouSIY,  L- S'p (rR ') r ) denotes 

the lengths spectrum of T VJ (with volume 6/1.ff (& 1'1 / r) ). 
The 1.h.s. of ( ~ .......1) is formally a "zeta functional",while the r.h.s. 

is a "theti - functional" for the same manifold. for a general Riemannian 

manifold II the generalization of ( -< ./) is 

Z (>.) f ) ~ [) r.t; -t-) (.t..2) 
~ ~ fpM ff L- Spfv) 

This summation ;Kormula has been further generalized(for locally symmetric 

speces) to the celebrated Selberg trace formula I ~cI  I. 

For our purposes we quote the following known fact 1~J1  I.Let Jrl'; 
be the tangent bundle of the Riemannian manifold tv1 and G: 7fV) ~ rIV), / "1 • 
the corresponding geodesic flow. (Here 7JV) is the unit tangent bundle, i. e. 

~  

gent vectors of unit length).Then,ther is a natural correspondence between 

J'IV? and the closed periodic geodesics of Jv7 .Therefore,it seems na­

~ ~  Mtural to generalize the duality from closed periodic geodetcs on 

(the target space of 820FT) to the tangent space TI1 Of!'1 .(It is 
/f 

also a bit easier to work with tangent vectors.) Formailly , a 20FT means 

¢ f/;;.. -) f1� 
dirt?� f1= d~ ~ (?3) 

with an appropriately (model-dependent)action functional. Then, the dua­�

lity means� 

....� 

IV) -) 1/1
1 (~.J;) 

and this, in turn,defines an "additional "20FT (for general i ly sake we war; 

with 1!'1 
r rv;~  -) 7fV; ) /';:::. 9rjJ (.2. j-

A bit more in-depth view to (.2.7 ),( .2. f ) shows that attaching a point, 

say ~C  ,of JV7 to the corresponding tangent vector ,means to lmmel/11-x,� 
se 11 into the Grassmannian r2(cI)�G'l. (j\~ }/J~) ===­
Therefore, to (~.  ~  ) we will attach the additional model 0/<) {l/c/-~  

{. 
17..<- -) r;It. rflj -7,.z.) 

~.£ 

and duaRity means 

M -) Gf!, (ft?; ~) (-2.l-,/ 
The following diagram illustrates the facts we introduced above 

(.2, t) 
Now, (l. b ) is known as the Gauss map I f / of ( .(,.3 ) and our approach 

to duality is summarized by the following proposition: 

for ZDrYa duality means to pass from the target space j\~  to the 

corresponding Grass.annian via~the  associated Gausa map •
'. 
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To support this proposition we shall additionally present the 

following proof.Let us consider a two-dimensional manifold minimally 

immersed in a Euclidean space 11l ~ with metric 01) i .JIC. 2.-1 ~ 2 de l 

Here It, (IJ ) is the radial (angular) variable. Under the transform 

fl -) -1) Jl,. ) the above metric becomes 

tJ/7, Z -) if-1 9 . dJ't 2. 

rtI,h t_) .1/5'" 2.:::: 4 . d~2  

fL."! (-2. ~) 

1Denoting -principal curvature;:c::v==- k. 

~ - Gauss curvature .:: J<:...2.=. k/l.J; 

(.<.; ) becomes 

clA~-<"- /< I~ t" (.2. 10) 

Now, such a formula defines the Gauss map (~') associated to ( <?3 ~ 
(See e<? / Lj /) (Precisely,for minimal immessions ,i.e. when~k  ~  ~  

It is easy to see that the metrics for spheres and hyperbolic spaces 

(respectively, complex projective spaces and complex balls) are invariant 

with respect to the ~  -transform. Therefore, we got once again that 
It. 

20FTs in target spaces with constant curvature (space forms) duality means 

to pass from M to the corresponding Grassmannian bJ1; (/VJ f1; ).
J .<J 

The notion of Gauss map can be extended to higher dimensional mani­

folds ,i.e. to higher dimensional field theoriesjhowever,in such a case there 

is no more the above defined duality! 

