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Abstract

We extend a previous proposal of improving the EBK semiclas
sical quantization rules to three-particle systems in states with zero
total angular momentum. Semiclassical quantization is carried on in
a modified potential, which can be interpreted as coming from super
symmetric Quantum Mechanics after the fermion-boson interaction is
neglected. The standard EBK rules in this potential with no Maslov's
indexes lead to the exact ground-state energy and to an iInproved
description of the excited states. The method is tested in a model
Hamiltonian with quartic and sextic anharmonicities. Approximate
integrals of motion of the modified Hamiltonian are constructed by
means of the Birkhoff-Gustavson reduction to normal forms. We ex
pect the method to provide a good selniclassical description of the first
excited states of strongly quantum few-particle systems.

* Pernlanellt address: Instituto de Cibernetica, Matematica y Fisica,
Calle E 309, Vedado, Habana 4, Cuba
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·1 Introduction

Atternpts to apply the rules of the old sellliclassical Mechanics to the quan
tization of a 3B problelll (the Helium atom) date back to Bohr and Kramers
[1], and their failure was a great motivation towards a consequent fonnulation
of Quantum Mechanics.

In rnodern tenlls, the conceptual difficulty in semiclassical quantizing a
3B system lies in the 110nintegrability of the classical 38 problelll [2]. Apart
froITI this point, we now understand that quantulll phenornena are not always
governed by selnic1assical Mechanics, and this concerns, in particular, the
first energy levels of lllany slnan systems.

However, a great progress has been achieved in the last years in the under
standing of semiclassical Mechanics [3,4] and in the development of lnethods
for carrying on quantization in systelTIS with a few degrees of freedom. Anl0ng
these methods, one can mention, for exalllple, the Fourier transfonn of classi
cal trajectories [5] and the Birkhoff-Gustavson reduction to normal fonns [6],
which have been applied to Dl0lecular problems, or the trace formula which
has been used in the quantization of hardly chaotic [7] and even ergodic
[8] systenls. Applications have been, however, restricted to systenls with at
lnost two degrees of freedom and one is telnpted to apply these rnethocls to
3B problems in rea] three dilnensional space.

On the other hand, an interesting possibility of describing quantunl effects
by means of an effective classical potential is suggested by supersyuunetric
QuantU1l1 Mechanics [9]. Let us write the Halniltol1ian for the interaction of
a boson and a fennion:

(1)

the lllass of the particle is taken to be unity and 0'3 is the third Pauli Inatrix.
The eigenvectors of 0'3 define the sectors in Hilbert space with zero and one
fennion nurnbers. Bosonic Halniltonians act in each of these sectors. They
a.re respectively

H± = ~ (p2 + (dW/dx)2) ± ~ WW/dx2) , (2)

and are shown to be isospectral with the exception of the ground state, which
is contained only in the spectrum of one of the Hanliltonians, let us say of
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H_. The g. s. function is 'l/J = exp - ~V/h, and the g. s. energy is redefined
to be zero.

Let us recall then the two basic properties of the "classical" potential

(3)

. i) Its mlnlmUlTI is located at the point of maximal probability, i. e. of
11laxiInal'l/,2, and ii) The value of U at its minimum, U = 0, coincides exactly
with the g. s. energy. Quantum corrections do not change this "classical"
result.

Then, one is tenlpted to semiclassically quantize the motion in U in order
to obtain the excited states. Note that the zero-length orbit shall be included
and it corresponds to the ground state. In the one degree of freedom case,
one arrives to the modified Bohr-Sommerfeld rule

2
1
" f dXV2(E - U) = nn, (4)

which has proven to be exact in a wide class of exactly solvable problelTIs
[10] .

In the 3B case, we expect the analog of Eq. (4) to hold only approxi
mately, although there are indications [11] that there is a class of problenls
in one dilnension, which includes the Calogero probleln (12], for which the
improved quantization tnay be exact. In paper [11], we computed the small
oscillation frequencies around the "Bohr configuration" of the 3B systenl (i .

