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Chapter 1 

I l1troduction and Survey of Results 

Our original motivation for undertuing the work presented in thi. book" has been to 

clarify the connections between the braid (group) statistics discovered in low. dimensional 

quantum field theorie. and the &Isociated unitary representations of the brz,id groups with 

representation. of the braid groups obtained from the represeIltation theory of quantum 

group. -such u U.(g), with deformation puameter q = liN:= exp(i7r/N), for some N = 

3,4, . ... Among qur.ntum field theories with brz,id statistics there ue tVl'o-dimension~,  

chirAl conformal field theories and three·dimension~  gr.uge theories with a Ch.e~-SimoI:'  

term in their action 'functional. These field theories ple.y e.n im;>ortallt role in string 

theory,. in the theory of critical phenomena in statistical mecbr.nics, e.nd in a variety of 

s)"stem. of condensed matter ph)'sics, such as qUaIlt1UD Ht!l s)'stems. 

An example of a field theory with brz,id statistics is a chirt! sedor of t~e two­

dimensional \\'ess·Zumino-!"ovikov-Witten model with grO\lp SU(2) at level k which is 

closely related to the representation' theory of iU(2)k·Kac.!lioody algebra, with k = 
. :", 

1,2,3·, .... The braid statistics of chiral vertex operdors in this tbeory.can be understood 

by anal)'zing tbe soluiions of the Knizhnik·Zamolodcbik"ov eqt:dions, Work of Drin!el'd 

[4] hu sbown thr.t, in the example of the SU(2).WZNW model, there is a close connection 

between solutions of the KnizhIlik·Zamolodchikov equatiolls alld the representation theory 

"Thil book i. b....d OD the .Ph.D. thcsi. of T.K. aIld OD multi iD [8, II, 24, 28, ,(2, 61J 
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of U.(sl,) if tbe level k i. related to tbe deformation parameter q by tbe equation, 

exp(i,.. /(1 +2», and 1 i. ~  a rational number. For an extension of these results to 

negative rationals .ee [62]. Unfortunately, the 5[1(2).WZNW model i. a unitary quant 

field theory only for tbe value. k = 1,2,3" '.. , not covered by tb~ results of Drinfel'd. ( 

goal 1I'U to undentand tbe connection. between the field theory and tbe qUaIltum gre 

for the physically interesting cue of positive integer levels. (This motivates much of I 

anal)·si. in Chaptera 2 through 7,) 

The notion of symmetry adequate to describe the structure of superselection sect 

in quant= field theories' with braid str.tistics turns out to be quite radicr.lly differl 

from the notion of S)'=etry that is used to describe. tbl: structure of supe:select: 

secton in high,er dimensional qUaIltum field theories with permutr.tion (group) statisti 

. (i.e., Fermi·Dirr.c or Bose·Einstein statistics). While in the lr.tter case compact grou 

and their representation theory provide tbe correct notion of spnmetry, the situr.ti 

i. lest clear for quantum field theoriea with brz,id statistiea. :One conjecture hu be 

thr.t quantum groups, i,e" quasi.triangufu (quasi.)Hopf r.lgebras, might provide a usel 

notion of spnmetry (or of Mquantized symmetry") describing the mz,in structural fedUI 

of quantum field theories with braid statistics. It became clear, fzjrly soon, that f 

qUaIltum groups which might appeu in unitary qUiUltum field theories have a deforz:;ati, 

parameter qequal to a root of unity &Ild ue tberefore ~ semi·simple. This circumstaIl 

i. the source of a variety of mathemr.tical difficulties which had to be o\·ercome. W~ 

on these aspects stuted in 1989, ~d useful results, eventually leading to the mderial 

Chr.pteri 4, 5 r.:ld 6, devoted to the representation theory of U,(g), q a root of \:.nity, a: 

to the so-called vertex·SOS traIlsforme.tion, were obtained in the diploma thesis of T.l 

see 16]. Our idea wu to combine such resUlts with the genert! theory of braid std:st 
1 " 

in low.dimensional qUaIltum field theories; in order to devel~p  all adequate ~once?t  

MqulUltized s)'mmetries" in such theories; see Chapter 7, Sects: 7.1 aIld 7.2. 

In the CO\:.fse of our work, we encountered a vuiety of mathematical sub~letjes  a 

difficulties which led us to study certain 'abstact a!gebrz.ic structures - a cl;ssof (z 

necessarily TtIlnakie.n) tensor categories - which we call qutIltum categories. Work 
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Doplicher &Zld Robert. (29) &lid of Deligne (56) &lid lecture. at the 1991 Borel seminar in 

Bern played &II important role in guiding u. towards the right concepts. 

These concepts and the 'results on quantum CAtegories presented in this volume. 

see also (61). are of some intrinsic mathematical interest, indeyendent of their origin in 

problems of quantum field theory. Although problema in theoretical physics triggered our 

investigations, and in spite of the fact that in Chapters 2, 3 and 7. Sects. 7.1 through 7.4 

we often use a language coming from local quantum theory (in the algebra.ic formulation 

of Hug &Zld collaborators [17, 18, 19. 20)). &ll results and proofs in this volume (after 

Chapter 2) can be Understood in a sense of pure ma.tbematics: They CAD be read without 
, '­

kDowledge of local quantum theory going beyond some expressions i~troduced  in Chaptera 

2 I.:ld 3, and they are, mathematically rigorous. 

1:1 order to disye1 possible' hesitation. and worries among reader•• who are pure 

mathematician•• we now sketch some of the physical background underl)'ing our work, 

-thereby int;oducing some elementa of the la.nguAge of algebralc quantum theory in a 

non-technical wa.y. For a.dditionrJ detail~ the rea.der may glance through Chapter 2. 

For qU&ntum field theories on 'a space-ti~e of dimension four (or higher) the con­

cept' of a global gauge group. or sy=etry G is. roughly spez-kiDg, the following one: The 

Hilbert space 1-l of physical sh.tes of such a theory curies a (highly reducible) unitary 

representation of the group G. Among the densely defined operators 011 1'£ there ue the 

so-ca.lled loca.! field operators which transform co\'Uiantly under the a.djoint a.ction of the 

group G. The fixed point a.!gebra. with respect to this group action in the tota.! fieldalge­

bra, is the algebra ofobservables. Thil a.1gebra, denoted by A, is a C··algebra obtaiiied 

u &n inductive limit of a net of von Neumann a.1gebru A(O) of obsen'ables localized in 

bounded open regionl 0 of space.time. The von Neumann a.1gebru A(O) are isomorphic 

to the unique hyperfinite factor of t)'pe III), in a.l1 exunples of algebraic field tbeories that 

one undentandl reasoubly well. The Hi1be~~  space 1'£ decomposel iDto a direct sum of 

ortbogonal lubspacel, ca.l1ed lupenelection lectors, cur)'ing inequh'aleIlt represenh.tions 

of tbe observa.ble a.!gebra A. All tbele represent&tionl of A can be geneated by composil:g 

a Itandud representation, the scrc&l1ed vacuum representation. with ·endomorpbisms of 

3 

*v 
~ 

A. Each superseledion sector illO Carries a reiuesentation of the global gauge croup G " 

which i. equh'&1ent to a mulitple of a distind irreducible representation of G. A. shown ~.......' 

by Doplicher. Haag and Roberts (DHR) (19). one C&II introduce a notion of tenaor prod­
".> • .' 

uct. or ·composition-. of superselection sedor. with properties &IIalogous to those of the 

tensor product of representations of a compact group. The composition of superselection 

sedors can be defined even if one does W know the global gauge group G of the theory. 

)·et. From the properties of the compoaition of superseledion sector•• in puticular from 

the fusion rulel of thi. composition and from the staHsti" of superseledion sectora, i.e.• 

from certain representation. of the permutation group. canonic&lly usociated witb ,su­

yerselection sectors, one C&II recoDltruct import&nt data of tbe- global gauge group' G. In 

puticulu, one C&II find its character table and its 6-; s)·mbola. A. proven by Doplicher 

a.nd Roberta [29J, those d&ta ue sufficient to reconstruct G.,The representation category 

of G turn. out to reproduce all proyerties of the composition, of superse1ection sectors. 

&lid one i. able to reconstrud the rJgebra of local field operaton from these ,data. One 
" 

1&)" thAt the group G is siJa1 to the quantum theory described by A &lid 'H. 

The results of Doplicher and Robert. can be viewed u the anlwer to a purely matbe­

matical duality problem (lee also [56)): Tbe fUlion rules &nd the 6-; I)·mbol. obtained 

from 'the composition of superselection'seetorl ue nothins but tbe structure COlute-nt. of 

a symmetric tenlor category witb C· structure. The problem is how to reconstruct from 

such an abstract category a co:r.paet gr01:p whose representa.tion category i. isomorphic 

to the given tensor category. It is an old result of Tanne-k.a a.nd Krein that it i. &1'11"a)" 

pOllible to reconltruct a compact ,group from a Iymmetric tensor ,c&tegory if the ce-tegory 

is TanD&kian. i.e., if we know' the 'dimenlionl of the representa.tion spa.ces and the Clebsch· 
.' ,: . 

Gord~ matrices, or 3.; 1)"IIlbol•• wbich form the basic morph~sm  Ipaces. Tbe results of 

Doplic:her and Roberts repreie:it a vast generalization of tbe Te-onaka·Kre:n res'Jlts. since 

tbe dimeo'sionl and Clebsch·Gordan me-trices ue not known a' priori. 

Another d1:aIity tbeorem related to the one of Doplicher and Roberts is due to 

Deligne [56) which requirel integrality of certain dimenlionl but no C· Itructure ,on the 

symmetric tensor category. (It en&bles one to r,econstruct algebra.ic groups from ce!'tAln 
\ 

4 



~J 
..
 

.~ 
symmetric tensor categories.) Disregarding some subtleties in the hypotheses of the'se 

duality tbeoren:ll, they teach u. that it i. equivalent to talk about compact groups or 

cert&iD:.ymmetric tensor categories. 

Quantum field theorie. in two and three space-time dimensions can &Iso be formu· 

lated within the form&1ism of algebraic quantum theory of DBR, involving an algebra A 

of observables and superselection sectors c&IT)'ing represenll.tioIll of A which e.re compo­

sition. of a standard representation with °endomorphisms of A. This structure enables 1.:S 

to extract an abstract tensor category described in ternu of an algebra of f1.:sion rules and 

6-; symbol•. Contre.ry to the categories obt&ined from quantum- field theories in four or 

more space·time dimension., the tensor categories associated with quantum field theories 

in two and three space·time dimensions are, in general, ~ symmetric but only braided. 

Therefore, they ~ be representation ca.tegories of coco=utative algebraa, like group 

&lgebraa. In many ph)·sice.lly interesting exunples of field theorie., these cdegories are 

not even Tanne.kir.n and, therefore, ~ be identified, naively, with the representation 

category of a Hopf elgebraor a qUADtum groUPi see 161J. The complications coming from 

these feature. motivate many of our results in Chapters 6 through 8. 

The following modell of two- ADd three·dimension&1 quantum field theories yield 

non·Tannakian categories: 

(1) Minimel conformel models [7] ADd Wess·Zumino-No"ikov-Witten models 18] 

in two space-time dimensions.
 

The basic feAture of these models is that they exhibit infinite-dimensional s)'mme·
 

tries. The example of the SU(n)-WZW model can be understood as a Lagrangian
 

field· theory with action functional given by
 

5(g) = 1:" lSI tr «g-18"g)(g-lo"g»J2: 

+ 2~" lal tr «(g-ldg)t.3), 

where, classically, a field configurAtion gis a map from the two-sphere 52 to the 

grOllp G =5U(n), &Ild j is an arbitruy extension of 9 from 52 =8B3 to the ball 

B'i (such an extension always eY':sh, since "'2 of a group is trivial). The second term 
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i~ 5(g) is the so-celled Wess·Zumino term which is defined only mod kZ. Clusi, 

cally, the theory exhibits a s)-mmetry 'Ghich is the product of two loop groups, fOI 

right. ADd left movers, respectively. For k = 1,2,3, ..., the qU&Iltum theoryusocj. 

ated with 5(g) haa conserved currents generating two commuting w(n).Kac-MoodJ 

elgebraa at level k, whose universel enveloping algebraa cont&in Viruoro algebru 

(Suga'Gara construction). From the represent,ation theory oflhe infinite-dimensiona 

Lie algebras of Iymmetry generators in these models, i.e., the repres.entation the 

ory of Virasoro- or Kac-Moody algebras, one C&II construct algebru of so-calle! 

chiral vertex operators which play the role of Clebsch·Gord&II operators ot (a semi 

simple quotient of) the represenll.tioncategory of the Virasoro- or Kac,Moody al 

gebre,. Lggl conformally cova.nant field operators are then constructed by takin, 

linee.r combinations of products of two such chiral vertex operators, a holomorphi 

one (left movers) ADd &II &Ilti-holomorphic one (right ~overs).  

Of interelt in relation to the main subject of our work is th&t the algebras of chin 

vertex operators, the holomorphic ones, say, appee.ring in these models pro\'id 

us with categorial data corresponding to non-Tanna1ciz.n br&ided tensor categoriC! 

(This C&II be understood by studying the multi-"aluedneu properties z.nd operate 

product expansions' of chiral vertex operators. A "ery thorough analysis of. th 

5U(2)-WZW model can be found in the papers of Tsuchi)'a and Kanie and ( 

Kohno quoted in [9]i see &1so [8, 61].) 

ZlUIlolodchikov and others have studied "non-critical perturbations· of mi:limal COI 

formal model. which e.re integrable field theories [10J. Their results s1.:ggest thl 

there are plenty of massive quant1.:m field theories in two space-time dimensioI 

with fields exhibiting non-abelian braid statistics, as origindly described in [il 

(A perturbation of minimal conformal models giving rise,to massive integrable fie: 

theories is obtained from the ~(l,3)"fieldi  a field with br&id statistics is the fie: 

obtaine.d from a chiral factor t:)f the ~(3.1l"fie1d,  &fter the perturbation bas bel 

turned on [12].) To such non-conformal field theories on~  can also associate eeriE. 

braided tensor categories. However, the general theory ,of superselection sectors 

two-dimensional, ml.Ssive quantum field theories leads to algebraic structures'mo 
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general thn braided tensor catelorics. including oncs with nop-abelian fusion rule 

allebru. A general understa.ndinl of these structures hal not been accomplished, 

yet. 

(2) Three-dimensional Chern-Simons gauge theory. (13. 14, 15] . 

Consider a gauge theory in three space·time dimensions with a 'simply connected, 

compact gauge group G eJ. SU(n). Let A denote the laule field (vector potential) 

with values in 9 == Lie(G). the Lie algebra of the gauge Iroup G, a.nd let ,p be a 

ma.tter fieid. e.g. a two-component spinor field in the fund&mental representation of 

G. There may be further m&tter fields, such loS Higgs fields. The action functiont.l 

of the theory is given by 

S[A,,];.,p] eJ. g-2/tr (F3)dllol. 

(1.1) -*/
tr (A" dA +fA" A "A)
 

+>./1$(J/lJ. +m) ,pdvol. +"'.
 
,where I,), a.nd m are positive consta.nh, aIld I i. &II inteler.
 

This clAlS of g&uge theories hal been studied in (13.14. 15]. Although the resulh in 

these papen are not mathematit&1ly rigorous. the main properties of these theories 

are believed to be loS follows: 

The gluon i.musive, &Dd there is no confulement of colo.:.r. Inter&ction. persist­

ing over ubitrArily luge dist&Dces are purely topological a.nd a:e, &s)·mptotica.lly, 

described by &pure Chern-Simon. theory. Thus the statistics of colo.:.red puticles 

in Chern·Simon. ga.uge theory is believed to be the same &s' the sb.tistics of static 

colour sources in &pure Cherll-SimoDs theory which is known explicitly [16].' The 

st"tistics of coloured AJ)'mptotic particles can be studied by &Ilal)'zing- the st"tis­

tics of ~ creating co)o.:.red st"tes from the \,&cuum sector. Such fields a.re the 

M&Ddelsta.m string opeatoTl. ,p.(..,.). which are defuled, heuristically, by 

,p.(,.) = "LN[,p~(2:)p(expl  A..W'W)~.J". (1.2) 
, "I. 

where a and IJ are group indices; -r. is " p"th ccnt&illed in a spa.ce-like surface, 

stuting at : a.nd reachillg out to infinity, Nis some normal ordering prescription, 

7 

lo4''~
and P denotes path ordering. (Similarly, conjugate Mande1st~  strlnls ,p.('T.) an: 

defuled.) ~. 

For the field theories described in (1) a.nd (2). one observes that when the Iroup Gis 

SU(2) the combinatorial data of a braided tensor catelory, an algebra of fusion rules and 

6-; symbol. (braid- and fusion matrices), can be reconstructed from these field theorie. 

which i. isomorphic to a braided tensor category that is obtained from the representation 

theory of the quantum group U,(JI3). where 

q = e'flr, l: = 1,2,3"", 

(with k =I + C07lJt.). These c&tegories are manifestly non-TaDIl&.kia.n. This i. the reAlon 

why it i. not pOllible to reconstruct field operator. tra.nsformin& ~o\'&ria.ntly under some 

representation of U,(JI3) on the Hilbert sp&ce of ph)'sic&! states of tho.e t,heorie•. However. 

pAlsing to a quotient of the representation category of U,(J~3)'  q = exp(ill' /(k +2». 

described in Chapter. 6 a.nd 7, we ca.n construct aiemi-simple. non-Tannwan, braided 

tensor category describing the composition and braid stAtistics of .uperselection seCtors 

in these quantum field theories. In this .ense. U,(JI2) i. the "qUAntized ')'II:JIletry" du&! 

,to the quantum field theories described above. (For precise detail••ee Chapter 7.) 

The strAtegy used to prove this du&1ity i. to compare the f::sion rules and the ~;  

srmbols of U,(JI3) with the corresj)Onding data of the field the~ries found. e.I., in [9]. and 

to show that they coincide. More precisely, it is quite e&Sy to show that the representations 

of the braid group. &Ssociated with tensor produch of the fundamental representation of 

U,(JI2) coincide with those &Ssociated with arbitrary compositions of the "fundament&! 

super,election sector" of the corresponding field theorie.. Olle implication of our work 

is that, in fACt. the entire braided tensor cr.tegories coincide. :Thi. result follow. from a 

much more general uniqueness theorem sta-ting that whenever' a braided tensor categorY 

with C· structure i. generated by arbitruy tensor products of a selfconjugate object, p, 

whose tensor square decomposes illto two irreducible objech, i.e.• 

p{?;p = 1 SVJ. (1.3) 
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,f\): (where 1 i. the neutral object, corresponding to the trivial representatit)n of U,(.d,), to 

the ""UUum sector of the field theory, respectively), a.nd & certain invariant usociated with 

p.the so-called monodromy of p with itself, is non-scalar, then the category is isomorphic 

to the semi-simple subquotient of the representation category of U,("")' for q = ± e:r!fs, 

k = 1,2,3, .... 

The abstract nature of eq. (1.3) suggesta that this result applies to a class of local 

quantum field theories more general than the models described above. This obsen-ation 

and the fact th&t those models a.re not rigorously UDderstood in every respect led us to 

work within the general framework of algebraic field theory. In this fra..'1lework, p aDd 1/1 

can be interpreted u irreducible *.endomorphisms of the observable algebra A, with 1 the 

identity endomorphisIDI of A, a.nd eq. (2.3) for a selfconjuga.te object p of a huJ.skd tensor 

category with C· struct1:Je is equh-alentto some bounds on a scalu in,-a.ri2Jlt usociated 

with p, ita stAtistjc&! dimension, d(P)i namely (1.3) is equh-a1ent to 

1 < dep) < 2_ (1.4) 

The me.ia result of this book is a complete classifica.tion of braided tensor categories 

with C*-structure that are generated by a not necessarily sel!conjugate, irreducible object 

p whose statistical dimension. d(p), satisfies (lA).This is the solution to a very limited 

generaliz&tion of the duality problem ior groups. Our method of clusification is unlikely to 

be efficient for much larger values of d(p) than those specified in eq. (1.4) - except, perha.ps, 

for certain families of exr.:mples connected with more general quantum groups. However, 

our solution to the problem corresponding to the bounds on d(p) in eq. (1.04) might serve 

u a guide for more generAl attempts. In particular, our notions of product category and 

induced category might be useful in a general context. 

The constructive part of our c1usification con.sists in the description of two families 

.of c&tegories: First. we need to understand the representation theory and tensor-product 

decompositions of U.(.sl,). with q a root of unitYi (Cha.pters 4 and 5, aDd [6]). This will 

permit us to construct a non-TannaId a.:J , braided tensor category by pusing to the semi­

simple quotient ohhe representation category of U.(sl')i (vertex-SOS transformation; see 

9 

Chapter 6 ADd [61]). The generating object p, of this category ca.n always be multiplied 

with the generator of a category whose fusion rules are described by the group &lgebra of 

a cyclic group Z•• 4 = 2,3, ...• without changing the statistical dimension. The second 

task i. thua to clusi!), categories whose fusion rules are given by the group algebras of 

abelian groups. 

It turns out that. besides the operation of taking products of categories just &1luded 

to, we also need the notion of induced categories which are. in general, not quotients of 

representation categoriesj (Chapter 8. Sect. 8.1). 

For a selfconjugate, generating object p, with 1 < d(p) < 2, our proof of uniqueness 

relies on an inductive procedure reminisceDt of what is known u cabeling_ In order to 

extend our proof of uniqueness to categories genera.ted by a non-selfconjugate, irreducible 

object. we have to study the interplay· between the group of "invertible objects" in a 

category and grading•. This will permit us to separate the subcategories corresponding 

to invertible objects from the entire categoT.Y and to thereby; reduee the classification 

problem to that of categories with a sel!conjuga.te generator whose sta.tistical dimensioIl 

satisfies (1.4); (Chapter 8). 

A. a prerequisite to the classification of braided tensor categories with C* structun 

satisf)"ing (1.4), we present a clusification of .fusion rule algebruwhich have the sam 

properties u the object algebra.s of a tensor categoryi (Chapter 3 2.Ild Sect. 7.3). Ou 

classification is limited to fusion rule algebru generated by an irreducible object p 01 

statistical dimension d(p) satisfying 

~ d(p) ~ 2. (1. 

. . 
. I J' -•• 

We find that there are many more fusion rule a.lgebras thlen there are object algebr 

of braided tensor categories. Our classification relies on results of T.K. in [42J. 

Wben d(p) = 2 we esseDtia.lly reproduce the fusion rules of the finite subgrou 
, . 

of SU(2) which have been c]assined a.nd described in terms, of certain Coxeter g:ap 

by Mac Kay. In the sense that ~sym..netric tensor categories are dual to group~  

10 



braided. teIlJor categoriea are a natural generalization of symmetric tensor categories, our 

main reault might be viewed as a natur&l generalization and completion of the Mac Kay 

correspondence for d(p) = 2 to the entire range 1 ~ d(p) ~ 2. 

One application of our classification theorems to conformal field theory, in partic­

ular to minimal conformal models and SU(2)-WZW theories, i. that we can reproduce 

the fus.ion rules, the bnjd- a.nd the fusion matrices of these models from an algebraically 

simpler object, a quantum group. This is one way of making "the quantum group struc­

ture" of conformal field theories precise. Our uniqueness theorems permit us, moreover, to 

establish a precise connection between SU(2)-WZWtheories at level k and SUe k)-\VZ\V 

theories a.t level 2 which is useful to understand the details of the conformal imbedding 

of (m(2)1 xm(k)2)-Ki.c-Moody algebra into .m(2k)1-Kac-~{00dy  algebra. For example, 

we f~d tha.t the braided tensor ca.tegories constructed from the representation theory of 

m(k)2-Kac-Moody algebra, with k even, are non-trivially induced by those constructed 

from iii(2)1-Kac-Moody algebra. This result is useful in the context of certain systems in 

condensed ma.tter ph)'.ics. 

We conclude this introduction with some additional comments on tbecontentl of 

-the ,-a.rious chapters of this book and a summary of our me.in results, Theorem 3.4.11 a.nd 

Theorem 8.2.11. 

Survey of Contents 

In Chapter 2 we explain the appearance of certain braided tensor categories, called C-­

qua.ntum categories, in local quantum theories in two and three space-timedimcIlsions. 

To this end, we use the formalism of algebraic field theory, which - following the arguments 

of Section 2.1 and the introduction - is expected to describe two dimeDsio:lal conformal 

field theories and three dimeDsional topological field theories. In Section 2.2 we review the 

C--a.1gebra approach to local quantum theories with braid statistics, in a form developed 

in [15, 24] generalizing the algebraic field theory of [19] for quantum theories with (para-) 

permutation statistics. In this f:a.:nework the objects of the considered C--quantum cat­

11 
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"" 
egory are a subset of the endomorphism. of the obsen-able algebra ~ cd the arrow. 

(or morphisms) are operators in 21 intertwining these endomoryhisIIlI. The quctitative ~, 

deacription of the structure of these categories in terms of R- and F- matricea i. derived 

in Section 2.3. In Section 2.4 we show how to extract unitary representations of the braid 

group. equipped with Markov traces from a C--quantu:n category. 

The objects of a quantum ca.tegory together with the operation. of taking direct 

sums a.nd tensor products form a half algebra over the positive integer. which we shall 

call a fusion rule algebra. An axiomatic definition of fusion rule algebras which forgets 

about their origin from ql:&Dtum categories is given in Section 3.1. In Section 3.2 we 

show that notions familiar in C--categories CEon already be def.ned from the fusion rule 

algebra itself, namely a unique positive dimension (the statistical or Perron-Frobenius 

dimension) for rational fl:sionrules and a universal group· of grading.. These concepti 

are eventl:ally combined in the construction of quotients of fusion rule algebras, so called 

Perron-Frobenius algebru. In Section 3.3 we demonst~ate  how ~on trivially graded invert­

ible objects may be used in order to derive simplified description. of fusion .rule algebru. 

In particular, we derive for cyclic grading goup. a general present&tion of a fusion rule 

algebra in tema of an accordingly smallei fusion rule algebra, whose invertible objects ue 

all trivially graded. \Ve give several criteria implyiDg that this fusion rule algebra ~s  either 

~-graded  or UDgraded. AmoDg the categories that are constructed from Z2- or ungraded 

algebru we find those which &.Ie generated by a single objec~  p of dimension d(p) not 

greater than two ( with tbe exception of two algebru at d(p) =2 ). They are clusined 

in Section 3.4, using tbe methods developed in the pre\ious section. More precisely, we 

first determine the fusion rule algebras with aselfconjugcJ.e generator of dimension lell 

than or equ.al to two and we 1.:1a.l),ze the action of the respective groups of invertible 

objects. Composing tbem with z,. ·algebru loDd twisting theI? we obtain the complete 

list of fl:sionrules given in Theorem 3.4.11. 

In the following three chapters we construct the C--quantum categories with A..­

fusioIlro1les from the qUaIltl:m group U,(Sl2)' 
I 

I 

For this purpose, we re\'iew in Chapter 4 the ge:1eral defintion of a quuitrian­

12 
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gulu Hopf ~gebr&, [3, 5], and the qua.ntum group. U.(..l,.), [2]. We introduce Ulti­

cohomomorphic ••operation. on quasitriUlgulu Hopf •.rgebras Il.Iid define the finite di· 

men.ion~ex&mpICl  U;-(Jl,.) for 9 a root of unity. 

The representation theory of U.(.l2) is treated in Chapter 5 following the remuks on 

in.'via.nt fOfJ%ll, com:Dutativity constraints and contragradient represeDtatioD' for general 

qua.ntum group. made in Sect jon 5.1. 1D SectioR 5.2 we give a summary of the irreducible 

&Jld the unituy representation. of U;OL(Jl2)' and in Section 5.3 we study their tensor 

product decompo.ition•. The formula given in Theorem 5.3.1 iDvolves projective repre­

.entation. with '-amshing q-dicensioIll, which naturally form a tensor ideal in the category 

ofrepresentation. of U.(Jl2). The subquotient ofthe abstract representationri~gby  this 

ideal i. a fu.ion rule algebra in the sense of Chpter 3, as described in Section 5.4. 

In order. to obta.:n a semisimple category we need not only di\;de out the radical 

of the objecb, i.e., the representation ring, but perform a similu quotiellt for the elltire 

category including the morphisIl".J, i.e., the intertwiners of representations. This procedt:re 

i. described in Section 6 1. We give the- explicit definition of the structure matrices &.lid 

verify the polynomial equatiolll for the quotient category in Sectjon 6.2. In Sectjon 6.3 

we prove that thi. category it a C··quUltum category if II = e%p(±~). The connection 

between balancing (or statistical) phz.ses of a qU&.lltum category &Dd the special element 

of a ribbon·graph Hopf algebra &Dd the relation between Markov traces ADd q\:antum 

traces are explained in Section 6,4. 

The first two section. of Chapter 7 ue devoted to the mathematical interpretation 

of the structure matrices found in Chpter 2 ud the connection of duality theory for' 

abstract ten.or utegorie. and the notion of duality in terms of global gauge sym:netries 

for local quantum theories. We stut with a summuy of the ingredients elltering the 

definition of an abstract qUUltum category and show its equh"&1ence to the system. of 

R. Uld F· matrices we have used so fu. Furthermore, we draw the connection to the 

theory of iIlclu~ioIl' Uld tower. of algebras, see 141, 23], if the category is obtailled from 

a set of quasi.commuting elldomorphisms on a hypemnite vOIl·Neumann algebras,e.g., 

a local .ubalgebra of the observable algebra of a local quutum theory. We re\'iew the 
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bownduality resulb, [29, 56], for abstract, symmetric categories Uld the existence oj 

field operator. with global gauge group s)'mmetry entailed by them. For braided, non· 

Tannalcian categorica the .notion of duality need. to be m~dified, involving semisimplc 

quotientl of Tannalcian categories arising from non·semisimple qUUltum group.. In thil 

setting, however, the Ul~ogoU'  construction of fields which Ue gauge symmetric wit~  

respect to the dual Hopf algebra doe. not yield Ul operator algebra with local braic 

relatio~. and a closing operatorproduct expasion. This is explained in Section 7.2. 

