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Abstract

We extend a previous proposal of improving the EBK semiclas-
sical quantization rules to three-particle systems in states with zero
total angular momentum. Semiclassical quantization is carried on in
a modified potential, which can be interpreted as coming from super-
symmetric Quantum Mechanics after the fermion-boson interaction is
neglected. The standard EBK rules in this potential with no Maslov’s
indexes lead to the exact ground-state energy and to an improved
description’ of the excited states. The method is tested in a model
Hamiltonian with quartic and sextic anharmonicities. Approximate
integrals of motion of the modified Hamiltonian are constructed by
means of the Birkhoff-Gustavson reduction to normal forms. We ex-
pect the method to provide a good semiclassical description of the first
excited states of strongly quantum few-particle systems.
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-1  Introduction

Attempts to apply the rules of the old semiclassical Mechanics to the quan-
tization of a 3B problem (the Helium atom) date back to Bohr and Kramers
[1], and their failure was a great motivation towards a consequent formulation
of Quantum Mechanics.

In modern terms, the conceptual difficulty in semiclassical quantizing a
3B system lies in the nonintegrability of the classical 3B problem [2]. Apart
from this point, we now understand that quantum phenomena are not always
governed by semiclassical Mechanics, and this concerns, in particular, the
first energy levels of many small systems.

However, a great progress has been achieved in the last years in the under-
standing of semiclassical Mechanics [3,4] and in the development of methods
for carrying on quantization in systems with a few degrees of freedom. Among
these methods, one can mention, for example, the Fourier transform of classi-
cal trajectories [5] and the Birkhoff-Gustavson reduction to normal forms [6],
which have been applied to molecular problems, or the trace formula which
has been used in the quantization of hardly chaotic [7] and even ergodic
[8] systems. Applications have been, however, restricted to systems with at

‘most two degrees of freedom and one is tempted to apply these methods to
3B problems in real three dimensional space.

On the other hand, an interesting possibility of describing quantum effects
by means of an effective classical potential is suggested by supersymmetric
Quantum Mechanics [9]. Let us write the Hamiltonian for the interaction of
a boson and a fermion:

H= % (»* + (dW/dz)?) — -;f (d®W/dz?) o, (1)

the mass of the particle is taken to be unity and o3 is the third Pauli matrix.
The eigenvectors of o3 define the sectors in Hilbert space with zero and one

fermion numbers. Bosonic Hamiltonians act in each of these sectors. They
are respectively

Hy = % (P* + (dW/dz)?) + % (d*W/dz?), (2)

and are shown to be isospectral with the exception of the ground state, which
is contained only in the spectrum of one of the Hamiltonians, let us say of



H_. The g. s. function is ¢ = exp —W/h, and the g. s. energy is redefined
to be zero.
Let us recall then the two basic properties of the “classical” potential

U= -;—(dW/dm)z. (3)

'i) Its minimum is located at the point of maximal probability, i. e. of
maximal ¥2, and ii) The value of U at its minimum, U/ = 0, coincides exactly
with the g. s. energy. Quantum corrections do not change this “classical”
result.

Then, one is tempted to semiclassically quantize the motion in U in order
to obtain the excited states. Note that the zero-length orbit shall be included
and it corresponds to the ground state. In the one degree of freedom case,
one arrives to the modified Bohr-Sommerfeld rule

] >
o fdz\/Z(b —U) = nh, (4)

which has proven to be exact in a wide class of exactly solvable problems
[10].

In the 3B case, we expect the analog of Eq. (4) to hold only approxi-
mately, although there are indications [11] that there is a class of problems
in one dimension, which includes the Calogero problem [12], for which the
improved quantization may be exact. In paper [11], we computed the small-
oscillation frequencies around the “Bohr configuration” of the 3B system (i.

_e. the configuration of maximal probability, for which U = 0) and showed
that they are more naturally related to the excitation energies of the quan-
tum system than are the ordinary frequencies computed in the actual poten-
tial V. In papers [13], we went beyond the small-oscillation approximation
and constructed approximate action variables in the 3B problem by apply-
ing successive canonical transformations which reduce the Hamiltonian to a
sum of simple forms, i. e. the normal forms of Birkhoff and Gustavson [6].
The method was applied to a model triatomic molecule in one dimension
which showed the interesting feature that the ordinary (in V) BG quanti-
zation breaks down for some particular value of the parameter entering the
Hamiltonian.