. e. the configuration of maximal probability, for which U = 0) and showed
that they are Inore naturally related to the excitation energies of the quan
tum systelll than are the ordinary frequencies computed in the actual poten
tial V. In papers [13], we went beyond the small-oscillation approxilllation
and constructed approxiulate action variables in the 3B problelll by apply
ing successive canonical transformations which reduce the Hamiltonian to a
sum of simple forms, i. e. the normal forms of Birkhoff and Gustavson [6].
The method was applied to a model triatOInic Inolecule in one dilnensioll
which showed the interesting feature that the ordinary (in V) BG quanti
zation breaks down for some particular value of the paranleter entering the
Hamiltonian.

In the present paper, we extend the above Inethod to three identical par
ticles in real 3D space. We restrict ourselves to states with total angular
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n10mentum, L == 0, for which the Hamiltonian reduces to a scalar Halnil
tonian with 3 degrees of freedol11. It is worth stressing that the condition
L == 0 is exact in the quantum sense. In other words, we start froln the
exact quantum L = 0 Hamiltonian in which we replace V by U and the
momentum operators by classical magnitudes. After that, we apply the BG
method to construct the approximate action variables of the probleln, which
are quantized by simply assigning to them integer multiples of the elementary
quantum of action.

Besides giving the general quantization recipe, we apply it to a lllodel
problenl in which the potential exhibits quartic and sextic anharrnonicities.
This Inay be seen as a l1lodel of a quantuin systelll with a depth potential well

. as may be, for example, a 30' model of 12C [14] or a trinler of heavy noble gas
atoiTIS [15]. We do not, however, choose the parameter of the Hamiltonian to
fit the energies of any of these systems. Instead of that, we compare with the
results of a numerical estimation of energy levels. Details are given below.

2 The BG Procedure in the Potential U

We start by recalling the restriction of the 3B Hanliltonian to states with
total angular 1l1omentuiTI L == 0:

H= -

(5)

(6)

_ ... mIT} + m2T2
p == r3 - ----

ml +m2

and itT' Jlp are the associated reduced masses,
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/lp = m3(ml +7n2) . (9)
ml + m2 + m3

The interaction potential, v, may contain two- or three-body forces, but
it is supposed to be central such that total angular mOluentuln is conserved.
In states with L == 0, the wave function is a function of scalar combinations
of rand p, i.e. of 7', p and, == r.ji/rp. We elilninated the first derivatives in
the Hamiltonian by changing to the reduced wave function:

x == rp(l - ,2)1/21jJ. (10)

. such that X 2 is the probability density of 3B configurations.
The luodified potential U luay be obtained frOID the Schrodinger equation

(H - Egs))(gs == 0, (1 I)

simply by writing the g.s. wave fUllction in the fornl Xgs == exp -lV/ hand
neglecting the tenns proportional to -n in the representation of the potential
in terms of W,

-n
2 (1 1)- ( 2) --2 + --2 + V - Egs == U - hUh,

2 1 - , /lr 7' /lpP
(12)

U(1',p,,)

(13)

182W 102W 1 2 (1 1) (8 2W)'
Uh(r,p,,) == ~-8.2 +-2-82 +=-2(1-, ) -,-2+--2 -a2 . (14)

-.Jjlr 7 Jlp P jlr 7 11 pP ,

We note that U is again a nonnegative function. The conditions of Inini
111UIll

oW ::: oW == 8vV == 0,
a1' 8p 8,

are equivalent to the requirelnents of lllaximal probability
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8Xgs 8xgs 8xgs 0
--=--=--= ,
8r 8p 8,

(16)

Because of the fact that Xgs has only one extrerrlurn (its Inaxilnulll) Eqs.
(16) have only one solution. Permutation sylnnletry ilnplies that the con
figuration of minilnum is an equilateral triangle, and thus the systeIll (16)
reduces to one equation to detennine the side of the triangle. At its 11linilllUlll

U(ro, po, 10) = 0, (17)

i.e. E == Egs .
To obtain the excitation energies, we should start from the classical