The goal of Sections 7~3 ud li is to select from the list of fusion rule algebi'lol 

given in Theorem 3.4.11 those which are actually realized as the object algebras of I 

C··quutum category and, furthermore, characterize them by the decompo.ition of th. 

tensor products pop and pop of the geIlentor. The precise correspoIldence betweel 

the dimension restriction 1 :5 d(p) :5 2 ud the structure of these fund&melltal product! 

is given in Proposition 7.3.1. Thi. result i. refined in Proposition 7.3.5, where we sho\! 

th&t the. restriction 1 < d(p) < 2 is equivalent to a two channel decomposition of p o'j 

with one object being invertible so that the projection. on the invertible object define: 

Temperley.Lieb algebra in End( p""). In particular, the exclusion of the D4·type fusiol 

rule algebru is inferred from the general result in Proposition 7,3.4 a.ssertiIlg that if po, 

decomposes completely into M invertible objects, then M = 2" for some n e N. 1J 

SectioR 7,4 we 'exploit the fact that the natural braid group representation in End(p"" 

factors through a Temperley.Lieb algebra ill order to compute the statistical phases for th 

C··quantum categoriea with f\:sionrules given in Theorem 3,4.1l,i). We filld consistenc 

requirements in this computation that allow us to discard the D· &.lid E-type algebraian 

certain twisted A.t)·pe algebras from the list of admissible object algebras. The remainin 

algebras, listed in Proposition 7.4.11 together with their possibl~  statistical phz.ses, cu a 

be obtained from a direct product of &.II A,.. algebra ud the fusion rule algebra given 1: 

the group z., for. some r e N, either by Inclusioll or by quotienting Vl"ith some irreducibl 

graded fusion rule algebra epimorphism. 

The results of Section 7.4 suggest th,.t all relevant quantumcategorie. CUl 1 
, I' 

obtained from a product of a cdegory Vl"ith A,.·fusiollrulei'and a category with Z 

14 
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fusionrules. Having constructed categories with A,.-fusionrules in Chaptera 4,5 and 6 Acknowledgement 
we are left. with the characterization of the qU'-lltum categories {or the z.-case. More gen· '\

.. 

'. 

erally, we classify in Section 7.5 the quantum categories {or which all objech are invertible 

so that the fusionrules are given by a fiD.itely generated, abelian group G. The set of in· 

equivalent quantum categories for a fix.ed group G carries a natural group structure and 

we show thil group to be canonically isomorphic to the cohomology group H4(G,2j U(1», 

associated to Eilenberg-MacLane Ipaces. We discusl in lome detail the ~.obstruction  

of these cat.egories to bestriet , Le., their non trivial structure uviewed as monoidal 

cr.tegories. In the concluding Proposition 7.5.4 we also give the structure matrices {or a 

convenient choiCe of morphisms. 

It turns out that any fusion rule algebra and any choice of statistical phuel {or 

the untwisted cues of Proposition 7.4.11 il rea.lizedby a subcategory of a C·qul.Iltum 

category with A,..fusionrules and· a z..category. 

The aim of Chapter 8 ilto prove the uniqueness of these categories and to con­

struct the categories with .twisted fusionrulel. The main tool in this il the notion of 

induced categories developed in Proposition 8.1.4. We also define an action of the group 

H4(Grad(Obj), 2; Vel») on the set of quantum cr.tegories with fusion rule algebra Obj, 

where Grad(Obj) is the corresponding universal grading group. In the second part of 

Sectjop 8.1 we find- conditions that the orbit of a category with respect to this -&ction 

contains a category, which is induced by a smaller one. The obstructionl here are found 

to be elements of HS(Orad(Obj), 2; Z,), see Le=a 8.1.13. 

In Lemma 8.2.4 of Sectjop 8.2 we show that this obstruction is trivial in the cue 

of A-type algebras. Using the uniquenSi o{ induced categories and the uniqucncss of .04 2­

categories given in Proposition 8.2.6 we icicr the uniqueness and thcreby the classification 

of the untwisted A-t)'pe (not necessarily C' ) qua.ntum categorics in Thcorems 8.2.8 and 

8.2.9. Thc respective categories with twisted {usioIlIules are presented in Theorem 8.2.10 

in terms o{ the untwistcd cr.tegories they inducc, Combining these results with Proposition 

7.4.11 we arrive at the classification in Theorem 8.2,11 of C··quantum categoriel with a 

generator of dimension leIS than two. 
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Chapter 2 

Local Quantum Theory with Braid 

Group Statistics 

2.1	 Some Aspects of Low-Dimensional, LocalQuan­

tum Field Theory, 

As described in the introduction, it is the purpose of this work to elucidate properties of 

superselection secton of local quantum theories with braid (group) statistics. In partic. 

ular, we are interested in understanding the laws by which two superselection sectors of 

a local quantum theory with braid statistics can be composed. In more conventional field 

theoretic jargon, we are interested in understanding the operator algebra and the operator 

product expansions of analogues of charged fields in theories with braid statistics. This 

involves, in parti~ular,  introducing appropriate algebras of fttsion rules and attempting 

to classify them. It invol~es,  furthermore, to characterize and classify the .iatistics of su­, 
penelection secton,or, in other words, the statistics of "charged fields·. More precisely, 

we wish to describe, as completely as possible, those unitary represent4tions of th.e bra.id 

group, Boo, that describe the statistics of superselection sectors in local quantum theories 

with braid statistics. It i.well known [19, 20) that in quantum field theory in four· or 

higher·dimensional space-time the statistics of supenelection sector~,  or,equivalently, of 
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charged fields, is descrihed by unitary representations of the permutation group, Soo' It 

is quite a recent result, due to Doplicher and Roberts (29), that the representations of 

the permutation group Soo and the composition laws of the superselection secton (fusion 

rules) of a iocal quantum field theory in four or more dimensions can be derive~_  irom 

the representation theory·of some compact group which, in fact, has· the interpretation of 

a global symmetry of the quantum field theory. 

It is then natural to ask whether the fusion rules and the representations of Boo 

encountered in local quantum field theories with braid statistics can be derived from the 

representation theory of a natural algebra which, moreover, can be interpreted as a gener­

alized global symmetry ("quantized symmetry") of the quantum field theory? A conjecture 

proposed frequently, but not really well u'~derstood (see, J:i.owever, (30) for an example that 

,is understood in detail) is that quasi.triangular (quasi·) Hopf algebras, in particular qu4n­

tum groups, could play the role of algebras whose representation theory yields the fusioll 

rules and the braid group representations of local quantum theories with braid statisticl 

and th'at they can be interpreted as "global symmetries" of such theories (31,28, 32). 

One of our main goals in this book is to describe some classes of local quantUII 

theories for which the conjecture just described can actually be proven completely. The 

quantum groups appearing in our examples are U,(sl,,), and we shall prove that the defor, 

mation parameter q must have one of the values exp(iw /N}, N a positive integer (~  n + I) 

Our results are complete for U,(Sl2}' (For some simpler examples, involving quaSi.Hop 

algebras, see also [33).} 

Next, we wish to recall some basic facts about braid statistics. In the context 0 

quantum mechanics of point particles in two-dimensional spaCe, braid statistics was dis . '. 
covered in [34,35,36). However, a more precise analysis of braid; statistics and a classifica 

tion of all possible braid statistics requires the principles of loc&1 quantum (field) theorj 

Examples of local quantum field theories, more precisely Chern-Simons gauge theoriel 

in three space.time dimensions with braid statistics were described in [36, 37, 38) an~ 

numerous further articles; see also (13, 14, 15). It has been rec~gnized  in (15) that, apar 

from permutation statistics, braid statistics is the most general statistics of superselectiol 
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sectors and charged fields thAt can appear in local quantum theories in three space-time 

dimensions; (see also [22) for related, partial results). Historically, braid statistics ,of fields 

actually first appeared in quantum field models in two space-time dimensions with topo­

logicalsoliton~;  (see [11) and refs. given there). It should be emphasized, however, that the 

theory of statistics of supenelection sectors in general local quantum field theories in two 

space-time dimensions is considerably. more genercl than the theory of braid statistics. 

But, for the chiralsectors of two-climm.nonlil conformal field theories, the statistics of su­

perselection sectors and of th~  corresponding chiral vertex operators is always described 

by representations of the braid group BrIO, generated by certain Yang-Baxter matrices; 

see [21, 9, 11, 26, 27, 28, 22] 

Inspired by results in [16]. it has been argued in [24) that the theory ofthe statistics 

,of sectors in general three-dimensional, local quantum theory is equivalent to the theory of 

the statistics of chiral vertex operators in two-dimensional confonnal field theory; (i.e., the 

same braid statistics appear in both classes of theories). We may therefore focus our 

attention on the analysis of statistics in three-dimen.tionallocal quantum theory. 

Next, we review some characteristic features of local quantum theory in three space­

time dimensions. 

(a)	 Spin in three space-time dimen.tion.t. 

According to Wigner, a relativistic particle is described by a unitary, irreducible 

representation of the quantum mechanical Poincare group. Pi, which is the universal 

covering group of the Poincare group, 'Pl. In three space·time dimensions, ' 

'Pi = 50(2,1) )tl R3
• 

The three-dimensional Lorentz group, 50(2,1), is homeo~orphic to R2 x 51, its 

covering group is therefore homeomorphic to R3. If one imposes the relativistic 

spectrum condition One concludes that those representations of the quantum me· 

chanical Poincar~  group associated with three·dimensional Minkowski space that 

are relevant for the description of a relativistic particle are characterized by two real 

parameters, the mll6' M ~ 0, and the "spin" , E R. In particular. spin need not be 
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an integer or half·integer number. 

(b)	 Localiz4tion properties of one·particle ,tate,.
 

Let us now consider a local, relativistic quantum theory hi three space-time dimen.
 " 
sions describing a particle of mass M > 0 and spin.. As shown by Buchholz and 

Frec:lenhagen (20), one can then in general construct a "string·like field·, 1/1. with 
,	 , 

n~n-vanishingmatrix  elements between the physical vacuum. 0, of the theory and 
I	 . ' . 

one-particle states of mass M and spin s. This result follows from very general 
I 

pt;nciples of local quantum theory; (locality, relativistic spectrum condition. exis· 

tence of massive, isolated (finitely degenerate) one-particle states). The field 1/1 is, 

in general, neither observable nor local. However, as shown in [20), it can' always be 

l~calized  in a space-like cone, C, ofarbitrarily small opening angle; (see Sect. 2.2 for 
, 

precise definitions and results). Physically, C can be interpreted as the location of 

a fluctuating string of flux attached to a "charged particle". Particles of this kind are 

~countered  in three·dimensional Chern-Simons gauge theories, (13, 14, 37, 38. 15]. 

Jt can happen that the field 1/1 is actually localizable in bounded regions of space·time.
 

(This would be the case in field theories without local gauge invariance.) Then a general
 

result,due to Doplicher, Haag and Roberts [19). proves that the spin of particles created
 

by' applying 1/1 to the vacuum n is necessarily integer or half·integer, the statistics. of 1/1
 

is permutation statistics, and the usual spin·statistics connection holds. It follows that if
 

the,spin of a particle created by applying some,field,p to the vacuum 0 i. neither integer
 

nor half·integer then the field ,p cannot be localizable in bounded regions of space-time
 
. '.	 . 

- but,p i. still localizable in space-like cones: It has also been proven in [15) that if the 

spin of the particle created by ,p is neither integer nor half-inte,er then ,p has necessarily
 

non-trivial braid statistiCl, and a fairly non·trivial spin-statistia connection holds. We
 

thus expect that particles with spin. rt !Z can only be encountered in quantum fielet
 

theories with a manifest or hidden local gauge inVai'iance.
 

Another general result of [15) is that, under a certain mini,mality usumption on the 

structure of superselection sectors, non-trivial braid statistia can only appear in theories 

. in which the discrete symmetries of space reflecti'ons in lines and time reversal are broken.,	 , 
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Thus the only realistic candidates of relativistic quantum field theoriel in three ,~ 

space-timedimenlions describing particle. with spin .s ~ lZ and with braid statistica, 

called Inyoft.t [36], are Chern-Simons gauge theories described in [13, 14,37, 38, 15), with 

an actionS given e.g. by (1.1), or non-linear 0(3)- O'-models with Hop! terms equivalent to 

abelian Chern-Simoni theories. See also [14, 15) for a heuristic discussion of the properties 

of these theories. 

Since a mathematically rigorous analysis of the quantum field theories just referred 

to would be difficult and has, in fact, not been carried out, so far, we shall, in this book, 

follow an =Jomatic approach. The formalism most convenient for our purposes turns out 

to be algebraic quantum field theory, as originally proposed by Haag and Kastler [17]. 

Since algebraic quantum field theory does not appear to be terribly well known among 

theoretical physicists or mathematicians, we shall now give heuristic motivations ofsome 

of its main concepts which will then be reviewed more precisely in Sect. 2.2. 

The local, gauge-invariant observables of a gauge theory are constructed 

from real currents, Ja(%), % e Mel, 0.= 1,2,3, ..., which commute among each other at 

space-like separated arguments, from Wilson loop operators, We!), and Mandelstam 

string operators, M( 'Y), where! is an arbitrary smooth, bounded, space·like loop without 

double points, and 'Y is an arbitrary smooth, bounded, space·like curvej etc.. In order 

to obtain densely defined operators on the vacuum sector, 'Ht , of the theory, one has to 

smear out these currents, Wilson loops and Mandelstam strings: Let f be a real-valued 

test function. We define 

Ja(f):= f dzr(%)f(z). 
l\f" 

One may expect that Ja(1) defines a selfaajoint operator on the vacuum sector 'Ht • 

Moreover, all bounded functions, A, of Ja(f) are localized on the support of I, (in the 

sense that [A, .F(y)] = 0 whenever y is space-like .separated from the support of f" for 

all b). 

,Let E be a finite-dimensional parameter space equipped with a smooth measure, tlu, 

and let {!(0') : 0' E supp dO' ~ E} be a family of smooth, space-like loops, free of selfin­

tersections, smoothly depending on 0' e E and contained in a space-time region 0 eMil. 
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Heuristically, we define an operator 

. Wo :=1 du W(!(er» 
E' 

(where the inteUal is interpreted in the weak sense). One can imagine that Wo defines 

a dosed operator on 'Ht "all of whose bounded functions are localized in O. (Similar ideas 

apply to the Mandelstam strings M( 'Y).) 

We now define local ,observable algebras 21(0), for 0 some bounded space-time re­

gion, as the von Neumann (weakly closed*) algebras [17) genera.ted by all boun.ded jun.ctionJ 

of the operators 

{)G(f), sUPPfcO, 4=1,2,3, ... j WOi Mo}. 

As explained above, one expects that if Ot and O2 are two space-like separated space-timt 

regions then locality of the theory implies that 

[A,B] =0 for all A e21(Ol) , BE 21(02) • 

It is also clear that if Ot C O2 then 21 (Ot) ~  21(02), The general properties required 0 

the net {21(O)}OCM" of local algebras are discussed in [17, 1~] and will bebriefiy sketchec 

in Sect. 2.2. 

Let Ut denote the unitary representation of P~  describing the dynamics of th. 

gauge theory on its vacuum sector 'Ht . Let ~ be ail element of Pl. projecting onto aJ 

element (A,a) e 'Pl., (where A is a Lorentz transformation and a e lRd is a space:'tim 

translation). Then one expects that, for every observable A e 21(0), Ut P) AU1 (~)- onl: 

depends on (A,a) and is contained in the algebra 21 (O(A'G»), w~ere 

d· t } ,O(A,G) = { ~ eM: A- (z - a) e O( 

Hence we have a representation, a, of 'Pl. on the algebra of obse"ables of the theory give 
I 

by 

a(A.o)(A) = Ul(~) AUl(~t , 

with
 

a(A.a)(21( 0» = 21~( O(A,o») .
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We now suppose the theory has some non-trivial conserved charges giving rise to superse­

lection rules. Let?i; be a Hilbert space of states of "charge;" orthogonal to the vacuum . 

sector ?i1i (the charge is here viewed ~ being "multiplicative"). It is customary to assume 

that there exist a. field ,pi b~) carrying "charge j- "with non-vanishing matrix elements 

between vectors in ?ii and vectors in ?i1• Here 'Ytc is eithet: a point:: e Mil (charged 

local fields) or a space-like string starting at a. point:: eMil andextending to space-like 

infinity (Mandelstam operators in gauge field theories without. colour confinement, such 

as three-dimensional Chern-Simons gauge theories).' Let {'Y((1) : (1 e El be a smooth, 

finite-dimensional family of space-like strings contained in a. "space-like cone" C eMil, 

and let d(1 be a smooth measure on E. Heuristically, one defines 

,pi(C) := Jd(1,pib'«(1». 

E 
One may imagine that ,pi(C) defines a. closed operator on the entire physical-Hilbert space 

ofthe theory. Then ,pi(C) has a polar decomposition 

,pi(C) = U~ \,pi(C)1 ' 

where l,pi(C)I is a positive, selfadjoint operator of charge 0, hence leaving all super­

selection sectors invariant, and ut is an operator carrying "charge i" and mapping the 

orthogonal complement of the null space of l,pi(C)I isometrically to (a subspace of),the 

physical Hilbert space. Heuristically, the operators u~  and l,pi(C)1 commute with all 

observables localized in regions space-like separated from C. One can now extend u~  

to an isometric operator Vi, defined on the entire physical Hilbert space, which cames 

the same charge as u~ and commutes with all observables localized in regions space-like 

separated from C, for some cone Ccontaining C. 

For every bounded observable A of the theory, the operator 

~(A):=  (Vir Avi 

is then,expected to be again a bounded observable, and if A is localized in a space-time 

region space-like separated from Cthen i?(A) =A. The map i? is therefore called an 

endomorphism of the observable algebra localized in C. 

In the next section, we recall rigorous results, due to Buchholz and Fredenhagen (20), 

asserting the existence of endomorphisms with the properties of J{." under very general, 
" " physica1ly plausible hypotheses on the theory. The Buchholz-Fredenhagen const~ction  

of endomorphisms does not involve first ~nstructing operators analogous to Vi. Rather " 

the existence of such operators - which are bounded versions of charged field operaton ­

is derived from the existence of localized endomorphisms: It is one of the major goal. of 

our work to construct operators analogous to the operators Vi ind discuss their algebraic 

properties, in particular their ,tatistiCl, for some ,class of field theories in three space­

time dime~sions  characterized in terms of net. of local observable algebras and families 

of local~zed endomorphisms. 

From now on, we shall work within the forma1ism of algebraic field theory [17, 18, 

19, 20], motivated by the heuristic con.iderations sketched above, and our analysis will 

be mathematically rigorous. We expect that the hypotheses on which our analysis i. 

based can be verified for some two-dimensional" conformal field ~heorie~ [30, 25] and some 

three-dimensional Chern-Simons ~auge theori~s [38]. 

It should be mentioned that, in Secb. 2.2-2.4 and in Chapter 6, the reader is expected 

to be vagUely familiar with one of the references [11, 15, 22]. 

2.2 Generalities Concerning Algebraic Field Theory 

The starting point of the a1~eb~"aic  formulation of local, relativistic quantum theory is 
, " 

a net, {21(OH, of von Neumann algebras ~t  local observables indexed by bounded, open 

regions, 0, in Minkowski space Mil. 1£ S is an unbounded spa,ce-time region in Mil one 

defines an algebra of observables loca1ized in S by setting 

21(S) = U 21(0)," , (2.1) 
0"oe'•••••• 

where the closure is taken in the operator norm. We define the ~lgebra.  21 of all quasi-local 

observables as 

21 = 21(S = Mil). (2.2) 
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The algebras 21(S) and 21 are C··algebras. The relative commutant, 21"(S), of 21(S) in 21
!~. 

• is defined by 

!le(S) = {A E!I: [A,B] =0, for all BE 21(S)}. (2.3) 

The causal complement, S', of a region S C Mol is defined as 

S' = {= e Mol : (= _ y)2 < 0, for all yes}. (2.4) 

Let Co be a wedge in (d - 1)-dimensionalspace. The causal completion, C. of Co is defined 

by 

C = (C~)' (2.5) 

. and is called a simple dOm!1in. If'the opening angle of Co is less than 11' C is called 

a space-like cone; 

Locality and relativistic covariance of the theory are expressed in the following two 

postulates on the structure of the net {21(O)}. 

(1) Locality: 

!I(S') ~  21"(S) , (2.6) 

for any open region S C Mol. 

(2) Poincare covariance: There is a representation, a, of the Poincare group, pl, 
as a group of ·automorphisms of 21 with the property that 

. a(A,o)(21(S» =21(S(Aoo», (2.7) 

where 

S(A,o) = {= e Mol: A-t (= - ale s} . (2.8) 

The properties of a physical system described by {21, a} can be inferred from the repre­

sentation theory of {21, a}. We focus our attention on the analysis of physical systems 

at zero temperature and density. Then it suffices to consider a restricted class of rep­
, ' 

resentations o£{21,a} which has been described in work of Borcheri [18] and Buchholz 

and Fredenhagen [20]. Buchholz and Fredenhagen start from the assumption that all 

representations describing a local"relativistic system at zero temperature and density Cat 

be reconstructed from what they call massive, single-particle representations [20]. The) 

then prove that there exists at least one vacuum representation" I, of 21 on '& separable 

Hilbert space, 7th containing a unit ray, 0, the physical vacuum, which is cyclic for 2 

and i. space·time translation invariant, i.e., 

(0,1 (~(A»  Or = (O,l(A)O), (2.9: 

for all A e 21 and' all a e Mol; here {ao E a(l,o)} is a representation of space·timl 

translations of Mol. [In the analysis of [20] full Poincare covariance is not assumed; i1 

is sufficient to require locality and space-time translation covariance. In our analysis 

space·rotation covariance will be used at some point, but full Poincare covariance isn01 

needed.] It follows from (2.9) that space.ti~e  translations are unitarily implemented OI 

7t1 by a group of operators UI (c) =exp i(aOHI - ii· PI), a =(11.0, ci) E Mol, and it followl 

from the starting point chosen in [20) that the relativistic spedrun condition, 

spec (Hlo Pt) ~ V+ (2.10: 

holds. 

In the following, we shall assume for simplicity that there is a unique \"8.cuum rep 

resentation, (i.e., there is no vacuum degeneracy). This assumption must be given up it 

the study of two-dimensional theories with topological,solitons [11]. Our analysis can b, 

extended to certain theories with vacuum degeneracy without much difficulty, in particu 

lar to a class of two-dimensional theories with solitons. It can also be applied tei studyinl 

,the chiral sectors of two-dimensional conformal field theories; see e.g. [23, 22,25]. W 

shall, however, focus our attention on three-dimensional theori~, following [15, 24], sine 

these have been studied less intensely. 

If the vacuum is unique, and under suitable physically plausible hypotheses describel 

in [20], ,all representations, p, of 21 encountered in the analysis of relativistic, local system 

at zero temperature and density have the property that, for an arbitrary space-like con
! . 

C C Mol, the restriction, of p to 21e(C) is unitarily equivalent to the restriction of th 
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vacuum representation, 1, to 2lC(C), i.e., 

P I21C
(C) ~ 1121c(C) • (2.11) 

A representation of 21 with this property .is said to be locali.z4ble in !p4ce-like cones 

relative to the vacuum representation. In the frame~ork  of [20], only re,presentations, 

p, of 21 satisfying (2.11) are considered which are translation-covariant, i.e., for which 

there exists a continuous, unitary representation, Up, of Md on the representation space 

(superselection sector) 'H., corresponding to the representa.tion p such that 

p(a.(A» = Up(a)p(A) U,( -a), (2.12) 

where 

Up(a) = expi (aOH,-a. pp) , (2.13) 

and 

spec (Hp,~,)  ~  V+. (2.l4) 

A fundamental a.ssumption on the choice of the net {21(On of local algebra.s is duality, [19, 

20]: One a.ssumes that the algebras 21(O} a.re chosen so large thl.t 

1 (21(S»' = 1(21C(S»UI , (2.15) 

where~'  denotes the commuting a1gebra. of a suba1gebrl.,!B, of the algebra, !B(?il ), of all 

bounded operators on ?iI, and ~  = (~')'  denotes its weak closure. [Duality (2.15) can 

be derived from a suita.ble set of postulates for 10ca1, rela.tivistic qua.ntum field theory, [39], 

and expresses the property that states in 'HI do not ca.rry a. non-abelian cha.rge.] 

Remark. The analysis presented in this chapter can be a.pplied to the chiral sectors 

of two-dimensiona1 conformal field theory if Minkowski space is repla.ced by the circle SI, 

a compa.ctified "light-ray", with & distinguished point P, the point at infinity, (correspond. 

ing to the auxiliary cone, Co, introduced below), space-like cones, C, in Md a.re replace<l 

by intervals 1 C 'S1, a.nd Poinca.re cova.riance is replaced by cova.riance under PSL(2, Il). 

In this case, the spectrum condition becomes the requirement that the genera.tor, Lo, of 

rotlotions of 51 is a positive operator with discrete spectrum. 
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Next, we construct an extension of the algebrl. 2l which will be more convenient for ~" 

our analysis. First, we note that the vacuum representation ~ of 2l i. f&ithful. In the 
~ 

following, we shall identify 21 with the subalgebrl. 1(21) ~f ~(rcl)' 1£ ~ i. & lubalgebra 

of !lwe denote by F the wea.k closure of l(~)  in~('Hl)'  Let C. be lome auxiliary 

spa.ce-like cone in Md of arbitrarily small opening angle, and set 
i .
 
I 'C. +z = {~  e Md

: ~ - z eC.} .
 

We define an enlarged a.lgebra, !Bc., containing 21: 

~e. = U !2lC(C. +zr··. (2.16) 
cEMI . 

Afundamental result of Buchholz and Fredenhagen [20] is that every representl.tion p of 21 

loca.liza.ble in spa.ce-'like cones rela.tive to 1 has a continuous extensIon to ~c•• Moreover, 

given a space-like cone C in the Cl.usal complement of C. + z, for some z e Md, there 

exists ~  *endomorphism, I'c, of ~e.  such that : ' 

i'c(A} ,= A, for &11 A E 21C(C) , (2.17) 

and the repr~sentation  1 (I'c('» of !Be. i. unitarily equivalent to the represent&tion p of 

~e.,  i.e., there exists a unitary opera.tor t'c: from 14 to 'HI such tha.t 

~(A) == Vc p(A)Vc·: (2.18) 

Next, let Pc be a *endomorphism of ~c.  localized in a space~like cone C, in:thclense. 
·1 

of equ~tion  (2.17), a.nd let h be & *endomorphism of !Be. loca1ized in & cone C, with 

the pr~perty  that h is unita.rily equivalent to some subrepre~~ntation  of Pc. Let S be 

a simple domain in the causal complement of C. +z, for some :I: E Md, with the pro~erty  

that C~ Cis contained in the interior of S. Then there exists:1. putial isometry r~C'~l"  

on ?-l1 ,; called a "charge-transport operator", such that 

i 
I
i Pc(A)r:e.lt = r:el~~Pl(A), (2.19) 
! 

for ioU! A E ~c•. It follows from (2.17) and duo.lity, see (2.15) ~d 119, 20], that 
, .~ . 

r:e,~~  e 21(Sr C ~c•. (2.20) 
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Let I' and 9 be two representations localizable in space-like cones relative to I, and let" 

~ and p' be two -endomorphismsof !Be:. localized in space-like cones, £;, ,and C., with the 

properties that C. C C'.,C. uC. c (C. +:z)', for some: EM", and I' and q are unitarily 

equivalent to " aDd p', respectively. We define I' 0 qto be the unique equivalence class 

of representations of !Be:. unitarily equivalent to the repre;entation "0 p' of !Be:. on 'HI. ' 

It is easy to check that I' 0 9 is again localizable in space-like cones refative to I, that it 

is translation-covariant (see (2.12» and satisfies the relativistic spectrum condition (see 

(2.14», provided I' and q are translation-covariant and satisfy the relativistic spectrum 

condition. It is not hard to see [20] that if C; and C. are space-like separated (C" C C't) 

then " 0 p' = p' 0 pp. Hence 

I'0q=q 0 l'. (2.21 ) 

Clearly 

101'=1'01=1'. (2.22) 

Fredenbagen (40] has isolated natural physical conditions which imply the following prop­

erties of representations of 21 localizable in space-like cones relative to 1; see also [20,19]. 

Property. P 

(PI) Every representation I' of!! which is localizable in space-like cones relati~e to I, and
 

which is space-time translation-covariant and satisfies the relativistic spectrum condition
 

can be decomposed into a direct sum of irreducible, t~anslation-covariant representatioDi
 

of !! which satisfy the relativistic Bpectrum condition and are localizable in space.like
 

cones relative to 1.
 

(PI) Let I' be an equivalence clUB of irreducible representations of!! which are translation­


covariant, satisfy the relativistic spectrum condition and are localizable in space~like cones.
 

relative to 1. Then there eXists a unique equivalence class, p, of conjugate representa­


tions of !! with the same properties as l' such that l' 0 P= pop contains the vacuum
 

representation, I. precisely once.
 

From now on, Property P is always assumed to hold; see also [23,24]. 

Defini~ion 2.2.1 We denote b~ L == L{21...} the complete list 0/ all inequivalent, irre­

dUcibl~  trtl1Ulation-covancmt represent~tio716 o/!! which satish the relativistic spectrum 

condition and are localizable in !pace-like ~one" relative to 1. 

It follows from Property P that, for i and j in L, the product representation. i oj, 

can be, decomposed' as follows: 

N'J•• 
i 0 j =$ E9 k(") , with k(") ~ k , .' (2.23) 

.eL ,,=1 

for all If. = 1•... , N'i,lt. The multiplicity, N'i.• ,=Ni,.•• of kin i 0 j is a non-negative 

in.teger' and, by Property (P2), can also be defined U the multiplicity of 1 in ",0 i 0 j. 

