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ABSTRACT

We show that the duality property for a two-dimensional field theo-
ry(20FT)can be naturally agsociated to the corresponding Gauss map
This ,in turn,is Lagrangién(totally real)i.e. with vanishing symplec -
tic form and trivial normal bundle.Owing on these properties we get s
new integrability condition for 2DFTs,(higher dimensionai)classical so-
lutions(that generalize Witten‘s black-hole solution)as well as a no-
vel interpretation for the W-algebras(as affine algebras attached to
special symplectic(Lagrangian)manifolds.)We point out that the Calabi-Yau
manifolds are Lagrangian,too, and this allows to interpret the mirror
symmetry as a duality(in our sense),

A new approach to conformal invariance(via focal manifolds)and se-

veral additional aspects are also discussed.
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VIA LAGRANGIAN MANIFOLDS

1.Introduction

The purpose of this paper is to present a new approach to duality
/ {1 / for two-dimensional field theories(thereafter 2DFTs).This,in turn,
will suggest a new and rigorous view on integrability of 20FTs / 2 /
es well as  a generalization of the (black-hole)solution proposed by
Witten's / 3 / some time ago.

More precisely,we shall show that the duality -viewed as a pro-
perty of the target space of a 20FT - can be associated to the corres-
ponding Gauss map / f? /. and this implies the appearance of the so-calle
Lagrangiaﬁ manifolds/ :§~ / (special symplectic manifolds with va-
nishing symplectic form).The integrability will be connected with the
fact that a Lagrangian immersion has a flat normal curvature(i.e. a Lax
system),while all the classical solutions of 2DFTs are Lagrangian mani-
folds.(The precise definitions of Lagrangian manifolds,respectively Lagr-
angian immersions will be presented in the next Section .)

The same Lagrangian manifolds picture will allow a new approach

to W-algebras / lsa/.ﬂe will show that the W-algebras naturally appear



as the affine elgebﬁz?of the corresponding (special)symplectic manifolds.
As additional byproducts of our approach we will briefly discuss

the following facts :i) observing that the Kaehler form is proportional

to the symplectic form it results that all the Calabi-Yau manifolds agee

actually Lagrangian manifolds.;this will allow to interpret the Calabj -

Yau mirror symmEtE;/ iz / as a duality thereof (see also / é? / for

a partial discdbsion )yii) on a symplectic manifold the corresponding me-

tric ,say <{.).> y tan be written as

<D= C'J')‘/‘-(z [)J) (1.9)
where (\) ") is the uswal Euclidean metricvand ,(?— the symplectic
form j;above Cy denotes the complex structure .Therefore,a Lagrangian ma-
nifold is totally real ,i.e. it is the boundary of an appropriately de-
fined (complex)manifold.This suggests a possible solution of the (black-
hole)information problem / 9 /<We affirme that to myoqpétely describe
a black-hole one has to consider both the boundary and the core ,i.e. a
mixed state.(A detailed discussion of this point will be presented in a
separate paper .)

After this introduction we will proceed now to present our res-
lts.The layout of the (rest of the > Paper is the following.In the Sect.2
we wWill introduce our approach to duality and we will show how it naturally
suggests the appearance of Lagrangian manifolds.Sect.3. is devoted to
integrabilty and classical solutions for 20FTs in the context of the
formalism we proposed in the b previous Section.Our approach to W-

algebras will Ln presented in the Sect.4.

. I

A summary of the obtained results concludes the paper(Sect.5).

2a. Duality and Gauss Maps

Here we will present our novel approach to duality for 2DF¥s.
As it is well-known /’17 / up to now the following forms of duality have
been suggested :
i)duality under the Hodge star - ¥ - operator.This type of duality allo
(complemented with additional assumptions ) to get an action functionagg«
the considered 2DFT;however, the conformal and inegrability properties
(of the involved theory ) are by no means evident.
ii) " j% ". duality ) primarily discussed in solid state physics
iii) the operational duality - via a Lagrange ttansqu%fs discussed ]

Our approach to duality is intimately connected with the the type

ii) of duality. Essentially, the " i%} " - duality connects the speec
trum of the Laplacian (of the considered Riemannian manifold) with the
length spectrum of the same manifold (i.e. with the lengths of the