Hamiltonian,

1~ 2
IIclass == :2 L.J 9aPa + U,

a

(18)

where a == r,p", 9r == I/Pn 9p == l/Jlp, 9'Y == (1 -,2)(1//l r 1·
2 + 1/ppp2),

and inlpose quasiclassical quantization conditions on the classical bounded
Inotion governed by the Halniltollian (18). Due to the particular fonn of the
potential U, which has an absolute Inininluln at the configuration of 111axilllal
probability, we find Inost convenient to expand He/ass around the 111ininlUlll
and then, by Ineans of successive canonical transfonuations, to reduce the
first terms of the series to simple forms from which the action variables of
our probleIl1 are straightforwardly extracted. After truncation of the series,
we are led to an integrable HaIlliltonial1 which approxinlate1y describes the
problem and which is suitable for selniclassical quantization. This is the so
called BG procedure, let us briefly describe it.

Expanding He/ass around the mininlulll, we get

( 19)

where the Ha are hOlnogeneous polynomials of degree a. The q's are the
normal coordinates of the small oscillations around the IllininluIll, and the
p's are their conjugated momenta. In other words, H2 takes the fornl

(20)
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Notice that there is a non degenerated mode of oscillation (the sY111111etric
1110de) and a two-fold degenerated Inode (the Inode with Inixed synunetry)
siulply as a consequence of pennutation symlnetry.

The Birkhoff-Gustavson procedure [6] enables us to reduce the Harnilto
. nian (19) to the fonn

(21)

where the frequencies are the saIne as above and the r 0' are homogeneous
polynolnials in the new variables Pi, Qi. The r 0' are required to COll1I11ute
with f 2 , such that the action variables become trivial. Of course, we can not
satisfy this requirelnent for all terms in the expansion because the original
Hamiltonian is not integrable. However, by truncating the expansion we
obtain an approximate classically integrable Hamiltonian.

The requirement of r 0' to be reduced to normal forms 111ay be concisely
written in the following way

(22)

The Halniltonian He/ass is reduced to the fornl (21) by 111eans of successive
canonical transfonnations, each one designed to do the job for the polynolnial
of a given degree. The generating function of such transforrnation is the

. following

F (a) L Pjqj + WO'(P, q)
j

= ""'" P + ""'" f (0') P !3} P (3n 1'1 I'nL...J jqj L...J !31.··!3nI'1 ...l'n 1 • •• n ql ... qn ,
j

(23)

where the second SUln runs over indexes such that L,j(j1j + ,j) = a. It leads
to the following relations

(24)
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Pi

H class (p, q)

!!-F (o)(P q) = p. + oWo

O ' ~ a 'qi qi
- r(p,Q),

(25)

(26)

where in each step p, q and P, Q denote the old and new variables respec

tively.
Substituting (24) and (25) into (26) and expanding in powers of P and

q, we obtain the following systenl of recurrent relations for the f {j and the

function Wa :

r {j(P, q)
Wa(P, q)

r{3(p,q)

Ji{j( P, q), (3 < Q,

= D- 1 [fa(P,q) -IJex(P,q)],

H(3( P, q) + terms of order f3 in L
f3! (0'-1 )<!::p${j+2-a

{
OW (0') oW (0') }

Hp(P + oq ,q) - r pep, q + oP ) ,

(27)

(28)

{3 > 0'. (29)

Note that in Eq. (28), the r 0' is chosen such as to cancel all ternlS of Hex
which are null vectors of D. In other words, if we write

Ha = NO' + Ra ,

where DiVa = 0, but DRa i 0, then

r a = Na , and

Wa = _D-1 Ra .

(30)

(31 )

(32)

There IS an efficient way for solving Eqs. (31) and (32). The point is that
the operator D is cliagonalized when we change to the variables

~ = ~(P + iq), (:33)

17 = -J2(P-iq), (34)

I.e.
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. 8 a
D == l LWj(~j8t. - T/i-a).