As a further argument for our approach let us point out that 

Griffiths and Harris / ~~ / defined an algebraic-geometric duality 

that ,in ca! the target space is a hypersurface (as 'Me. usually assu­

mte.) cOinci~  with the (Gauss-map based) duality we introduced above. 

To illustrate our formalism ,we shall consider. 20FT immersed 

in a 4-dimensional Euclidean space (the case of a Minkowski space 

or a target space with constant non-zero curvature ,goes analogously), 

the immersiom 

,: 0:<- ~/ !K 9- (.e. I 

The 11~ metric is as usual ciA I.: ~  t.)!:~)  .JZ ~.1. X yty ,X.- coor 
1 ;t f.­

dinates on /Vf~) and the associated Gauss m~p is 

r: Ifz-) 5 0 r~) z: s0/3)' _ 
J tJlz). .[to!.2) 10k). I 

rf t'(f)::. ;-' f~  5G-~  ?(Q).f
t' ... ~ oIJ>YJ. 

Analitically, C-trnj!.t" /''''.J-l ~Vl!. ~~4' r; 
r raj;/ 'ff:2 

) ~:. '~ ..;.. t' x-<. (0( 
and the target space is the complex quadric JI 

()-<. =: (iP r c). f> 1{"tJ:'))::: ('?1 'r i? -= 0 , 

(For W. h one has .Q ,., :. So (h) ftd/.!} 1'0IlJ~.)  

More simply, if &v;1)tv~  are the homogeneous coordinates on the two p '1 

(see (-P.. 4:<,.» then one can define on fY-:; the following (fubini­
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"Study)metric 

cI~  l :: ~  /cI~Jc
R,:z ~  

-I- ~ JaI~  J?(1i /~J')z.	 -:-:-'..._.::.L_ 
(-1 "T /"'5.) l) e. 

With 

t· /frv{' - (..p.1S) 
( ::. ~~ 

~~ )'tV(.) <- t..:: I.J 2..., 
~. 

[, - ~.( 

"""""" 
wfI".J f ) J,y,,') JL� (~'?6)  

one can introduce the currents 

""-Jl\ - ~  (/~./2- /Fi );.)-
Al.­ (.<. ..(y.) 

so that 

Gauss curvatureJ/J -) J-,--:= k 
CQ.· /J) 

J/I -- J:<-::. kJJ 
normal curvature 

(J..1/j ) 
N U 

The corresponding 6=nonlinear lagrangian (dual to the Fubini-Study metric~  

is 

'. 

A
-I 
~l 

( /IL,/ C-; /!7)?)~ p. '?<J 

We will exploit thse results in the next Section.(Notice that 1;" ) 
actually correspond to the Gauss map ( ~.'1~  ).) 

2b.Causs Maps and Lagrangian Manifolds. 

To begin we recall that the Gauss maps eave already been used by 

one of us / /3 / to obtain classical solutions Cinstantons) for the 

nonlinear models.lt is easy to observe that there is an intimate connec· 

between analyticity properties of the map ( ~.  3 ) and the conformal 

properties of the corresponding Gauss map. r~. ~~ 

Here we shall point out another property of the Gauss maps that 

will play the essential role for the rest of the paper. 

If the target space (of 820FT) is of constant curvature(asj\rJ 
we throughly assume) , then there is the isomorphism 7 /'1 ~ T,A? ~ 

where /;'1 * is the cotangent bundle of .IV) .On 1M it onn defi 

a symplectlc(closed) form,say ~  .The above isomorphism implies a 

symplectic involution ~.  ,so that for a 20FT 

J' f.!):z -) T A1.:x)/ 

,«..i2... o (,<,.:<,#) 

An immersion with this property will be called Lagrangian immersion, 

while the submanifold with a va~ishing  ~ will be called Lagran­

gian (sub)manifold / ~ I.We acknowledge that this property has 
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:III'I'ady (WPIl thimCUlwed -v j U H/luLhcr line of rl,.tt;oninCj- by Arnul d cl 

a1 /~L1 /. (This suggests that our approach is also connected with 

the singulatity theory ti.e. with the Landau-Ginzburg method /"f~~/. 