~n
periodic geodesics of the same manifold). For instance, for a torus /.-

— n
( / a discrete subgroup of 422, n2-) the duality can be an
lytically expressed via the Poisson summation formula
A
;)T W (R z:
e =i@§ e Tt

bty
he S/’A(/B,\//‘) ( ) £ e LSp (&

~

(-3.4)
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Here is the Laplacian of ’ with spectrum 5 (and
Pa
a generic element of%.l\nalogously, Z’ Sfj /72"} r denates
the lengths spectrum of / 7 (with volume P rd 1844 //"') ).

The l.h.s. of ( .Z,\/} ) is formally a "zeta functional",while the r.h.s.
is a "thetg - functional” for the same manifold.For & general Riemannian

manifold /y the generalization of (< ~4) is

7 [\ £ O ¢
Xe S‘/))\g / Pe /[IP}/V)) (+2)

This summation formula has been further generalized(for locally symmetric

{1

speces) to the celebrated Selberg trace formula /40 /.

For our purposes we quote the following known fact /47 /.let 7./\;
be the tangent bundle of the Riemannian manifold Iv) and G 7/’74~) TIV]'
the corresponding geodesic flow.(Here 7M4 is the unit tangent bundle,i.e.
gent vectors of unit length).Then,ther is a natural correspondence between
77\/) and the closed periodic geodesics of M .Therefore,‘it seems na-
turalAto generalize the duslity from closed periodic geode?s'és on M
(the target space of a 20FT) to the tangent space T/Z of /\7 (It is

also a bit easier to work with tangent vectors.) Formallly , a 2DFT means

J/\M }\7: 0/392\ @3)

with an appropriately (model-dependent)action functional.Then, the dua-

lity means

M — 7/\77 (2.4)

and this,in turn,defines an “additional "2DF1 (for generality sake we wor:
with JM )
ST
) Q/ > / N = 9¢ /-2 S
A bit more in-depth view to (('_?)’( <. 7 ) shows that attaching a point,

say ¢ ,of M to the corresponding tangent vector 77173(, ,means to imme:
se /v) into the Grassmannian 6’L //\7 /\/] O /0/

) a): .
Therefore, to (2 % ) we will attach the additional model /‘3} ﬁ/o/“

T /7_2, - b /‘/7) /Zz) 2,

and dua‘.)ity means

A G (M 1) (az

The following diagram illustrates the facts we introduced above

[24 y)
Now, (Z.é‘) is known as the Gauss map / é / of (£.3) and our approach

to duslity is summarized by the following proposition:
For 20FTs duglity means to pass from the target space /\7 to the

corresponding Grassmannian vithhe\associated Gauss map.
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To support this proposition we shall additionally present the
following proof.Let us consider a two-dimensional manifold minimally
2
immersed in a Euclidean space /& " with metric a//l L e Z.,a ;;20/9 2

Here fx. ( @ ) is the radial (angular) variable . Under the transform

- the above metric becomes
> 4//L )
Ints 24 .
g

U Jre. 4 o 2

Y
(2.9
Denoting _f_ - -prineipal curvature
R <, P P
R = /12‘- k - Gauss curvature
n4

(R, 9 ) becomes
a//gv"’: k //5 z (J_ 40)

Now, such a formula defines the Gauss map (C.§) associated to ( 23 7
(See eaq. / 4 / ) (Precisely,for minimal immessions ,i.e. when)k = ¢
It is easy to see that the metrics for spheres and hyperbolic spaces
(respectively, complex projective spaces and complex balls ) are invariant
with respect to the /% -transform.Therefore, we got once again that
2DFTs in target spaces with constant curvature (space forms) duality means

to pass from /\// to the corresponding Grassmannian 6},, [/V/ /17.2/ .
J

The notion of Gauss map can be extended to higher dimensional mani-
folds ,i.e. to higher dimensional field theories;however,in such a case there

is no more the above defined duality !

As a further argument for our approach let us point out that
Griffiths and Harris / /2,/ defined an algebraic-geometric duality

that ,in CEZ‘ the target space is a hypersurface (as WA & usually assu-

med. ) coinci% with the (Gsuss-map based) duality we introduced above.