In the present paper, we extend the above method to three identical par-
ticles in real 3D space. We restrict ourselves to states with total angular



momentum, L = 0, for which the Hamiltonian reduces to a scalar Hamil-
tonian with 3 degrees of freedom. It is worth stressing that the condition
L = 0 is exact in the quantum sense. In other words, we start from the
exact quantum L = 0 Hamiltonian in which we replace V by U and the
momentum operators by classical magnitudes. After that, we apply the BG
method to construct the approximate action variables of the problem, which
are quantized by simply assigning to them integer multiples of the elementary
quantum of action.

Besides giving the general quantization recipe, we apply it to a model
problem in which the potential exhibits quartic and sextic anharmonicities.
This may be seen as a model of a quantum system with a depth potential well

_as may be, for example, a 3o model of 2C [14] or a trimer of heavy noble gas
atoms [15]. We do not, however, choose the parameter of the Hamiltonian to
fit the energies of any of these systems. Instead of that, we compare with the
results of a numerical estimation of energy levels. Details are given below.

2 The BG Procedure in the Potential U

We start by recalling the restriction of the 3B Hamiltonian to states with
total angular momentum L = 0:

h* 9%  A® 9% R’ 1 1\ 02
H= - — 2 2 ——(1 - 72) +
2p, Or? 2, 0p% 2 per? o ppp? ) 042
h? ( 1,1 ) . 5)
v.
21 =) \prr? - ppp?
In Eq. (5), 7 and p are the Jacobi vectors
r= T2 — Fla (6)
o mlf"] + m2F2 .
p=T3 ™ + ma ) (7)
and p., pu, are the associated reduced masses,
mimmo
p = —— 8
e = (8)
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m3(m1 + 777,2)
Hp = . _ (9)

my +mg +mg
The interaction potential, v, may contain two- or three-body forces, but
it is supposed to be central such that total angular momentum is conserved.
In states with L = 0, the wave function is a function of scalar combinations
of ¥ and g, i.e. of r, p and v = 7.5/rp. We eliminated the first derivatives in

the Hamiltonian by changing to the reduced wave function:

x =rp(l =%, (10)
.such that x? is the probability density of 3B configurations.
The modified potential U may be obtained from the Schrodinger equation

(H"EgS)ngzov (11)

simply by writing the g.s. wave function in the form x,, = exp —W/h and
neglecting the terms proportional to k in the representation of the potential
in terms of W,

__ ! + ! >+v—E‘ = U — kU, (12)
200 =3 \prr?  ppp? ” "
1 LS| 2
= V . — | OW
U(r,p,7) o (3 V/67> + ZMP( /3p>

b3 (1=7) (1) 4 1/ (aW/av)Q, (13)

1 9*°W 1 9*W 1 1 1 92w
Un(ropon) = L L +5(1-72)( 4 )( ).(14>

2u, O 2p, Op? per®  ppp? )\ Ov?

We note that U is again a nonnegative function. The conditions of mini-
mum

ow oW ow
or — dp Oy

are equivalent to the requirements of maximal probability

0, (15)
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Ixgs _ OxXgs _ OXgs

or ~ dp Oy

Because of the fact that x,, has only one extremum (its maximum) Egs.
(16) have only one solution. Permutation symmetry implies that the con-
figuration of minimum is an equilateral triangle, and thus the system (16)
reduces to one equation to determine the side of the triangle. At its minimum

=0, (16)

U(T‘o, pO»’YO) =0, (17)
ie. E = Eg,.
To obtain the excitation energies, we should start from the classical
Hamiltonian,

1 \ i
}{class = Tz'za:gapa"*‘[]v (lb)

where & = 7,0,7,  ¢r = 1/prs 9o =V, gy = (1 = *)(1/1e7® + 1/ 1pp%),
and impose quasiclassical quantization conditions on the classical bounded
motion governed by the Hamiltonian (18). Due to the particular form of the
potential U, which has an absolute minimum at the configuration of maximal
probability, we find most convenient to expand H,ss around the minimum
and then, by means of successive canonical transformations, to reduce the
first terms of the series to simple forms from which the action variables of
our problem are straightforwardly extracted. After truncation of the series,
we are led to an integrable Hamiltonian which approximately describes the
problem and which is suitable for semiclassical quantization. This is the so
called BG procedure, let us briefly describe it.
Expanding H.j,ss around the minimum, we get