. r.:.J "IJ
J

Consequently, every Illonolnial

(35)

(36)A.. II (rnj IJ
'Yrnl == ~j "Ij'

j

is an eigenvector of D and D-1 with eigenvalues A == i L:j wj(mj - lj) and
A-1 respectively.

After the application of the BG procedure through a given order, we
obtain a truncated expansion of the fornl (21). Under the assuIllption that Wo

and Wi are no cOlnnlensurate, it is easy to see that the variables Po and Qo will
enter the rex only in the combination (PcJ + Q~)/2, which after quantization
becolnes n tilnes the nUIllber of quanta in the sYllllnetric Inode

1 2 2
Jo == 2"(Po + Qo) ---4 non. (37)

The argument is the following. No c0I11nlensurability ilnplies that the tel'll1
proportional to Wo in (22) shall be zero by itself, and this in turn implies
that rex is a function of ~(P(f + Q~). On the other hand, degeneracy of the
Inixed-sYlllInetry Il10ele leads to the fact that the rex will not only depend
on the conlbinations ~(Pl + Qr) , i== 1, 2, but also on SOI1le cOlnbinations
between the i== 1 and i== 2 variables. It can be seen, however, that the total
number of quanta in the 11lixed-sYlllmetry lllode

1 2 2 1 2 Q2) ( )J1 == 2( PI + Q1) + 2( P2 + 2' 38

is an action variable of the probleI1l and, thus, it 111ay be quantized according
to the rule

(39)

For the quantization of the relnaining degree of freedoln, one shall apply
the Bohr - Somillerfeid rule (4), where the InomentUI1l variable is obtained
froln the equation r == E as a function of E, .10 , J1 and the renlaining angula.r

. coordinate.
Let us see how the method works in an exanlple.
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3 A Model with Quartic and Sextic Two
and Three-Body Potentials

. We consider the central interaction of three spin-less particles described by
the potential

v

(40)

We use units in which nand the mass of the particles are set to one, so
that Jlr == 1/2, p,p == 2/3.

Besides the tenn cOIning froln the elinlination of first derivatives in the
Hamiltonian and the harnlonic terms, the potential V contains quartic and
sextic anharnl0nicities which respect pennutation invariance. It Inay be
thought of as au approxinlation to a deep well, intended to describe the first

. energy levels above the bottonl of the well. The lnost interesting property of
V is that the g.s. energy and wave function lnay be explicitly written

Egs - 18,

1pgs == exp - {r~2 + r~3 + 1'~,

+ A( r~2ri3 + "i3r~, + r~1 r~2)}, (41 )

so that, instead of cOlnputing numerically 'l/Jgs and obtaining an expansion
like (19) by fitting coefficients, we nlay write an explicit expression for U

(42)
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which is our starting point in the application of the BG procedure.
The minimum of U is , of course, U = O. It is reached in configurations

corresponding to equilateral triangles

(43)

In these configurations, we obtain the following equation for the equlib
rium distance, 1'0

o= -1 + 31'~ + 6A1'ci,

. I.e.

r~ = 4~ ( - 1+ V1+ 8,\/3).

We will expand around the equilibrilun configuration

l' 1'0 + x,

J3
p = 2(1'0 + y),

I z,

and change to the normal mode coordinates p, q

(44)

(4,5 )

(46)

x ql/~+q2/~'
1

]Jx -(~1J} +~P2),
2

y - ql/~ - q2/~, (47)
1

py 2(~]Jl - ~]J2)'

Z q3/ VI - ~'\r~,
aA 4pz = 1 -"2 1'0 P3,

where wo, WI are the slnall-oscillation frequencies
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(.50)

4 4
(48)Wo 2(1+6'\TO)'

TO

4 3 4
(49)WI == 2(1 - 2"'\1'0).