The integers (N'i.• ) are the fusion rules of the theory. By the definition of i 0 j. Nii•• can be 

interpreted as the multiplicity of the represenbtion kof 21 in the representation i (Ic('») 
of !!. where Ic is a-endomorphism of !Be:. localized in a space.like cone CC (C. +:)', 
for so~e :. with the property that j is unitarily equivalent to 1 (~(-)). It is not hard- tc 

derive from this that, given k. i and j in L, ih~e exists a complh Hilbert space V. (~),: 

of operators, V. from the representation space, 'Hie, of k to the representation space, 14, 

of i such that 

i (Ic(A») V =V k(A), for all A E!!j (2.24: 

the dimension of V. (Ic), is given by Nii.•, and the scalar product. (V, W), between tW( 

elemen~s V and W of V. (~), is defined by 

V·W = (V, W}II'H.' (2.25 

By (2.24), V·W intertwines the representation k of!! with its~lf  and hence, by Schur' 

lemma, must be a multiple of 111t., because k is irreducible. Intertwiner spaces 

V. (pi' 0 ... 0 pi-)i are defined similarly, for arbitrary i, jlt ... .f"and k in L. 

Remark. 

One p~ose  of Chapters 2 and 7-is to use the intertwinersin V.(~)i.  i,j.k in L. t 

construct certain (bounded) operators on the total physical Hilbert space of the tbeor: 
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called charged fielt!.&. which have non·zero matrix elementl between different superselecti~n  

sectors·, are localized in sp&ee-like cones and hence C&D be used to. for example. construct 

Haag-Ruelle co11ision states (20). Quantum groups will appear in the construction of such 

fields in space-times of dimension d =3 and for BOme clus of theories. including conformal 

field theorie.!•.in two space-time dimensions. 

The first step in our construction of charged fields is to construct ("horizontal") local 

sections oforthonormal frames of intertwiners of a bimdle. I;;.• , of intertwiners satisfying 

(2.24). whose base space is a "manifold» of ·endomorphismB. pi, of c.Bc• localized in space· 

like cones contained in (C. +x)'. for some x. with the property that 1 (pi(.}) is unitarily 

equivalent to j. and whose fibres V.(pi};. are isomorphic to CN'i... Such local sections 

of frames are constructed as follows: We choose a reference morphism, 10. localized in 

a ~pace-like  cone Co C (C. +2:)'. for so~e z. and an orthono~al basis {V,:= (Io)}::~· 

for the Hilbert space V. (10); consisting of partial isometrie. from 'H. to 1i; satisfying 

(2.24). Given an arbitrary ·endomorphism, pi. of c.Bc• localized in a space-like cone 

C C (C. +z)', for some z, and unitarily equivalent to 10, we choos~ a unitary chuge 

transport operator ~.~.  see (2.19), which belongs to an algebra c.B(st C c.Bc• usociated 

with a simple domain S C (C. +z)'. containing Co and C. A buis lor V.(pi}; is then given 

by {Vaii(pi)}Ni;.• , where 
a=l 

v.:i (';} =i(~,~) V~.. (p{,) .	 (2.26) 

Note that, since ~.~ E !2l(S)"'C c.Bc', and i is a representation of c.Bc', i (~oJ.) is 

a well-defined unitary operator on 1-£;. 

Bundles Ii;' ..:;.~ and local sections of frames of intertwiners in Ii;I ...;.,. are con­

structed similarlYi see [24-r-­

Remark. 

Since, for j E L, pi is an irreducible ·endomorphism of !Bc" the choice of ~oJ. is unique 

up to aphllSe factor. This phase factor gnnQi be chosen continuously, even in "small 

neighbourhoods" of pf.. These technicalities are of no concern in this book. except in 

Theorem 2.3.1, below; 

'I, 
2.3	 Statistics and Fusion of Intertwiners; Statistical 

Dimensions 

Let C ~e a space-like cone which is the causal completion of a wedge Co in (d - 1)­
2dimeniional space. With C we associate a unit vector i e 54- which specifies tbe 

asymptotic direction of the central ~s  of Coi (for d:; 3, i i. the unit vector in RS 

specifying the uymptotic direction of tbe half-line bisecting Co). Using polar coordinates. 

i can be described by d - 2 angles; in particular. for d = 3, i is described by one angle 

8 E (-~. 'll'). Our coordinates are' chosen such that tbe unit vector i usociated with C. 

is given by (-1,0, .. ~,  O). If P is a ·endomorphism of !Bc'localized in a cone C, the unit 

vector i associated· with C is called the tuymptotic direction, as,(p}, of p. We may choose 

the ref~rence  morphisms 10, j E L, such tbAt as (10) =(1.0, .. '.', O). In d =3 dimensions, 

the asYmptotic directions of the morphisms pi inherit the ordering oUhe angles in(-'ll', 'll'). 

We say that two ·endomorphisms, PI and PI, of !Bc, are cau,sally independent, de· 

noted ~1  XPI, if they are localized in cones C1 and CI such tha.t C1 C C;: 

We now recall a bUlc result proven in (24). 

i 
Theorem 2.3.1 For p anti q in L, let ~ and pt be two *endomorphism.. ojc.Bc, localized 

I	 ' ' 

in spai:e.like cones contained in C~  and unitarily equivalent to p and q, respectively. Let 

the int~rtUJiners {V~ (p")}=~~.  and {Vl (pt ) };:.~.  be defined lIS, in (f.f6). Then there are 

matrices, called statistics-for braid-) matrices, . 

I
I	 

(RV,p, u(P"}q, u(pt},k)t;) , 

! 
such that 

V1;(p"} V;i(pt) = E RV.p, u (p"). q, as (pt). k):; Vj'(p'} V"u(P"} , , ,(2.27) 
lIW 
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provided"Xp.. The statutics matrices art loco.llJlindependent oj the choice of the

i~ 

au:ilia~ cone c•. Moreover, the Jollowing propertiel hold. 

(a) In d ~ 4 'Pace-time dimenlionl, the matrice, 

R(;,p, as (p"), q, u(p'),k) == R(;,p,9,k) (2.28) 

art independent oj 41 (p") and 41 (1"). 

(b) For d =3, 

RU,p, as (1'), 9, as (p'),k) == R%U,p,q,k), (2.29) 

Jor a, (p") ~ 41 (1"). [The matricel R%(;,P,9,k) depend on p" and p' only through l' 

and 9 and the sign oj 41 (1') - as(p').] 

Remarks. 

It is easy to see that 

ER%(;,P,9,k)~R=f(;,9,P,k)t::: =sro:6~  . (2.30) 
till' , 

and that the matrices R%U,p,9,k) satisfy the Yang-Bazter equationl in SOS-fonn. 

We now assume that the representations l' E L are rotation-covariant.. Thus if 0 

denotes a space rotation then 

l' (ao(A» =Up(O)p(A)Up (O-l), (2.31) 

where Up is a unitary representation of the universal covering group of SO(d -1) on the 

representation space 'H." of p. Since l' is irreducible and ao,.. is the identity when O2• is 

a rotation through an angle 211', it follows that 

Up (02.) = e2n'Jlll7tJl ' (2.32) 

where the real number.s, is called the spin of representation Pi (for d = 3, s, can, a priori, 

be an arbitrary real number, while, for d ~ 4, I p E lZ). 

Theorem 2.3.2 

R+(;,p, 9, k): =e2tri("+'i-';-'.)R-(;,p, 9, k):. (2.33) 

Remark. 

The fa~t  that in d ~ 4 space-time dimensions R+ = R- and Theorem 2.3.2 imply tha.t 

I, E iZ, for all pEL. 

All the results reviewed above are proven in [24}. 

Next, we recall what is called fusion of intertwiners (24}. For 1',9 and r, let p", p' 

and pI' be three *endomorphisms of!:Bc• unitarily equivalent to 1',9 and r, respectively, 

and localized in the interior of a simple doma.in S C C~. Then there exist N".,r partial 

isometries, 

r:,.op.,pr(p) E 2l(S)UI C ~c., (2.34) 

P = 1, ... , N".,r, such tha.t 

I' (p'(A» r:,.opt,p.. (p) =~opt,p.. (p) 1''' (A) . (2.35) 

Let u,,(rip, q) be given by 

u,,(rip;q) == (r(r:,.op.,p.. (p») V"'(pr), V;V(P")y91(p'») . (2.36) 

Note that· Nrr,l = I, so that there is a unique (up to a phase) isometric intertwiner of the 

type of Vr1 (pr), for all r E L. 

Theorem 2.3.3 

(a)	 There emt matrices (.F(;,p,q,k)~)  only depending on the representations . 

;,1', q, k, i and r, (but not on the specific choice of p', p' and 1'''), such that 

vli(P") Vl:(p') = 

E FU,P, 9, k)~u,,(riPI qYj (r:,.o,•.,.. (p») yjl(p"). (2.37 

""" 
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The matrice, F can be ezpressed in terms·of the ma.trices R+ a.nd R- a..s jollow, 

Pu, 1',9, k);::; = 

Then -the matrice. R:!:(j", q, k) define unitary maps {rom V1 (PP o pI); to Vic (pI 0 PP)j\ 

provided PP and pI are causally independent (ppXPI), the matrices F and F define .:i. 
E R:!:(i, 9, ~,l)n~ R:I:(;,p,', q>r~  RTU, k, r,l):r: • 
.." 

(2.38) 

I 

unitary endomorphisms of Vic (P" 0 pl)i' and the matricel p(r",)(;". 9, k) define orthogonal 

proje~tion.  on V. (PP 0 pI);. 

(c) It i. sometime. preferable to use 
(b) There e:ili ma.trices (F(;,p, 9, k)i:;) only depending on the representations ! 

;,1',9, k, i and r, (but not on the specific choice of pP, p' a.nd pr), such tha.t 1'(;,1', 9, k)~::;  = 

"R:!:(I· .)phl R:!:( . ,-)r.-r R~(I" . ,-)i111 FA(1 )r,.1L.J ,),1',' jl. 1',),9," i~  ,r.,," il" ,p,9,r ph (2.43)
; (~OPf.p.. (Q») VJ"(pr) = 

"c~  

(c) 

E FU,p, 9, k)~CTQ(rip, q) vj'(PP) V;Ic(pl). (2.39) 
iJAII 

The matrices F can be ezpressed i~ te'M'n$ oj R+ and R- by a formula a.na.logo'U$ to 

(f.96)i (see Theorem f.9../, (1)) 

The matrices F and F a.re related to each other by the following equations 

EFU,p,9,k)~ F(;,p,q, k):;: = e5:e5~e5~,  (2.40) 
'JAIl 

and 

instead of (2.38), in order to compute the I' matrices from the R:!: matrices. It is useful 

to express the matrices R+, R- , F and F graphically as follow. 

q,}L P,lI 

4-t R+(j,p,9,k)~~'  (2.44)~"I~
/i'"

k..

p,a q,/3 

P(r",)( . '-)0."" " FA( . k)rJAII F( . k)o."
J,p,9Jll;i~:=L.J ',1',9, i~  ),1',9, rJAII (2.41) 

" q,}L "p,lIa.re the matNelements oj orthogona.l projections, p(r.II)U,p,9, k), with 

E p(r",)u,p, 9, k) = Ilv,,(ppopf)j , (completeness) . (2.42) ~.ll.~~ 4-t R-(;,p, 9, k):~  (2.45)
rll /K 

Remarks. p.a q,/3 

(a) The consistency of the two equations (2.38) (+ H 

2.3.1. Theorem 2.3.3 is proven in [24]. 

-) follows easily from Theorem P,j-L q,lI 

(b) We recall that VIc(PP)j is the Hilbert space of intertwiners V from 'Hie to 'Hi sa.tisfying 

j (PP(A» V = Vk(A), for all A E 2(, 

k .... F(j, 1', 9, k)r::;" (2.46) 

see (2.20). We define Vic (PP 0 p')j to b~  the Hilbert space spanned by the intertwiners 

{V1i(pp)vt(p'): i E L, Q = 1, ... ,Npi•i , P=1, .. . ,Nti,lc} . 

r. /3 . 
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- F(i,1', 9, k)~. (2.47) IT (fJffik E = 

s r s rp,a q,13 
etc.; (polynomial equations) 

We also introduce the graphical notation 
(6) 

p,a p,~  

s, f3 p q.(i) F"( • - ')111 (2.48)- F\;n f&~:= "PIP" "Q~'.l0 
J : 

I ~ ~ 

&Od 
I

E p k q =6:6~o;, E r =1 (2.51

j(j •...I r.I' 
I

(1"')f&~ . _. la!J 
.... F i .:= F(" 1', 1'" )111 . (2.49) ~ f9 

r t a p q 
pta p,~  

Identities between R+» R-, Fand F can now conveniently be expressed graphically. (c) There t=ist numbers d" ~ I, for a.ll pEL, and unitary matrices, 

It i. quite straightforward to prove the following theorem [24]. V,.., =V,.., (1'lq,r), such that 

Theorem 2.3.4 The matrices R%) Fend F setisfy the equations pta q,f3 pta q,{3 
(a) 

rn 
k

rs r s 

~J 

=~~  ..~v.. (2.5 

E.._ (' ..Y' 
= 

s P q s p q r,y r, y 
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"
 r t Y r, Y 

and 

j 
(2.53)=~~~v.. 

pta q,f3 p,a q,f3 
For the proof of Theorem 2.3.4 see [24]. 

Remarks. 

(a) Equation (2.38) for Fand a similar equation for F follow from Theorem 2.3A.(a). 

(b) The number tI,. pEL, is called the statistical dimension of representation p. If 

R+ = R-:, i.e., if the theory has permutation group statistics then d, E N, [19]. It is 

shown in [19,20,23], that d, = d,. From Theorem 2.3.4, (b) and (c). it follows that d, is 

the largest eigenvalue of the fusion rule matriz N,. defined by 

(N')j, := Nj,,1c • 

This ~an  be shown by noticing the identitiel 

d,d, = d,d, =Ed,d, (2.54) 
r,ll 

b 
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~ 

=E q p rl = E N;" d,. r =LN~dr.  (2.55) 
r", 

Identity (2.54) follow. from Theorem 2.3.4.(b) and (C)i (22). Thus (dr )rEL is a Perron· 

Frobeniu. eigenvector, corresponding to the eigenvalue 4, of the fusion matrix N,. Con­

nected to thi.result i. the interpretation of tI; as a Jones indez. [23, 41J. See Chapter 3. 

(c) A. a special case of Theorem 2.3.4.(c) we note that 

1 
(2.56)=4 

P

l/1.= N
P 

p P p 
Thil identity i. important in the construction of inva"riants or links and of ribbon graphs 

from the matrice. {R:l:,F,F}; see [43, 28, 44). 

The main result of this section is the insight establishe~  in [IS, 24, 22) that every 

local, relativistic quantum theory. in the sense of Sects. 2.1, ~.2 in three or more space· 

time dimension. [and the chiral sectors of every two dimensi~nal  conformal field theory) 

provides us, in a canonical way, with certain combinatorial data. namely the fusion rules 

(N')'EL. and the statlstics-(or braid-) and fusion matrices, R±.F and F. respectively. In 

d ~ 4 space-time dimensions, we have that R+ =R-, but in d = 2. 3 dime~sions R+ and 

R- are. In general. distinct; see Theorem 2.3.2. It il natural to ask, whether these data 

might be dual to some simpler algebraic object, such as a group or a quantum group. In 

a remarkable le,riel of papers [29]. Doplicher and Roberts have shown that if R+ =R-, 
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i.e., for permutation group statistiC', the data {(N')'EL, R,F, F} are dual to a compact	 and CIt = 1, ... , N~i_lo~' i =1, ... ,11., with Po = 1. Two neighbors, Pi-l and Pi, are..

"..	 group, i.e.,' L can be 'Vie~ed u the set of finite-dimensional, i:reducible representations constrained by the requirement that N'''''_l.~  :F O. 

of a. com~ad  group, 0, NplcJ is the multiplicity of representation; of G in the tensor 

product representation p ~ k, and R, 1',1' are standarci 6-index symbols associated with 

the representation theory of G. 

The point of this work is to show that if R+ :F 'R.- , (frequently the case in d =2,3), . 

then the data {(N,),eL, R:I:, F, I'} are often dual to some quantum group, [1, 2, 3]. We 

shall discuss in detail one example (see Sect. 6.3.) of a local relativistic quantum theory, 

encountered 'in the study of three-dimensional Chern-Simons gauge theory with gauge 

group SU(2),which leads to quantum SU(2), Le., U,(Sl2)' with q a root of unity. The 

same example appears in the study of two;.dimensional Wess-Zumino-Novikov-Witten 

.models based on SU(2) current alge~ra  and of minimal conformal model [9,31]. 

In the next section, we study properties of the representations of the braid groups 

determined by the statistics matrices' R:I:. 

2.4	 Unitary Representations of the Braid Groups 

Derived from Local Quantum Theory; Markov 

Traces' 

We return to the study of a local quantum theory described by an algebra 21 ,a ·auto­

morphism group, a, and a setf" L, of representations localizable in space-like cones. We 

show how, for d = 2 or 3 and assuming that R,+ :F R-, the quantum theory determines 

unitary representations of the broid groups, B", on n strands, for arbitrary n, equipped 

with a positive Markov trace TM. These results are discussed in more detail in [22, 24]. 

For, every pEL and every n E N, we define a space n~")  of paths of length n, u 

follows: E\,ery element w E n~")  is a sequence of symbols 

w = (plal,P2a2, ... ,Ilta~),  with Pi E L, (2.57) 
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We fix a ·endomorphism I" of· Se.. Wi~h  each path w E n~"), we associate an 

intertwiner 
" 

V", =II Va7-1~(1") ,	 (2.58) 
i=1 

intertwining the representation 1«1")"(.» of 21 with the representation'w+ of 21, where 

w+ =Pta is the endpoint of w. Here, (1")" =I" 0 ••• 0 I" en-fold composition of I" with 

itself). The space of these intertwiners carries a natural scalar product h,), defined as in 

(~.21), Sect. 2.1. In this scalar produ~t,  {V... :W E n~"),  w+ =k} is an orthonormal basis 

foJ,' the space, VI: «1")")1' of intertwiners between representations 1«PP)n(.» of 21 and k, 

i.e., 

(V... ,V...') = 5......., .	 (2.59)
 

We define a path algebra [45,46], A (n~"»), by setting 

A (n~"»)  = €a <.B (VI: «1')")1) ,	 (2.60)
l:eL 

where!B ('H) is the algebra of all linear endomorphisms of a Hilbert space 'H. It is easy 

to see that [24] 

A(n~n») ~ 1«P')"(21})' . (2.61) 
i 

Next, ~e  define a unitary representation of the braid group Bn onn strands with val· 

ues in .A (n~"»): Let crr1, ... ,(7;~1  be the usual generators of Bn • We define a unitary 

representation,", of En on VI: «P')n)l by setting 

(U[lV) ... = LR.*(w,w')V..."	 (2.62: 
...'
 

.where
 

% )J'~Q~Q~+lRr(w,w') = R (Pi-1tP,P,Pi+1 ~Q~Q~H  (2.63: 

if w = (Pt, at)t:l ....." and 'w' = (p~, aDt:l .....'" where pi = Pt for 

l:F i, a~  = Qt, for l:F 'i,i +1. For all other choices of w', givenw, we set ~%(w,w') = O. 
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Let h = n~=1 (7:: be an arbitrary element of B"i t a = ±l, ka e {l, ... ,n - l}, for 

Q = 1, ... k. We define 
I: 

'D.•- II RCa (2.64)......- la' 
0=1 

with R: as in (2.63). The representation" of B" on VI: «PP)")1 is then completely 

determined by setting 

.. ~ ') ,(bV)", := LJ ~(w,w  V""," w+ = w+ =Ie. (2.65) 
w' 

It is not hard to show, see [22, 24], that ": b1-+ b is, in fact, a unit4ry representa­

tion of Bn on V. «pp)n)l' This representation admits a" unique, positive, -normalized 

Markov tr4ce, 7ft, constructed as follows [24]: Gi~en w = (1l1l all'" ,JLn, etn) e n~n)  ,we 

set W = (JLI,' .. , JLn)' We define 

n • (Jli-l) " 
F(w, w') = 11 F Pl'i ..ol' (2.66) " 

1=1 

for w=w', and F(w, w') =0, otherwisei_the matrices F~)  ~  have been defined in (2.48), • 

Chapter 2.3. The matrix F(w,w') is defined similarlYi see (2.49), Chapter 2.3. Then 7ft 
is given by 

-rrc(b):= E E tr (F(WI;W2)~(W2,W3)F(w"WI»)  .- (2.67) 
10'1 ••..•,.,.. c.'.("l.···.""j . 

tor t.l.2,1 

The qu~tity  orL(UI) =: >'p is called statistics parameter [23, 22], and one c~  show [23, 

22, 19] that the statistical dimension, 4, is given by 

4 = lorf4 (UI) I . (2.68) 

The fusion rules (Np)PEL and the values of the Markov traces TL, 

{orfAb): b e Bn,p e L} , 

on Bn , for all n = 2,3,4, ... , are intrinsic411y associated with the qua.ntum tbeory de­

scribed by {21, a, L}. They do not depend on bow the phases and normalizations of the 

intertwiners V~j(PP)  are ch~sen,  in contrast to the da.ta {R:I:, F, F}. 

•Clu,rly, orL CaD be extended to a atate on A (n~"»), for every n. 
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We know from [43) that a quasi-triangul~  (quasi-) Hopf algebra K: with universal \' 

R-matrix X, and a list, L., of finite-dimensional, irreducible representations of positive 

q-dimensions of K: also give. rise to representations of the braid' groups Bft equipped with 

. Markor tra~s  orft, pel., for all n = 2,3,4, .... From the result. reviewed in this section 

we know that only those quasi-triangular (quasi-) Hop! algebras, A:, and families, L., of 

representations of K: can .appear in local, relativistic quantum theory for which 
I . 

(1) the aSsociated representations of Eft are unitarizable, for all ni and 
I 

(2) the Markov traces or:', peL., are positive. 

f.., 

For 1(, = Ull (.slcl+1)' this restricts the values of q to q =exp(i1r/N), 

N =d +2, d +3, ... ,. What, as field theorists, we are longing for is a general theo­

rem which completely characterizes those fusion rules and positive Markov tra.ces on Bn , 
. . 

n =2,3,4, ..., which come from quasi-triangular (quasi-) Hopf algebras. We do not know 

a general resUlt of this type, yet. [In d ~ 4 space-time dimension., the results of Doplicher 

and Roberts [29] completely settle anana.logous problem, with 1C the group algebra of 

a compact group.] 

/ 
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I" a largef part of this section is devoted to the study of fusion rule algebras, as introduced 

~. 

in [47).: In view of a classification prob~em solved in Section 7.3, we give a formal treatment " ' I 

Chapter 3 

Superselection Sectors and the 

Structure of Fusion Rule Algebras 

AI proposed in [23J, it is of interest to investig~te the structure of the chain of algebras 

C.l = P(!Bc.), n (!Bc.) Cpo p(~c.)'  n (~c.) Cpo po p(!Bc.), n (~c.) ... , (3.1) 

where p is an irreducible •-end~morphism an p a conjug&te endomorphism. The point of 

studying algebra chains obtained by alternating compositions of the form (3.1) is that they 

admit faithful traces which give rise to conditional expectations and thus to Temperley­

Lieb algebras (41) as subalgebras. This structure has been studied in rather much detail. 

For rational local quantum theories, i.e., theories with a finite number of superselec­

tion sectors, one finds that the chain (3.1) eventually leads to a tower in the sense of 

Jones (41). The factors in these algebras are distinguished by the inequivalent, irreducible 

representations occuring in the compositions pop 0 pop 0 ••• , which makes it natural to 

try to connect the inclusions of the algebras defining the tower to the fusion rules {N.j.• } 

introduced in Sect. 2.2; see also [47,41). Assuming that every irreducible representation 

of 21 is contained in some p" 0 r, we shall explain, in some detail, how fusion rules can 

be recovered from (3.1) and from towen that are in some sense coupled or isomorphic 

to (3.1). 

Since most of the structural information can be obtained from the fusion rules alone, 

of the ~tion  of the group of automorphisms in a fusion rule algebra. 
\ 

On the level of algebra-chains, similar to (3.1), &utomorphismsgive rise to concur­

rent Temperley-Lieb algebras which, for a special decomposition rule for pop, lead to 

a complete determination of the underlying theory, as we shall see &t the end of this 
. i

sectIon:. 
! 

3.1 Definition of and General Relations in Fusion 

Rule Algebras, and their Appearance in Local 

Quantum Field Tl:1eories 
.: 

A fusion rule algebra (superselection structure, ...) C) is a positive lattice (1C)1 = NILI), 

with &distributive and commuta.tive multiplication 

C)xt .....c.~i axb-+aob, 

an inv:olutive and additive conjugation, - , 
oj 

-:C)-:"C)j 

with ~  0 b=W, a unit 1 E C) with 

loa = a and 

and an additive evaluation £ 

£ : t -+ N 

£(a) = £(a), 

and (4, b) := t(4 0b) is the usual euclidian scalar product on NILI. 

It follows, that the scalar product (, ) obeys 

~ 

(a 0 :e,y) = (:e,a 0 y), (3. 

a-+a 

° r=1 

such that 

£(1) = 1 
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In terms of. the fusion rules, the definition of the fusion rule algebra i. given by: " so that we have, for the length lIall:= J(a,a) of aE ~, 'i.. 
lIall =lIiill, lIa 0 hll = lIa 0 bll, etc.. (3.3) 

_Minimal elements, " in ~,  i.e., vectors that cannot be written -as the sum of two other 

nonzero vectors, are characterized by 

114>11 = 1. (3.4) 

Every vector of t can be written uniquely as a sum of the minimal elements, E t, aild 

any additive bijection of ~ onto itself corresponds to a permutation in 

L ={4> E tl4> minimal}. In particular, we have that 1 E L, that the conjugation is an 

involution, ~;  --+ 4>';, of L, and that 

! (4)i~;) =bii' - (3.5) 

A fusion rule subalgebra (sub-superselection structure) ~'  is an invariant su~lattice  of~,  

which contains I, closes under multiplication and for which (3.4) holds, for a.llminimal 

vectors. 

Note that a fusion rule algebra is simple, in the sense-that there do not exist proper 

ideals, i.e., if to is a sublattice of ~ spanned by minimal vectors with 

~o=  ~o  and to 0 ~ C ~o 

it foll~ws  from (3.5) that 1 E to and hence ~ = to' 

The multiplication in t is determined by the products of the minimal elements 

(3.6)'i 0 'i = E Ni;,k4>" ,
"eL 

where the structure constants Ni ;,,, E N are, what we previously referred to as fusion 

rules. 
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a) commutativity = Nji,.Nii." 
b) _associativity ENii,. NIc-r,. = ENil,. Njr,l,• (3.7)c) unit Nil,i = Nli,i =bii
 

d) involution Nii,. = Nr"r.
 
i 

e) ~valuation NiI,l = 6ii ·
! 
A rep~esentation  of a fusion rule algebra, 1r, of ~  on a lattice A =N" is an assignment, 

a --+ pC,a), of elements, a, in t to additive mappings of A to itself (i.e., p(a) i. a nonnega­

tive, i~teger  Ie x Ie matrix), with 

p(I)= I, p(a)p(h) = pea 0 h) and p(ii) = p(a)'. (3.8) 

The representation we are primarily interested in is given by (right) multiplication of + 
on A = ~, so that 

P('i) =N}, _(3.9) 

where (Ni )i1 =Nii ,,, are the matrices of fusion rules. 

In fact, any lattice A that carries a representation of ~ and has an element w with 

(w,p(a)w) =tea) (3.10) 

can b~  written as a sum A =~r e t;, where~r,~;  are t~invariant,  and ~r  is equivalent 

tp the right representation. If a representation, p, satisfies I\p(4)i)!1 = UNill, then- we ca.ll p 

dimension preserving. Eqs. (3.8) yield: 

N:N} =ENi;,A:Nt (3.11) 

" 
N1 =I, NJ = N}- . (3.12) 

Using (3.10), for w = I, and (3.12), (3.7) we see that 

N,l = Nil = 4>; , as well as NJ =C~;C , (3.13) 

where (O)ii = biI' 
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Moreover, commutativity of 0 implies
ft' .. 

[M~Ni]  = o. (3.14) 

Suppose we have a lattice ~r  and nonnegative integer matrices N; acting on ~,., that obey 

(3.12), (3.13) and (3.14), for a given involution a, then we find that 

tI) (1, N.N; 1) = 6i1 

b) (1, N,N;N. 1) = N.;., (3.15) 

c) (1, Ni N;NI:Nl l) = L Ni;,. N,I:,! 
,eL 

By (3.1'4), these expressions are completely symmetric in the indices i,;,1c and l and, by 

(3.12), are invariant under conjugation (i,;,1c,l) -+ (i,j,~,l),so  that equations (3.7) are 

easily verified. Hence any set of matrices obeying (3.12), (3.13) and (3.14) determines 

a fusion rule algebra. 

From the results reviewed in Sections 2.1-2.4 it is clear that every local quantum 

theory satisfying properties (PI) and (P2) of Section 2.2 defines a fusion rule algebra, ~.  

Let 

sC!· = V 21 (C. +:c)' 
ceN" 

denote the auxiliary C· algebra, introduced in Sect. 2.2, containing the observable al­

gebra 21j (C. is the auxiliary space-like cone). We define t to be the fusion rule ~gebra  

generated, through arbitrary compositions, by the family L of transportable, irreducible 

*endomorphisma of Sc. localizable in space-like cones. Let C be an arbitrary, non-empty 

space-like cone space-like separated from C•. We define the von Neumann algebra rot to 

be the local algebr& 

rot == rot(C) :=21(Cr . 

By Haag duality in the form considered in [20), 

rot' =21C(Cr , 

on the vacuum sector, 'Hit of the theory. Let U == U(C) denote the group of unitary 

elementl in rot, i.e., 

U :=- {V e rot : V· =V- 1
} • 
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-Since every endomorphism in L is transportable, and hence is unitarily equivalent to 

endomorphism localized in a space-like cone of arbitrarily small opening angle contained 

the cone C, we can choose a representative which is a ·endomorphism of rot acting trivi 

on rot' in nery equivalen.ce clas6 of unitarily e~uivalent  ·endomorphis~s  in L. By all 

including arbitrary compositions of such endomorphisma we obtain a subset, EndL( 

of End(!'Dt(C») w~ch is closed under composition and hence is a (sub-)semigroup. T 

semigroup EndL(C) contains the subgroup, Int(C), of inner *automorphisms of rot giv, 

by 

Int(C) := {O'v : 3V e U(C) s.t. O'v(A} =VAV., 'VA e rol} . 