Hclass = Hz(P,q)+.H3(PaQ)+---, (19)

where the H, are homogeneous polynomials of degree a. The ¢’s are the
normal coordinates of the small oscillations around the minimum, and the
p’s are their conjugated momenta. In other words, H; takes the form

wi

2

w w . .
H, = 70(193 +a)+ =P +q)+ —él(ifi +q3). (20)



Notice that there is a non degenerated mode of oscillation (the symmetric
mode) and a two-fold degenerated mode (the mode with mixed symmetry)
simply as a consequence of permutation symmetry.

The Birkhoff-Gustavson procedure [6] enables us to reduce the Hamilto-

.nian (19) to the form

r:Z%(PHQ?)+r4(P,Q)+F6(P,Q)+~-.~ (21)

where the frequencies are the same as above and the T', are homogeneous
polynomials in the new variables P;, ;. The I'y are required to commute
with I'z, such that the action variables become trivial. Of course, we can not
satisfy this requirement for all terms in the expansion because the original
Hamiltonian is not integrable. However, by truncating the expansion we
obtain an approximate classically integrable Hamiltonian.

The requirement of ', to be reduced to normal forms may be concisely
written in the following way

0=Dly =) (ngj QJaP) (22)

The Hamiltonian H s, is reduced to the form (21) by means of successive
canonical transformations, each one designed to do the job for the polynomial
of a given degree. The generating function of such transformation is the

-following

F© = Zijj+W (P,q)
= Z P]q'] + Z (a)ﬁn’Yl 'Yn P ﬂ" st qn’Y", (23)

where the second sum runs over indexes such that ) .(3; +v;) = «. It leads
to the following relations

0 ow,
= ——F (P ) =g+ 2,

ap, (24)



. = —F9(Pq) =P+ —F— 25

P ati (P,9) + Ba: (25)
Hcluss(paQ) = F(P, Q): (26)

where in each step p, ¢ and P, Q denote the old and new variables respec-

tively.
Substituting (24) and (25) into (26) and expanding in powers of P and
q, we obtain the following system of recurrent relations for the I's and the

function Wy:

FB(P,Q) = Iiﬁ(P)qL )8 < «, (27)
Wa(Pg) = D' [Ta(P.q)— Ha(P,q)]; (28)

Ts(P.q) = Hg(P,q)+ terms of order B in 2
B/(a-1)<p<p+2-a
oW @ oW (@
— —_— (2
[P+ Z5m 0= TP+ =5 )b 8> 0.29)

Note that in Eq. (28), the I'y is chosen such as to cancel all terms of H,
which are null vectors of D. In other words, if we write

Ha = Na + Rou (30)
where DN, = 0, but DR, # 0, then

Iy =N, and (31)
W, =-D7'R,. (32)

~ Thereis an efficient way for solving Egs. (31) and (32). The point is that
the operator D is diagonalized when we change to the variables

¢ = H(P+ig), (33)
n = 5P —iq), (34

i.e.




) 0 0
D= lij(fja?j M) (35)

Consequently, every monomial
1y | \
i = [T &0, (36)
]

is an eigenvector of D and D~! with eigenvalues A = 1 wi(my —1;) and
A~! respectively.

After the application of the BG procedure through a given order, we
obtain a truncated expansion of the form (21). Under the assumption that wy
and w; are no commensurate, it is easy to see that the variables Py and Qo will
enter the ', only in the combination (P2 + Q3)/2, which after quantization
becomes h times the number of quanta in the symmetric mode

1
Jo = 5(1302 +Q5) — noh. (37)

The argument is the following. No commensurability implies that the term
proportional to wp in (22) shall be zero by itself, and this in turn implies
that 'y is a function of 1(P§ 4+ Q2). On the other hand, degeneracy of the
mixed-symmetry mode leads to the fact that the I', will not only depend
on the combinations 1(P? + Q?) , 7= 1, 2, but also on some combinations
between the i= 1 and 7= 2 variables. It can be seen, however, that the total
number of quanta in the mixed-symmetry mode

1
)

is an action variable of the problem and, thus, it may be quantized according
to the rule

= 5P+ QD)+ (P + @), (38)

Jy = mh. (39)

For the quantization of the remaining degree of freedom, one shall apply
the Bohr - Sommerfeld rule (4), where the momentum variable is obtained
from the equation I' = E as a function of E, Jy, J; and the remaining angular

. coordinate.
Let us see how the method works in an example.