TO

Substitution of (46 - 49) into the lTIodified Hamiltonian (18) leads to the
series (19), in which Hz takes the fonn (20) and the Hex with Q > 2 are given
by

Hex == L
i+j+k+l=ex

where there are only a few nonzero h ijk1 • Explicit expressions for the Hex at
,\ == .2 are given in Appendix 1. They were obtained (as well as the rest
of the algebraic calculations in this paper) on a cOlnputer with the help of

. Mathematica.
We apply the transfonnations (27 - 29) on the Halniltonian (19) to obtain

the nonnal fonn (21) through sixth order (a :::; 6). We introduce explicitly
the conserved quantities (37 - 38) according to

PI ~cos(Bo), Ql == ~sin(Bo),

P2 J J1 - J cos(B} - B), Qz == viJ1 - J 8in(81 - 0),

P3 - vJ1 + Jcos(B I +B), Q3=VJ1+Jsin(Bl+B). (51)

The result for f, Eq. (21), is as follows

r 4 1~4) J; + 1~4) J2 + 1~4)J1 Jo + 1~4) J5
+ 1~4)(J; - J2) cos(4B),

12
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f 6 _,~6) J~ + ,~6) (J; J - J3) - ,16
)J1J2 - ,~6) J; Jo

+ ,~6) J2 Jo - ,~6)J1 J5 - ,~6) Jg

+ [_,J6)J: - 1~6)J[J + 1J6)J1J 2+ ,~6)J3

+ 1~6)J[ Jo - 1~6)J2Jo] cos(40). (54)

The explicit values of the coefficients at ,,\ = 0.1, 0.2 and 0.5 are also
given in Appendix l.

We shall quantize the classicallnotion described by f, Eqs. (21, .52 - 54) .
. As mentioned above, two quantization rules are trivial

Jo = no, J1 = 71.1'

Substituting theIn into the truncated expression

(55)

(56)

we obtain r as a function of the generalized canonical variables J, f), and of
the parameters no, n1. The remaining degree of freedom is quantized with
the help of a one-dimensional Bohr-Sommerfeld rule.

With the purpose of comparison, we numerically cOInputed the eigenval
ues of the Hamiltonian (5, 40) using a basis of 120 functions of the unper
turbed HaIniltonian (,,\ = 0). We present in Appendix 2 SOlne details needed
in this calculation. The results for the first 19 excited states are shown in the
last column of Tables 1 - 3, corresponding respectively to ,,\ = 0.1, 0.2 and
0.5. As will be seen below, these levels are related to states with less than
four excitation quanta, i.e. no + 71.1 ~ 3. The obtained values of energies will
be taken as the "exact energies". SaIne remarks concerning this point will
be given below.

Let us consider step by step the different contributions to r.
In the harn1011ic approxilnation, r = r2, the energy is given by

(57)

I.e. harmonic oscillators of frequencies Wo and WI. The values COIning frOID
(57) are shown in the first energy entry of Tables 1 - 3. One may see that
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the corresponding spectrulll may differ considerably froIII the free spectruIll
(,\ = 0, the energies are given by l2N, where N is the total number of
quanta). One Inay see also that, even at A = 0.1, anhannonicities becorlle
very strong (1.5 %) for the higher levels, so that corrections shall be included.

Through fourth order, we get

where

/4 = ,~4)n~ + ,~4)nl no + ,~4)n~,

~r4 1~4)n~ cos(4li) + 1~4) J2 (1 - cos(4li)).

Consequently, the energy is given by

£4 = £2 + /4 + E4,

. where t4 shall be found from the Bohr-Sornmerfeld condition

(58)

(59)

(60)

(61)

1 f lie B

!n = - JdO =-
27t" 7t" B,

E4 - ,~4)n~ cos(40) dO

,~4){ 1 - cos(40)) .
(62)

The Oi, OJ are the turning points for the clasicallllotion in O. The depen
dence of ~r4 on 0 is essentially cos(40), so that

(63)

The value 1r /4 is reached at n = 0, in which case t4 = -,J4)ni. Note also
that, in general, the allowed interval for J is -nl ::; J ::; nl, thus

~ f JdO ~ _1 x 2nl x 1r /2 = nl/2, (64)
27t" 21r

and corrections will not completely break the degeneracy of the hannonic
approximation.