The fusion rule algebra t of the local quantum theory under consideration is then giv 

by 

t ~EndL(C)/  Int(C). (3.1 

The cone C, although chosen arbitrarily, and the von Neumann: algebras rot = rot(C) all 

rot' c~ and will be kept fixed throughout this chapter. 

- , 
~ 

'. 
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03.2 Structure Theory for Fusion Rule Algebras obey 

We review several re$ults on the structure of fusion rule o1gebro.s which are based on the 

theory of non-negatille matrices, in particular on connectedness arguments and PefTOn 

Frobeniu.s theory. We /OC1.&$ our attention on the description 0/ the fusion rule ,ubo1geb1"4, 

~ p, generated by a distinguished minimal vector ¢p E ~, and comment on the gra.dation 

induced by ~p on ~ in terms 0/ "Perron Frobenius algebras" defined over JR+.• ~he proofs 

of the following statements o.swell a.s more general aspects 0/ the structure theory will be 

given eLsewh.ere U~J. 

The first observation about fusion rule matrices is that they have non-negative 

entries, and, since ~ =N, is a fusion rule matrix, too, if Np is one, fusion rule matrices 

are normal,Le., 

Np~= ~Np. (3.17) 

Note that (3.17) defines a symmetric, non-negative matrix with strictly positive diagonal 

elements. Hence it can be decomposed into irreducible parts, each of which is primitive. 

The following lemma holds for arbitrary non-negative matrices. From the superdiagonal 

block form on every Np-invariant domain, ~~ = e ~(.~.i), we see that the period a~  is 
iEZ.). 

identical with the Frobenius imprimitivity index. 

Lemma 3.2.1 Let N be a normal 11. x n-matriz, with non-negative (integer) entries and 

non-zero rows, or columns, and let 

~ ~ (R+)" (or ~ N") 

be the cone (positive lattice) on which it is defined, with unit vectors ¢1"'" ¢n' Then 

there is a unique sequence of numbers, a>. E N, with .\ ranging over some inde~ set A, 

and a unique partition of {I, ... ,n} : {I, ... ,n} = U .U Cpo,i)' such that the subcones 
~eA lez.). 

(sublattices) 4)().,i) := ({¢i} 'eC ) . ,with 
J (~.') R+(N) 

t = EB EB 4)(.).,.), (3.18) 
.).EA iEZ.), 

N (t(.).,I)) C 4)(A,i+1) , 

and (3.19) 
Nt (~(>.,i+1») C 4)(>,,'1 , 

and, moreo'ller, N'N is primitive on eAch t(~,i), i.e., (NtN)'" rt(l,l) ha.s stricUy positive 

matriz,elemenu, for some m. Furtherm!'re, if there e:ist! an involution, 'lI' E Sn, luch 
I . 

tha.t we have 
I 
j 

ONG= N', (3.20) 

with Ct/>i := '''Ci), then there i.s a.n involution, .\ -+ X, on A, with a>. = ax, And en enu­

meration of Za), such tha.t 

o (~()..i») = ~(l,-i) (3.21) 
or 

o (~().,i») = 4)(A,l-i) for .\= l ;: (3.22) 

From the superdiagonal block form of N, ou every N,-invariant domain, 4)" = ED t(>.,i), 
. ". . ~~  

we see that tbe period a>. is identical to the Frobenius imprimitivity index. Also we have 

that the restriction of the matrix N, to a domain ~A  is irreducible and by standard Perron 

Frobenius theory has an eigenvector in ~>. ( components taken in R+ ) with 'positive eigen­

value, which is unique up to positive scalars. It is called the Perron Frobenius eigenvector" 

of the matrix. Any eigenvector of Np on ~ is thus a convex combination of eigenvectors 

on components with the same eigenvalue. A more general version of this observation ia 

obtained by induction : 

Lemma 3.2.2 i) Let S = {NlJ "'1 Nk} be a set of commuting n x 11. - matrices, which 

close.s under transposition, i.e., N~  E S if Nt e S. Deftne the set PF(S) cis 

PF(S) ={lE (R+·o)ft : 3(ct) e (R+)k with Nil= Q:id-, V'iL (3.23) 

then there is a partition 

{I, ... ,n} =.UUcCo.;) (3.24) 
oEA ; 
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<4' 
~ 

PF(S) = EB PF(S)ca , (3.25) 
caeA 

where PF(S)ca is the conl1ez cone spenned by the set o!e:tre';"aI directions {dc.';}j' 

and Perron lrobeniu.t eigenl1ectors cf..; with eigenl1alues a = (~) and support in 

C(ca,i), i.e., (d:.;, ;.) .:F 0 iff i e C(ca,,'), such that there is an orthogonal decomposi­

tion 

We verify that it satisfies 

d : t -IR.+, 

d(:.+y) = d(:)+d(y), (3~31)  

I d(z 0 y) =d(z)d(y) ., 
/', 

We. ca:II a function with the properties (3.31) a Perron Frobenius dimension. From ii) of 

ii) Suppo,se S is the set of fusion rule metrices of a jusionnJe algebra with. e finite 

number of irreducible (or minimal) objects. Then the pertition in i) is tri'llial, i.e. 

there is c unique l1ector 1 e (R+)", with 

t:(d} = (;1, l) = 1 (3.26) 

Lemm~ 3.2.2 we co~clude that for fusion rule algebras with a finite number of irreducible 

objects this dimension exists and is Unique. Also we have d(l) = 1 and d(zV) = d(z). 
I -

1£ we consider fusionrules with an infinite set of irreducible objects this dimension is in 

general not unique as can be seen in the case of ordinary SU(2) -fusionrules. For these the 

numbers, d(z) = (dim(z))11' q e IR.+, provide a one parameter family of Perron Frobenius 

end 
dimensions. 

PF(S) = a+l. (3.27) In the following we define for a subset T of ~  its support ·in the irreducible objects 

The components ere 

d~  = 
= 

(d, ;,~) 

a." = liN." , 
(3.28) 

by 

supp(T):= {,p 1 (;'.,8):f= 0, for some.s e T} (3.32) 

Part i) of Lemma 3.2.2 relates to Lemma 3.2.1 as follows: .For S =' {N" ~}to  any 

~  E A labelling a minimal, invariant sublattice, there corresponds an extremal Perron 

(3.29) 
1r 

{2 co,( N) }N=3•• ,... U [2,(0). 

end tcke 1141ues in the set 

­

The result of Lemma 3.2.2, i), can be applied to define a quotient algebra ~  /~o  for Cl 

fusion rule subalgebra ~ 0 C ~,where two irreducible objeds,.,p1 and .,p2, are equivalent ifl 
i .. 

,pI = :i:o.,pa for some z e '11'0 .We obtain a partition of ~  by settingC(.] := supp (¢. 0 ~o 

and ~~I  := ({;'.}"'EC ) -,so that ~  = ED ~~ and to 0 ~~ = ~~, where B is the set of equiv 
.... - N ~eB 

alence classes. The fusion rule matrices, N., of ~ have a unique 'common Perron Frobeniu 

.Frobenius eigenvector labelled by a pair (a, j). This description of smallest common 

in,,·ariant domains in terms of extremal Perron Frobenius eigenvectors of course generalizes 

eigenv~ctor  1E R+ . ~; with ted) = 1, and the components ~  e R.+~~ of 1= E ~  sp 
. ~EB 

the cone of common Perron Frobenius eigenvectors of representations in Co 

fo involutive sets, S, of matrices with more than two elements. In the proof of the second 

assertion in this lemma we make essential use of equation (3.13), which shows immediately 

that every irreducible object is in the invariant domain containing 1. Using the numbers 

, . ..'1 -:-::I' 

In order to state the next lemma, we define the positive nl;1mbers K~ and N"'I th.8 b 

setting '~1  

. I 

determined in (3.28) we define a positive function on ~ setting for an arbitrary object ,,~ := 1IJ13~lllciO~  (3.3 

=e ~,given  by z = 'E.ELZ.;. 

d(z) = Ezyc4 

'" 
(3.30) 

. and 

'!L- 11' . 
K(1h)K(¥21 "'lth~ .­

." 

~  . t4. 'j
L.j - -~  N,

••ee. awl d,;, "'1~.",. , 
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and the positive vectors 

G~.- 1
'-lld~IIIIJ)1 ;,. (3.35) 

Lemma 3.2.3 

i)	 We have the following equations in R+ . I: 

1 ." _1_ 61"'1 (3.36)t4 ;'" 0 f' = 
"["'] 

and 

l~olo = 5°.·	 (3.37) 

ii)	 The nu~bers defined in (9.9./) do not depend on..pi and..p2 ezplicitl1l, but 0'11.111 on' 

the class.es [..pl) and [..p2], so that wema1l define 

N["'lllv.,].[",,] = N''''lv."I'''']·	 (3.38) 

The numbers "fJ then form the common Perron Frobeniu eigenvector, ie, of the 

matrices (N["'l)[';'J,I"',J)'. and "0 = I, '" = ,,~, and 

(3.39)E N~i',("'T = "0""
'TeB 

iii)	 The numbers No!J,., are the structure constants of the multiplication table of the 5!J's, 
i.e., 

'fa 0 1!J = E N~.'Tfr,  (3.40) 
'TeB 

and we have that 

NcaA,o=l. 

Remark. In all statements of Lemma 3.2.3 we understand the multiplication, 0, defined 

on the N-a1gebra I to be extended to the JR+-algebra lR+ . I. We easily verify, that the 

structure constants, Hca!J,." obey all constraints. (3.7), necessary for fusion rule matrices 

to define a fusion rule algebra, except that they are not necessarily integer-valued. This 

motivates the following definition. 
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Definition 3.2.4 For two fusio'/.& rule algebra.s ~. C~, the PefTOn-Frobeniu cIlgebnl" 

of I over 1 0 is the cone freel1l genero.ted b1l the indez set B, i.e., all combinatio71.1 E .\00, 
, oeB 

with .\0 ~  0, equipped with the conjugation, 0 ~ ii, and the R+ -bilinear multiplication, 0, 

'defined b1l'the structure constants, i.e., we have that 

oop:= EN~..,'Y.., 
This cIlgebra is denoted b1l I/~o and is often identified with a subalgdrez oflf.+ . ~ through 

the embedding a ..... lca. (Ijwe set (a,p) := 6~  111.11 this embedding is even seen to be
 
'
 

isometric.) 

The use of Perron Frobenius algebras is motivated by the observation that 
/ 

N~,.,=o 

iff there exist ..po E Co and ..p~  E C, such that 

. ; .. 0 ;"'_ .1 I.,	 (3.41) 

which is equivalent to 

1 0 o~,.l~.,.	 (3.42) 

Thus the algebra ~/I.  tells us which 1o-invariant components, ~."  occur in the product 

of two· other components; 1 0 and IfJ. Definition a.2.4 can of course also be applied 

to Perron Frobenius algebras 10 c I, instead of fusion rule algebras. We can therefore 

iterate our construction and obtain familiar equations, like I/~o  ~  (t/loo)/(Io/Ioo), 

for 100 C 10 c I. 

We associate to any pair of sets T, S C {I, ... , n}, the composition 
.	 . 

ToS:= U SUPP(;i O ;,) , 

ieT,:jeS 

so that T, S ~ To S is a commutative and associative operation. Further, we denote 

by [T), T c [Tl C {l, .... ,n}, th~  set generated by T, more precisely [T):= U Tie 0 r. 
'.	 . 11>0 

For any set T, the sublattice 1fT) := NIT) C I is a fusion rule subalgebra of t.­
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"t 

• 
In the simplest casel T ={pI and T ={pI 0 {pI, these subalgebras are related to i,,) The vec~or",  6>-, .\ e A, of the Perron Frobeniu.t algebra tjtlPl ~  (tjtfpo~J)/f{oJ

.' the presentation of the fusion rUle matrix N, of Lemma 3.2.1 by are gi"en by 
, 1 01-1 ~P. =-- E gr..>.,i) = .2.. p.. 0 gr.>',j) (3.46)

~(PJ = ~A. = e· t(Ali), "';0."a>.. i=O a>.. 
ie~. 

(3.43)and 

~(POIJ = ~(A.,O)  , 

where .\. and the ~numeration  of Z01. are chosen such that I E O(A.,O); "hence 

C (tPI•.i») = t(A.,-i)' 

The Perron Frobeniul algebra tjt[po1) can be described further by using Lemma 3.2.1. 

Proposition 3.2.5 Suppose that for a representation p, the fusion rule matm Np has 

imprimitivity indice, aA E N, .\ e A, and define a partition ~f  {I, •.. ,n} =VA . U C(A,i)' 
'. ~~1  

according to Lemma S.!.1, with .\. as above, i.e., 1 E [p 0 p} = C(A.,o)' Then 

ai) The Perron Frobeni"u.t a.lgebrtl, tjtfpo1)' is given by "ector, cStA:1, .\ E A, i E Z.1' I
I 

with supp (K<>"i») =C(A,a1, and 1 := 6(,,·,0). ! 

ii) The subalgebra t[pl/tfpoJ] is generated by an automorphism a := 6(>,·,1}, with 

&"1. =a 0 li =1 

and is therefore isomorphic to R+ ([Z.ll). We ha"e that 

a 0 gc.>.,i) = .f(>.,i+1), \1.\ E A, i e Z•• , 
and (3.44) 

a>. divides a>.. , \1.\ EA. 

iii) There are constants Nl~l,,>.a'  .\i E A, depending on j only modulo the greatest com­


mon ditJisor o/-aAlI a", anda.>.u i.e., ; E Ze011,O).,'.l,), such that
 

GtAl,ll) 0 Gt""Iea) = ~ N(la-let-lea) £T.>'a,~)  (3.45)
LJ >,,""'" . 
>'aEA,'aeZe1a 
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'; arbitrary, and the structure constants are 

aA,a>.,a"a 1 (0111·la l l a)• 

. NA,>."", = a E N(j) (3.47)
( >'11 a>." a>..) .. >'1>",>" •aA. • ,=1

! 
Roughiy speaking, Proposition 3.2.5 shows that the action of ~(P) on t is graded and 

that the composition law of the invariant domains of (»[poJ] has ~ periodicity specified 

in part iii). In the following, we shall denote the fundamental ~mprimitivity  of Np , a>.., 

characterized in part ii), by 0.1' for any label p of the fusion rule algebra and by C(, i € z." 
the components C(>,.,i)' Finally (»: := (»[cf] == (»(A••i)' 

We collect the consequences of Proposition 3.2.5 that are relevant for the later 

considerations in the next corollary. 

Corollary 3.2.6 For any label p of II fusion rule algebrtl, there is an integer, ap , the 

imprimitivity of p, and a partition 

[pI = U Cf 
iez..,
 

of the set Ip] generated by pinto ap subset.!, Cf, such that
 
1 

1 E C: [pop]; Cf = C~i 

and (3.48 
.,poCf = Cf+ j , for all .,p E Cj . 

If p is selfconjugate, it follows immediately that ap = 1 or ap == 2. 

For the simplest nontrivial case of Z2-gradation, we descrl,be the fusion rule algebr 

more explicitly in terms of fusion rule-matrices. In general the fusion rule matrices 

a ~·graded algebra defined on (»'=fo EElf1 (f=NC"uc" (»i = NCi, i=l,2) and th 

conjugation have the blockform 

C = Co EBe1 , (Oi involution on .i) 
\" (3.4 

N. = N~e~, for .,p E Co 
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and 

0 OoA~Cl)
N" = , for '7 e C1 • (3.50)

( A" 0 

It is possible to give criteria which determine when matrices of this type define a fusion 

rule algebra, in the sense of Section 3.1, namely that they obey equations (3.12) - (3.14). 

Lemma 3.2.7 Let ~N:}. be the fusion rule matrices o/a ju.sion rule algebra 1 0 = Ne. 

with conjugation Co' Suppose, further, there is a representation, 1r, of ~o  on a lattice 

~1 = N'1 with conjugation C1, so that 0 11(4»01 = 'II'(¢) = 71'(4))'. Then the matrices N;, 
~_ and A", where N~ := 'II' (4),,,), .,p e Co, and 

A" : ~CI  -+ ~1  is determined by A,,4>~ = N~4>iJ',  

define a fusion rule algebrtl I = to ell with fu.sion rule matrices given by (9.49) and 

(9.50) iff 

A"A~ = A'rA~.	 (3.51) 

Note that 01A"Co = AiJ. So we have. the equa.tions 

0IA"A~01. = A"A~, 

(3.52) 

OoA~A"Oo = A~A"  

where A" is the block matrix of N", for '7 e C1 • 
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3.3	 Grading Reduction with Automorphisms and .. 

Normality Constraints in Fusion Rule Algebras 

In this -Chapter we show how any simply generated /v.sion rule algebra, with nontrivially 

graded ,automorphis~, can be obtained from a smaller fusion rule algebra with Z.-grading. 

We'stcde the most general presentation 0/a fusion rule algebra, tIPI, in tenns oj an cJgebra,
I 

in whi~h  all automorphisms lie in the trivially graded component. For this purpose, we 

. introd~ce two constructions that yield new fu.sion rule algdrru, '" (t[pI) and Z" • tIPI, 

from a given one, tIP)' We also discuss the crossed product, z,. x., lor arbitrary fu.sion 

rule algebrru, and its use in the clrusijictiti.on problem, lor I = lIP)' 

The restrictions, Ai, o/a fusion rule matriz N, to the components Cf obey constraints 

that are due to the normality 0/ N,. ,We use them to specify classes 0/ Ao such that any 

ju.sio'r'- rule algebra, lIP), compatible wit,4 one 0/ these Ao h~, an automorphism in C2 

, and can thus be obtained /rom a fusion rule algebrtl genertlted by a lei/conjugate element 

p=p. 

Throughout this section, we assume that the fusion' rule algebra I, with label set C, i.
 

Z.-graded (e.g., as iii Corollary 3.2.6, for C =[pD. Thus we have a partition C = .U Ci
 
.	 ,~ 

and a corresponding lattice decomposition, t = e tie 
I	 ieZ. 
I 

To any fusion rule algebra, t, we can associate the set of invertible objects 

Out(t) := {4> e I I 4> 0 ¢ = 1}.	 (3.53) 

It is immediate that Out(I) only consists of minimal vectors, and thus can be regarded 

as a subset of C. Moreover, it defines a discrete, ~beliangroup  with multiplica.tion 0 and 

inversion ;-1 =¢. Equivalently, Out(I) is characterized as the subgroup of permutation., 

71' e SIL:l of C such that n, given by nii = 6itr(i), commutes with all fusion rule matrice. 

and h~nce  n = N~(l)' Referring to the fusion rule algebras (3.16) that emerge {rom the 

superselection rules generated by transportable •-endomo!phisms of a local quantum field 

theory, the group Out(t) (and, in particular, the notation) has a natural interpretation. 

If Aut(C) is the subgroup of EndL(C) consisting of ·.automorphisms of rot acting trivially 
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f1 

.. 
~. on !»t' then equation (3.16) yields the isomorphism . 

Out(t) ~  Aut(C)/Int(C) (3.54) 

Automorphism. (or invertible objects) can be detected fairly easily from the vector, d~  

of .tatisticai dimension. or from a common Perron·Frobenius eigenvector, J, for finite 

fusion rule algebras, (), by 

Out(t) ={i E f I " =rnjn ~ } = {i E t I a.. =I} • (3.55) 

Since tIt ~ 1, "'~i E f, the total number of irreducible representations in ~i  0 ~;, ENi;,Iu is 

bounded above by E Nij,lcdlc = clt .dj • Thus d" =d, =1 implies that t7 0 ~ " il irreducible,
" . 

i.e. t7 0 ~ =1. Hence t7 is a *automorphism, and N, is a permutation. (Note that, in 

general, if a matrix, N" with non-negative,integer entries and Don· zero rows and columIls 

admits a positive eigenvector with eigenvalue 1 then N, is automatically a bijection.) 

If the components Co and C1 of a fusion rule matrix N" are finite then we find from 

the unique Perron-Frobenius vector i = (d~, Ji) E Co eC1 of A = ~ ICo: Co -+ Cit (i.e., 

Ad": = d,Ji i Nfl = dpcl~) the automorphisms in Co and C1 by (3.55). A similar result holds 

for CIc 7= Co e ... e Cle. Since, for t7 E Out(t), p 0 t7 is irreducible, the vertices associated 

with automorphism in the graph to which Np is the incidence matrix have exactly one 

incoming and one outgoing edge, (i.e.) one undirected edge for p =p), joining rr to sites p' 

for ~hich dpl =J.p. For general undirected gra.phs we only have the "minimum principle II, 

i.e., that the edge degree of sites on which the Perron·Frobenius vector admits its absolute 

minimum if strictly less than a,1 and is equal to dponly if all vertices have edge degree tIp 

and the Perron Frobeniul vector is constant. Hence we expect tha.t, for tIp> 2, non-trivial 

constraints on the set of admissible fusion rule matrices can be found by con~idering  the 

position of automorphisms in the fusion rule algebr~.  

Clearly the restriction of the grading map, f -+ Z. : t ..... i, to Out(t) is a group 

homomorphism, and its kernel is given by the subgroup Out (to) C Out(t), where f. C t 

is the fusion rule subalgebra with trivial grading. Hence the grading gives rise to the 

embedding 

D(t) := Out(t)/Out (to) ..... Z•. (3.56) 
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It follow. from (3.56) that there are integers r and a! with 4 =r.· 4', such that D(t) ~Zr  

and a' is the smallest integer such that t., n Out(t) :f:. o. 

These aspects of grading fit into a general context: Let us consider a general fusion 

rule algebra t. Clearly, t contains a natural fusion rule subalgebra on which all grading. 

are trivial) namely the subalgebra teO! where 

Co =L~ supp (~.o  ~i)]  . 
Our notations are those introduced in Section 3.2. It is not hard to see that the Perron­

Frobenius algebra overtcOl Le., 

Gra.d(t):= t /tco 

is, in fact, an abelian group, or, in other words, that N floa,., = 5.,,1) for arbitrary a and 

'Y in Gr~d(iJ?). This observation shows that an arbitrary grad~ng  on t is described by 

a character of the group Grad(t). More precisely, if 

9:t ..... G, 

with G an abelian group, is a grading of t, Le., 

9(i) 9(j) = e(k) if Nij,lc :F 0, 

and 

grad: t ..... Grad(t) 

is the canonical proje~tion  from t onto the quotient space Grad(t) then there exist 

a homomorphism of abelian groups, 

(; : Grad(t) ..... G) 

such tha.t the diagram 

t Fed 
--+ Grad(t) 

9'\, .I~  

G 

commutes. 
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We therefore call the map "grad· and its image, Gra.d(t), the universal grading 

of ~. One sees without difficulty that 

grad(1/J) = grad(,pt 1
, for all ,p e ~, 

where ,p 1-+ ;j, is the conjugation on t. 

In general, the restriction of the map grad: I -+ Grad(~)  to the group of invertible 

elements, Out(t), contained in t is a group homomorphism. Its kernel consists at all 

invertible elements of ~o,  Le., 

ker(grad t Out(~» = Out (to) . 

From this remark we conclude that 

D(I) := grad (Out(t» ~  Out(l) lOut (to) , 

and D(t) is a subgroup of Grad(t). 

If Grad (t) ~  Z. the map "grad" gives rise to the embedding (3.56). 

For any ue t., n Out(~), we have t~e  decomposition 

r-l 

Out(t) = EBO'; 0 Out(~o), 

;=0 

and a bijection 

Ci -+ Ci +o' : ; 1-+ 0' 0 ;. 

These facts imply that the multiplication law on the set Co U C1 ••• U Co'-I, together with 

a specific automorphism 0' E C~" alrea.dy determine the entire fusion rule algebra. In 

fact, it is true that one can construct a/fusion rule algebra .~'  which .is Z.,·graded, with 

D(t') = 1, and {rom which ~ can be reconstructed. The two operations on the class of 

fusion rule algebras that are necessary for this description are defined next. 

Definition 3.3.1 Let ~ ~ NC be a fusion .rule algebra with multiplication 0 and conjuga­

tion ~-.  Further, let t be Za·graded, with ~ = e ~i'  

ieZ. 
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i) For any 11 e N, we define the fwion ru.le algebra Z•• t til Jollows: The underlying ",. 

lattice is N(Z.xC) and is spanned by the minimcll1eetor. (i, '.), i e Z., i e C. The 

conjugat~on if den~ted  6'11 , .... ,C and if given 6'11 

(-i - 1,~), fo.r ~'e t,; i'f O. 
, (k,f)c:=

I { 
(-i,~), . {or ~E to,': 

~he multiplication is denoted by x and, Jor ki e ZOJ' 'i et"J' fli = 0, ..., 11-1, 

j = 1, ... ,m, u given by 

(k1 , '1) X(k2 , '2) x ... x (k,., 'm) := (r + k1 +... + 1;., '1 0 ... 0 f",) , 

where r e N u given. by the condition 

ar ~ fll + ... +n". < a(r +1). , 

! 
ii) For any 6 ·e Out (to), we define the fusion ru.le algebra 'TI( ~) u follows: 

The la.ttice oj 'TI( t) is the same· u Jor t. The conjugation, , -+ ~',  is ezpressed in 

terms oj the conjugation of I by 

, .= 
,e ti ,for i ~ 0,_'{ ~  o~,  

" .~,  for, ; e to' 

The multiplication is denoted by 0' and, Jor;j e ~ and r ~ Nou in parl i), is defined 

by 

;10' ... 0';". := ~  0;1 0 ••• 0 ;;'. 

It is straightforward to show that the J;Ilultiplications and conjUgations introduced above 

define fusion rule algebras, .in the sense of Section ~.1.  Since }he trivially graded auto-. 

morphisms are not affected by these constructions, we naturally have that 
'I 

Out (Co) ~ Out «'TI(~))o)  ~  Out «Z•• ~)o)  . 

However, the situation for Out(t) is different: Out(Zb *~)  contains the subgroup ~  Z. 
generated by (1,1), so that . .1 

Out(Z•• ~)/Z.  ~Out(~),  and D (Z. * t~ ~ Z06 . 
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'1, We can find a grading preserving isomorphism of Out (TI(~)} onto Out(~)  if 6 =0·. for 
~ 

lome Q E Out(~.).  For other choices of 6 this is in general not possible. 

Furthermore. it follow. immediately from Definition 3.3.1 that. for any a E Out(~)t  

the map 

Zr. • Ta(t).-+ Ta • (1.,. • ~) : (k.;) ..... (k. (i. 0 ;) (3.57) 

provides a fusion rule algebra isomorphism. Also. we have that 

Til (TI, ( ~» ~  T'l 062 ( t ) t (3.58) 

by natural identification. and an isomorphism 

Z62 • (Z~ • t) -+ Z~.&a  • t : (k2i (klt ~»  -+ (1:1 +hi .1:2,;) , (3.59) 

where k1 is chosen in {OJ ... ,hi -I}. We are now in a position to state the presentation 

of all Z.-graded fusion rule algebras in terms of algebras. t, with D(I) = 1. 

, , .-1 
Proposition 3.3.2 Suppose t u Z.-grcded o.1gebro, with label set C = U Ci, multiplica­

;=0
 
tion 0 and conjugation -, such tha~ 
 

D(t) =z,.. 

where r > 1 i8 an integer dividing 4, and 0,":= air. 

Then there eNt" a Z.II-gr4ded fusion role a.lgebra ~", with corresponding con.stit­
" ."_1 )

uents C" = .U C"j, 0". -II , an automorphi8m 6e Out (I:) and a }usion role algebro ( ,=0	 ., 
isomorp1l.i8m fJ,	 I 

I 
!!p : T, (z,. * til) ..... ~,	 (3.60) 

such that 

i) P map' (0, +1) bijeetively to t;, for; = 0, ... ,0.' - 1, and,8(I, 1) e Out(t) n ttl. 
In particular, (3 is, grading preserving. 

ii) D(t") = I, i.e., we have 

Out(t") =Out (~=)  = Out (~.)  . 

65 

By part i) of Proposition 3.3.2 the lattice isomorphism obeys 

P"(; 0" \) =(3"(~) 0 13"(\), (3.61) 

for; E Ci, \),E Cit i, i ~  0, provided the condition 

i+j<a," (3.62) 

holds. This shows that the restriction pIt : +: -+ t. is a fusion rule algebra isomorphism. 

Also, for 4" > 2, the restriction of the fusion rule matrix of some element p E C1 to C. 

rema.ins unchanged. More precisely, for 11: := ~  t ~o -+ '11 we have that 

(P"}A~I3"=  A:" , 

with pIt =(P"t1(p) E Cf. The proof of Proposition 3.3.2 can be found in [42]. 

For certain special cases there exist a natural procedure to relate Zo·graded fusion 

rule algebras among themselves, with the help of automorphismS. It involves the crossed 

product, +1 x +2 of two fusion rule algebras, t i , i = 1,2, with lattice '1 ~ t 2= N(C1 XC2 ), 

multiplicati~n(~l  ~  4J2) 0 (,pI ~ ,p2) ::: (;1 0 '1/11) ® (~2  0 t/J2), and conjugation (~1  ® 4J2) = 
~ ~  ¢2. By ~.we denote the fusion rule algebra 'with e=~ and ;i 0~j  =~i+j  , 

~i = ~':"i'  

Lemm,. 3.3.3 

i)	 Suppose t' is 4 Z.,.graded fusion rule algebra. and r E N is prime to a', then I 

~,. x t' is ZII-graded, with a =0.' . rand tiG,+it' = {~i} ® ti~  

.I 
: . ~-1 

ii) Assume that t is /I Z.-graded algebra, and a =r· a'.T,hen +'::: ~ +,..; C + , ,=0 
a: Z.,-graded fusion rule suba.lgebra. If, in addition, there ensts 4n automorphism 

o E 1.,flOut(t), with a"::: f, 

4nd 0' is prime to r, then 

z,. x t' - +: ;n @ t/J -+ aft 0 ,p 

is /I fusion rule algebra isomorphism. 
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Note that if t = tIP) is generated by an element p E ClI then also t' =t(o'op) i. gen­

erated by at 0 p E C', where t is determined by the equation t· a' =-1 mod r. We will 

be interested mainly in the case where r = 2 and a.' is odd for which Lemma 3.3.3 shows 

that it is sufficient to consider even graded fusion rule algebras. This is because any odd 

graded t' will appear, as Z2 X t', in the list of evenly graded fusion rule algebras which, 

in addition, contain an automorphism a ~ Out(to), with 0.2 =1. 