To illustrate our formalism ,we shall consider & 20FT immersed
in a 4-dimensional Euclidean space (the case of a  Minkowski space

or a target space with constant non-zero curvature ,goes analogously),

}75-' Mz/ ~ /’/QQ‘ (2.,

) sl N\ 2 .
The M metric is as usual A s A /1/2/ 2 2s )29“’2 ,xﬁ- coor

the immersiom

2,
dinates on A/Z?.) and the associated Gauss mgp is

}’ .

.

ke
)
—| S
AN
%
N
§

' .“;V f& S&w /Dﬁ
[Ptfﬂ' s . ' = a).
Analitical%y, h o, GVM/’/{)(/; () 7

T = /}/é//Z
= ot )
2 Lo+ LX, (
and the target space is the complex quadric

’ b
@,a = (;D ). 104(0:’) :(2 ?iz':"

L 4 -

(For 72 n one has Q o = J‘O/h)/(u/k)' fﬁ/’?zz)

More simply, if W, are the homogeneous coordinates on the two )D /7(

)Y
(see (2,42) ) then onec can define on Q) the following (Fubini-



Study)metric

With . - <
I fAd (%)
¢ =~ O,g
4 L é‘-: )
4 /v, / o x4
7Lb _ gh’t,’
= — 3"
KEWPYES (<. 7€)
one can introduce the currents

JL‘ = =% [/E;/zl /ﬂ‘/a>
AT (‘-2.4;1)

so that

J/) - UZ 2= k ~ Gauss curvature
;ﬂ - 072 = kK

normal ¢ t
N urvature {:2 49)

‘ N
The corresponding Q@=nonlinear lagrangian (dual to the Fubini-Study metric)

(=.72)

is

- g -
S (e 17 )7) s

We will exploit thse results in the next Section.(Notice that >[;~, /

actually correspond to the Gauss map ( <Z.-f3 ).)

2b.Causs Maps and Lagrangian Manifolds.

To begin we recall that the Gauss maps bave already been used by

one of us //5 / to obtain classical solutions (instantons) for the

nonlinear models.It is easy to observe that there is an intimate connec-

between analyticity properties of the map ( 2, 5 ) and the conformal
properties of the corresponding Gauss map. (.2, é‘)

Here we shall point out another property of the Gauss maps that
will pla;/ the essential role for the rest of the paper.

If the target space /\r/ (of a 2DFT) is of constant curvature(as
we throughly assume) ,then there is the isomorphism 7/\7 -(—: 7—/‘745
where ./\/\7 * is the cotangent bundle of ;\/) .0On TM *onn defi
a symplectic(closed) form,say _Q .The above isomorphism implies a
symplectic involution —L' ,80 that for a 2DFT

ro Mo 7A7*/('

2
X =
SZ' = 0 fz.zf)

An immersion with this property will be called Lagrangian immersion,
while the submanifold with a va\nis‘hing _Q will be called Lagran-

gian (sub)manifold / 5 /.We acknowledge that this property has



already been discussed -via another line of rl‘a:oning- by Arnold et
al /4‘) /. (This suggests that our approach is also connected with 3.Integrability and classical solutions for 20fTs

the singulatity theory ,i.e. with the tandau-Ginzburg method //f%/.
'

In a recent paper //-?‘ / it ie affirmed-without proof-that

all the relevant geometries for 20FTs are Legendrian,i.e. with va- : In this Sectiom we shaﬁe “show that the Lagrangian manifolds we
nishing contact form.It is well-known /5; //X /,that there are deep introduced in the previous Section can provide a rigerous approach to
relationships between symplectic and contact geometries,i.e. between the integrabilty of 20FTs.

Lagrangian and Legendrian manifolds.However,contact forms can essen - . We start with the 2DFT immersed in R ,we already dis’cussed above.

tially be defined only for odd dimensions and,on the other hand ,they
We shall take

can not account for Calabi-Yau manifolds.Additionally,as Duistermaat k
= 9 3, )
/ﬂﬁ / showed the main contribution to an action functional (of & N ,f 7
2DFT) is basically provided by the Lagrangian manifolds .(And,to illus- !
i.,e. (see (2,79))
trates his ideas he used double point singularities ,lated suggested
by Martinec ,//6-/.This can be seen as the "missing link" between ;/] = &72\/

~ Landau- G‘inzburg and Calabi-Yau approaches.)