The results of this approxitnatioll are shown in the £4 colulnn of Tables 1 
3. Sorne relnarks are needed. The nlaximum relative errors are 4 %, 5.4 %and
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6.6 % at A = 0.1,0.2 and 0..5 respectively. As a rule, the higher the level, the
bigger the relative error. However, one can verify that states corresponding
to excitations of the synlmetric mode (no) are better described by this schenle
than states corresponding to excitations of the Il1ixed-synunetry tHode (n.).
Note also that the energy values, E, do not show exact doublet degeneracy in

. many cases. This is an indication that the nunlerical estiInate is not accurate
enough to observe the degeneracy. Anyway, we will take theIn as the "exact"
energIes.

Next, we include the sixth order correction

where

r (6) 3 (6) 2 (6) 2 (6) 3
)6 - -1'1 71,1 - 1'4 71,1 no - 1'6 71,1 no - 1'7 no,

~r6 = Ani cos(40) + [AP + ')'~6)(ni - J2)J] (1 - cos(40)),

A 1'~4) - ,~6)nl +,~6)no.

(6.5)

(66)

(67)

(68)

It nlay be easily verified that, with the exception of nt = 0 states for
which ~r6 = 0, the tniniIl1UIll of ~r6 is reached at the point

71, 21'(6)

Omin = 1f /4, Jmin = - 1 2 , (69)
A +VA2 + 3(,~6)nd2

so that the cycle in the phase space (J,O) will be a loop around this point.
The energy in this approxilnation is given by

E6 = £2 + 14 + 16 + t6,

where t6 is obtained frOlTI the quantization rule

(70)

2~ f J(f6,0)dO = n, (71)

in which J (t6' 0) is the solution of the equation ~r6 = f6 that generates a loop
around the point of rninitllum. Note that, when 71, = 0, £6 = ~r6(Jmin, Omin)'
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In the E6 colulnn of Tab. 1, we have included the energy of n = 0
states. We see again that the "breathing states" (no =1= 0, nl = 0) are best
described. One can verify also that the inclusion of the sixth order ternl does
not necessarily lead to an improvement of the fourth order approxilnation.
One shall rernember that the BG series for the energy is only aSY111ptotical,
so that its terms should be included with care or resulnnled up with the help
of Pade approximants. We have not enough ternlS to 111ake a Pade analysis,
so that in Tables 2 and 3, we show E6 only if it is the best fit to the energy.

The nlaximunl relative error of the best fit is thus 6.6 % reached ill a
state with three excitation quanta at A = 0.5. Note that the actual energy
in three-quanta states Inay be 30 % larger than the free value at A = 0.1 and

. twice larger than the free value at A = 0.5, so that our results are essentially
nonperturbative in A.

4 Conclusions

\Ve have extended to three-particle systems in three dimensions and in states
with zero total angular 1110Inentull1 a semiclassical quantization recipe which,
in one dinlension, has shown to ilnprove the ordinary quasiclassics.

To semic1assically quantize a 3B probleln, we need approximate action
variables. In the present paper, they were obtained by expanding in series
the improved Halniltonian around the configuration of tuininlUlll and, after
that, reducing the series through a given order to nonnal forll1s with the help
of canonical transfornlations (the BG procedure). The action variables of the
truncated nornlaJ fonn are easily identified, so that quantization becOlnes
trivial.

There are two sources of errors which can be inl111ediatly stated. One is
the series expansion of a Hanliltonian like (5) containing inverse powers of
coordinates and 1 - j. The second is the handling of an aSylllptotical series.

We intended to give an "etnpirical" answer to the question about to what
extent setnic1assics in U is the saIne as Quantulll Mechanics in the unnl0di
fled potential. C0l11parison in a Inodel exanlple leads to energy values with
maxinluIll relative errors of 6.6 % in states with three excitation quanta and
very strong anhannonicities (A = 0.5). A conceptual answer to this question
is, however, still lacking.