Returning to Proposition 3.3.2, we note that if t =t(pI is generated ~Y  a single 

element p E Ct, then the algebra ttl in the presentation (3.60) is genera.ted by the corre­

sponding pIt = (,B")-l(p) E C"t, i.e., til =t[p'1, if it ~8  nontrivially graded. In the follow­

ing, we sha.ll characterize a class of fusion rule algebras tIP] with generating element p, 

with the property that there is a presentation (3.60) where pIt is selfconjugate. 

Lemma 3.3.4 Suppose that t = tIP] is a Za-graded fusion rule algebra, with a ~ 2 and 

genero.tor p: Then there is a. presentation 

~"  " - )t ~ 'T6 (z,. • t ), 6 e Out (to , r EN, 

where the c01Tesponding generator p" =(,8"t1(p) e C"1 u selfconjugate in t", if o.nd 

only if there is an element a E t, such that 

aop =p. (3.63) 

If t is ungraded then there eNts Borne a E t, 'With (9.69), if and only i/we ho.'lJe a pre­

sentation 
(J"

Z2 x t ~ T6(t"), 

where the respective element p" = (,8"t1 (4)-1 0 p) genera.tes t" and u selfconjugo.te. 

In any case a is an autom,!rphism and til is either Z'rgraded or ungra.ded. Hence 

r = i or r = (I, and a e C2 or a e Co' 

If we introduce the restrictions 

Ai =~  rei: t i -+ t i +1 , (3.64) 

... 

'. . 
which ~we regard as ICil x ICi+1l-matricea with non-negative integer matrix elements, then .t: 

I • 

conditi~n (3.63) can be reformulated as follows: There exists a;0 e t 2, I!;QII =I, such 

that f 

A~  ;. =Ao 1 = ;,. (3.65) 

It rollors then that the restrictions 71 =~ rei: ti -t ti+2 are bijection., i.e., _ 

I
: T! 7i =Ti"-2 Ti'-2 =Iti , (3.66) 
! 

and 

A~+27i+1  =Ti A: = Ai+! • (3.67) 

From the fact that N" is normal we obtain the following constraints on the matrices Ai: 

A~ ~ ~ ~_~ A~_l =: Mi • (3.68) 

We immediately see that. any set of matrices obeying (3.67), with arbitrary bijections Ti, 

solve the constraint (3.~8).  Moreover, it follows fro~ (3.68) that 

!lAil! == IINpll., ; (3.69) 

independently of i. -The purpose of the next two combinatorial result. i. to infer equa­

tion (3~G5)  from the knowledge of Aoor M1 =AoA~ and from condition (3.68), for i =1 
i 

(i.e., M1 =A1A1). 

It is standard to define an undirected graph, 0"", from a symmetric nonnegative 

integer matrix A E Mat,,(N) by joining two vertices, labelled i and ;, by exactly (A)ij 

edges and attaching (A);; loops to every vertex j. Conversely, to any undirected graph a, 
there corresponds a unique symmetric matrix A, the incidence ma.trix, such tbat g = OA, 

and, moreover, for an arbitrary n by In-matrix A, A:= (~  ci') defiDesthe respective 

bicolored, undirected graph. For convenience, we will oft~n  use this (equivalent) sn.ph 

theoretical language throughout the following statements and"later on, in Section 3.4. 

The nrst result only assumes local con$traints on All, yielding a finite list of possi­

bilities all of which imply (3.65). 
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Lemma 3.3.5 Let A be any n by m nonnegative integer mat,u, and let the n by n .	 ¢ cP. 
symmetric, nonnegative integer matri: M be defined by	 ~:'.-

cJ~::: 

M = A' A.	 (1,2,3,5,6,7,10,11,14,15,19,23) (3,4,7,8,13,16) ;- ­
~\  

Suppose that ~,  " a unit vector in N" such that the viCinity of the verte%, v, corresponding 

to ~,  in aM, i.e., the number of iu neighbors, the number of edge, joining v with each of 

ib neighbor" and the number oJ loop, at v, is given by on oJ the Jollowing subgraphs, 

A¥~I"AI
, ~l '-O~IE ~O .. ¢l2;} epa 
" MIA
A~c'b/A·I  
epp E I 

Figure 9.1 

then there eNu a unit vector ~.  E N'" such that 

A' ~. =~,. 

Our second result characterizes a class of matrices. A, by global constraints with. the 

property that, for two matrices A and Ain this class, 

M:= A' A= A' A 

implies that Aand A are equivalent, i.e., the exists a bijection T, with A =TA. 

In the application to fusion rule algebras, we will encounter the case where both 

matrices, A= Al and A = A~  defined in (3.64), belong to this class, so that (3.68) implies 

the existence of T: t. -+ t 2 • with TA~  = Al~ hence A. = A~T. Thus ~.  := Tl is II. solu­

, tiOD of (3.65), and we can choose T =To. The situation is summarized in the following 

commutative diagram: 
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o: 4p ~:'.. 
, ,.",

• .. .... , 

(3,7) ~,._-
,

Lemma 3.3.6 
, ,,, 

i)	 Suppo,e a bicolorable, connected graph Q with incidence matm A has no cycles 

length two (multiple edge), four or siz. Then a component A of g2, with incidel1 

matm A'A, htU the Jollowing properties: 

a)	 E%cept Jor loops, A contaim only simple edge,. 

b)	 IJ two complete subgraphs of A have a commOn edge, they are contained 

a common, complete subgraph of A. 

c)	 If if(v) c A isthesubgraph of A consisting oJ all nezt neighbors v E A, v 

self e%cluded, then the number, Lv, of loops at v ezceeds the number, Ev, 

connected componenb of if(v). We put Pv = L" - Ev • 

ii)	 If A i, II graph with properties 0.) and b) then A can be uniquely written as a unic 

A = U Qi oJ maximal, .complete subgraphs Qi of A such that -every edge orA 

contained in ezactly one Qi. Moreover, any two Qi'S c~n intersect in at most 0 

verte%, and among three distinct Qi', at least two are Jujoint. 

iii) For Cl graph A satisfying a)-c) we define a bicolored graphQ,,( as follows: The vertic 

of one coloration are identified with the vertices oJ A. The vertices, Pi, with eli 

degree greater than one and coloration opposite to those in A are idem.ifi~d. w: 

the Qi'S and joined by simple edges, (Pi, v), to .the vertices v E Q. C A.Additio7 

vertices, pi, oJ opposite coloration and edge degree one ~re  joined to each v E A 
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~mple edge" (pi,l1), 1=1, .•. , P". It follow, that gA hal no cycle' of lengths two, 

four or s= and that A is a component of g~.  

iv)	 gA is unique, i.e., if g is a graph without cycles of lengths two, four or si: end A 

is a component ofg, then gA.~  g. 

For proof of these facts we refer to [42). From iv) we infer the following Corollary: 

Corollary 3.3.7 If for two bicolored graphs, g and g', without cveles shorter than eight, 

the components of one coloration of g2 a.nd g,2 are isomorphic then g and (i' are isomor­

phic. 

Although the assumptions in Lemma 3.3.6 are global and very strong, it turns out to be 

the fitting criteria in the classification problem of Section 3.4., where we impose bounds on 

the norm of N" thus by (2.23) also on the norm of A,. In addition we have a prescription 

.of how to construct solutions from M which allows for any easy characterization of a few 

exponential cases. 
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3.4	 Fusionrules with a Generator of Dimension not" f." 

Greater than Two 

The purpo,e of this section is to characterize the formal object (half-) algebras of the 

braided tensor categories to be elalsified in chapter 8. Not alsuming env fv.rther structure, 

this meens a clalsification of fv.sion rule algebf'CS, in the sense introduced in Chapter 9. 

In feet we. will find fu.sion rules tha.t 40 not bel,?ng to env braided cetegorv. We restrict 

the clalsification to fu.sionrules which are generated by e iingle, irreducible object, whose 

Perron Frobenius dimension does not ezceed two. Deteiled proofs will be given in a seperate 

paper,U!]· 

The' first basic ingredient in the classification of fusion rule algebras is the classi­

fication ofbicolorable graphs with norm not greater than two. ,The set of vertices of a 

bicolorable graph r can be divided into two subsets, W and B~,  such that no two vertices 

in Wand no two vertices in B are joined by an edge. The giaph is characterized by a 

matrix, A : NW ~ NB , whose entries ).'j e N are the number of edges joining the vertex 

i e Wwith the vertex j e B. The incidence matrix is then 

( 
. 0 Nr= 

A 

AI) 
0 

(3.70) 

and the norm of the' graph is defined by 

urll = UNrll· (3.71) 

The proof of the following theorem can be found in, e.g., [45} and references therein. The 

graphs referred to here are depicted in Appendix A together with their norms and Perron 
. ~ 

Frobenius eigenvectors. 

Theorem 3.4.1 

i) ~he  finite, connected, bicolorable graphs with norm less tJ1a.n two ere the following : 
I 
:	 A, (I ~ 1), Dr (l ~  4), Er(l =6, 7~8) . (3.72) 
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ii) The finite, connected, 6icoloNble grcphs vrith nonn equal to two 4re the follo1Uing : 

I 

I 
I 

I 

I 

po Pi =Pi-l +Pi+1, then the structure constant" of Pi 0 Pi =E Nii,kPle 4re given II 
. Ie I 

A(l) (I > 2) D(.1) (I> 4) .E(1)(I- 6 7 8) 
, _" • (3.73)_"	 -, 1 

Suppose that p i. a selfconjugatc, irreducible object with Don-trivial grading in a 

~-graded  fusion rule algebra.. Then by equation (3.12) the fusion rule matrix, N,. has 

to be symmetric and if we use that the grading prescribes an off diagonal block form then 

we obtain the presentation. (3.70) for N,. 80 that we can associate to it a bicolored graph 

r,. If we assume. further. tha.t the fusion rule algebra is generated by p then this graph 

is connected. Since the Perron Frobenius dimension ofp is equal to the norm of rp we 

can use Theorem 3.4.1 to establish an apriori list of possible fusion rule matrices labeled 

by the respective Coxeter graphs if we require dp not to be greater than two. The next 

lemma is· concerned with the question which of these matrices are actually fusion rule 

matrices of a fusion rule algebra. 

Lemma 3.4.2Supp08e .~  = ~[p) i8 A. 7q-graded fusion. Nle ~gebra,  with ·,elfconjugate 

generator, p, of dimen8ion 

dp < 2. 

Then the fusion rule m4triz, Np , ofp is the incidence matriz of one of the bicolored gr4ph8 

An 1n ~. 2 , D2ft , n ~ 2. Ei or E•. (3.74) 

FurthennoTe, there i8 e:actlll one fusion ru.le, algebra. for e4ch of the graph8 in (9. 7~) such 

thQt N, is it.! incidence matriz. We will th'1L8 name thue fusion rule algebras by their 

respective graph8. They have the following propertie8: 

i)	 The Aft-algebra. hcu trivial conjugation, C = I, and Out (Aft) ={I, Q} ~ ~, 'Where 

a is even-graded, for odd 71, end odd-graded, for even n. 

If 'We denote the 6asisvectors by Pi' j = 0•.. : 1 n - I, with Po := I, P1 := P 4nd 
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I 

I1 if Ii - j IS~ ~ ~n(i + j. 2(n - 1) - (i + j» 
= and Ie =s +1 mod 2	 

I 

N ii•1e	 (3.7

1O. else.
I 
i 
For the st4tistical dimension we obtain 

tip =2cos (71: 1) = (2)'1 

with q = eim. 

ii) The D2n-41gebra has trivi41 conjugation, for odd 71, and, for even n, the representj 

tio7U corresponding to the vertice8 oj edge degree one at th~ short legs in the D2i 
graph are conjug4te to each other; while all other represe~t4tions are selfconjug4t\ 

for 71 > 2, the group. of automorphisms of D2n is trivi4i,: and, for n = 2, 'We ha~ 

th.t Oul (D.) ~  z,. Th• •t.listical dim....ionof the Ben.rAtor of D.. u given bJ 

dp = 2cos ( 4n'l'_ 2) = (2)9' with q = e~ . 

iii) The E6 - and the Es-41gebra. have trivi41 conjugation; Out (E6) = Out ((E6 )o) ~ 2 

4nd Out (EI ) =1. For E6 , the statistic41 dimens~on of the generator is given l 

dp = 2cos ell) = ~(v'3 +1) = (2). with q = etl, and, fo~ E I , 'We have that dp = 
cos (io) =1[v'3(J5 +1) + ..j2J5 --15] =(2)., with q = eft. 

From this result and Lemma 3.3.4 we immediately obtain the lis~  of Z2-graded fusion ru: 

algebras with non-selfconjugate generator and the list of ungraded fusion rule algebras. 

Corollary 3.4.3 

i)	 The ~-graded fusion rule·algebras with non-selfconjug4t'e gener4tor, p::f P, OlSt4 

tistical dimension dp < 2 are given by 

'T'a(A2n+1), n ~ 2, and 'T'a (E6 ) , (3.7f 
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where Q U the non-trivial, tvenly grAded automo~hism of A2n+1, Ee, resp. The 

evenly graded representa.tions thw remain selfconjuga.te, and the conjugation, re­

stricted to the oddly graded represento.tions, c01Tesponds to the reflection oj the 

D~kin-dia.gram.  

ii)	 An ungraded fusion rule algebrtl. 'With generator, p, of statistical dimension dp < 2 iI 

given by the fusion rule subalgdra oj A2,,, Jor some n ~ 2, consisting oJ the evenly 

gra.ded representations, so that, in the notation oj Lemma S.••!,· i), the generator u 
given by p = P2n-2' In particular, we ho.ve that p = p, and the conjugation is trivial 

Jor all oj these fusion rule algebra.s. The fusion rule matN, Np , oj the genertl.tor 

is the incidence matN oj the graph, A". Thus, denoting the fusion rule algebra by 

this graph, we have tha.t 

A"cA2".	 (3.77) 

The statistical dimension of p is given by dp ~ 2cos (2"~1) =(2)". 'With q =e~ . 

(Th.is also inclutIes the trivial fusion rule algebra Al ={I}, whi~h  is obtained from 

A2 ~  '1.2), 

The complete list of Z;r or ungraded fusion rule algebras with genera.tor, p, of sta.tistical 

dimension dp < 2 is thus given by 

·A", D2n , Ee,E., An, '7"Q (A2n+I ) ,'7"Q (Ee) . (3.78) 

A comparison of (3.75) with (6.43) and [7, 8] shows tha.t the fusion rule algebra A" is 

realized a,.s the tensor product decomposition rule of U, (5[2), q =e;!h I and in the for~al  

operator product expansion of S'U(2)n_l·symmetric WZN\V-conformal models. 

. An independent way of realizing the structure ~onstants  of (3.74) as those of a ring 

over Z is given as follows: 

Consider the sequence of Chebychev polynomials, 'P.(X) E Z[X], defined by 

'Po(X) =I, 

'P1{X) = X (3.79) 

and X'P.(X) ='P.- I (X) + 'PA:+1(X), 
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Let c.. be the ring of dimension n over Z, given by 
f. 

;ie" := Z[X]/ i',,(X) . Z[X} .	 (3.80)I 
I 

Then the images of the Chebychev-polynomial in this quotient, 15,,:= ['P,,(X)} E en, 
k = 0,1, ... , n -:- I, for a Z-basis of c.., 8.Dd ~e multiplication in 

I 

~ is given by 

'Pi ·15; =E Nii."15,, I	 (3.81) 

" 
where the Nii.1c are precisely the Iitructure constants (3.75) of ~  A,,-fusion rule algebra.. 

In ordert~provide means by which also the D- 8.Dd E-a.lgebras can be computed, we 

discuss fusion rule algebra homomorphisms between different algebras, as well as fusion 

rule algebra automorphisms. 

Lemma 3.4.4 I 
Ii' 

~I ,	 , 

i)	 For the Z2- or ungraded fusion rule algehru 'With a gm~rator, p, oj statistical di­

mension dp < 2, all ftuion rule algebra automorphisfn.$ are in1)olutive,· and there is 

at most one non-trivial automorph.ism for every fusion rule algebra. IJ the }u8ion. 

rule algebra hu a non-trivial conjugation then the automorphism coincides 'With the 

conjugation.' For the fusion rule algebru with trivial conjuga.tion the automorphifms 

are given a.t follows:~:  

I 
I 

a) A2n+1J Ee: The in:volution 'r", 'rEI resp., is identical to the conjugation of 

'7".(1 (A 2n+1), '7"Q (Ee). 

b)	 D..n+3: .The involution 'r~"+1  e:z:changes the represe~~ations that c01Tespond to 
" 

the vertices oj edge degree one at the short legs of th~  graph D""+3' 

•• .1 

ii) The non-trivial fusion rule algebra homomorphis'ITU fro,;(one oj the fusion rule al­
,; 

gebro.s in (3.78) into the algebru A" or An are given by 

. ~ 

A2n+1 

~ :1! A2 

'F..--... 

-~  Oui{An)'-An , <n ~  2, 
J 

'1 
76 : I, 

A2n+1 , 11. ~ 1'1 (3.82) 

(3.83) 
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csnd .. ~	 

i 

A" ~ A2" -". A", n~l.  (3.84) 

Here i is the inclusion (9. 77), and the homomorphism 71" is defined by its graph, 

depicted in (Bl) of the Appendi%. The composition 71" 0 i in (9.89) is the identity 

on:4... Among the fu$ion rule algebras with generator of statistical dimension !,153 

(to be defined below) iI the only one for which there e%ists e homomorphism to an 

A-cslgebNl: 

15;1 ~ A,. (3.85) 

The inclusion is defined by noticing that the subalgebra of O-graded sector, in AI is 

isomorphic to 153 • 

iii)	 For every n ~ 2, there are exactly two fusion rule algebre homomorphism' u~,  ,,~,  

of one of the algebras listed in (9.78) into D2". They are defined on A..n - 3 and on 

1'. (A.,..,), respectively, and given by the graphs in (B!) ,of the Appendiz. They are 

releted to the o.utomorphisnu by the following commutative diagram: 

(TO

!
~?D2n  

A4n 3 
(3.86)y 

- ~g y~i 
2n-2 ~fi ~D2n  

A	 """""'crO 
4n-3 n 

The map (9.8~)  cen thtU be extended to D., the image ofD3 in D. being the evenly 

graded .ubalgebra isomorphic to z,. 

iv) The only homomorphi!m. of one of the fu!ion rule algebras in (9.78) into E6 are de­

fined on A3 :::> A 2 anti Au. The only pos!ible one on A 3 map' the generator p of sta­

tutical dimension tI, = (2),1 = ..;2, 91 = eit, to the representation corresponding to 
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the endpoint of the,hortest leg in the E.-diagram, with dimension dp = (4)9'1 - (2)9: 

92 = cit, and the non-trivial automorphism of A3 to the non-trivial automorphis1 

in· E~, thtU providing an inclusion of A3 into E. as cs fusion rule subalgebra. n 
two po"ible homomorphistm o/Au to E. differ from each other by multiplicatio 

of the automorphism on E I , described in part i), and one, u&, is given by the grap 

depicted in (B9) of the Appendiz. The following diagram commute,: 

a- E6 

e/'E6<~AII 

(3.8i
B'2 ~ A2~A3~tyE (rEG tnl 

EG<~AII 

Analogous ,tatements hold for the homomorphisms 

A2 ~  A3 ~ 1'. (E.) 
....- 1'. (Au) . (3.8l 

v)	 On each of the fusion rule algebras A2~ A., D1e and Aa there crists exactly 01 

homomorphism into E., end there is none for all other fusion rule algebras list, 

in (9.78). The homomorphism of A2 to E. maps the representation of statistic 

dimension dp = (2)"1 = !CI- +VS), q1 = tit-, to the representation corresponding 

the endpoint of the leg of length two in the E.-diagram, with statistical dimensi4 

d = (7)91 - (5)92 =HI +VS), q2 = e~, and it th.erefore provides an inclusion, i, 

A2 into E. as a fusion rule subalgebra. The homomorphism of A. to E. is th 

given by the composition i 0 0'2, Un being defined in (3.8./) and (Bl). In (B4) t 

homomorphism, (TDB, of D1• to E. is given by itsgraph.:The homomorphism of), 

to E. is the composition uDB 
0 uf, where u~ is defined in (3.86) and (B!). 

With the help of the homomorphisms described in Lemma 3.4.4 1 it is possible to rederi 

the explicit fusion rules I e.g.1 in the form of the structure constants (4.6)1 of the 

and E-fusion rule algebras trom those of the A...algebraj see (~. 75). Except for the triv 

onesl A2 - 1 ~,+ and + J!-. +1 Lemma 3.4.4 describes the entire set of homomorphis 
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i) The Aoo-algebra hu trivial conjugation, C =1, end only trivial eutomorphimu, ..among the fusion rule a.lgebras in {3.78). The situation described in Lemma 3.4.4v) c;an .. 

Out (Aoo ) =1. We enumerate its bASis by Pi, i =0,1, ..., such thet Po := 1, Pl";= Pbe summarized in the following commuta.tive diagram : 

end po Pi =_Pi-1 +Pi+1' Moreover, dpl =i +1. The .drUcture constants, Hii•1u oj 

Pi 0 Pi.= E Hii."P" ere given by -the Clebsch-Gorden rule, i.e. 
. " 

>14 
iJ Ii - i/ ~ 1: ~ i +i and 1: == i +i mod 2 

(3.91)A29~~2A29 N;;~ =U. 
else.

erD !~ ere 
The Doo-algebra ha.s trivial conjugation, C =I, end Out (Dao ) =stab(p) ={I, a} ~  (3.89)X~ : erD~er~  

~.  1J we set ~o  ;= 1 +a, wt ;= P and define ba.sis vectors Wi~  i ~ 2, by WI 0 Wi :::;;
De~De 

~ \(TOE _ ~i-l +wi+l then a"'l =2, Jor all i, and 

erDE~~ 1/pA2~2 

Wj 0 W" =wli-kl +Wi+" • -(3.92)
Ee ( -) A

io (T2 4 

ii) The eutomorphismgroup ojD~~2-algebraha.s order./,ie., Out (D~2)  ={l,a,:I:,y}, 

with stab(p) = {I, a} ~  Za, for p > 2, end a 0 :I: = 1/. Th~ two possible fusion rule 

tdgebras a.ssocietea to D~2  ere distinguishedb1/ their automorphisms, jor which we 
Next we present the complete list of fusion rule algebras with generators of statistical 

have either Out (D~~2)  ~  ~  X Za, with :1:
2 =1/2 =1 and C =1; or Out (D~~2)  ~  

dimension equal to two. Our presentation is organized in a way similar to the one above, 
Z.. , so that:l:1/ = 1, the conjugation is t!'-e inversion on Out (D~2)  end all nonauto­

for d, < 2, except that the detailed discussion of homomorphisms is replaced by a study 
morphic representations ere selfconjugate. Defining the bASis vectors, Wi, i =1, ... 

of the realizations of these fusion rule algebras by discrete-subgroups of SU(2). 
. .. ,p..., 1, AS in the case oj Doo' and with Wo ;= 1 +a, wp = :I: +1/, we have d"'J = 2 

and 
Lemma 3.4.5 Suppose ~ = ~(P) is a Z2-graded fusion nile algebra, with selfconjugate 

~i  0 Wk =wli-'" +Wmin(2p-(;+")';H) • (3.93)generator, p, of dimension 

d, =2. The eutomorphisms:t and 1/ are eve~l1/ graded for even p,. and odd-greded for odd p. 

Thus, for odd p, we have that Out ('T'Q(~»  ~  Z.. , for O~t(~)  ~  Z2X Z21 wherecu
Then the fusion rule matriz, N" of p is the incidence matriz of one of the following 

Out ('T'Q(~»  ~  Out(~),  for even p.
bicolored graph" 

D(l) 2 E(l) E(l) (1)A00' D00' ,+2' P ~ , I' 7, E. . (3.90) iii) For the E~I)-algebra  we have that Out (E~l»)  = {I, a l a-11::! Z3, and there are three 

representations of dimension two, namely P, a 0 P and a-lop, so that the conjuga­There exists one fusion rule algebra for each oj the graphs in (3.90), such that N, is its 

tion, given b1/ setting 'a =a-I and p= P, exchanges the two legs in the E~I) diagramincidence matm, ezcept for D~~2'  where we have ezactly two inequivalent such algebras 

opposit.e to 1. For the one remaining representetion, ,p, of dimension three we havefor each p ~ 2. 

They have the Jollowing properties: ,p 0 ,p =1+a +a-I +2,p . (3.94) 
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Furthermore,a cyclic permut4tion oj the ut {p, a 0 p, a-lop} provide8 the isomor­

"i 

phinn 1'. (E11») .~ E11
). For theE~I)-41ge6ro, we 6ee th4t Out (E~I»)  ={l,a} ~  z" .. ~ 

where a is evenly groded 4nd N. is the reflection oj the di4grom. M~reover,  the 

conjug4tion on E~I) is trivi41, 4nd 411 repre6ent4tiofl.l h4ve integer dimen.6ion. 

Fin411y, E~I) hu trivi41 conjug4tion, Out (E~I»)  = 1, 4nd allrepre6ent4tiofl.l h4ve 

integer· dimefl.lion. 

The fusion rule algebras with non-selfconjugate generator, u well as the ungraded fusion 

rule algebru, are obtained in a similar way u in Corollary 3.4.3. 

Corollary 3.4.6 

i)	 The Zz-gr4ded fusion role 4lgebru with non-selJconjug4te generotor, p ::f: p, oj di­

mefl.lion two 4re given by 

E11
) 1'ca (E~I») and 1'c (D~~~+2)' p' ~ 2. (3.95) 

In the C4Se oj E11
), the ge17.eT4tor p is 1'epl4ced by the represent4tion a 0 p (or by 

a-lop) which U 4 gener4tor oj E11) with dimension two u well. For 1'ca (E~l»), 

the conjugtdion U trivi41 on the evenly groded represent4tions 4nd reflect6 the oddly 

9TQdedonu. In (9.95), both possibilities Jor D~2 are me4nt to be included, and we 

h4vetho.t 1'c·(D~~~+2)  ~  1'v (D~~~+z).' 

ii)	 The u17.gro.ded.fu.6ion role algebras with generator! oj dimension two are given by the 

evenly graded subalgebras oj (D~~~+3)'  p' ~ I, so that the generator, p', ~seIJcon­

jugate and given by p' = p 0 2: = P 0 y. The fusion role mo.tri: N; is the incidence 

mo.tri: oj the groph1Jp'+2' see (A!!). Thus, denoting the fusion role algebra by'this 

graph, we ho.ve that 
o 

ow C D(l) •'up'+2 Zp'+3 , (3.96) 

15p'+2 hu trivial conjugation, and Out (11J1'+2) = stab(p') = {I, a} ~  Zz. 
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The complete Hst of z,- or ungraded fusion rule algebras with a generator of dimension 

two is given by 

A., D., D~2  (Out ~  Z. or Z, X Zz) , p ~ 2, 1'c (D~~+2) 

ow -' > . E(I) E(I) (E(I») (1)'up'+2, I' _ 1, I' 7, 1'0 7 ,E.. 
(3.97) 

In ordet to study homomorphisms between those algebras in (3.97) which have a selfconju· 

gate geberator, it is usefulto find their fusion rule algebra monomorphisms, i.e., inclusions 

of one ~f  ,the algebras i~  (3.97) into another one, and fusion rule algebra endomorphisIIUI 

which map the generator to an irreducible object. The latter requirement will also be 

present in our description of general homomorphisms and, further, the object to whicl:i 

the ge~erator  is mapped has to have dimension two. One consequence of the followin~  

lemmais that object s of dimension two which generate the entire fusion rule algebra Cat 

be mapped to the canonical generator by a fusion· rule algebra. automorphism. 

Lemma 3.4.7 

i}	 The fusion rule algebro A. contains no fusion rule subalgebr4S fr.om (3.97) othel 

than AOD, and the only fusion rule algebra endomorphism is the identity. 

ii)	 The endomorphis~  oj the D.-algebra are given by the inclusions l,e : DOD ~ DOD 
i 

Ie' = 1,2·, ..., determined by !'c(a) := a and lie (Wj) := WIt,j, in the basis oj (3.9!) i1 
I 

Lemmo. 3.•.5 i). All subalgebras oj DOD from (3.97) are isomorphic to DOc and ar 

given by [WIe) = im(IIe), Ie = 1,2, .... We- have that lie 0 It 
o 

= !c.t.
 
I
 

iii} 1:here are no fusion role subalgebrtU oj E~l)  from (3.97), except E~l) itself, an 
I	 ' 

th.e	 o17.ly non-trivial endomQrphism "y"", Jor which the geneT4tor is mapped to a 
; 

imducible object is identical with the conjugation.
I, 

iv/the only fusion role o.lgebru from (3.97) that can be included into E~l)  in a nOT 
i	 . 

trivial way are 753 and E~l)  itself, The subo.lgebro. 753 is generated by the oni 
I 

dvenly graded· object oj dimension two in E~I)  and contains, besides the unit a71 

~e generator, only the non-trivial automorphism oj E~I)L  The fusion role 41geb, 

generated by the second oddly graded object oj dimension ~wo  is isomorphic to E~l 

I	 82!· 
:	 ~ i 

I 

1 
; 

! 