3 A Model with Quartic and Sextic Two-
and Three-Body Potentials

. We consider the central interaction of three spin-less particles described by
the potential

V = ! ! + ! + v
T 20 =)\ ppp?
1 13
_— =+ — 9(r? + 4p%/3)(1 — 7TA/3
s () 90+ 40 = T3)

+ GAB(F +4p%[3)* + 4r?p?(1 - 72)]

fl

+ A [%(7‘2 +4p7/3)° + 210207 (1 = %) (r? + 4/)2/3)] . (40)

We use units in which % and the mass of the particles are set to one, so
that u, = 1/2, p, = 2/3.

Besides the term coming from the elimination of first derivatives in the
Hamiltonian and the harmonic terms, the potential V' contains quartic and
sextic anharmonicities which respect permutation invariance. [t may be
thought of as an approximation to a deep well, intended to describe the first

“energy levels above the bottom of the well. The most interesting property of
V is that the g.s. energy and wave function may be explicitly written

E,s = 18,
Yos = €xp— {7'?2 + 7'33 + 7'?41
+ ’\(rfzrgs + 7"337':2',1 + 7':317"%2 }v (41)

so that, instead of computing numerically ¥,, and obtaining an expansion
like (19) by fitting coeflicients, we may write an explicit expression for U/

2 1 3 .
U="’+1_72(r—2+m>—12, (42)
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which is our starting point in the application of the BG procedure.
The minimum of U is , of course, U = 0. 1t is reached in configurations
corresponding to equilateral triangles

v=0, p*=3r4. (43)

In these configurations, we obtain the following equation for the equlib-
rium distance, rg

0 =—1+3r]+6Arg, (44)

‘l.e.

,«3:4%(_1+\/1+8A/3). (45)

We will expand around the equilibrium configuration

r = rotuz,
V3
)

and change to the normal mode coordinates p, q

T = q/\/wo+ g2/,
pr = l\/w_opﬁ»\/w_lpz,
y = ‘II/\/‘TO“‘h/\/-T» (47)
py = \/—Pl Vrpa),

3

z = q3/\/1~§)\r3,
3 4

p: = 1 -— EATO P3,

where wy, wy are the small-oscillation frequencies

11



4

To
4 3
wy = ;‘g(l—é—/\'l'g) (49)

Substitution of (46 - 49) into the modified Hamiltonian (18) leads to the
series (19), in which H, takes the form (20) and the H, with o > 2 are given
by

H, = Z hijk P3G 5 g5 (50)
i+j+hH=a

where there are only a few nonzero h;ji. Explicit expressions for the H, at
A = .2 are given in Appendix 1. They were obtained (as well as the rest
of the algebraic calculations in this paper) on a computer with the help of
 Mathematica.

We apply the transformations (27 - 29) on the Hamiltonian (19) to obtain
the normal form (21) through sixth order (o < 6). We introduce explicitly
the conserved quantities (37 - 38) according to

P] = \/QJO COS(G()), Q] = \/éjoSin(ao),
Py = Ji=Jcos(by —0), Q2=+/Jy — Jsin(6; —0),

Py = I+ Jcos(6y +6), Qs=+/Ti+ Isin(6s+6). (51

The result for I', Eq. (21), is as follows

Fz = woJ() + W1J1, (52)

Lo = 0T+ 507 4500 do + 008
+ (I = J?) cos(40), (53)

12



Lo = 00 + 27T = J%) = 4702 = 7,0 JE o
+ DI o — 9N G =0

+ | =R =T+ T 4 ) S
+ 75(,6)J12Jo — 7§6)J2J0 cos(46). (54)

The explicit values of the coefficients at A = 0.1, 0.2 and 0.5 are also
given in Appendix 1.

We shall quantize the classical motion described by I', Egs. (21, 52 - 54).
- As mentioned above, two quantization rules are trivial

J() = Ny, J1 = n;. (55)

Substituting them into the truncated expression

['=Ty 4+ T4+ 7T, (36)

we obtain I' as a function of the generalized canonical variables J, 8, and of
the parameters ng, n,. The remaining degree of freedom is quantized with
the help of a one-dimensional Bohr-Sommerfeld rule.