Our results may be continued further on in many directions. One l11ay, for
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exalnple, avoid series expanding H by using a different quantization schelne
like Gutzwiller's trace formula. Anharrnonicities in the potential will exactly
be taken into account in this way. We believe that the leading ternl of the
trace formula will play the sanle 1'01 as the nlodified BS rule, so that there
will not be necessary to include corrections. On the other hand, one tnay, for
example, further study the classical motion in U in order to decide whether
there are SOlne connections with the probability distributions of excited states
or with the quantuln scattering properties of the unmodified potential.
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Appendix 1
The following are explicit expressions for the Hen equations (50), at ,\ = .2
and a ~ 6:

H4 = 4.4304p~q; + 1.8375qt +5.0361P5qi + 11.797q;qi

+ 2.3052q~ - 6.7148P5q5 + 4.1153q;Q5 + ,5.4926q~q5

+ 7.0870qj, (73)

Hs = -2.8079P5q~ - .96661qf - 9.5755p5q}q~ - 11.103q~q~

6.;3104CJlq~ + 6.3836p~qlq5 - 3.1780q~q5 - 9.299:3q}q~q5

6.7375qtqj, (74)

H6 = 1.6684p~qt + .54307qf + 11.379p;Q;Qi + 9.2459qtq~

+ 2.1S,58p5qi + 10.510q;qi + .7976~lq~ - 4.5516p5Q;Q5

+ 1.7180qtq5 - 5.l738P5q~q5 + 12.060q?q~q5 + 2.2559qiCJj

+ 4.8039q;qj + 5.4606Qiqj + 7.2808qg. (75)

After the application of the BG procedure, this Hanliltonian is reduced
to the forn1 (.52 - 54), where

r 2 = 14.859Jo + 13.072J},

r 4 = 1.0582J; + .097612,]2 + 2.5634.1} Jo

+1.5652Jg + .097612(J{ - J2) cos(40),

20

(76)

(77)



r 6 = -.11203J{ + .051729JlJ - .023966J1 .1 2
- .051729J3

.22517Jf Jo + .093076J2Jo - .63376J) J;; - .17098Jg

+ [- .023966J;' - .051729J;J + .023966J1J2 + .051 729J"

+ .093076Jpo - .093076J2 JO] cos(40). (78)

Silnilar expressions are obtained at any other value of A. We show the
results at A = 0.1 a.nd O.,S.

A = 0.1

r 2 = 13.506Jo + 12.565J1 , (79)

r4 = .57926J)2 + .049300J2 + 1.4925.11 Jo

+.94737Jg + .049300(J; - J 2 )cos(40), (80)

r 6 = -.0:36742Jl + .025424J;J - .0065956.11 J 2
- .025424J3

.077015.1; J o + .051735.12 .10 - .29419.11 JJ - .078761 Jg

+ [- .0065956J~ - .025424J;J + .0065956J1J2 + .025424J3

+ .051735JiJo - .051735J2Jo] cos(40). (81)

A = 0.5

r 2 = 18.330Jo + 14.374J1 ,

r 4 = 2.1853J; + .24042J2 + 4.5488J}Jo

+2.5714J5 + .24042(J; - .12
) cos(40),

21

(82)

(8:3)



r 6 = - A0938J? + .13646J;J - .12560J1J2 - .13646.13

- .31755J;Jo + .20015J2Jo - 1.0593.11 J5 - .21376J5

+ [- .12560N - .I 3646JfJ + .12560J1 ]2 + .13646J3

+ .20015JfJo - .20015]2JO] cos(411). (84)
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Appendix 2
After a trivial change of variables, the Hamiltonian (5) tnay be written in
the following form (the g. s. energy is shifted to zero):

H = -82/8x2 - 82/8y2 - {1/x 2 + l/y2)(1 - z2)82/8z2 -18

(1 - z2)-1(1/x2+ 1/y2) +9(x2+ y2)

+ 6.\{ - t(x2+ y2) + ~(x2 + y2)2 + 3x2y2(1 _ Z2) }

+ .\2{ ~~(x2 + y2)3 + 643x2y2(1 _ Z2)(x2+ y2)}. (8.'i)

We nUlnerically computed the energy levels of this Hamiltonian by writ
ting it in matrix fornl. In quality of basis functions we used the eigenfunctions
of the unperturbed Hamiltonian

Ho = Hp.=o}.