I 

In a recent paper I~~  1 it ia affirmed-without proof-that 

all the relevant geometries for 20FTs are Legendrian,i.e. with va­

nishing contact form.It is well-known 1~ ~~ I,that there are deep 

relationships between symplectic and contact geometries,i.e. between 

Lagrangian and Legendrian manifolds.However,contact forms can essen ­

tially be defined only for odd dimensions and,on the other hand ,they 

can not account for Calabi-Yau manifolds.Additional1y,as Ouistermaat 

/~:l  1 showed the main contribution to an action functional (of 8 

20FT) is basically provided by the Lagrangian manifolds .(And,to illus­

trates his ideas he used double point singularities ,lated suggested 

by Martinec ,11f) I. This can be seen as the "missing link" between 

Landau- Ginzburg and Calabi-Yau approaches.) 

To conclude this Section we shall present a particular class 

of Lagrangian manifolda,the ao-oalled lagrengien plenea ,lIn ~ ~;;~ 

Although not explicitely specified tit seems that 11" can play an emi­

nent role in supergravity theories with antiaymmetric tensor fieldsl ~c?  / 
For the interested reader we shall also reveal that the bran­

ched covering of the quadric ~~(4ee'  ( ~tt.1~) ) Is LagrangiantfD~­

cisely a Calabi-Yau(K-J) surface.(This can be used as starting point 

for an investigation with the title te.g."Strlngs and K-3 Surfaces".) 

Observe also that our Jefinition of duality is completely inde­

pendent of the fact that it is an exact symmetry or not. 

..... 

- 11 ­
3.lntegrability and classical solutions for 20fTs 

In this Sectiom we sha~ 'show that the Lagrangian manifolds we 

introduced in the previous Section can provide a rigorous approach to 

the integrabilty of 20FTs. 4 
We start with the 20FT immersed in ~  ,we already discussed above. 

We shall take 

k ~~ {3,'1)
N ! 

I 

C:3, ~ 

These commutation relations can be interpreted as a Lex system and this 

suggests the following integrability c6ndition (I C ) • 

Ie : A 20FT is integrable if the corresponding normal curvature k := (
!J 
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i.e.if it corresponds to a lagrangian immersion. 

If we rewrite the 1f,G. metric as c/~~ fe.f:.CJ/d:t:) 2 (1,,& Z was ini­

tially defined affer (2.'1»,then it is a simple matter to see that our inte­

grability condition (.3• .3 ) leads to 

4 z-i -I- .1 St'n~~tV) ~ 0 (3,1) 
Le. the sinh-Gordon equation.If in place of ~  -)/i( 4 we take"&. -) G 
( ~ -compact semisimple ·Lie group) and use the fact that homotopically E7 
is a produc of spherees,i.e. G~ IJ ;yG.{.· I .1C•Ot:(..;.. 4 ) - It 

rank G) ,then our IC leads to the well-known Toda equation 

I.' I'V 

a.J~§ +- ~Xp (~ J;~ ev;}) ~ 0 (3, S 
I J::'I V ( .... ~·)IL 

(Here k is the Cartan matrix defined interms of the "spins" .,f .. )j (. 

Of course,our Ie does not imply that the considered model is conformal 

variant.A more detailed analysis (precisely,for Lagrangian manifolds with con­

stant principal curvatures,the so-called isoparametric manifolds / .(~>,  ,) 
shows that a 20FT is conformelly invariant(minimal) if the manifols<attached 

.ciS 
via duality are focal menifolds.Precisely,to any Gauss map one can attach a 

. r:v 
scalar curvature ~  iwhen 

A _ 4
d.. ~ (3, ;)~- -­J< - '" k T 

then the associated manifolds are focal.Here/< is the scalar curvature of thE 
r · 

target.For instance"for 
~  

-r; 1'1.:1,. -:) P ('(f:) I I~  -1 

.k ~f~-;'1)  ) k:: 1) <oj .. _. 
... ~kT :=: /) (3. i-)

and therefore 

/I ". 
:: '1 b 

~ 

iir~7-f)_7< ($\ 8) 

- ~ 0. ­

We get simultaneously an interpretation for the central charge ( ~ = ~J 

as well as for the minimal integrable 20FTs.According to the picture above 

mal models correspond to focal Lagrangian manifolds,while the· .-integrable(nc, 

minimal)20FTs are "ordinary" Lagrangian manifolds. There is also a definiti­

on of focal manifolds in the context of singularity theory/ ~~/  and this 

suggests once again the deep relationship between Calabi-Yau(i.e.Lagrangian 

approach and the landau-Ginzburg (i.e.the singularity) approach. 