The inclusion of E~l)  into itself is given 6y the fusion rule algebra automorphism, 

..,0, which ezchanges the two oddly graded object , of statistical dimension f and is 

the identity on all other object,. The only further E~l)-endomorphism,  ufl, can be 

described by the unique homomorphism E~l)  - D~l), which map' the generator to 

the generator, (see below); ufl is then obtained by composing thi, homomorphism 

with ·the inclusion. Thus we have the following commutative diagram: 

cr OI 
yO ~ E(~) ~ E(i> ~yt9 (3.98) 

_I id~j' 

03 ) 03 

The endomorphism cgl is an idempotent on whose image 0'0 actl trivially. 

11)	 The only fusion rule algebra from (9.97) which is contained in E1
1

) i, E1
1

) itself. The 

only non-trivial endomorphism is the involutive automorphism, ..,J, which. ezchanges 

the two object s with dimension f and the two object s with dimension 9 and is the 

identity on all other object s. 

vi)	 The fusion rule subalgebras from (9.97) oj D~~2  are given by 

D(l) 
[	 ]

IV (3.99)WII = p'+2 

if p = p'(q,2p),	 (3.100) 

and 

[WII] ~ 151+2	 (3.101) 

if 2p (2t +1)(q,2p), (3.102) 

where q =1, ... I P - 1. 

Here the structure oj the group oj automorphisms in D~~~2  Jrom (9.99) (Out (D~~~2)  

either'=! Z2 x Z2 or Z4) is the same as the one assumed Jor D~~2' The cases (9.100) 

'" . 
and (9.1Of) are distinguished according to whether (,~:p)  is even or odd. The nbol- .. .~. 

gebras o{1Jw~ are given by 

[W,] e! 15"+2,	 (3.103) . 

where (2t'+ 1)(q,2t+ 1) = 2t+l	 (3.104) 

There is ezactly one involutive automorphism, ~ ::F I, on every D~~2  mapping the 

generator to itself and given by O'~(:e) ~ y and O'~  (Wi) =Wi, and there is none for 

every 15&+2' For every two-dimensional object, Wi' in D~~2  And 11H2, there eristl 

precisely one endomorphism for the cases (9.101) and (9.109), and there are two 

endomorphisms for the case (9.99), differing from each other 6y O'~, which map the 

generator WI to Wi' This emaustl the entire set of endomorphisms. 

If a homomorphism. 0'. defined on one of the algebras, t, from:(3.97) does not map the 

genera~or  p to an irreducible object it follows from a companson of .statistical dimensions 

from (3.~5)  that O'(p) is the sum of two automorphisms. Since automorphisms close under 

multiplication, and since O'(p) is a generator of the image of 0', it follows that 

G" := Out(O'(t.»= supp(O'(t», 

i.e., 0' is a homomorphism 0' : t ..... N[G). For all fusion rule algebras with only inte­

ger dimensions, in particular, for those listed in (3.97), one homomorphism with these 

properties is given by 0' : t ..... NlJ ~ ..... d~, (i.e., G ={I}), and. furthermore, if O'(t) i. 

a subalgebra of one of those corresponding to (3.97) we have that IGI S 4. In the context 

of group-duality, homomorphisms to fusion rule algebras consisting entirely of automor-
I 

phisms correspond to the abelian subgroups of that compact gr~up,  whose representation 

theory reproduces the fusion rules given 'by t. Here, however, we wish to focus our at- . 

tention on non-abelian subgroups, i.e., we restrict our attention to casel, where O'(p) is 

irreducible and hence has the same dimension as p. For a homomorphism 0' : t 1 ..... t 2 

with this property, between fusion rule algebras corresponding t~  (3.97). 0' (t1 ) is a fusion 
I 

rule subalgebra of t a generated by an endomorphism of dimension two. It is therefore 

isomorphic to some t' in (3.97). Thus the homomorphism 0' is ,described by a surjective 
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., homomorphism tT' : ~1 - ~', with I' = [tT'(p )). and one of the inclusions of fusion rule 
'\ 

subalgebru. i : ~'  ..... ~2. given in Lemma 3.4.7. Hence tT = i 0 tT'. For a complete dis­

cussion of fusion rule algebra homomorphisms it therefore suffices to consider surjective' 

ones, tT : t - [tT(p)). 

In the classification of Lemma 3.4.5 we have always fixed a dist~nct  generator. P. 

of statistical dimension two. So we are. in fact. considering pairs (P. ~). where P is 

the canonical generator, with (p] = I. From Lemma 3.4.5 and Corollary 3.4.3 we see 

that non-isomorphic fusion rule matrices of the ~elfconjugate  generators also lead to non­

isomorphic fusion rule algebras (which is seen. e.g.• by companng the number of objects 

for each dimension). Hence IP') ~ [p] implies that there exists abijection T. T' =T-\ 

with T1 = 1, Tp = P'. and TNpTc = N~." By the remark in Section 3.1 following (3.15). 

the matrices Ni' =TNjTc define a fusion rule algebra. with conjugation C' =TCT' and 

lattice [l]. which is isomorphic to (ph and for which N,' = N~.  Lemma 3.4.5 shows. 

furthermore. that a given N,' uniquely determines the composition rules. once the group 

of automorphisms is known. (This is, in fact. only needed in the case of D~~2)'  In 

particular. this can, be used in the case [p1 ~ [p] to conclude that T extends to a fusion 

rule algebra isomorphism mappi~g  p to p'. 

In summary, we have that if 

P = p, p' = p' .' dp == d; ~  2 and [p) ~ [P') 

then 

(p, [p» ~ (p'. [p1) (3.105) 

holds. A consequence of (3.105) is that, for two selfconjugate generators p, p', with 

d, = d; ~  2, of the lame fusion rule algebra ~ = [p) = [p1, there exists a fusion rule 

algebra automorphism.." 

..,:t ..... ~, with ..,(p) =p'. (3.106) 

This can also be verified directly from Lemma 3.4.7, where all automorphisms satisfying 

(3.106) are listed. 

85 

For a surjective \1omomorphism tT : ~1  .... I" between two fusion rule algebru, 111 

~2,  tbi's means that there always exists an automorphism on 1 2 mapping tT'CPt) to P2: 

P2' It followl 

that ~l  homomorphisms can be obtained from those which map canonical generator tc 

so that;' :=.., 0 tT is a homomorphism;' : (PI, ~1) .... 

canonifal generator. by composing them with an appropriate automorphism, followed b) 

an inc1~sion.  The classification of homomorphisms, ;', with;' (PI) = P2, is given in th« 
I

next lemma. 
I 

l 

Lem~a 3.4.8 All fusion rule algebra homomorphisms between the algebru with sell 

conjug~te generator of statistical dimension two (4$ listed in Le!7tma 9../.5 and Corol 

lary 9../.6, ii)) which map canonical generators to canonical generators are given by thl 

following ones: ' 

(P2' 1 2), with;' (PI) =

i) For eve;.y algebra ~ among the ones specified above, there ~ a unique homomorphisfl 
. , ~ . 

~. : Aoo - ~,  with the required properties. For every P ~ 2 and t.~ I, there ezis 

unique homomorphisms from Doo to 15t +2 a~d to D~2' 

ii) There ezists e:tactly one homomorphism between the fusion rule algebr4$ 

a) 15t '+2 - 15t +2, iJJt' = t + I +2t.s, for some I ~ 1; 

: b) D~~2 -15t+2' iJJp =m(2t + I), for some m ~1 and Out (D~~2)  ~  Z, X Z2 

) D(l) D(l)"# , d 
C p'+2 - p+2' l,u P = cp, an 

either c is even, and Out (D~~~2)  ~  Z, X ~ • 

or c is odd, and .out (D1~~2)  ~  put (D~~2)  • 

and only in the last case we have to account for a non:-trivial fusion rule algeb7 

automorphism which is the identity on the canonical generator. 

iii) 'The only homomorphisms between the E-algebr4$ are one, uOT, from-E~l)to E~l 

u1Tand one, , from E~l) to E11
). There are no homom~rphism.s  from D-algebn 

to E-algebr4$, ~~d the only homomorphisms from E1l ):to a D-algebra are giVI 

by 4 unique homomorphism u: :E~l) ~  D11
), for each; structure of D11

). Th 
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elso yields the entire set of homomorphisms from E-algebrtI.J to D~l),  by setting 

u~  := uf 0 uOT and uf := ur·uJT, There ezists a homomorphism uf : E~l) ...... D~l), 

and a homomorphism uf : E~l)  ...... D~l), for each of the two structures of the D­

algebras. If we consid~r the case Out (D~l»)  ~  Zz X Zz we obtain, by composing 

uf with the homomorphism from D~l) to 153 given in part ii)b) (p =3, m =t = 1), 

a homomorphism ~  : E~l) ...... 153 , Furthennore, there emt unique homomorphisms 

ul : E~l)  ...... D~l) and uf : E~l)  ...... D~l), for anyone of the possible structures of the 

D-algebras. Eztensions, ul : E~l)  ...... 15. and uf : E~l)  ...... 153, are found from u: and 

uf with Out (D~l»)  ~  Out (D~l»)  ~  Zz X Zz, in the same way as for ug . 

We give a survey of the fusion rule algebra homomorphisms involving the E-algebras in the 

commutative diagram on the next page. Here ')'6 is the automorphism of D11
) exchanging 

the two oddly graded objects of dimension two, (compare to (3.99), (3.100), with q = 3, 

p = p' =4, and (3.105». The unspecified arrow, D~l) _ 153, D~l)  _ 15" and D~l)  _ D~l), 

are the homomorphisms given in Lemma 3.4.8 ii), and D~l)  ...... D~l) is defined by the ad­

joining commutative triangle" In this diagram, we always assume Out (D~~2)  :::!Z2 X Zz 

and omit most arrows from AI» to the D-a:lgebras. 

A large class of fusion rule algebras with generators of dimension two can be obtained 

from the tensor-product decomposition rules for a compact group, G, which has a unitary 

fundamental (in particular faithful) representation p of dimension two. By identifying G 

with p(G) we can assume that 

G ~ U(2). (3.107) 

For dimension two, the requirement that p be irreducible is the same as saying thatG 

is non-abelian. The fusion rule algebras we have classified, so far, in Lemma 3.4;5 and 

Corollary 3.4.6 ii), are all those algebras that have a selfconjugate generator. Therefore, 

'we restrict our attention to those subgroups G of U(2) for which the fundamental repre­

sentation is selfconjugate. They are given by those compact groups, G, with the property 

that 

either G C 0(2), or G C SU(2). (3.108) 

87 

The E-Algebra Homomorphisms: '" • 

88 



Ot,i .. 

•
 

.. 

.., Since G is assumed to be non-abelia.n, it cannot b«dsomorphic: to subgroups con­

tained in, 0(2) n 5U(2). The c:omp&ct non-&belia.n subgroups of 5U(2) &11 contain -1. 

Thus two different subgroups of SU(2) will yield different subgroups in 50:s = 5U(2)j ± l. 
The corresponding 503-subgroups have half the order. a.nd. except for the smallest 

dihedral-group. 'D2• "!Vhich is obtained from {±1, ±iD'i}i=I,2,J C 5U(2). they are &1so non­

&belian. The non-abelia.n compact subgroups of 5U(2) are thus given by the pre-images 

of the polyhedral subgroups of 50:s. They are also called binary polyhedral groups. 

They are: the dihedral-groupsn 'Dn • n= 3, ... ,00, (Doo ::> U(l)) of order 4n (of 

order 2n as 503-subgroups). the tetrahedron-group, T, of order 24 (12 in 503 ). the 

octa.hedron-, cube- or hexahedron-group. O. of order 48 (24 in S03) and the icosahedron­

or dodecahedron-group, .7, of order 120 (60 in 503), The subgroups o,f 0(2). 'R.n, n ~ 3, 

have rotations characterized by 'R.,. n SO(2) ~  ~,  and, for them to be non-a.belian, they 

must contain a reflection. As abstract groups, we nave that 'R.n :l!. ~ ~ Zn, where the 

adjoint action of ~ on Zn is just the inversion on Zn, and 1'R.n1 =2n. (Let us stress again 

that the'Rn are not isomorphic to any of the binary dihedral groups, since for the latter 

we have that %2 == 1 which implies that % is central. This is clearly not true for n,.. Yet, 

the image of 1'" in 503 is isomorphic tor 'R.n). 

For fusion rule algebras, te, obtained from a compa.ct group, a, there is a nat­

ural way to induce a fusion. rule algebra homomorphism, D'", from a group homomor­

phism 'If. If 'If: G - H is a group homo~orphism  of compact groups G. and H, and 

p: H - U(n) ii a.n irreducible, unitary representation of H (seen as a group homomor­

phism with p(H)' n U(n) == U(l)l), we can define a. pull hack", * p := po", : G - U(n), 

which is a unitary representation, irreducible only if p(",(G))' n U(n) = U(l)l. For the 

action CTu of U(n) on the space of representations of H, given by inner conjugation, 

(CTu p)(g) =Up(g)U·, we have that CTU 0".· = ",. 0 au. Thus, 2l"- is a map on equiva­

lence classes of unitary representations, a.nd we have well-defined multiplicities (u. ).,p, 

of an irreducible representation. '1, of a in the representation ",.p, where fJ is an irre­

ducible representation of H. From ",- (Pt @ P2) = ",-PI ~ ",.P2 we easily derive that the 

matrix D'., consisting of these multiplicities, represents a fusion rule algebra homomor­

phism, CT" : fH - te. Clearly, u" i. an inclusion of fusion rule algebras whenever", is 

surjective. H G C H, and ". is the inclusion then it follow. from the existence of in­

duced representations, pH. of H, for unitary, continuous representations p of G. that 

D'. : f H - fa is asurjection. In this case, the matrix elements of u. are identical with 

the branching-rules of H ! a. In the following lemma we relate the subgroups of (3.108) 

to the fusion rule algebras from Lemma 3.4.5 and Corollary 3.4.6 ii), and we explain the 
I	 • 

possibl~  fusion rule algebra homomorphisms in terms of group homomorphism8~ 

Lemma 3.4.9 

i) The tensor-product decomposition rules of the non-abelian compact groups with a 

self-conjugate fundamental representation of dimension two are given in the follow­

ing equations: 

t SU(2) ~  Aoo	 (3.109) 

t1:).. ~ f O(2) ~ Dr:o	 (3.110) 

t1:),. ~ D1~2' for odd p ~ 3 and Out (D~~2)  ~  7lc • 
(3.111) 

for even p ~ 2 and Out (D~2)  ~  7l2X~  

t'l,,. ~  D~~2'  for p ~ 2 and Out (D;~2)  ~  ~  X ~ 

(3.112 
t'l'PH :l! 15,,+2, for p'? 1 

t,1 ~  E~I)  (3.113 

~ 	 E~l)to	 , (3.11 

(lJ ~  E11
) (3.11 

ii)	 The. automorphisms of the fusion rule algebro.s in part i) are obtained from t, 

following group:.automorphisms: 
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a) The finite groups, with D-type fusion rule algebro.s, contain mazimal cyclic 

subgroups, Z2. C 1). and Z. C'R", and reflections, Q E 1). and 5 E 'R" with 

Q2 = -1 and 52 = 1, such that 1). = Z2pUQ'~' and 'R., = Z"U5" Z,. For 

every k :f: I, with (k,2p) = I, (k, q) =I, resp., an outer automorphism 1l'k on 

1)., 'R" resp., is defined by taking the k-th power of every' element in the 

cyclic subgroup and mapping the reflection to itself. The derived fusion rule 

algebra automorphism, (1w", obeys the equation (1w. (WI) =Wk' Hence, every 

automorphism of a D-fu.sion rule algebra. can be written as a product of (1w. 

and an automorphism, (1', with (1' (WI) = WI' 1). and 'R2, admit an outer 

'automorphism, 1], which is the identity on the cyclic subgroup and 1](Q)Q-l, 

rep. '7(S)S-l, is 4 generating element thereof. (1r, is the only non-trivial auto­

morphism on the D-algebras mapping the canonical generator to itself. (It 

ezcha..nges the one-dimensional representations, z and y). 

b)	 An outer automorphism on the tetrahedron group, T/{±1} =T' C 503, is 

given by conjugating'its elements with the i-rotation, mapping the'standard 

tetrahedron to its dual tetrahedron (the azis of rotation runs through the mid­

points of two opposite edges) aniso defines (uniquely, up to inner conjugation) 

the outer automorphism, 1]T on T. We have that "Y:J = (1r,T on E~l).  

c) From abicoloration of the centered cube, we obtain a signature representa­

tion, c: 0 -+ Z2' by assigning c = 1 to every element in O/{±l} = '0 C 503 

that matches the bicoloration, and c = -1 whenever it matches opposite col­

orations. If we identify c E Z2 with an element of the center of SU(2), then 

'7o(g) := c{g)g defines an outer automorphism on 0, where Out(O) = Z2' We 

have that (1'10 = "Yo. 

d)	 The icosahedron-group, I/{±1} = I C 503, admits an outer automorphism 

which is (contrary to the 'T-case) not given by an S03-conjugation. It defines 

an outer automorphism TlI on I C SU(2), where Out(I) = Z20 We have that 

"'1% = "YIo 

iii) The injections of the fusion rule subalgebras, see Lemma 9../.7, are obtained from 
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the following projections onto quotients of the dual groups:_ 

a)	 1)00 has normal subgroups Zk <I U(1) <11)00' so that, for j~  : 1)00 - 1)00/ ZII ~
 

1)00' we have that (1;" =Til : Doo ~ D•. '
 

b)	 The (binary) octahedron group has normal subgroup 1)2 <I 0 (similarly for the
 

S03-subgroups 152<J 'O),with 0/1)2 ~  0/152 ~  'R3 ~ 53, From the projec­


tion of 0 onto 'R3 we obtain the inclusion 153 ~ E~l). 
 

c)	 The normal subgroups of'R, and 1)., with non-abelian quotients are Z,I <J Z,<J
 

'R" for q'lq, and Z, <I Z2. <J 1)., for lj2p. We have the following correspon­


dences between group epimorphisms and fusion rule algebra inclusions:
 

D. - 1)./ Z211 ~ 'R(f)' with kip, yields 

15(~) C	 D~~2 with Out (D~~2)  =Z., for odd p 

or with Out (D~~2)  = Z2 X Z2 , for even p and f odd, 

(1) D(l)
and Dn+2 C .+2,	 with Out (D?:+2) = Out (D~~2}=  Z:a x Z2,
 

for even p and evenf .
 

1). - 1)./ Z2J:+1 ~  1)(...L..)' with (2k +1)[p, yields 
3.+1	 ' 

D(l) (1)
sf.rr+2 C D.T2 , with Out (D~~2)  = Out (D~+2)  = Z. , for odd p , 

and Out (D~~2)  =Out (D~+2)  =Z:a X Z2t for even p. 

'R, - 'R,/ Z. E! 'R(f)' with klq, yields 

D(l) 
2\+2 C DJ+2t with Out (D~+2)  = Out (D~~2)  = Z:a X Z2 

for even q and even : , 

Ds:w- C Df+2' with	 Out (D~+2)  =Z2 X ~ 
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for even q and odd f I 

11SiP c 1)lj!' for odd q and odd f . 

iv) The surjective fusion rule algebrtJ homomorphisms mapping canonico.1 genertJtor to 

canonical genera.tor a1'i.&e from the following group-inclusiou: 

a) The inclusion G C 5U(2) yields, for all fusion rule algeb'NU to of binary poly­

hedral groups, a homomorphism 

A... _ to. 

The i1J.clusiofU "Ron C 0(2) and'Vn C'V... yield the homomorphisms 

(1)
D... - DpH , D... -15'=2' 

for 0.11 possible structures. 

b) The non-abelian subgrO,ups of'Vp are'Vp' with 1"11' and of1?.n, n.", with n'ln. 

'V" C 'V,lIields 

D(l) ·D(l) for 0.111"11' with the respective groups Out.,+2 - ,'+2 

n" C n., yielth 

D(l)
1+2 - D(~)

f+2 for even l' and even p' , 

D(l)
1+2 - Dti! 

2 
for even l' and odd p' , 

])t:j:! - D4! for odd l' and odd p' . 

c)	 The surjective fusion rule algebra homomorphisms involving E-clgebras which 

are collected in the commutative diagram following Lemmo. 9.4.8, are realized by 

inclwiou oISU(2)-subgroups. These· in turn are obtained from the respective 

embedtlings of polyhedra.. 
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From the form of the Perron F'robenius eigenvectors for graph. with norm equal 

to four it follows that the statistical dimen~ions,  4, of elements ,p E tIP) of a simpl} 

generated fusion rule algebra, whose generator p has dimension tip = 2, are always integer. 

\'a1ued, i.e., tI." E N. It is therefore possible that a fusion rule algebra from this class cat: 

be derived from some semisimple Hopf-algebra, A, with a two-dimensional fundamenta: 

representation p: A -+ Mat2(C), with the property that n ker(p*" ~~)  = {O}. It 
I	 ft~ 

Lemmt 3.4.9, the fusion rule algebras with selfconjugate generator p = p of dimensioI 

tip == 2 have been associated to the non-abelian, compact subgroups, G, of SU(2) anc 

0(2) (~.e.  A =T[G)), with n ~ 2 and Out (D~~)  ~  Z., f~r  which there do not exist anJ 

dual compact groups. Moreover, we managed to relate all fusion rule algebra homomor· 

phisms to group homomorphisms. In particular, all inclusions of one group into anothel 

one correspond to fusion rule algebra epimorphisms. 

The question remains in which sense this result can b~  extended to fusion rull 

algebru with a. self-conjugate generator p of dimension tip < 2. More specifically, WI 

shoulcf ask whether there exists a Hopf-subalgebra A of e.g., U, (sl2)' with q = e*, sud 

that the branched tensor product decomposition determined by the representation theor; 

of A yields E.-fusion rules? We shall see, however, that such an algebra can not h 

quasitriangular.. We note that the non·abelian, compact subgroups of U(2) reproduce al 

those fusion rule algebras that are generated by a single element p, with tip = 2, and ar 

dual t6 some compact group. For all these fusion rule algebras, p ® p conta.ins a one 

dimen~ional subrepresentation a, namely the 'one corresponding to the representatio: 

a(g) := det(p(g) of the dual group. Hence the element a of the fusion rule algebra ~  

corresponding to this one·dimensional representation of the dual group belongs to Out(t: 
We are therefore in the situation of Lemma 3.3.4 and conclude that any fusion ru] 

algebra t = to dual to some compact group G with a two-dimensional fundament. 

representation, is of the form 

t = 1'0 (Zn * t ') , 

where t ' is one of the Z2-graded or ungraded algebras given in (3.97), and n"is determin~ 

by the'cardinality of a(G) C U(l). A class of fusion rule algebras for which there is I 

automorphism a E pop (and which are tberefor~ not dual to a compact group) consists 
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the algebras t for which D(t) = 1 and with grading greater than two. For these algebras, 

the restrictions Ao := Np rCo --+ C1 of the fusion rule matrices Np are determined in the 

proof of Proposition 7.3.1: They correspond to the graphs D~I)  and E~I)  (see (7.48)) and 

to A~I),  A~I).  A detailed description of the corresponding fusion rule algebras appears in 

the next lemma. 

Lemma 3.4.10 Suppose that t is a fusion rule algebra with generator p of dimension 

d, =2, that t is 'l.a-graded, for some 

a ~  3, 
and that 

D(t) 1. 

Then t is one of the following algebras: 

(1) (1) ( (1») (a-2) .
i) For Ao~ D. ,the algebra t, denoted by t =D. Al , has a basis
 

{I,O'I'0'2'0'3' TIl T2,' .. ,Ta-I} ,
 

with p =TIl and the decomposition oft, as a lattice,
 

t = e til 
;EZ.
 

has the following presentation:
 

to = (1,0'11 0'2, 0'3)N i t; =NTj , j:F o. 

The elements {I, 0'1, 0'2, 0'3} = Out(t) form a group: Out (to) ~  Z., or Out (to) ~  

Z2 x Z2. Their products with other elements of t are gi1Jen by 

O'i 0 Tj = Tj, for i = 1,2, 3, j = 1, ... ,a- 1.
 

The multiplication table of the T'S is given by
 

Tj 0 TA: = 2Tj+1:, j :F -Ie, . 

and Tj 0 T_ j = 1 +L
3 

O'i • 
i=I 

The conjugation on t is thus given by
 

U; = 0';1, Tj =T-i'
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ii) For Ao ~ E1I 
), one algebra t, denoted by t = E11) (A~I»)(.-2), h'as the following" ,_ 

structure: It has G basis {I, a, a-I, ,p, 'Xi' a 0 'Xi, a-I 0 'Xi}i=I....,O-I' with P ='XII 

such that 

t. := (1,a,a-1,,p)N 

tj := ('Xi, a °'Xi, a-Io'Xi)N' j=1, ... ,a-l, 

form the graded sublattices. The elements {1,a,a-I } =Out (to) = Out(t) for 

a group isomorphic to ~,  and,p =a o,p =a-I o,p. The~e relations together with 

,p o,p =1 +a +a-I +2..p 

determine the subal~ebra to. The multiplication of the elements in ti with a is 

given in the obvious way; (Out (to) acts transitively and freely on t j ). Moreover, 

,p 0 'Xi ='Xi + a 0 'Xi +a-I 0 'Xi '. 

The multiplication table of the X 's is given by 

Xi 0 'X1: = a 0 Xj+A: +a-I 0 'Xi+A:, for j :F -Ie, 

and Xj °X-i = 1+ ,p . 

These relations and associativity determine the entire multiplication table, includ­

ing products of the form (a' 0 Xi) 0 (Q" 0 'X1:)' e, e' = -1, 0, 1. It follows that the 

conjugation is given by 

Qil 0 'Xi =Q -, 0 'X-i' 

The remaining fusion rule algebras with Ao ::::: E1I
) and Zo-grading are then given by 

T ( E~I)  (A~I») (0-2») and Tca-I (E1I) (A~I»)(.-2»).ca 

The direct. graphs determining the fusion rule matrix Np for the fusion rule algebras 

D~I)  (A~I»)(a-2)  a~d  E1I) (A~I»)(0-2) are depicted in Figures (A24) and (A25) of the Ap­

pendix. So far, we have found all fusion rule algebras t with a generator p of dimension 

d, :::; 2 and with the property that 

D(t) =1. (3.116) 
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With the help of Proposition 3.3.2 and identities (3.57) • (3.59) we shall arrive at the
 

following general clD..uification theorem for fusion rule algebras not necessarily satisfying
 

condition (3.116).
 

(The algebras will be distinguished according to whether the statistical dimension d,
 

of their generator p satisfies d, < 2 or d, =2, and according to numbers a, a" andr,
 

with a = ra", which are defined by: ~/~o ~ ZA (Le., ~ is ZA-graded), z,. ~ D(~), and
 

Zo" ~ ~"/to, where ~"  is defined through the presentation (3.60), and D(~")  =1. Fur­


thermore, we make use of Out (~o)  to discriminate between different algebras; Out(~) 
 

will be determined.)
 

Theorem 3.4.11 Let ~ be a fusion rule algebra generated by an element p of dimen­


sion d, not ezceeding two. Then ~  is one of the algebras described below.
 

i) For dp < 2, one finds the following list of algebras: 

(a) If a" =1 then Out (to) ={I}, and 

~  = Zr • A.. , for some n ~ 1, and Out(t) ~  z,.. (3.117) 

.(b) Let a" = 2. IfOut(to)::{1} then 

~ = z,.. D'n , n ~ 3 , and Out(t) ~  z,. i (3.118) 
or 

t = z,.. E" and Out(t) ~  Z,.. (3.119) 

If Out(t) ~  Z2 = {I, a} then ~  is one of the following a.lgebras: 

For r even: z,.. A'n-l, n ~ 2, with Out(~)  ~  Z2 X Zr; (3.120)
 

'To (Zr • A'n-l) , n ~ 2, with Out(t) ~  Z2,. i (3.121)
 

z,. • Es , with Out(t) ~  Z2 X z,.; (3.122)
 

'To (Z,. • Es), with Out(~)  ~  Z,,.. (3.123)
 

For r odd: z.. •A2,,-I, n ~ 2, with Out(t) ~  Z2 x Z,. ~ Z2r' (3.124) 

z,.. 'To (A2"-I) ~  'To (z,.. A 2n ­ 1) with Out(t) ~  Z2r i (3.125 

Z,. • Es , with Out(t) ~  Z2 X z,. ~ Z2,.; {3.126 

z,. • 'To (E6 ) ~ 'TQ (Z,. • Es), with Out(t) ~  Z2,.. (3J27 

If Out (to) ~  Z3 = {1,a,a-1} then t is one of the following algebras: For (3,r) = 1: 

z,. • D. ~  'To (Z,.'. D.) ~  Z,. • 'To (D.), with Out(~)  ~  Z3 X Z,. ~ Z3,., (3.128 

Forr = 3r': Z,. • D.. , with Out(t) ~  Z3 xl,. i (3.129 

'TQ (Z,. ... D.) ~  'TQ -l (z". D..), with Out(~)  ~  Z3,.. (3.130 

ii) For d, = 2, t is one o/the algebras described in the following list: 

(a) If a" = 1 then 

Out (to) ~  Z2 ={I, a:} 

and one finds the following algebras: 

For r even: z,. ... DR, n ~ 3, withOut (to) ~  Z, x Z,. i (3.131 

'To (Z,..D::) ,n~3, with Out (to) ~  Z2,.. (3.132 

For r odd: Z,. ... ~ ~ 'To (z,. •15:) , 'II. ~ 3 , with Out (to) ~  Z2,.. (3.1331 

(b) If a" =2 then t is one of the following alge~ra3:  For Out (to) ~  1, 

Z,. * Aoo ' with Out(t) ~  Z,.; (3.13 

Z,. ... E~l), with Out(t) ~  z,. . (3.13 

For Out (to) ~  Z2 = {I, a}, then 

ifr is even: Z,. ... Doo , with Out(~)  ~  Z2 X Z,.; (3.13 

'To. (Z,. • Doo ), with Out(t):!! Z2,. i (3,13 

z,. ... E~l), with Out(t) E:! Z2 X Z,. j (3.13 

'TQ (Z,. ... E~I»), with Out(t):!! Z2,. i {3,13 
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With the help of Proposition 3.3.2 and identities (3.57) -(3.59) we shall arrive at the 

lllowing general classification theorem for fusion rule algebras not necessarily satisfying 

:>ndition (3.116). 