With the purpose of comparison, we numerically computed the eigenval-
ues of the Hamiltonian (5, 40) using a basis of 120 functions of the unper-
turbed Hamiltonian (A = 0). We present in Appendix 2 some details needed
in this calculation. The results for the first 19 excited states are shown in the
last column of Tables 1 - 3, corresponding respectively to A = 0.1, 0.2 and
0.5. As will be seen below, these levels are related to states with less than
four excitation quanta, i.e. ng +n; < 3. The obtained values of energies will
be taken as the “exact energies”. Some remarks concerning this point will
be given below.

Let us consider step by step the different contributions to I'.

In the harmonic approximation, I' = I'y, the energy is given by

Ey = ngwo + nywy, (57)

i.e. harmonic oscillators of frequencies wy and w;. The values coming from
(57) are shown in the first energy entry of Tables 1 - 3. One may see that

13



the corresponding spectrum may differ considerably from the free spectrum

(A = 0, the energies are given by 12N, where N is the total number of

quanta). One may see also that, even at A = 0.1, anharmonicities become

very strong (15 %) for the higher levels, so that corrections shall be included.
Through fourth order, we get

['=FE; + f4+ AT, (58)

where
fo = 708 +4ning + 40}, (59)
ATy = 7£4)nf cos(40) + w2 (1 - cos(49)). (60)

Consequently, the energy is given by

Eys=Ey+ fa+ €, (61)

- where ¢4 shall be found from the Bohr-Sommerfeld condition

8 _ ) 2
n=- dyai=l / ek B cos(49) 49 (62)
27 T Js, Yo (1 — cos(40))

The 6;,0; are the turning points for the clasical motion in 6. The depen-
dence of AT’y on 6 is essentially cos(46), so that

039;57:/4§0f§7r/2. (63)
The value 7 /4 is reached at n = 0, in which case ¢4 = —72(,4)72%. Note also

that, in general, the allowed interval for J is —n; < J < ngq, thus

1 1
—_— < — =
5 %Jda < 5o X 2ny x w2 =n,/2, (64)

and corrections will not completely break the degeneracy of the harmonic
approximation.

The results of this approximation are shown in the £4 column of Tables 1 -
3. Some remarks are needed. The maximum relative errors are 4 %, 5.4 % and

14



6.6 % at A = 0.1, 0.2 and 0.5 respectively. As a rule, the higher the level, the
bigger the relative error. However, one can verify that states corresponding
to excitations of the symmetric mode (no) are better described by this scheme
than states corresponding to excitations of the mixed-symmetry mode (n).
Note also that the energy values, E, do not show exact doublet degeneracy in
-many cases. This is an indication that the numerical estimate is not accurate
enough to observe the degeneracy. Anyway, we will take them as the “exact”
energies.
Next, we include the sixth order correction

I'=E,+ fa+ fe + AT, (65)
where
fo = —oPnd = Pndng — Pk = 43 (66)

ATg = An?cos(48) + |AJ? + 12 — J3)J| (1 — cos(46)),  (67)
A = A~ 0 490, (68)

It may be easily verified that, with the exception of ny = 0 states for
which Al's = 0, the minimum of AT is reached at the point

7127(6)
()min = 77/47 Jmin = - 12 - 3 (69)
A+ 42 + 301 m )2

so that the cycle in the phase space (J,8) will be a loop around this point.
The energy in this approximation is given by

E¢ = Ey + fs + fo + ¢, (70)

where ¢g is obtained from the quantization rule

1
é;fJ(ee,H)d0=n, (71)

in which J(eg, 6) is the solution of the equation Al's = €¢ that generates a loop
around the point of minimum. Note that, when n = 0, € = ALg(Jmin, Omin)-

15



In the Fg column of Tab. 1, we have included the energy of n = 0
states. We see again that the “breathing states” (no # 0,n; = 0) are best
described. One can verify also that the inclusion of the sixth order term does
not necessarily lead to an improvement of the fourth order approximation.
One shall remember that the BG series for the energy is only asymptotical,
so that its terms should be included with care or resummed up with the help
of Pade approximants. We have not enough terms to make a Pade analysis,
so that in Tables 2 and 3, we show FEg only if it is the best fit to the energy.