We shall proceed now to get classical solutions for 2DFTsjas 

already alluded to we shall look for classical solutions that: ure LagrangiGl1 

manifolds. To "do this we shall re-analyse tho solution proposed by \'Iitten '<; 

/ ;) / some years ago and then we shall generalize it in a Lie-theoretic 

framework. 

Essentlally,Witten's solution can be viewed as the lagranginn 

immersion 

Sor,z,I') _) 
J'(}/'II} (3, ~ 

(Notice that we are in the target space I)Locally,it is the upper half-plane 

of the complex plane(or,via the well-knon Cayley transform,the unit ~omplex  

disc)an~  the corresponding geometry is non-Euclidean(hyperbolic).Observe the 

.r(J(~  1) is the parabolic subgroup of S~..{}hileSt?AiS the com­

pact subgroup of the same group.(For 8 definition of the parabolic,resp. com 

pact subgroups of a Lie group as well as of the subsequent Lie-theoretic 

notions,see, e.g. /~  ~/.This  suggests the following generalization(see 

also /~Lt  / ) 
...... 
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Let G1 be a semi-simple non~compact  lie group with lie al­

gebra J . Further ,let /(JPbe the maximal compact,resp. parabolic 

subgroup i I 31! " of <5 and J &: ~  ..,. ,... be the corresponding 

Cartan decomposition o'r.,(}- •(Here ~ is the Lie algebra corresponding

to.k ,whilet is a linear vector space of dimension )'\:: ott'not,...:::: 
: ~I~ 6'- ~'h7 k. .)Then a lagrangian (totally real) manifold ~n.  

be defined via 

n"1 
<;/ p -') S c. r­

11·1 ~''1()) 

(Here 5 is the ('2 -I)) -dimensional unit sphere in 1"'" .) Taking into 

account the Iwasawa decomposition of G and P ,i.e. / ~ B )� 
(5:: kAN� 
p~  fj AN� 

with 11 -Abelian subgroup of [J , II nilpotent Aubgroup and f) 
~)  centralizer of ~  in ~  ,it results that our solutions posses~  

the symmetry 1£ ,S c:PIn) (analogous to the Kalama-Suzuki 
/'1

model /<5' II). 

The structure of these solutions is extremely rich and a 

detailed discussion requires a separate paper.However,we shall briefly 

present some essential points: 

a) it is rela~velY  simply to aee that Witten s solution is a lagrangian 

manifold with one principal curvature ~ith  multiplicity Me ..{ SO(r;, I) .fI(1)
t

leads to one "family" with multiPliCity(n-,) ).Using (3,4(/) one 

can obtain two generations (i,e. a solution with two principal curvatures) 

for G'..:: SOft> d) ;1 -4 1.. "'1 (The corresponding multiplici­
r!.1)«) "JL.L 

ties are t -1 J - /f ). This follows from ~_ 

;t ) k ~ (6)_) J (J/1.4 ) S(j/iz )'::: 51 

J'1 ? J(J(~, 1) S 0(1..<-4) 
Getting solutions with three principal curvatures,i.e.three generations 

is a bit more cpmplicated .The main difficulty is to determine the correspol 

ding GCs;nevertheless we get (k -) /R, '1 17-.3 vi...)..2 J-1 c? 1 ~ M ) - ) -'})) 

S l((J)-J<
-) cI= 5" 

If SOli)� 

fz� 
--) Sllf3) ~(jl))  01:: JJ'1 5U!3) 

1(. 
1'-1') -) -I1/ f/2 ~::: /1 

Jf3) 

!:.
f:t,-- ~ elF: ~ 

/'1 -­
~ 

(i 17(7 ) 

Observe that these solutions are connected with the division algebras Creal 

conplex,quaternionic and respectively Cayley). 