(The algebras will be distinguished according to whether the statistical dimension dp 

£ their generator p satisfies dp < 2 or dp = 2, and according to numbers a, a" and r, 

·ith a = rail, which are defined by: ~ /~o =:! Z. (i.e., ~  is Z.-graded), ~  ~  D(~),  and 

;0" =:! ~/I/~o, where ~/I  is defined through the presentation (3.60), and D(~/I)  = 1. Fur­

n~rmore,  we make use of Out (to) to discriminate between different algebras; Out(~)  

rill be determined.) 

~heorem 3.4.11 Let ~ be a fusion rule algebra generated by an element p of dimen­

ion dp not e:z:ceeding two. Then~ is one of the algebras described below. 

i) For dp < 2, one finds the following list of algebras: 

(a) If a" = 1 then Out (~o)  ={I}, and 

~ =Zr *An, for some n ~ I, and Out(t) ~  z,.. (3.117) 

(b) Let a" =2. IfOut(~o) ={I} then 

t = z,. * D'n, n ~ 3, and Out(t) ~  z,.; (3.118) 
or 

t = Zr * Ea , and Out(t) =:!: Zr' (3.119) 

IfOut(t) =:! Z2 ={1,o} then t is one of the following algebras: 

For r even: Zr * AZn- 1 ,.n ~  2, with Out(t) ~  Zz x z,.; (3.120)
 

'To (z,. * A2n- 1 ) , n ~ 2, with Out(t) e:: Z'r; (3.121)
 

z,. * Ee , with Out(~)  e:: Z, 'x Zr; (3.122)
 

'To (Zr * Ee), with Out(~) =:! ZZr' (3.123)
 

For r odd: Zr * A2n- 1 , n ~ 2, with Out(~) =:! Z, x Zr'~ Z2r' (3.124) 
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~ * 'To (AZn- 1) =:! 'To (Zr * AZn- 1 ) with Out(~)  ~  ZZr; (3.125) • 
z,. * Ee , with Out(~)  ~  Z2 X Zr =:! Z2r; (3.126) 

z,. * 'To (Ee) =:! 'To (Zr • Ee), with Out(~) ~ Z2r' (3.127) 

IfOut(~o) =:! Z3 ={1,o,a-1
} then ~ is one of the following algebras: For (3,r) =1: 

z,. *D. =:! 'To (Zr * D.) =:! Zr * 'To (D.), with Out(t) ~  Z3 x z,. =:! Z3r. (3.128) 

For r =3r': Zr * D., with Out(~):':! Z3 X Zr; (3.129) 

'To (Zr * D.) ~  'To -1 (Zr * D.), with Out(~) ~ Z3r' (3.130) 

ii) For dp =2, ~  is one of the algebras described in the following list: 

(a) If a" = 1 then 

Out(~o) ae Z, = {I,a} 

and one finds the following algebras: 

For r even: Zr .15';, n ~  3, withOut (~o)  ~  Z, x z,.; (3.131)
 

'To (Zr *n:) ,n ~  3, with Out (~o)  =:! Z'r . (3.132)
 

For r odd: Zr *~~  'To (z,. *D:) , n ~ 3, with Out (~o)  ae Z2r . (3.133)
 

.(b) If a" = 2 then t is one of the following algebras: For Out (~o)  ~  I, 

z,. * Aoo , with Out(t') ~  Zr; (3.134) 

Zr * E11
) , with Out(t) ~  z,. . (3.135) 

For Out (to) =:! Z2 ={I, a}, then 

ifr is even: Zr * Doo , with Out(t):':! Z,'x z,. i (3.136) 

'To (z,. * Doo ), with Out(t) ~  Z2r; (3.137) 

z,. * E~l). with Out(t) E! Z2 X z,. ; (3.138) 

'To(Zr*E~l»),  with Out(~)E!Z2r; (3.139) 
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.' ifr u odd: Z" * Doc ~ 'To (Zf' • Doc») with Out(t) ~  Z2.. ; (3.140) 'T( (Z". Df;~2J  S! 'T(I (z... Df~~2») ,with Out(t) ~  Z.." (3. 

Z... E~I),  with Out(t) ~  Z, x Z.. ~ Z,.. ; (3.141) 
(c) If a" ~ 3 then t i" one oj the following fusion rule a.lgebras: 

'Till (Z" • E~I») ~Z" • 'To (£~1»)  , with Out(t) ~  Z2... (3.142) 
For Out (to) :! Z3 ={I, a, a-I}, then
 

For Out (to) ~  Z3 = {I, a, Q-l}, then·
 . / (1) ( (1»)(11"-2) .
If (r,3) =1 : z,.. £6 As , vnth Out(t) ~  Z3.. i (3.11 

if(r,3) = 1: Z". £11
) ~ 'To (z... £11») ~.z" .'To (E~I»)  , (3.143) ( (1) ( (1») (0"-2»). _z.. • 'To:t1 £6 As , 'Unth Out(t) =Z3.. i (3.1 

with Out(t) 9! Z3 XZ,,~Z3"; 

ifr = 3r': z... E11
) , withOut(t) ~  Z3 X Z,,; (3.144) if 3' Z E(l) (A(l»)(I1"-') 'th 0 t(t) - Z Z (3.1IT= r: ".6 S ,'Un U = 3X .. ; 

'To (z.. * £11») ~ 'TQ-l (Z... E11») , withOut(t) S! Z3... (3.145) ( (1) ( (1») (11"-2»). _
'To:tl Z... B6 As , 'Unth Out(t) = Z3... (3.1 

For Out (to) ~  Z, e Z2 = {I, a, (, a 0 {}, Q e stab(p), then 
For Out (to) ~  Z, X Z2 = {I, Q, (, Q 0 el, then
 

if r u odd: z... D~~2) S! 'To (Z... D~~~,»), with Out(t) :! Z2 X z,,, i (3.146)
 
:f • dd '11 D(l) (A(1»)(0"-2) 'th 0 t(Jk) - Z Z
IJ r 13 0 : IU"... 1 , WI u..... = 2 X 2.. i (3.1 

'T( (Z" • D~~~,»)  :! 'Too( (z.. • Df;~,»), with Out(t) ~  Z2" x Z2 i (3.147) 
(1) ( (1»)(0"-2)ifr i" even: z,.. D.. Al , with Out(t) ~  Z2 x Z2 X Z.. j (3.1 

· rj • D(l)
1if r u etTen: IiJT (1'+2) ) p ~ 2, with Out(t) ~  Z2 x Z2 X z,.; (3.148) (1) ( (1»)(0"~2») 

'T" ( Z.. * D. Al , tr:F I, with Out(t) ~  Z, x Z,,,. (3.1
(1»)

'To.(z.. .D(p+2). ' p ~ 2, with Out(t) ~  Z2 x Z2" i (3.149) 

FOT Out (to) ~  Z. ={1, e, e2 , e}, then 
'T( (z,. * D~~~2»)  ~ 'Too( (Z" * Df~~,»), with Out(t) ~  Z, X Z,,,. (3.150) 

iJr u odd: 

For Out(to) ~  Z. = {1,e,e2,e}, then Z.. ~ D~l) (A~l») (0"-2) ~ 'T(j (Z... D~l) (AP») (0"-'») , 
if r u odd: Z". Df;~2)  9! 'T(1 (Z" * D~L»)  ,with Out(t) Z..r i (3.151) 

. . (. (1) ( (1»)(0"-2»)_]=0,1,2,3, 'Unth Out Z,,*D.. Al =Z.... (3.H 
'T( (Z" • Df~~,»)  ~ 1"(1 (Z" • D~;~2») ,with Out(t) 9! Z.... i (3.152)
 

iJr =2 mod 4:
 
iJ r =2 mod 4: z... Df~~,) , n ~ 2 , 

Zr'" D~l) (A~1»)(0"-2) ~ 1"(2 (Z" * Dil 
) (A~1»)(lJ"-2») ,with Out(t) ~  z.. x Z.. ~ Z2" XZ2 i (3.153) 

'T(2 (z.. •Df~~2»)  ~  z.. •'T (D~~,»)  ,with Out(t) ~  Z2" X Z, i (3.154) with Out (to) S! Z2 x ZZr i (3.H 

'T( (z... Df;t2») 9! 1"(2 (Z" • Df~~,») ,with Out(t) ~  I .." (3.155) 
1"( (Z.. * D~l) (A~l») (0"-2») ~ 1"(2 (z,. * D~l) (A~l») (0"-2») , 

, '1/ D(l)if r =·4r : lUr * (1'+2)' p ~  2, with Out(t). 9! z,. xZ.; (3.156) with Out (to) ~  Z. i (3.11 

1"(2 (z..... Df~L»), p ~  2, with Out(t) ~  Z2" xZ, i (3.157) 
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to ,• 

• ., 
ifr =4r': 

(1) ( (1») (0"-2)Zr .. D. Al , 

( (1) ( (1) (0"-2»)
1'(2 Zr" D. AI) , 

1'( (Zr" D~l)  (AP»)(Oll_2») 

with 

with 

~ 

Out (to) ~  Z. X Zr; 

Out (to) ~  Z2 X Z2r; 

1'(1 (Zr .. D~l) (A~l») (0"-2») , 

(3.169) 

(3.170) 

Chapter 4 

with (to) ~  Z.r' (3.171) 

Hopf Algebras and Quantum 

Groups at Roots- of Unity 

We review the basic theof1l of Hopf o.lgebru, including the Drinfel'd /3} definitioM of quA­

sitriangularit7l1 And of the double "construction o.nd present, AI An uample; the algebrG 

U,(Sld+1) first defined by Jimbo If}. We use resWu, due to Rosso U8J, to define A quo­

tient, ~(8td+l)' of the topologically free algebrG, U,(..lci+1)~ ower C([logq}), which. is 

quasitriangulo.r And speciAlize, q to 4 root of unity. Be,ides the known CArtAn involution, 

we int1'Dduce an antiline4r *-involution and determine its relatiou with the R-m4triz And 

the coproduct. For ~ (.tl2 ), the R-mAtriz is determined, And the center is presented AI 

A C2-variety. 

Quantum groups, as defined in 12], are special types of Hopf algebras, obtained as one­

parameter deformations of universal enveloping algebru of c1usical Lie algebru. We 

begin our discussion of their general properties with a brief review of quui-triangula.r 

Hopf algebru. 

Hopf algebru a.re a.ssociative algebras, carrying a comultiplicative structure, whiCh 

is given by a. homomorphism, 

A:x:.-x:.~x:., 

called comultiplication. The algebra is said to be cocommutative, if A = uA, where 
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.. (1 : /C ~ Ie -+ 1C ~ /C is the transposition (1(a ~ b) = b~ a. This is the case for the univer­

sal enveloping algebras of classical Lie algebras. In order to describe braid statistics, we 

perturb cocommutativity by an invertible element 'R. E /C @ /C, called universal R-matrix, 

satisfying 

'R.6(a) = (1A(a)'R. (4.1) 

for all a E /C. For Hopf algebras we require coassociativity 

(1 0 A)A =(A ~ I)A . (4.2) 

Since the second comultiplication 

A' =(1A (4.3) 

is coassociative too, there is a compatibility condition on 'R: 

('R. ~ 1)(60 1)'R. =(1 ~ 'R.)(10 A)'R.. (4.4) 

In an attempt to describe Knizhnik-Zamolodchikov systems Drinfeld [4] has proposed to 

perturb coassociativity by an invertible element; E JC ~ /C ~ /C such that 

(1 ~ A)6(a) =;(A 0 l)A(a);-l, 'Va E 1C (4.5) 

leading to quasi-Hopf algebra.s. The element; has to satisfy certain relations that are 

due to pentagon cycles. 

The unit element of the coalgebra (counit) is a homomorphism, E: JC -+ C, satis­

fying 

.(E ® 1)6(a) = (1 ~ E)6(a) =a. (4.6) 

The "inverse" ona Hopf algebra is given by an antihomomorphism, S: /C -+ /C, called 

the antipode, which is characterized by the property that 

m12(1 ® S)A =m12(S ~  1)6 =1· E, (4.7) 

where m12(a ~  b) =abo 

This enables us to define adjoint representations 

adt(:z:) 

adi:(:z:) 

;::: 

;::: 

(L 0 R)(1 ~ 5)6(:z:) 

(L ® R)(1 ~ 5-1)A'(:z:) , 
(4.8) 
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with L and R being the right and left multiplication on /C. For quantum groups the 

subalgebra on which a4 acts trivially coincides with the center of /C. 

We summarize these notions in the following definition. 

Definition 4.1 [3] A qua..sitriangular HopI algebra /C is a cOCLSsociative HopI algebra with 

comultiplication 6, counit E, antipode 5 And an invertible universal R-matm, 'R. E 

/C ~ /C, which intertwines 6 with A' and satisfies 

(1 ~ A)'R. 'R13'R12 
(4.9) 

(A~l)'R. 'R.13'R23 .• ) 

From (4.1), (4.7) and (4.9) we can deduce further identities, e.g. 

(1 ~ E)'R = (E ® 1)'R =1 (4.10) 

(1 ® 5-1)'R = (5 ~ 1)'R = 'R-1 (4.11) 

and the Yang-Baxter-equation 

'R23'R.13'R12 = 'R,12n13n23 •• ) (4.12) 

As an example we consider the quantum groups Uq (.sld+l)' The dependence on the 

"deformation".-parameter q =et is expressed by the fact that the algebra is an E-algebra, 

whereE is the ring of meromorphic functions, I, for which sinh(t)"'/(t) is analytic 'I 

for some mEN. The algebra U, (.sld+1) is a topologically free algebra with genera­

tors I, ei, Ii, hi, i =1, ... , d, meaning that every element can be expressed as a serie 

I: tn sinh(ttmpn.m, where thep~.m  are ordered polynomials in the generators
O<m<M,n>O
 
Th.riher, we impose the following relations on the generators:
 

[hi,ej] = aijej 

[hi,!;] = -a.ij!; (4.13 

rei,!;] - 6--'"'-'-''' 
- 'J '-ll-~  , 

·The subscripts label the positions of'R in IC ~ JC ~ JC, h. 'Rij i. the image of'R in ICtn under thi 

embedding 48 6 ....... 1 ~ ... ~i  4 8 1· .. ~j  6~ 1 ... ~  1. 
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and 

eiej = ejei, fiJi = fili, for I i - j I ~ 2, 

e~ei±l  - (q +q-l)eiei±lei + ei±le~  = 0, 

and Jl fi±l - (q +q-l )fdi±di+ fi±dl 0, 

where ail = 2, Cdl,i = -I, and Ci,; = 0, for Ii - j I~  2. 

Depending on whether we choose the functions in IE to be complex or real, we 

thus have defined the associative algebras Uq (Sld+l)R (over E:.) and Uq (Sld+d (over Ec). 

Clearly, Uq(SldH) is also an E~-module,  an~,  since E~ C Ee, we have that Uq(SldH)R C 

Uq(SldH), as E:.-algebras. Also Uq(Sld+d can be seen as a C- or R-tnodul~,  i.e., a C- or 

nt-algebra with additional central generators t and I~(t)'  

Other prominent subalgebras are defined as in the classical case: Uq ( b±) are the 

Borel algebras generated by the elements ei and hi, resp. fi and hi, and Uq(n±) the sub 

algeb~as generated only by the ea's, resp. II's. 

The comultiplication is then the [.:-linear homomorphism ~  : JC - JC ®:: JC, given 

on the generators by 

~(hi)  hi ® 1 +1 ® hi, 

h· h' 

~(e.)  e, ® q-:r +qi" & e" (4.14) 

~Ui)  fi ® q-~ +q~ ® fi . 

The E:-linear counit E : JC - E,: is zero on the generators and E(l) =1. By (4.7), the 

JE,:-linear antipode must be given by 

See,) = -q-lei 

SU.) -qfi (4.15) 

S(hi ) = -hi. 

Note that its square is an inner automorphism, since 

52( c) = q-26cq26 , (4.16) 
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with 6 = 2
1 E hQ • 

Q>O 

Here the hQ are defined, for every positive root Q, as the same combinations of hi =hQ ;, 

Qi primitive, as in the classical Sld+l-case. 

The Hopf algebra defined above is quasi triangular only for gen~ric specializations of 

q = e', but not for the entire ring E. We will use computations, already performed in [48}, 

to define a quasitriangular version of a quantum group at a root of unity. 

In a quantum double construction ola Hopf algebra A over a ring E, the space, A-, 

of E-linear forms 

l:A-E 

is considered. It is equipped with a multiplication, by setting 

(l®k, ~(x))  = (l·k,x), (4.17) 

so that (l,.) = E, an (opposite) comultiplication 

(~(l),  x & y) = (l, y . x) , (4.18) 

so that E-(l) = (t,l), and an antipode by 

(S(t), SeX») = (l, X) , (4.19) 

for x, yEA and [, k E A-. This obviously defines an associative Hopt algebra over E 

which we denote AD. The "double-constructed" algebra, D(A), then consists of the space 

A &::: AD, together with an [·linear map 

m : AD &;:: A _ A &:::: AD , (4.20) 

such that D(A), with multiplication 

(x & 1) . (y & 1) := xy & 1, 

(1 & k) . (1 & l) := 1 &H, 

(x & 1) . (1 & l) := x &I, 

and (1 & k) . (y & 1) := m(k & y) " 
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... and the resulting extensions of coproduct and antipode, define a Hopf algebra over E. 

A formula for m has been given in [48], with the property that D(A) is quasitriangu­

lar, where n E (A ~  1) & (1 ~ AD) c D(A) ~  D(A) is precisely the canonical element in 

A~AD. 

1£ we extend the ring over which U, (Jlcl+d is defined to meromorphic functions, I, 
such that sinh (nlt)"" ..... sinh (n.t)m. f(t) is analytic, for some n;, m; E N, i.e., -for 

generic specialization of t, it is well known, see e.g. [4, 48], that for A = U" (b+), we 

obtain D(A) ~  U,,(Jlet+1) ~ UU), where UU) is a second copy of the Cartan subalgebra, 

commuting with U, (Jlcl+l)' For non-generic specializations of t, the algebra dual to 

U" (b+) will be different from U" (b-). However, it is possible to take a quotient of U, (b+) 

such that its dual is '80 similar quotient of U" (b-). 

The algebra U, (b+) over IE: has been studied thoroughly in [48]. For the statement 
".

of the results, we use the generators Ei := eiqT, so that 

Ll(Ei ) =E i ~  1 + qht® Ei i S(Ei ) = _q-htE" (4.21) 

and 

[hi, E,] = a,;E;; ad+ (Ei)l-Cii (E;) = 0, for i i= j . (4.22) 

It is then possible to define, for each positive root, ai';, of Jlet+1J with 

ai,; := a, +ai+l +... +a;-l 

{or 1 :5 i < j :5 d + I, an element, Ea , by the recursion 

Ea· . := ad+ (Ei ) (Ea,.·, .),
'., t .J. 

with Ea' '."1 
',' 

:= Ei , (4.23) 

and compute q.analogue commutation relations. 

From these it follows that every element of U, (b+) can be written as a combination 

of the expressions 

Em, Em.. ht1 
"(1)'" "(n) 1'" 

hl4 
et (4.24) 

where ,8(1) < .. : < ,8(n), n = d(cit), are all positive roots, with total ordering a,; < ai';' 

iff i < i' or i = i' and j < j', and m;,l; E N. It is shown in [48] that the monomials (4.24) 
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form indeed a basis of U" (b+) over lEe. The subalgebra U" (b-) of U" (b+t is introduced 

as follows: It is generated by elements Fi' "Yi, defined by the equations 

1 1
(. Fi , Ei ) = -1-' and (4.25)q- - ("'(i,hi) = t'q 

and =zero on all other monomials. We immediately obtain the coalgebra relations 

Ll ("Yi) 'Yi ® 1 +1 ~ 'Yi, S (-ri) = -"Yi , and, with hi := - Laij"Y;, (4.26) 
, ; 

Ll (Fi ) = 1 ~ Fi +Fi ~ q~, S (Fi ) = -Fiq~ . (4.27) 

Furthermore, one finds the algebraic relations 

['Yi' F;] = oi;F;; ad- (Fi)l-C,j (F;) = 0, for i f:. j . (4.28) 

Defining elements Fa in U" (b-), for every positive root, a, of Slci+1' by the recursion 

F4i,j = ad- (Fi ) (Fai+1.j), for i < j -1 and Fai•i +1 = Fi I (4.29) 

it is possible to write every element as an IE:;-combination of monomials in Fa-and 

'Yi, similar to (4.24). The contraction (.,.) :U,,(b-) &U,(bT ) -+ Ec has been computed 

in [48] as 

Fm.. "I r~  m~ ",~,,~ ,.~) 

"(1) . .. ... E/3(n) hi( F
m l "(n) "Yet .. , 'Yet , E~(l) ..• h et = 

(4.30) 
",.(~'-l)  ( t.')n ( J J - q_l)t(,9(j»mj 

,) tl ( r
 
= Jl Omjmj q (1 _ q-2rj (m;)". g Orlr~, tr, '
 

whe;e ,8(1) < ... < ,8(n), n = cI(tlt) , are the ordered positive roots, l(,8(j)) their lengths 

Le.,l(a,;) = j - i, for i < j, and theq-analogue numbers are 

(n)" := qn - q-n _ sinh(nt) t 
q _ q-l- sinh(t)' for q = e I 

(4.31) 

and (n)q!:= (n)q(n- l)q ... (1)q. 

To describe specialization to the case where q is a root of unity, we use, for N ~ 3 and 

(n, N) = I, the ring-homomorphism 11 : IE,; -C, which assigns to any f: t -+ f(t) in E{ 

the value 7!t(f) = I (i~); }1 is well defined since }1(sinh(t)) = i sin (11) f:. o. 
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Then
 

(., ').1' Uq (b+) &;:: Uq (b+) -+ C,
 
(4.32) 

(.,.)., = uN 0 (.,.), 

defines a contraction of U., (b-) and U., (b+), seen as C·algebras. The nullspaces, It = 
, N 

{x E U.,(b+) I (k,x)q =0, 'Vk E Uq(b-)}, and, similarly, Ii, then formC-Hopfideals, by 

equat!ons (4.17)-(4.19). So we can define the following C·Hopf algebras: 

u:ed (b+) =U., (b+)/ I~,  u;ed (b-) = Uq(b-)/ Ii, (4.33) 

which, by the properties of (., ').1" are related as C·algebras as follows. 

u;ed (b-) = (u;ed (b+)r .	 (4.34) 

Using the intrinsic formula for m given in [48] and identifying hi with hi, this formally 

defines a quasitriangular quantum group, u~ed  (Sld+tl, at a root of unity, q = eii'-. 

For a mo~e explicit description we remark that the Borel algebras u~ed  (b±:) are; 

generated by the elements [E,] and [hi]' resp. [F,] and [hi]' where [.]: U,.(b±:) -+ u:ed(b±:) 

denotesthe complex-linear homomorphism onto U:ed(b±:), and further that t (and linh(t) 

can be omitted from the set of generators by setting 

.7l'7t)(f(t)a] = f (1. N [a].	 (4.35) 

From (4.35) we also infer that the generators obey the Hopf algebra relations (4.21)-(4.22) 

and (4.26)-(4.28), where, e.g., E, is replaced by (E,] and the expressions in q =et E lEe 

are replaced by the specialized ones in q =ei17 E C. In the same way we can obtain the 

elements [Ea] and [Fa] from the specialized versions of the recursions (4.23) and (4.29) and, 

further, they obey corresponding commutation relations. Hence every element in u;ed (b±) 

can be written as a linear combination of the respective classes of the monomials in (4.24). 

Since, by uN 0 (a,b) = ([a], [bj).pl the diagonal form of (.,.) in (4.30) with respect to the 

monomials (4.24) is inherited by (., ')'1" we have that the set of monomials in u;ed (b+), 

with 

[E;(i) ... Ep(~)  h~l  ... h~4]  # 0,	 (4.36) 

is a'basis, by the nondegeneracy of (., .),p, and similarly for u~ed (b-). From 
I 

iw(m).,! = 0 iff m ~ N, for q = e , (4.37) 

we find, that the expressions in (4.36) are c~aracterized  by 

O~mi<N, i=l, ... ,n,	 (4.38) 

and t~e  monomials [EcZ'] vanish. 

The formula for the multiplication m (see (4.20» given in [48] shows that Zi:= 

hi - hi are central elements, and it yields, aner quotienting by the Hopf-ideal generated 

by the z,'s, the commutator 

[Ei , F,] = ei, (hi)q . (4.39) 

We collect these observations, based on computations in [48], in the following proposition. 

Proposition 4.2 In the following statements all equations to which we 'fe/er should be 

understood as specialized, i.e., we have 

q = eii'-, with N ~ 3 a.nd (n, N) = 1. 

i)	 The complez) associative algebra, u;ed (bT ), defined by generators ,E" hi) 1 a.nd 

relations {4.~2}, together with 

E~ =0, for all a> 0 I	 (4.40) 

where the EQ are defined by (~.~3), has a PBW·Basis given by the monomials 

(4.f.), restricted by ("'38). It has a Hopf algebra structure defined by the comulti­

plication a.nd antipode in (~.fl). 

ii}The dual algebra (u~ed(b+)r, with opposite comultiplication, denoted by U:ed(b-), 

is generated by the elements Fi , hi given in (i.~5).  It is equally described in terms 

of relations (4.28) and 

F: =0, lor all a > 0 , (4.41) 

and co-relations ("'26) and (~.~7), and admits a PBW-Basis analogous to the one 

of U:ed (6+). The contraction (., .)., : u~ed  (6-) & u;ecl (b+) -+ C is given by (4.30) 

and (~.32). 

..
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., 
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.~ iii) The algebra, u;ed ("lll+1), which i.sobta.ined from u;ed (b+) V u;ed (b-) by dividing

.' out the relation.s (.1.99) and hi =h.i, ha..s a PBW-Ba..su 

{E"'l E"''' h"l h"4 Ftl Ft,,}
~(1)  • •• tI(n) 1 •.. II ~(1) • •. ~(n)  , 

with 0 ~ mi < N; 0 S cli < N, and i.s quasitriangular with R-matriz 

n = exp(w) ((_'1)t(~(1»E"(1)  ~  FtI(1») ..... exp(w) ((_'1)t("(n»E~(n)  ~  

Her~ we UJe the notation.s 

N-l 

exp(w)(X):= L '1-~ (1- '1- 2
)'" X'" 

",=0 (m)q! 

and 

t:= L (a- 1
). hj ~ hie, 

jlc J/c 

with the inverse, a-1, of the Ca.rtan matrix a, i.e., 0 ®!3. t = (a,!3). 

(4.42) 

F~(n»)  '1-" c.~ 

(4.43) 

The algebra 

U:ed ("lll+d i.sidentical to D (U:ed (b+») quotiented by the central subalgebra U(~) 

generated by Zi = hi -. hi. 

There are, of course, further possibilities of defining a quasitriangular quantum group at 

. a root of unity. For example, i~  we in~isted on having the entire Borel algebra, Uq (b+), 

without the relations (4.40), the dual algebra U; =(Uq(b+)t would contain u;ed(b-) as 

a subalgebra, but, in addition, it would contain elements F!:, defined by 

(F~, E~) = I, (4.44) 

and =zero on all other monomials. It follows that Uq- is just the Borel algebra of the 

quantum group at a root of unity, Uq , defined in [49]. To be precise, we also would have 

to replace the generators hi by generators K i := qhi and impose the relation KIN = 1. 

The algebra U:ed ("lll+1), with these modifications in the Cartan generators, is still qua­

sitriangular, but, in addition, it is a finite-dimensional subalgebra of Uq• It is possible to 

show that the 'R.-matrix of u:ed (Slll+l) is also an admissible 'R.-matrix of Uq , so that Uq 

is quasi triangular, although it is not double-constructed. Here we call a quasitriangular 
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Hopf algebra double-constructed if, for the map 

7l"x : K.. -+ K" 7l"1l(l) = ((l,.) ~  1)'R. 

and hence 

7l"k(l) = (1 ® (l,.)'R., (4.45: 

we have that 

. K. = im 7l"1l V im 7l"k . 

In general, we have for a quasi triangular Hopf algebra 

'R. E im 7l"i ®im 7l"1l , (4.46: 

so that 7l"1l is well defined on(im r.kr. Using equations (4.9) we find that 

,). .7T'1l: (1m. 7l"1l -+ 1m 1i1l 

is an algebra isomorphism, which isanticohomomorphic. Therefore 

(. ,)0",.
1m 1i1l = 1m 7T'1l • (4.47 

Thus in the case of a double-constructed algebra, K., and by the uniqueness of the multi 

plication (4.20), (see [3]), we infer that K. is a quotient of D(im 1i1l)' 

In the following we shall ·consider only the double-constructed examples ~ed  (Sld+1 ) 

seen either as a C- or IR-algebra, and U:en (sid+!), which is the quantum group over the ex 

tended ring, JElen of meromorphic functions, f, such that sinh (n1t)"'l ... sinh (n/ct)'"" f(t 

is analytic. for some nj,mj E N. The automorphisms of the Borel algebras can be easil: 

described. 

Lemma 4.3 

i) For every Hopf automorphism, 0, of u;ed (b+) (urn (b+»), there are invertible elE 

ments, 'TJi, i = 1, .. "d in C(E1en) and an involution, 1r, of the AII -DynkindiagraT1 

i.e., 1r = id or 7l"(j) = d +1 - j, such that 

o (hj ) h"'(i) (4.4S 

and o(Ej ) 'TJjE.,.(i) . (4.4£ 
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Moreover, we have that a can be chosen either complex-linear or complex-antilinear 

for urn (b+) with ring EseD and specializations q E JR and for u;ed (b+) for real 

specializations t E JR, so that 
) 

a::;(t) = t	 (4.50) 

in both cases. a is complex-linear for non-rea.l specializations and U:ed (b+). 

Conversely, every map, a, defined on the generators by (4.48), (4.49) and (4.50) 

extends uniquely to em automorphism on u;ed/seD (b+). 

ii) Similarly the set of anticohomomorphic automorphisms, Ct, of Uq (b+) is character­

ized by 

Ct (hi) = hw(j)	 (4.51 ) 

li (Ei ) = 71iEw(j)q-hY(i)	 (4.52) 

and li:::(t) =	 -t (4.53) 

Thus anticohomomorphic automorphisms only exist for purely imaginary specializa­

tions, i.e., tE iJR 01' Iql = I, and for u;ed (b+), where they h~ve  to be antilinear. 

