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Recently, there has been a surge of interest in studying static black hole solutions for
gravity coupled to nonlinear matter fields. This is due in part to the discovery that, in
- spite of the widely held belief to tl;eecontra.ty, nontrivial static black hole solutions exist in
Einstein Yang Mills Theory[1], Einstein Skyrme Theory[2],and Einstein Yang Mills Higgs
Theory[3]. These discoveries have shown the falsehood of the "no hair conjecture” which
was introduced by Wheeler[4] as a consequence of the black hole uniqueness theorems
in Einstein-vaccum and Einstein-Maxwell theories[5, 6] and to the Beckenstein[7, 8] type
results that proof the non existence of nontrivial stationary black holes for various theories
with simple matter fields coupled with Finstein’s gravity.

Among these "no hair” results, there is a proof[7] that in the case where the matter
consist of a single scalar field with a convex potential, that is a potential term that is
a convex function of the scalar ficld as exemplificd by the usual mass term, there exists
no nontrivial black hole solution with regular horizon. The case in which the potential
is nonconvex, as exemplified by the usual double well potential, is the simplest case not
covered by these theorems, and although no ”no-hair” proof exists in the literature, it is
widely believed that this theory yields no such black hole solutions either. This belief is
reinforced by the failure of numerical attempts to find them[9]. In the case of multiple
scalar fields, the situation seemed complicated enough that no systematic study of the
question has been carried out. Moreover, there is even a fécent suggestion[3] that one
might be able to elude the no hair conjecture with a simple model of two scalar fields if
the potential is appropriately chosen.

In this paper, we provide a proof that, if we restrict ourselves to spherically symmetric
configurations, no such solutions exist in a theory of any number of scalar fields, minimally
coupled to gravity provided only that the potential is positive semidefinite ( as needed
to satisfy the Weak energy condition) and that the minima of the potential is zero (as
needed to allow asymptotically fit solutions). The restriction to spherically symmetric
configurations is not expected to be a serious one, as 1t 18 natural to expect that the
staticity smplies spherical symmetry result of [5] could be generalized to this theory.

We consider then the theory specified by the action:

5= [ VED@) R= (112196, — ¥ (9) (1)
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- Where 12 is the Ricci scalar, a = 162G, V¥ is the covariant derivative, ¢, are the
scalar fields and V¥ (¢) the scalar potential.

Let’s consider the equations thgt would describe a nontrivial, static, spherically sym-
metric black hole solution in this theoty, if one existed.

The most general static spherically symmetric metric can be expressed in terms of

the line element:
ds® = —(1—2mjr)e~%dt? 4+ (1 — 2m[r)"Vdr® 4 r3(d6® + sin(8)*dy®) (2)

where m and § are functions of r only. The scalar fields ¢, are also functions of r
only.

Einstein’s equations then reduce to

& = —a(r[4) D () (3)
and
' = alr[4)(1/201 = 2mr) AN + V] (4)
where the prime stands for dir.
The conditions for regular black hole horizon at r = ry are
m(rg)=rgf2, m(r)>r[2 Vr>ryg, and §(rg) = finste (5)

The conditions for an asymptotically it metric are that m(r) and §(r) converge to
a finite limit as » — co. This requires that (¢])? = o(r ) and ¥ = o(r~?) for large r.

The equations for the scalar fields are

u v
V Vﬂ¢: - a¢‘ (6)
In our case they become
A\ YA Ix U av
(1= 2m i)y + (17 = 8)(1 = 2m)gl = S5 (7)

We note that a solution to the equation above is completely specified by the choice of

the value of the ¢.’s at ry, since at that point the coefficient of ¢! vanishes and therefore
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eq.7 specifies the value of ¢, at rx in terms of g—%. In particular, if the value of ¢, at
" ry were to be an extrema of the potential, the solution would be ¢, = constant which
would not be an acceptable solutign unless the extrema of ¥ was actually its minima 0
in which case the solution would be trivial.

These equations are quite similar (in particular, if we took a single scalar field with
V(4) = M¢?—1v?)? ) to the equations that describe static spherically symmetric black hole
solutions in Einstein Yang Mills Theory which are known to have nontrivial solutions,

the so called ”colored black holes”:

§ = ~(2fr)(w') (8)
m = (1= 2mr)(w'f + 20 (w)fr? (9)
and
(1= 2mfr )’ 4 2m — 2V (w)f ) = T (10)
where
V(w) = (1/4X1 - w?)? (1)

What is the essential difference between these equations that result in such a different
set of solutions? -

We can see the answer by studying the problem using as guidance the equivalent
problem of a particle in a potential well (as done in pedagogical expositions of simple
solitons, see [10]), with the added complication that the mass will be variable and there

will be friction terms. We proceed to derive what would be the equivalent of the work

energy theorem. Multiplying eq. 7 by ¢;, and summing over i we obtain:

[(1/2)e 3 (&Y + 1/ 2)" + (2] r — Y] 3 2(#1)* = 5 %/:455 (12)

where g = (1—2m/r). We then define U(¢) = —V(¢) and the ?Energy” E of the system
as:

E=1/2p) ($) +U (13)



Then we can write the eq. 12 as:
B =-b) {4 (14)

Where we see that the "mass” s is variable and there 1s friction specified by the coefficient

b given by

b‘= [(1/2)" + (2fr — &) = (2/r)A = (Bm/[2r)) —m/[r — §(1 — 2m/[r) (15)

In the limit a — 0, we have m’ = § = 0 and then is clear that & > 0 but in general 5
has no definite sign and its behavior is obtained substituting Einsteins equations 3 and

4, which. yields:

= a(r[4)E + (2/r)(1 — (3m[2r)) (16)

We write eq.14 introducing the integrating factor which turns out to be just =%, thus we

have
L(Be) = ~(2fr)(1 - (3m20))e™ T4V (17)

We note now that E(rg) = Uy, = —V(é(rg)) < 0 so Fe~’(rg) < 0 and since..
the R.H.S of 14 is negative semidefinite for r > rgy on account of eq. 5 it follows that
Ee™? is a decreasing function of r. It is therefore always more negative than Ee~%(rg).
However, in order to have an asymptotically 8t solution, Ee~% should approach 0 as
o(r?) when r — oo. Thus, in this theory there is no nontrivial solution representing a
static spherically symmetnc black hole with regular horizon.

In the Einstein Yang Mills case, a similar calculation yields:
d » =6 —& n2
E(Ee ) = —[3m — rle~?(w') (18)

where B = [1/2p(w’)? — V(w)] with g = r?(1 — 2mfr). So in this case the term in the
R.H.S.is positive for r > 3m allowing the final value (considering r as the "evolution
parameter”) of Ee™ to be larger than the initial one, thus providing for the possibility

of nontrivial solutions.( This also shows that substantial part the Y-M structure must be



- present beyond the 3/2 of the radius of the horizon for any nontrivial black hole solution
in this theory).

We have found a way to analyze the possibilities of nontrivial static spherically sym-
metric black hole solutions in Einstein Higgs and Einstein Yang Mills theories that serves
to proof the non existence of such solutions in the first and shows how the argument is
eluded in the second. We expect that this type of ana.ly;is should proof useful when
applied to other theories to uncover those in which there is potentially new classical hair

and to understand some of their properties.
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