To conclude this Section we shall present a particular class /fﬁ / 2; /_}: 2 - /)2 2 £ 2,
of Lagrangian manifolds,the so-called Lagrangian planes /Xn = %%752 R / ) / / = /
Although not explicitely specified ,it seems that /"'t can play an emi-) (3‘ 2

¢ . : .
nent role in supergravity theories with antisymmetric tensor fields/ 2 0 / This implies

Aw) TT%,
T2 Pz N2 62 — °

for an investigation with the title,e.qg."Strings snd K-3 Surfaces".) ‘ (:3 2

For the interested reader we shall also reveal that the bran-

ched covering of the quadric @h(éee (% 46! ) ) is Lagrangian,jere <

cisely a Calabi-Yau(K-3) surface.(This can be used as starting point

Observe also that our Jef'inition of duality is completely inde-

pendent of the fact that it is an exact symmetry or not. These commutation relations can be interpreted as a Lax system and this

suggests the following integrability conditien (I C ).

N
—_

IC : A 2DFT is integrable if the corresponding normal curvature KA/ =



e

i.e.if it corresponds to a Lagrangian immersion.
o
If we rewrite the /72/ metric as °//5 4’6 c/.t/ 2 (n//é was ini-

tially defined affer (2.11)),then it is a simple matter to see that our inte-

grability condition (3, 3 ) leads to
- 4 , -
&, + 2 S’/’%(:ZN) =0 (3 %)

i.e. the sinh-Gordon equation.If in place of %"‘)RL’ we take ,Z.g G

( 6 -compact semisimple Lie group) and use the fact that homotopically 6‘

;c.a k) =

rank G) ,then our IC leads to the well-known Toda equatxon

is a praduc of spherees,i.e. G = /7 5 ‘

v

C‘{ga '/~-e></o (- ,&c\/) o (5-5

I/ )V
(Here z{/,) is the Cartan matrix defined mterms of the "spins" f o)
[
Of course,our IC does not imply that the considered model is conformal
variant.A more detailed snalysis (precisely,for Lagrangian manifolds with con-

stant principal curvatures,the so-called isoparametric manifolds / ~?’7/)) >

shows that a 2DFT is conformelly invariant(minimal) if the manifolg(attached

4
via duality are focal manifolds.Precisely,to any Gauss map one can attach a
SN
scalar curvature k ;when

4 Z - 4 (
ki ¥ /<'r 3\,;)

then the associated manifolds are focal.Herek is the scalar curvature of the
target.for instance,,for v IV)A

c = P FC)//.\E4
-K = '&(ﬁy_)

k \_______1 ) k =
7 =) ¢
and therefore

A4S -

We get simultaneously an interpretation for the central charge ( ¢ = "72//
as well as for the minimal integrable 20FTs.According to the picture above
mal models correspond to focal Lagrangian manifolds,while the- ..integrable(nc
minimal )20FTs are “ordinary" Lagrangian manifolds.There is also a definiti-

on of focal manifolds in the context of singularity theory/ 22 / and this

suggests once again the deep relationship between Calabi-Yau(i.e.lLagrangian
approach and the Landau-Ginzburg (i.e.the singularity) approach.

We shall proceed now to get classical solutions for 2DfTs;as
already alluded to we shall look for classical solutions that are Lagrangion
manifolds.To ¢4y tiis we shall re-analyse the solution proposed by Witten's
/ 5 / some years ago and then we shall generalize it in a Lie-theoretic
framework.