The maximum relative error of the best fit is thus 6.6 % reached in a
state with three excitation quanta at A = 0.5. Note that the actual energy
in three-quanta states may be 30 % larger than the free value at A = 0.1 and

-twice larger than the free value at A = 0.5, so that our results are essentially
nonperturbative in A.

4 Conclusions

We have extended to three-particle systems in three dimensions and in states
with zero total angular momentum a semiclassical quantization recipe which,
in one dimension, has shown to improve the ordinary quasiclassics.

To semiclassically quantize a 3B problem, we need approximate action
variables. In the present paper, they were obtained by expanding in series
the improved Hamiltonian around the configuration of minimum and, after
that, reducing the series through a given order to normal forms with the help
of canonical transformations (the BG procedure). The action variables of the
truncated normal form are easily identified, so that quantization becomes
trivial.

There are two sources of errors which can be immediatly stated. One is
the series expansion of a Hamiltonian like (5) containing inverse powers of
coordinates and 1 — 4. The second is the handling of an asymptotical series.

We intended to give an “empirical” answer to the question about to what
extent semiclassics in U is the same as Quantum Mechanics in the unmodi-
fied potential. Comparison in a model example leads to energy values with
maximum relative errors of 6.6 % in states with three excitation quanta and
very strong anharmonicities (A = 0.5). A conceptual answer to this question
is, however, still lacking.

Our results may be continued further on in many directions. One may, for

16



example, avoid series expanding H by using a different quantization scheme
like Gutzwiller’s trace formula. Anharmonicities in the potential will exactly
be taken into account in this way. We believe that the leading term of the
trace formula will play the same rol as the modified BS rule, so that there
will not be necessary to include corrections. On the other hand, one may, for
example, further study the classical motion in U in order to decide whether
there are some connections with the probability distributions of excited states
or with the quantum scattering properties of the unmodified potential.

Acknowledgements
The author acknowledges the hospitality of the CERN Theory Division,
where part of this work was done, the support of the Third World Academy
of Sciences under the Research Grant No 93-120 RG/PHYS/LA, and the
support of COLCIENCIAS under the Research Project 1118 - 05 - 068 - 94.

17



References

[1] Born, M.: The Mechanics of the Atom. New York: Ungar 1960

[2] Whitakker, E.: A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies with an Introduction to the Problem of Three Bodies. New
York: Dover Pub. 1944

[3] Berry, M.: in: Chaotic Behaviour of Deterministic Systems. Les
Houches, Session XXXVI: North Holand 1983

[4] Gutzwiller, M.: Chaos in Classical and Quantum Mechanics. New York:
Springer Verlag 1990

[5] Noid, D. Koszykowsk1 M., Tabor, M., Marcus, R.: J. Chem. Phys. 72,
6119 (1980) o PSh

[6] Gustavson, F.: Astronomical J. 71, 670 (1966); Deprit, A.: Cel. Mech. 1,
12 (1969); Deprit, A. et al: Cel. Mech. 1, 222 (1969); Delos, J., Swimm,
R.: J. Chem. Phys. 71, 1706 (1979)

PRLTA f)
[7] Gutzwiller, M.: Phys Rev. Lett. 45, 150 (1980); Physica D 5, 183 (1982) 4\/(.,4

[8] Sieber, M., Steiner, F.: Physica D 44, 248 (1990) PH Y< A

 [9] de Crombrugge, M., Rittenberg, V.: Ann. Phys, 151, 99 (1983); Gen-(’\\)(\( \(ﬂ
deshtein, A., Krive, 1.: Sov. Phys. Usp. 28, 645 (1985) S0Py

[10] Comtet, A., Bandrauk, A., Campbell, D.: Phys. Lett. B 150, 159 (1985); P+.TA
Dutt, R., Khare, A., Sukhatme, U.: Am. J. Phys. 59, 723 (1991); Cresci- ATp ;A
mano, M.: J. Math. Phys. 31, 2946 (1990) JI™MAPA

[11] Gonzalez, A.: Few-Body Systems 15, 87 (1993)
[12] Calogero, F.: J\_‘\_/[‘ig]-_P_hys 10, 2191 2197 1 (1969); 12, 419 (1971) T rafirs

[13] Gonzalez, A.: Revista Mexicana de Fisica 39, Suplemento 2, 106 (1993);
Gonzalez, A., Lopez, A., Morales, F.: J. Phys. B 27 1743 (1994) T#ga3