\ b}Of course, the soluti~ns  we obtained do not exhaust all the possJ 

(constant principal curvature)SOlutions,~~;CJ--) ~  jmoreover, there n 

exist solutions that are not homogeneous at· all.Note also the isomorphism 
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r-v;Vl~  ~/w 

(Wis the Weyl group of J< and OL.. the Lie algebra of the Abelian sub 

group ;q ),i.e. these solutions possess additionally a Weyl symmetry.(ThiJ 

suggests a possible connection with braiding and the quantum symmetrYi 

however,we shall pursuit this point here.) 

4. lagrangian Manifolds and W-Algebras 

Here we shall show that the formalism we introduced above permits 

a natural definition of the W-algebras. 

Firstly, we shall consider the case of homogeneous lagrangian mani­

foldsithen,we shall extend our discussion to arbitrary (Lagrangian)mani­

folds. The first part of our analysis has some contact points with the approac 

of Gervais ~t  al / 2.6 / j,fowever,there only the Kaehler case is considere 

(Note that manifolds ':of the type G/p"')-jv' need not to be Kaehler.) 

To be specific we consider a lagrangian immersion i.e. an inte­

grable 20FT (see also ( 3\10 ) 

?. M~ -) 0/; --) 

11- 1 

S c;V f.1) 
Then I") -. )

1- J-~,  

~~ 

-" . S -) /'1.:<. 

is a polynomial map ( a so-called Cartan polynOmial/~~/)and the commu­

- 1:;-­
I 

therefore it can be interpreted as!the principal symbol of an appropriatel!, C 
defined difforenlial opcralor.Henc~,one  can wrilc tllC following (cqual ti@ 

, I� 

commutator (:C,) j( Arc spatial vnriablcs)� 
~ ~  

l \V~) ~ ]~ 9 (~)  JrY1-~  I)
~  

l; Jo!: ~ ~ ~ ­
('t. 3.) 

Therefore, the W-algebras are the affine algebras attached to i noparamet r j l 

(Lagrangian) manifolds. The first commutator of the series ( ~ ~ ) is the 

usual Virasoro algebra and at the same time -from a lie -theoretic point 

of view- the well-known Bochner -lichnerowicz formula /.(, 3 /( l 'Y'\') ~~  

::: ~ (\7. + 9( ,~ scalar curvature) This observation supports once again U· 
tJ L-1J 

geometric interpretation of the central charge we proposed above(sec 

(.;, l) ).Precisely, e.". is the (inverse of the involved)scalar curvature, 

while the level ~  is the order of the corresponding eigenvalue. 

To determine W's we propose the following algorithm. One can show 

that ~s the vOlume(squaredlof the corresponding symmmetric domain 

kIM C f" and, using standard results one determines f and ~~ 

We shall extend now our d~scussion  to the case when the implied La­

grangian manifold is not 8pmogeDeous.We recall /~;Z  / that for any La­
,

grangian manifold one can define a so-called Monge-Ampere equation 

r; ... (.'e( 

Jd' / 
:..?

\ 0 \;V=:QcJ ·\ f;­
.... 

'n'tator of \)()f,s, ~~  ~r·  is ~  linear combination of ~s.Observe  

. ~-4 

that vcr is actually defined on the Grassmannian attached to ~  and (44 ) 
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The potential r above is connected 

- 1~-

with the integrability condition in the
sense that 2 f 1- ( '1 -the conjugate solution to 'f ) satisfies 

i.e. in case when the corresponding'lagrangian m~nifold is immersed 
the loda equation.from (ltLj) we can write 

infinite dimensional space.)Nev3ertheless, a further study of the pr, 

"\ ties of the W-algebras via the Lie-theoretic and geometric methods Wl
above is worth doing.( ~I\- ~ \tv, rp ~)t -­, t.� G

t.~ 2 
t1. sj ).Discussion 

The constants c(i. are connected with the "spins" /, " (aee the derlvelion of( 3,.»� Here we shall present a succint discussion of the results we gel) j they were absorbed in our definition of Wj> ( ~,S)··A direct cal­ previous Sections.In essence,we focused our attention on the propertieulalion once again to 
of the target manifold of a 2DFTit~tQrting with a generalized duality1T VV~