. Essentially,Witten's solution can be viewed as the Lagrangian
immersion

30(2,0 $O/2 )
7z 1) — $O0/2) ) (}; 3

(Notice that we are in the target space !)lLocally,it is the upper half-plane
of the complex plane(or,via the well-knon Cayley transform,the unit éomplex

disc)and the corresponding geometry is non-Euclidean(hyperbolic).Observe tha

‘\0/4) ’) is the parebolic subgroup of J‘o/éj 4)~hile 50/&)13 the com-

pact subgroup of the same group.(For a definition of the parabolic,resp. com
pact subgroups of a Lie group as well as of the subsequent Lie-theoretic

notions,see. e.g. /v? 5/.This suggests the following generalization(see

also /;&'Lf /)
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@ be a semi-simple non-compact Lie group with Lie al-
gebra J‘ . Further ,let K.Pbe the maximal compact,resp. parabolic

subgroup -~asbtgrews of 67 andJ é-ﬂ /L,

Cartan decomposition of' 3, .(Here .g is the Lie algebra corresponding

be the corresponding

to k ,whxle/L is a linear vector space of dimension 7 = o/m /L =

s 6= oI K

be defined via
n-7
8.70
n+9 ( )

(Here 5 is the (N “0) ~dimensional unit sphere in 7\/ .) Taking into
account the Iwasawa decomposition of G and P si.e. /-?3/

with A -Abelian subgroup of E , Nnilpotent ~gdubgroup and 6‘

.)Then a Lagrangian (totally real ) manifold AN

)
/v) centralizer of /‘} in K yit results that our solutions possess

SO/

the symmetry (analogous to the Kazama-Suzuki

model /'ej //)-

Th'e structure of these solutions is extremely rich and a
detailed discussion requires s separate paper.However,we shall briefly
present some essential points :

a) it is relaéively simply to see that mtten’ 8 solution is a Lagrangian
manifold with one principal curveture ¢ith multiplicity ne_( 50/;?//)0/4)
leads to one "family " with multiplicity(}‘h f) ).Using  ( 3‘//0) one

can obtain two generations (i,e. a solution with two principal curvetures)

for G = \YOQ/)) g{)/ j")jz_i ~) (The corresponding multiplici-

/5.

ties are ‘2

79
A '2

C e, 9085
N f’ JW%@S@?%

Getting solutions with three principal curvatures i.e.three generetions i

-4 ).This follows from

is a bit more cpmplicated .The main difficulty is to determine the correspo

K

n
ding G*sjnevertheless we get ( — <5 /ﬁ, -3d 4 o/; 2 /7
M ) n i 2) 4) ) }é

SU(3) o=
S0/3)
s SUr SUn) Ay
SL/3)
i)
nl3)
K £,

—— Ih'“% -5
M 3

[ X[>

<

,\/} - "/ = / 4

Q/z%

()

Observe that these solutions are connected with the division algebras(real
complex,quaternionic and respectively Cayley).

b)Of course, the soluti&ns we obtained do not exhaust all the poss:
(constant principal curvature)solutions \é’/p - /\, smoreover, there

exist solutions that are not homogeneous at all.Note also the isomorphism



T
)
e = 2y

( W is the Weyl group of K and UL the Lie algebra of the Abelian sub
group A ),i.e. these solutions possess additionally a Weyl symmetry.(Thig

suggests a possible connection with braiding and the quantum symmetry;

however,we shall pursuit this point here.)

4. Lagrangian Manifolds and W~Algebras

Here we shall show that the formalism we introduced above permits
a natural definition of the W-algebras.

Firstly, we shall consider the case of homogeneous Lagrangian mani-
folds;then,we shall extend our discussion to arbitrary (Lagrangian)mani-~
folds.The first part of our analysis has some contact points with the approac
of Gervais (;t al / 26 / ;{owever,there only the Kaehler case is considere
(Note that manifolds of the type %-)1&, need not to be Kaehler.)

To be specific we consider a Lagrangian immersion i.e. an inte-

grable 20FT (see also ( 3.70) )

Z. M& ~> G/P\) Sh~:/\/ ‘
.7)

Then

5 g

is a polynomial map ( a so-called Cartan polynomial/ -27 /)and the commu-
tator of \X/ ‘s , W: G—}{ is @ linear combination of W 's.Observe

N2
that W is actually defined on the Grassmannian attached to 5 and

F7.8"

It

.