[14] Mikheliashvili, T., Smirnov, Yu., Shirokov, A.: Yadernaya Fizika 48, W}H'ﬂ
1969 (1988); Oryu S Kamada H _Nucl, Phys. A 493, 91 (1989) N i

18



L ‘ - \ﬁ
[15] Gonzalez, A., Leal, D.: J. Phys. B 26, 1253 (1993) Trot

19



Appendix 1

The following are explicit expressions for the H,, equations (50), at A = .2

and o < 6:

Hy = —6.2137p3q, — 2.1724¢> — 9.4789¢; ¢2 — 7.2796¢:1 3,

Hy = 4.4304p2¢? + 1.8375¢% + 5.0361p%q2 + 11.797¢} 3
+ 2.3052¢; — 6.7148p3¢2 + 4.1153¢7¢3 + 5.49264343
+ 7.0870¢3,

Hs = —2.8079p%q? — 9666145 — 9.5755p2q195 — 11.103¢3¢2
— 6.3104q,q3 + 6.3836p2q1q% — 3.178043q2 — 9.2993¢1¢3q3
- 6.7375¢142,

He =  1.6684piqf + .543074¢% + 11.379p2q3¢2 + 9.245941q3
+  2.1558piqi + 10.510¢%q3 + .79763¢S — 4.5516p3q3¢3
+ 1.7180¢7q3 — 5.1738p%q2q3 + 12.060q7q3¢% + 2.2559q5¢3
+ 4.8039¢2¢3 + 5.4606q2q3 + 7.2808¢5.

(72)

(73)

(74)

After the application of the BG procedure, this Hamiltonian is reduced

to the form (52 - 54), where

I’ = 14.859Jp + 13.072J4,

Iy = 1.0582J2 4 .097612.J% + 2.5634.J; Jo
+1.5652J2 + .097612(J2 — J*) cos(40),

20

(76)



e = —.11203J3 4 .051729J2J — .023966.J,.J* — .051729.J°
- 22517J2 Jo + .093076J2J, — .63376J, J2 — .17098J;

+ | —.023966.J7 — .051729J2J + .023966J,J° + .051729.J°

+ .093076.J2J, — .093076J2.J| cos(46).

(78)

Similar expressions are obtained at any other value of \. We show the

results at A = 0.! and 0.5.

A=0.1
[y = 13.506J + 12.565J;,
[y = .57926JF + .049300J% + 1.4925.J, Jo
+.94737J¢ + .049300(JZ — J?) cos(46),
Te = —.036742J7 + .025424J2J — 0065956, J2 — .025424J°
—  0T7015J2Jo + .051735J%Jp — .29419J, J& — .078761J3
+ | —.0065956J5 — .025424J2J + .0065956J; J% 4 .025424J°
+ 051735J2Jy — .051735J%J5 | cos(40).
A=0.5

[y = 18.330J, + 14.374J,,

Ty = 2.1853J7 + .24042J% + 4.5488.J, Jo
+2.5714J¢ 4 .24042(J} — J*) cos(48),

21

(80)

(81)

(82)



F6=

+

+

—.40938J3 + .13646J2J — .12560.J,J% — .13646.J°
31755J2J, + .20015J2J — 1.0593J; JZ — .21376J3

—.12560J3 — .13646J2J + .12560J; J% + .13646J°

20015J2Jp — .20015J2J| cos(48).

22

(84)



Appendix 2
After a trivial change of variables, the Hamiltonian (5) may be written in
the following form (the g. s. energy is shifted to zero):

H= —0*/0z - 8%/3y* — (1/2* + 1/y*)(1 — 22)8%/02* — 18
- (1 —-22)"1(1/a?* +1/y*) + 9(z? + y?)