The eigenfunctions of Ho are given by

In x > Iny> Inz >,

where In z > satisfies the equation

I.e.

(86)

(87)

(88)

(89)

where Pnz are the Legendre polynomials. On the other hand, Inx > and
Iny> are solutions of the sanle equation, which for In x > takes the fornl

(90)

It tneans that Inx > and Iny> are expressed in tern1S of radial oscillator
functions. The eigenvalues of Ho are, evidently,
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(91 )

and the matrix elelnents of the perturbation are cOlnputed frOlll the following
basic quantities

On~nyOn,n.H
(n~ + 1)1/2(n~ + n~ + 3/2)1/28nx ,n'x+1

+ (2n~ + n~ + 3/2)8nxn~

(n~)1/2(n~ + n~ + 1/2)1/20".,n:'_I}, (92)

(93)

To COlllpute the eigenvalues of H, we used the 120 functions of 1-/0 which
quantu1T1 nUlTlbers fulfil the requirement

(94)

Note that we did not constructed explicitly basis functions with defined
symmetry properties. This 11lay be a reason for the numerical estitnate not
showing exact degeneracy in some cases.
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• Tab. 1 COlnparison between the ilnproved BG estilllates of energy
levels (E2 , £4 and E6 ) and the energy values, E, obtained froln a direct
nUTIlerical diagonalization of the quantum Hatniltonian. The paralneter
,X is equal to 0.1.

no nl 11, E2 E4 E6 E
0 1 0 12.56 13.09 13.08 13.29

13.29
1 0 0 13.51 14.45 14.37 14.38
0 2 0 2.5.13 27.25 26.91 27.46

27.59
0 2 1 25.13 27.64 27.83
1 1 0 26.07 29.04 28.50 28.93

28.93
2 0 0 27.01 30.80 30.17 30.15
0 3 0 37.69 42.46 41.27 42.49

42.69
0 3 1 37.69 43.25 42.96

43.18
1 2 0 38.64 44.69 43.22 44.24

44.42
1 2 1 38.64 45.08 44.82
2 1 0 39.58 46.88 44.78 45.73

45.76
3 0 0 40.51 49.04 46.92 47.17
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• Tab. 2 SaIne as in Tab. 1 for A = 0.2.

no 71,1 n E2 E4 E6 E
0 1 0 13.07 14.03 14.32

14.32
1 0 0 14.86 16.42 16.25 16.27
0 2 0 26.14 29.99 30.12

30.3.5
0 2 1 26.14 30.55 30.73
1 1 0 27.93 33.02 32.67

32.67
2 0 0 29.72 35.98 34.60 34.7t5
0 3 0 39.22 47.86 47.31

47.67
0 3 1 ;39.22 49.42 48.08

48.44
1 2 0 41.00 51.54 50.28

50.,59
1 2 1 41.00 52.10 51.22
2 1 0 42.79 5.5.14 50.77 .52.80

52.83
3 0 0 44.58 58.66 54.0.5 5.5.1.5
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• Tab. 3 Same as in Tab. 1 for A = 0.5.

no 71,1 71, E2 £4 E6 E
0 1 0 14.37 16.34 16.73

16.74
1 0 0 18.33 20.90 20.69 20.71
0 2 0 28.75 36.53 36.20

36.69
0 2 1 28.75 38.45 37.34
1 1 0 :32.70 41.77 41.19

41.22
2 0 0 36.66 46.95 45.24 45.19
0 3 0 43.12 60.63 58.65

59.45
0 3 1 43.12 64.67 60.20

60.96
1 2 0 47.08 66.5:3 65.35

66.08
1 2 1 47.08 68.45 67.55
2 1 0 ,51.03 72.36 71.83

71.88
3 0 0 54.99 78.13 78.79
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