)c.. ~J~ ~ (tv) dr~-~})	 rement we have proved that the target space is a Lagrangian manifold 
1. e. to the W-algebra (i3) we get above. 

totally real ).We pointed out that Lagrangian implies (in the Kaehler
Calabi-Yau-To conclude this Section we shall briefly comment two interesting 

points 
:i) it,is well-known 1-2~ / that a semi-simple non-compact Lie algebr£ 

This allowed us to get a generali~ed inte9~ability condition
as classical solutions

admits a Z-gradation,i.e. 
a 18 Witten for the considered 20fT.Notice, tfj due to the factoring of the parabolic subgroup (see (~,10) these so]

+ J/j� tions automatically avoid closed time curves ,i.e. they satisfy the ca~~ ~_) of 'JO condition .Of course, this class of solutions (which generalize the ins
l.. ~_)) ~ Ij] c ~ I) 

tons-like solutions) ... for which we propose the name symplectons-do

[ if, ) ~.!",,] ~ d-t 1 
{j hI exhaust the possible solutions of the considered 2DfT. 

This can give a rationale for the approach suggested 
in /~tf / (to derive 

As a third result we (re}obtained the W-algebras as affine algI
W-algebras via the embedding ;1/2.- into ~ .) 

of,the underlying Lagrangian manifolds. The full implications of the Mon~
ii)Our approach presented above shows that classifying 

Ampere equation remains to be further studied;it appears that in somethe W-algebras essen- \�tially means to classify the underlying Lagrangian manifolds. Now, there ~.... 

cases the Monge-Ampere operator is identical to the Dirac operator.�
an infinite set of such manifolds" and a "complete " classi fication of W-alge ­

As byproducts we get :i) a new view to conformal invnrianee.A 2
uros is obviously illuoory.(A bit ",orri compllcatcd is the situstlon for W~	 

is conformal invuriont (minimaI)if the underlying lal'gel tipace s<llir,ric~;
"focality"condition.ii)Several connections between the singularity thory 
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lagrangian (focal)manifolds,i.e. relationships between Calabi-Yau and Landau­

Ginzburg approaches.iii}\'le alluded to a new vi~W to mirror symmetry;l; 

(i.e. the symmetry that commutes the Kaehler and 60mplex structures,i.e. the 

tangential and normal cohomologies.)The mirror symmetry as a duality has recent 

been discussed in a very special case in / l? /.Briefly,we suggest the follo­

wing line of attack{ a detailed discussion will be presented elsewhere).for a 

Lagrangian mani fold 11 one can write Tf1 <'() AI/'1::: Tf1 ff)J(T11) 
{Here NIX/ is the normal bundle and J- the complex structure. )Therefore, a 

manifold dual to (i.e. according to our picture defined via the corres­

ponding Gauss map) c~es  Tf-I'} and £/'1). i... the tangent and 

normal cohomologies. 

Obvlously,the Lagrangian manifolds(or isoparametric,if the principal 

curvatures are constant) are not an universal remedy for all the problemsr 

of 2DFTs (which according to our geometric and Lie-theoretic picture include 

the string-inspired models ,topological or not ).However,although the forma­

lism we suggested opens new questions(e.g. a) what means the "core" of a do­

main a Lagrangian manifold bounds, b)daes a W-algebra uniquely determines its 

underlying 2DFT or one has to look for another "better" farmalism,c)is thel'e 

a reaatianship between time and symplectic forms ( we have in mind the formal 

similarity between (1, I) ) and rt".,a. l'i ),etC> it has at least the merit 

to organize various facts in a logical way and to propose new lines of investig 

tion. 

.:?-1 ~ 
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