17

therefore it can be interpreted as the principal symbol of an appropriateg

defined differential opcralur.Henc‘;;,one can write the following (equal tim
I

commutator (XC, 2% are spatial variables)

o
[Wp‘) %]: \@[W)gfyf%;)

L/(]’-‘ 7/ 2/ i
(4 2)
Therefore,the W-algebras are the affine algebras attached to isoparametric

(Lagrangian) manifolds.The first commutator of the series ( é 3 ) is the

usual Virasoro algebra and at the same time -from a Lie -theoretic point
» V)
= A'Y}’J‘*‘ 9{. ’ R scalar curvature)This observation supports once again tt

geometric interpretation of the central charge we proposed sbove(sec

of view~ the well-known Bochner -Lichnerowicz formula /~C 9 /( L ‘V\

( .5‘ X) ).‘Precisely, ¢ is the (inverse of the involved)scalar curvature,
while the level ke is the order of the corresponding eigenvalue.
To determine W’'s we propose the following algorithm.One can show
that is the volume(squared}of the corresponding symmmetric domain
k/)"j c 7™ and, using standard results one determines % and W‘://
We shall extend now our discussion to the case when the implied La-

grangian manifold is not Bgmogenéous..We recall /e / that for any La-

\
grangian manifold one can define a so-called Monge-Ampere equation
Q - L'c>('

et 7
\ Q >D
g - = 0

(44)
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The potential }Vabove is connected with the integrability condition in the

- jugate solution to y ) satisfies
sense that Z >L>C ( 7( the conjug

the Toda equation.from (4‘1/) we can write

(an. 22\4/ D)= o

4o

: Al : : f
The constants GQ are connected with the "spinsg" {L (see the derivation o
initi y .A direct cal-
( 3 S ) );they were absorbed in our definition of w,é ( 93" )..A direc
A} ?

culation leads once again to g\ )
We, Wy 3= 3 () d6,-)

i.e. to the W-algebra (43) we get above.
To conclude this Section we shall briefly comment two interesting

ints :i) it.is well-known /.21/ / that a semi-simple non-compact Lie algebre
po : t

? admits a Z-gradation,i.e.
?:: ﬁh,#'<ﬁo ’+J4

ﬂz)jjcgﬂ (/g
L 4,3207 €944

This can give a rationale for the approach suggested in /,2 / (to derive
W-algebras via the embedding AZL into 9 )

ii)Our approach presented above shows that classifying the W-algebras essen-
tially means to classify the underlying Lagrar?gian manifolds.Now,there ilb
an infinite set of such manifolds and a "complete " classification of W-alge -

o 5 f W
b is Ol)ViOU“lY illUJOPy.(A bit ﬂl()l“;}v complicatcd is the situation for %
ras 1 8

- 49.

i.e. in case when the corresponding Lagrangian manifold is immersed

infinite dimensional space.)Nev)ertheless, a further study of the pr

ties of the W-algebras via the Lie-theoretic and geometric methods we

above is worth doing.

5.Discussion

Here we shall present a succint discussion of the results we get
previous Sections.In essence,we focused our attention on the propert i
of the target manifold of a ZDFTCtgfertmg with a generalized duality
rement we have proved that the target space is a Lagrangian manifold

totally real ).we pointed out that Lagrangian implies (in the Kaehler
Calabi-Yau-
This allowed us to get a generalized integrability condition .

as classlcal solutions a la Witten for the considered 20FT. Notice, tt

due to the factoring of the parabolic subgroup (see (3§, '70)) these so]
‘tions automatically avoid closed time curves si.e. they satisfy the ez
condition .Of course,this class of solutions (which generalize the ins
tons-like solutions) ewpl for which we propose the name symplectons-do

exhaust the possible solutions of the considered 2DFT.

As a third result we (re)obtained the W-algebras as affine alg
of the underlying Lagrangian mamf‘olds The full implications of the Mong
Ampere equation remains to be further studled it appears that in some

cases the Monge-Ampere operator is identical to the Dirac operator.

As byproducts we get :i) a new view to conformal invariance.A 2

is conformal invariant (mmlmal)lr the underlying target space satisfies

“rocalxty"conmtxon.u)oeveral connections between the singularity thory
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Lagrangian (focal)manifolds,i.e. relationships between Calabi-Yau and Landau-
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