+ 6/\{ — 3@ +y?) + 3@ + y?) + 322y %(1 - zz)}
b efaE R+ S -6 ) (85)

We numerically computed the energy levels of this Hamiltonian by writ-
ting it in matrix form. In quality of basis functions we used the eigenfunctions
of the unperturbed Hamiltonian

HO = H{/\:O}' (86)

The eigenfunctions of Hy are given by

|ne > |ny > |n. >, (87)

where |n, > satisfies the equation

5, 02 1 .
(1 —2%) = |n, >= —n,(n, + 1)|n, >, (88)

52 T1_
l.e.
In, >= (1 —23)2P, (2), (89)

where P,, are the Legendre polynomials. On the other hand, |n, > and
|ny > are solutions of the same equation, which for |n, > takes the form

9’ n.(n, + 1
— gz t9t + % Ine >= 6(n, +2n, +3/2)|n; >.  (90)

It means that |n, > and |n, > are expressed in terms of radial oscillator
functions. The eigenvalues of Hy are, evidently,

23



12(n; + ny + n.), (91)

and the matrix elements of the perturbation are computed from the following
basic quantities

1
[ ! 1.2
< Mgy Ny, |2t g, ny,n, > = bt nyOntns 3

— (nl + DY+l + 3/2) 265,
+ (2n, +n) + 3/2)bn,n,

)V 4w+ 1/2)‘/‘2671,,,1,,_1}, (92)

1
V(2n, + 1)(2n, + 1)
(n, +2)(n, + 1)6
2n, + 3 nanat?

n? (n, + 1)2
z 6n n’
+ [2n2—1+‘2nz+3 =

v L2 _
< le,'ﬂ,y,nz|2 Inmvnyanz > = nén;&z;ny

n, — 1)n, .
+ Lﬁ&ng,nz—Q}' (93)

To compute the eigenvalues of H, we used the 120 functions of Hy which
quantum numbers fulfil the requirement

g +ny+n, <7, (94)

Note that we did not constructed explicitly basis functions with defined
symmetry properties. This may be a reason for the numerical estimate not
showing exact degeneracy in some cases.



e Tab. 1 Comparison between the improved BG estimates of energy
levels (E,, E4 and Eg) and the energy values, E, obtained from a direct
numerical diagonalization of the quantum Hamiltonian. The parameter
A is equal to 0.1.

no|mn | nl| E, E, E¢ E

0|1 ]0(12.56)13.09]13.08|13.29
13.29
1 |0 |0]1351|14.45|14.37 | 14.38
0 | 2 10 |25.13(27.25 ] 26.91 | 27.46

27.59

2 1112513 | 27.64 27.83

1 |1 [0]26.07|29.04 | 28.50 | 28.93
28.93

2|0 [0|27.01 {30.80 |30.17 | 30.15
0 | 3 |0]37.69|42.46 | 41.27 | 42.49

42.69
03 {1]37.69|43.25 42.96
43.18
1 | 2 ]0]38.6444.69 | 43.22 | 44.24
44.42
1 |2 |1]38.64|45.08 44.82
2 11 10 ]39.58 | 46.88 | 44.78 | 45.73
45.76

3 |1 0 [0]40.51 | 49.04 | 46.92 | 47.17

25



e Tab. 2 Same as in Tab. 1 for A = 0.2.

NnNg { Ny Eg E4 EG E
01 13.07 | 14.03 14.32
14.32
i]0 14.86 | 16.42 | 16.25 | 16.27
0|2 26.14 | 29.99 30.12
30.35
0|2 26.14 | 30.55 30.73
1|1 27.93 | 33.02 32.67
32.67
210 29.72 | 35.98 | 34.60 | 34.75
0|3 39.22 | 47.86 47.31
47.67
013 39.22 | 49.42 48.08
48.44
1|2 41.00 | 531.54 50.28
50.59
1|2 41.00 | 52.10 51.22
2 |1 42.79 | 55.14 | 50.77 | 52.80
52.83
310 44.58 | 58.66 | 54.05 | 55.15




e Tah. 3 Same as in Tab. 1 for A = 0.5.

no|lm |n| E, E; Fe E
01 ]0}|1437]16.34 16.73
16.74
| 0 | 018.33|20.90 | 20.69 | 20.71
0] 2 |0/(28.75]36.53 36.20
36.69
0|2 |1]2875]38.45 37.34
1 1 103270 | 41.77 41.19
41.22
210 ]0]36.66]|46.95 | 45.24 | 45.19
0| 3 !0]|43.12|60.63 58.65
59.45
0 (3 ]1]43.12]64.67 60.20
60.96
1 2 |0 (47.08 | 66.53 65.35
66.08
1 2 | 1147.08 | 68.45 67.55
2 {1 10]51.03]|72.36 71.83
71.88
310 0]54.99 | 78.13 78.79
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