The description of antihomomorphisms can be obtained from the above by composi­

tions with the antipode. 

iii)	 For specialized parameters t, the scalings Ei -+ 71iEi can be obtained by conjugating 

elements of the Cartan toros so that the group of outer automorphisms is isomorphic 

to Z:z. In particular, everycohomomorphic or anticohomomorphic automorphism 

maps Uq (n+) to itself and is an involution on f. 

Furthermore, the automorphisms specified in i) and ii) have unique extensions to 

U'l (Sld+d, given for the generators by 

1	 . 
a (Fi ) = - F"(i) (4.54) 

71i 

and ii (Fi ) =	 .!.. qhY(jJ Fwii) . (4.55) 
71i 

These extensions are also cohomomorphic, resp. anticohomomorphic. 
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•iv)	 If we denote by C the extension of the anticohomomorphic automorphism with 

71i = I, 'll' = id, then we have the relations
 

C2
 1 (4.56) 

and C ~ C'R. 'R.-1 • (4.57) 

C will thus be called. the conjugation of Uq (Sld+1)' 

The symmetry in the sets of generators and relations of Uq (b+) and U,(b-) enables us 

to define involutions on U, (Sld+1)' which are important in the study of highest-weight 

representations. In general for a quasitriangular, double-constructed Hopf a.lgebra, /(" we 

call an JR-linear, antihomomorphic involution, 9, on /(" a Cartan involutionif 9. satisfies 

9 ': im'll'll -+ im'll'k 
(4.58) 

thus 9 im 'll'k -+ im 'll'1l 

and 

9 & 9'R. = u'R. . (4.59) 

Similarly a *- involution is a R-linear, antihomomorphic involution which also maps im 1r'1l 

to im 'lrk but instead of (4.59) obeys 

* ~ * 'R. = u'R-1 
.	 (4.60) 

Lemma 4.4 

i) Assume, tha.t 9 is a Cartan involution and .. a *-involution on a double-constrocted 

Hopf algebra K,. Then we have 

9&80l:i = li.08, 80S = S-1 08 (4.61) 

and * & * 0 li. = u60*, *oS=So*. (4.62) 

ii) For the isomorphism 'll'll, it follows that 

'lr1l8' = 9'lrk and S .. 7l'k = 'lr1l * S' . (4.63) 
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... Thta, if we define nondegenerate, lR-bilinel1r fOrmJ on im lI'k byti 

(e, b), := ( 1I'-19(a), b) and (a, b). := (7I"i1 
• (a),.b) , (4.64) 

it follows thet (a, b), is symmetric and obeys 

(L\(a), b~ c), ::: (a, cb), and (5(a), b), =(a,5(b», (4.65) 

end further that 

(a, b). =(S(b), e)., (4.66) 

so that 

(L\(a), b~ c). =(a, bc).; (b ~ c, A(a». =(cb, a). 
(4.67) 

and (S(a), S{b». = (a, b)•. 

iii) Suppose 0 is en automorphism of im 7I"k, so tha.t for.1 = im 7I"k n im 7I"1l 

0(.1) = .1 and (009)' r.1= id.1 (4.68) 

and 

(a(a), b), = (a,o(b»" ,resp. (a(a), b). = (a,a(b» •. (4.69) 

Then there exists a unique extension, a, to x::., such that 

B'=aoB, resp. .' =a o. (4.70) 

is a Cartan-(resp . • -) involution. Moreover, given some involutions 9 and ., then 

all other involutions are given by (4.70) for some a with (4.68) and (4.69), and the 

extension, a, is always cohomomorphic, thus a Hopf-automorphism. 

This, together with the characterization of automorphisms of the Borel algebra and the 

conjugation, C, in Lemma 4.3, put us in a position to find all Cartan- and *-involutions 

of U, (Sld+1)' They are given as follows: 
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Lemma 4.5 i) There exists e Cartan involution, 9, on Uti (Sld+d which is given 4
I 

the generators by I 

I 

9(Ei ) = q"iFi (4.71 

I 

9(Fj) = Ejq-hi (4.7~  

I 

B(hi ) ,= h; (4.7~ 

B=:(t) = t. (4.7 
I 

It can be chosen antilinear only ifE = EleD or if t i.s specialized to real values. In 

other cases, 8 has to be complex-linear. B is determined uniquely by (4.71)-(4.7. 

and the sign B(i) = ±i. 

ii) The Hopf automorphisms, a, of Lem.ma 4.3 i),. which give rise to all other Carta 

involutions by (4.70), are those with 

11i = "71f(;) . (4.7 

iii) The antihomomorphism 

* := Co 8 = (J 0 C, (4.76 

where C is given in Lemma 4.3 iv), is a *-involution, for all versions of Uq (Sld+d 

where C is defined. It is given on the generators 

* (h j ) = h; (4.77 

* (Ei ) = F; (4.78 

* (F;) = E; (4.79 

*:::(t) = -t. (4.8C 

iv) Equation (4.80) holds for all .-involutions .', so that .' is defined on a quantUl 

group whenever * is defined. All possible *' are given by (4.70) where the 4utomol 

phisms a, specified in Lemma .1.3 i), are constrained by 

*:d"7i) = 111f(i)' {4.8] 
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One way to verify formulae (4.59), (4.60) and (4.57) is to directly apply the involutions, 

resp. their compositions with the antipode, to the expression of the n-matrix. Also 

we can u~e  the fact tha.t these formulae are equivalent to the symmetry relations of 

the forms (4.64) and similar constructions. Following this strategy it is useful to know 

that any bilinear form on U.. (b+) for which the comultiplication is the "transpose of the 

multiplication (compare (4.67» is uniquely determined by the scalar products of the 

generato~  E, and hi. For convenience we give the general forms of the involutions in 

terms of the original definitions (4.13), using the identification 

Fj = q-¥I;·	 (4.82) 

Theyare 

8 (ej) = fJ;(~/fr(j) 	 *(e;) = fJ;(i>!~(;) 

8 (li) = TJ1r(j)e1r(j) (4.83) * (I;) = TJfr(j)e,,(j) (4.84) 

8 (hj ) = hfr(j) i	 * (h;) = h1r(;)i 

and 

CEj =e;, CFj =!;, CHj = hj' (4.85) 

As an example, let us have a more detailed look at u;ed(sl2)' for q =eiYN , Where we 

assume (n, N) = I, N ~ 3. The relations defining u;ed(sl2) are 

[h, eJ 2e 

[h,/l = -21 (4.86) 

q" _ q-h
[e,/l q _ q-l 

and
 

eN = IN =O.
 

The universal R-matrix is given by 

N-l (1 2)"n =	 L q-l(h&h)q¥ - q, q-¥ en ~ q¥-r . (4.87)
"=0 (n)... 
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•Here we use the q-numbers, defined by .. .. 
(n),	 := q" - q-" (4.88)q _ q-l
 

They arise in the calculation of the commutators
 

[e, r) = r-1(n),(h - n + 1),
 
(4.89) 

[I, en) = e"-l(n)..(-h - n +1)... 

For the classification of the irreducible representations of u:ed(st2 ), we next describe the 

" generators of the center: 

Q = le+("~l): 

(4.90) 

= e/+ (";1): 
and P =e'Y". 

They satisfy the relations 

Pt- p-t] 2	 1)2)N-l "( (
[ (q _ q-l)N = -U Q- i+ 2 , 

or eq~ivalently 	 (4.91 ) 

[
!l] 2	 2)N-lPi+P-2 = -II (Q_(j)... 

(q - q-l)N ;=0
 

Relations (4.91) define a variety 'U in C2, on which the Casimir values of (Q I P) have to
 

lie. The real part of this variety, '21real, is the intersection of '21 with
 

IR X Sl = {(Q, P) IQE 1it,I p 1= I} , 

describing representations, that admit sesquilinear forms. A more detailed description.
 

of QJ will be given in Section 5.2.
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Cha'pter 5 

Representation Theory of U~ed(S£2) 

5.1 Highest Weight Representations ofU:ed(sld+l) 

We show that the irreducible representations of Uq (514+1), for q a root of unity, have 

a maximal dimen.sion and can be obtained from Verma modules by quotienting by the 

nullspaces of hermitian a.nd bilinear forms. The contragradient oj a representation is 

defined, and categorical aspects are discussed. 

The finite dimensional, irredu<:ible representations of Uq(.sld+1} and u~ed(sld+1)  are rep­

resentations of highest weIght, because the generators hi of the Cartan subalgebras are 

bounded operators. In the generic case of Uq("ld+1}, q2 1: root of unity, it is kno\!n [50] 

that the highest weights, characterizing the representations, are (up to irrational shifts 

Ai ..... Ai +T, where q2 = e!P) all integral, and the associated representations can be seen 

as deformations of irreducible representations of the corresponding classical Lie algebras. 

In the rational case, (i.e., q a root of unity) we see from (4.22) that the subalgebra. Uq( n-) 

is finite dimensional. Therefore, any highest weight will lead to a finite dimensiona.l, irre­

ducible representation, the dimension of which is bounded by dim Uq(n-) +1. For Uq(.sl2)' 

with q2= e2lriN, this bound is equal to N. 

A useful tool to determine irreducible representations from their highest weights 

is the study of real linear forms, (.,.) and (.,.), that are invariant with respect to the 
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antiinvolutions. and 8, introduced in (4.23) and (4.24) . 

The proof of the following lemma uses the direct sum decomposition 

Uq(.sld+d = 

C([hiD eC([hi])· Uq(n+) e Uq(n-). C([hiD (5.1) 

e Uq(n-). C([hiD' Uq(n+). 

and follows from a. standard reconstruction argument. 

Lemma 5.1.1 

a)	 On an.y pair of highest weight representations W~.,  V~,  (W~T,  V~,  respectively) oj 

Uq(Sld+d, with ).* =J. 0 Q ().T =). 0 ex), there exist invariant, real linear forms 

which upon specializing to t E i!R (i.e. lql = 1) become sesquilinear, resp. bilinea 

forms. 

b)	 The invariant forms {.,.} and (.,.)" are uniquely determined by (V~., v~) ((v~r, v~) 

where v~ are the highest-weight vectors. In particular, if (vA· , v~) =0 (VAT, VA) = 
then (.,.) == 0 (.,.) == 0). 
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c) If .V" and •.\.1". are defined by
 

N" = {:z: I (y,:z:) =0, Vy E W".},
 
, a.nd (5.3) 

•.\.1". = {y I (y,:l:) =0, V~  E V,,}, 

the quotients v>'/.V" and W"./M". are exactly the irreducible representations of 

highest weights A and A·. The irreducible representations can be obtained from (., .) 

and (} in the same way. 

In the statements made above, we may as well replace highest weights by lowest weights. 

By unitary representations we henceforth mean highest weight representations, for which 

(.,.) is positive-definite on V"/.'v·,,, so that the representation space admits a Hilbert-space 

structure. 

In analogy to the. classica.l case, tensor products of representations are defined by 

the comultiplication.· The trivial representation is the counit, which by (4.6) can also be 

characterized as the only representation such that V" = Y; ® VA' for all A. Furthermore, 

for any representation p on V, we can define a representation, pV, on the dual space, V·, 

(VV as a module) by 

pV =pi 0 S	 (5.4) 

ca~led  the representation conjugate to p. We have that pvv ~ pand that pV is uniquely 

determined by the requirement that the trivial representation is a subrepresentation of 

V & V V. The latter can be seen by replacing the action of K on V ® WV, by the adjoint 

representation on Hom(V, W). A trivial subrepresentation of Hom(V, W) consists of an 

intertwiner from V to W, so that V and W have to be isomorphic. Finally commutativity, 

p, & Pi :::: Pi g pi, is gua.ranteed by the invertible intertwiner 

Rtj =Pjjp, &p;R.,	 (5.5) 

where 'R. is the uni versal 'R.·rriatrix in lC gJC, and Pij : V; &\'; - \'; &V; is the transposition. 

For later applications we want to introduce an antilinear mapping XA : VA - V,\~, 

replacing the Clebsch·Gordan matrix P1,AA'V, intertwining V,\ ® V,,~  with Y;: 

lev) = (;(\ll, v) =P1,.u.V(v & i).	 (5.6) 
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It is related to the antihomomorphisms Sand * by	 .. 

X>'p,,(a)x~l  = p".v (5- 1(a·))	 (5.7) 

and, having (4.11) for the square of the antipode, can be normalized to 

X'\'VXA =q'l6 . 

5.2 The Irreducible and Unitary Representations of 

U:ed (sl2) 

The irreducible representations of u;ed(sl'l) are classified and given in a highest-weight 

ba.sis. We use the surjective parameterization by highest weights to discuss the topological 

structure of the center-variety. We show that representations over non-singular points and 

with· a dia.gonal Cartan element, k, are completely reducible. We determine the ranges 

of highest weights for which the irreducible representations are unito.rizo.ble with respect 

to *. ' 

In this section we describe the ir;educible and unitary representations of u~ed(sl2)'  for 

bq'l = e '», a root of unity. The irreducible representations have been determined in [51] 

for the algebra without relations (4.22) and generators e, I, k'l = q", so that e and f could 

still be invertible. For U:cd(sl2)' however, we have only highest-weight representations, 

and any A E C appears as a weight. In the next proposition, which summarizes these 

observations, we will see that integrality of A is only necessary to obtain representatio:lS 

with dimension less than N (rather than 00, in the generic case). 

Proposition 5;2.1 

a.)	 For U:cd(sl2)' with q'l = e2"";7, o.ny highest weight AE C corresponds to an irre­

ducible representation which is given, in the sta.ndard basis {Vi} i=O.o ..Ji'l-l for highest 
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.. weight representations, 6y 
~ 

hv( (A - 2l)v( 

JV( V'+l (5.8) 

ev( = (l),(A +1 - t), 1J(-l , 

where the dimension pl,1 $ Pl $ N, uN ifnA u non-integral and is determined 

by npl == n(.\ +1) mod N iJ A E ~Z. 

b) The trivial representation u identified with A = 0, and the highest weight, Av, of the 

conjugate representation pX =PlV is given by 

Av = 2(Pl - 1) ­ A• (5.9) 

A sesquilinear form on Vl e:z:ists only for AE IR. Moreover, there ,is an algebra 

automorphism, T, with 

T( e) = e , TU) = f , N 
T(h)=h+2;-, (5.10) 

such that there is an invertible mapping F>. : Vl -+ V'\+2 ~,  with 

p>'+2~(a)Fl  = F>'Pl(T(a». 

To prove a), we only need the commutators (4.89), and the fact that (x), = 0 whenever 

x E ~Z.  The irreducibie representations are then obtained in the usual way. 0 

From the automorphism T, defined in (5.10), we can find all irreducible and unitary 

representations, by only looking at those with A E [O,2~).  On the center .;, T(C) =C 

and T(P) = e2...i~ P, so that T~  r.; = id. Hence the representations belonging to A and 

A+ 2N, yield the same values of Casimirs in '.U. More precisely, we have the following 

result: 
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Proposition 5.2.2 

0.)	 Let '.U be the variety described in U.91). Then the mapping C -+ '.U C C2 , assignin9 

to each highest weight the corresponding Casimir values 

h. (P,Q) = (.;." c;1):) (5.11) 

u surjective, and can be defined on C/2NZ. 

b) C/2NZ -+ '.U identifies e:z:actly n(N -1) pairs of points, A+ '"" A_, given by
 

N
 
A± + 1 = ±a + -b mod 2N , 

n (5.12) 

a =1... (N -1), b =0 ... n -1, 

and is injective for all other values of A, so that V is an infinitely long tube wit/, 

n( N - 1) singular points. 

c)	 The subvariety describing representations which admit sesquilinear forms is de­

scribed bylR/2NZ -+ '.Ureal' Thus '.Ureal can be identified with the lattice edges of 

/":. (.!. ,~) ,":. (.!., -~)) mod Z x 71. 
\2 n N 2 n N iZ
 

on the upper half of the torus T' = i.2 /71. x Z.
 

The crucial point of Proposition 5.2.2 is that irreducible representations cannot be dis­

tinguished completely by their Casimir values. A point in '.U only determines the set 0 

representations that appear as quotients, e.g. in Jordan-Holder series, of indecomposabll 

representations. Note that, for the dimensions, we have Pl+ +PL = N, and the successor 

(>.+2), of a highest weight Ais also the lowest weight of an irreducible representation, witl 

the same values of Casimirs. For non-singular. values of Casimirs, the picture become 

much simpler. 

Lemma 5.2.3 Suppose W is a representation space of U,(Sl2) on-whichh is diagona 

and (P,Q) has only non-singular eigenvalues in W, i.e., all highest weights A occuring i 

Ware in (C\~Z) U(~Z -1). Then W is completely reducible. 
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To show this, we rest~ict our attention to a single Casimir value, (P, Q), such that the 

set of highest weights is in {>. + 2kNhe:, for some~. If hv = ~v, for some v, then v is 

a highest-weight vector. Otherwise, we could find some ", 1 :5 " :5 N - I, with e'v being 

a non-zero highest weight vector. Since its weight (~ + 2,,) is not contained in the above 

set; this i~  impossible. With a similar statement for lowest-weight vectors, and since h is 

diagonal, W decomposes into 

w = L6 
W,H2nN •	 (5.13) 

The invariant subspaces are 

N-l 
W" = L e kerCh - (A - 2k)), (5.14) 

1:=0 

for which we have 

ker f r w" = kerCh - (~- 2(N - 1))) apd kere t W" = ker(h....:~). (5.15) 

Thus all weight spaces in W" have the same dimension, so that, for some basis {Vl' ... ,vr } 

r e 
of ker(h - ~),  we have the direct sum decomposition W" = E Vl, Vl being the irreducible 

l=l 
representation (Vl'" . ,fN-1Vl). 0 

Next we state a result on unitarity. 

Proposition 5.2.4 

a)	 If the representation on V" is unitary, then). E lR, and the representation on V" ' 1l'! 
T" 

is also unitarizable. 

b)	 For ~ = N"'~-n, with s E [-N, N), V" u unitarizable iff 

either s E [-1,1], or s = n, or s = (-l)l(nl- nl+lr) , 
(5.16) 

r=l, .. ·,Pl+2, [=-I, .. ·,f-1, 

where nl and PI are defined by the Euclidian algorithm: 

N = Pin": nl in = P2 n l + n2,"" nJc-l = pJc+lnJc + nJc+l,"·' n/-l = Pl+lnJ + I, 

u:ith nJc > nJc+1 , N = n-l , n = no. 
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c)	 There erist unitary representations for all singular point' in 'l1, i. e., all dimensions • .... 

p" = 1, ... ,N, only if n = 1. In thu case V" is unitarizable for 

~  E {O,l, ... , N - 2} U(N - 2, N} (mod2N). 

The proof is elementary, although somewhat tedious, and will not be reproduced here, 

see [6]. 

In the case of unitarity, we define an orthonormal basis {e::J with p = P.h and 

m = -i,-i + 1, ... ,i, with 2i + 1 =p", which is obtained from (5:2) by setting 

p 1 
{i-l= ([),.!J(~),.  Vl· 

The representation then has the form 

(h - k>. ~) e~ 2me~, 

ee!:. =	 y(i - m),.(i +m+ I),. e!:.+1' (5.17) 

U~ = y(i +m),.(i - m + I),. e~-l'
 

where we have setk" = N(~  + 1 - P>.) E Z.
 

5.3	 Decomposition of Tensor Product Representa­

tions 

H'e present a basic result on the tensor product decomposition of two irreducible, integral 

highest-weight representations of U;ed (S[2), for q a root of unity, using non-degenerate 

bilinear forms. We discuss the structure of the indecomposable representations ari.sing 

in this procedure and state the fu.sion rules for irreducible representation" with non-zero 

q-dimensions. 

In this section, we investigate the decomposition of a tensor product of irreducible repre­

sentations into its indecomposable pa.rts. If, for two highest weights ~ and J.L,). + JJ ¢ ~Z, 

126 



~ 
• 

~ then, using the Casimir P from (4.90), with ~(P)  = P 0 P, we deduce from Lemma 5.2.3	 Lemma 5.3.2 
t 

complete reducibility, so that 

a) For every i, i = 2j + 1, withmin{1')'J'jA) 

V~ ~ V", = Eel V~+1oI-2n'	 (5.18)
,,=0 IPI - P2 I +1 ~ i ~ P1 +P2 - 1 1 

(5.20)
In the case where )., IS ~ ~Z, but). + IS E ~Z, the decomposition of V" ® V,. is similar to 

i == PI +P2 + 1 mod 2 
the one where the highest weights belong to ~Z.  The interesting case is the one where 

there ensts ezactly one vector, e;, of highest weight in ~1  ® Vp" i.e.,)., IS E ~Z. We use the basis (5.17), regardless of unitarity, with Ie" == w(). + 1 - p,,) = o. 
1.

All other, decompositions can be generated from the automorphisms T~(e)  = ±iei he; = (i - 1)e; , and ee; = o. (5.21) 
Tl(f) =±ifi Tl(h) =h + ~.  

The e; form a basis of ker e. 
Our main result is that the iUrfusion rules of rational conformal field theory and 

of SU2-Chern-Simons gauge theory ~an  be recovered from the representation theory of	 b) The squares (ej, e;) vanish iff 

u;ed(sl2)' in the following algebraic sense.
 
2N + 1 - (PI +P2) ~ i ~ N -1.
 

Theorem 5.3.1 The tensor product of two irreducible representation-spaces ~1 and VP2 , 

In order to determine the vectors e; 1 we express them in the basis e~  :& ef-,m with coeffi· 
with heighest weights ).i =2ji = Pi - 1, 1 ~  Pi ~ N - 1; and with the action of u;ed(sl2)
 

cients Q:n:

defined in terms of the comultiplication, ha.s a decomposition into invariant subspaces	 ;1+i2-; 

t i _ ~ i tP1 0. tP2
 
given by 'i - L.J Q n ';l-n '6' ";-;l+n'
 

n=O

min(1'1 +" -1.2N -1-(1'1 +P2» N 

~1  8 VP2 = Ee \'as Ee Wi' (5.19)	 From ~(e  )e} = 0 we find the recursion 
l.1P1 -" 1+1 '.2N+l-C"1 +"l 

'·"1+,,+lmod2 '."1 +1'2+1",od2 

0= q-(j+i)Q~+1v(n + IM2;1 - n)qThe spaces Wi are indecomposable subspaces, with lVN = VN and dim Wi = 2N, fori < N , 
(5.22) 

o_n which [Q - (i ):] 2, but not [Q - (i ):], vanishes. +Q~  V(i2 + j1 - j - n)q( I +h + i - j1 + n)q . 

In the proof ofTheorem 5.3.1, we make strong use of the fact that the bilinear f9rm	 Solving this in terms of Qi == Q~qi1(i+1) J(i1 ~~~+;) q' we find for the highest weight vector 

C .. ), introduced in Lemma 5.1.1, naturally extends to tensor products, because 9 com·
 
;1+i2-;
 (2;1 - n)q!(h + j - j1 +n)q!mutes with ~,  (Lemma 4.4), and is non-degenerate. The derivation of the decomposition e; = Q,	 E (-It q-(i1-n )(;+1) 

n=O (n)q!Ul +i2 - j - n)q! (5.23:amounts to an explicit construction of the representation spaces Wi in a natural basis.
 

The first step is the computation of all highest weight vectors and of their squares with er11_n ~ ef-.;I +n
 

respect to (., .).
 withji =~.  

This recursion can only be solved for i in the range given in (5.20), so that we havl 

found aU vectors of highest weight. 
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The expression for the square (e;, e;) is obtained by' use of the q-analogue binomial 

identity 

( a. +f3) = t q±(aA:-("-il)tl)(~)  (n ~ k) , (5.24) 
n q 1:=0 q q 

with 

(a.) _ (o.)q ... (a. - n +1)q, for a., f3 E R, n EN. (5.25)
n

q 
- (n)q ... (1)q 

It is given by 

(e;J e;) = 

o.~q(j,(n+l)-il(il+1)-i(j+l»(jl  - i-z + j)q!(j2 - jl +j)q! 
(5.26) 

(il ~ i2 ~ j ~ 1) . 
Jl +12 - 1 q 

To show Lemma 5.3.2 b) it is now sufficient to find the zeros of the q-analogue binomial 

coefficients. 

The non-degeneracy of the bilinear form ('J') now enables us, to assign to each 

vector e; with (e;J e;) = 0 an indecomposable subspace Wi within which it is contained. 

In contrast to the classical case,the e; are no longer cyclic with respect to Wi. However, 

a candidate for a cyclic vector of Wi is given in the next lemma. 

Lemma 5.3.3 

a)	 The square, with respect to (., .), of 'a vector of highest weight, e;, in y;'1 ® VP2 is 

zero, iff there e:::ists a vector e; E ~l  ® VJI2 , such that 

he; = (i-1)e; 
and	 (5.27) 

e; = fee;. 

b)	 e; and e; can be chosen uniquely, up to a sign, by imposing the normalization con­

ditions 

(e;, e;) = 1 J 

and (5.28)

(e;, e;) = (e;, e;) =O. 

c)	 The subspace Wi, generated by l;, also contains eif-l~i  and is the desired component 

ofVpl ® VP2 in Theorem 5.9.1. 

Proof. 

a)	 One easily derives from the invariance of the bilinear form (., .), that if (5.27) holds 

for some ve~tors  e; and e;, the square of e; is zero: 

(e;, e;) = (e;, fee;) = (ee;,eeD =o. 
To prove the converse, we can assume, for e; with (e;, e;) = 0, that by Lemma 5~3.2  

b) 2N +1 - (PI +P2) :5 i :5 N - 1.
 

Since (.,.) is non-degenerate, and since both hand Q are symmetric and cortunute,
 

there .has- to be a vector e; that belongs to the same generalized eigenspaces of h
 

and Q as e;, but has nonvanishing scalar.product with e;, i.e.,
 

he; (i - l)e) 

(Q_ (~):) G e) (Je)Oe; ,	 (5.29) 

for a sufficiently large, and (e), e)) :f: O. 

In the following line of arguments, we will see, that· any such e; has the desired 

property (5.27). 

From the relationship of Casimir values with highest weights, as computed in Propo­

sition 5.2.2 b), and from the bounds on the weights in (5.20), we see that the only 

highest weight vector, having the same Casimir values as e; and e;, is eif-i~I' Since 

we have N +1 :5 2N - i :5 P1 +P2 - I, this vector has non·zero square. As e'e; 

has to be a non·zero highest weight vector, for some 1 :5 J < N, we immediately 

conclude from the previous observations, that 

eN-iei = o.eN -: i J N-J-l ,	 (5.30) 

.. 
.It 
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t' " for some Q :f O. The case" = 0 is excluded, because ej, having, by (5.29), a non­ This yields a decomposition 

zero scalar product with e;, cannot be proportional to e;. Applying Q - Ci)~  to the 

vector t 2N -.' = leN-,i, we find eN-ifet ', = 0\N-,-1 CI \" , \,' 

The argument used above now shows that e·fee; is a non-zero highest-weight vector, 

iff oS =0 and fee; :f O. Finally we show that fee; :f 0, which, for some suitable 

rescaling, implies e; = fee; =f:. O. Assuming the opposite, eej should be a lowest· 

weight vector whicn has, by calculations similar to 'the ones at the beginning of the 

proof, vanishing square with respect to (., .). From Lemma 5.1.1 for lowest-weight 

representations, we conclude that (., .) va,nishes identically on the sub-representation 

generated by the lowest weight vector ee;. This contradicts, with (5.28) and 

0 2 (t 2N-:i t 2N -: i ) = (eN-it' eN-iii) = 0\N-,-I,'oN-,-1 \" \, , 

the fact, that (:f-j~1  has non zero square. 

b)	 We suppose that there are two vectors obeying (5.27). Then their difference,c, 

has to be a multiple of ej. Otherwise, we have from feo = 0, that eo is a non-zero 

lowest-weight vector "';ith zero square. By the same reasoning as for ee; in part a) 

this is impossible. The proof of statement b) concerning the uniqueness is now just 

a matter of scaling and adding. 

c) So far, we have constructed a direct sum of cyclic subspaces in \1,1 generated~ VJI2 , 

by vectors e;, for IPI - P2 I +1 ~  i ~ min(PI +P2 -I,2N -1- (PI +1'2», or i = N, 

and by (j, for 2N+ 1 - (PI +1',) :5 i :5 N - 1, (i == PI +P, + 1 mod 2).. 

In both cases it can be verified, that fie; is in the kernel of e, by using the commu­

tators (4.89). For i :5 N - 1, its weight is -2(j + 1)i but by Lemma 5.3.2 a), there 

do not exist highest-weight vectors with weights below IPI - P2 I, so that we have 

fie; = o.	 (5.31) 

Hence if (e; ,e;) :F 0, i.e., i satisfies the restriction in the first summand of (5.19), 

e; generates an irreducible subspace lIa = U:ed (sl2)e;, on which the bilinear form 

(.,.) is non-degenerate. 'We therefore have Vi n~.L =0 and can complement Vi by 

~.L,  Le., ~~1 ~ V", = Vi e ~J.. 
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min(PI +p,-1.2N -1-(PI+"'» N 

\1,1 ~ V", = L e Vie L e w~, , (5.32 
;-lrl-l'2l+1 ;_~N+I-("L +,.~) 

;lIl'l +1'2+1_0 112 ;!!'1 +1'2 +I ...od~  

where the W: have the same Casimir values as the subspaces Wigenerated by th 

e;.	 In order to prove c), without constructing W, explicitly, we want to show tha 

W: /~ does not contain any vectors of highest weight, and therefore has to be zer 

Suppose [e,.] is of highest weight in W: IWi , with weight 

>.,. E {-2N +i-I, -(i + 1), i-I, 2N - i - 1}. 

A representative e,. in lV:, with the same weight, cannot be of highest weight itsel 

because all highest weight vectors are already contained in lV" so that again e'e,. i 

of highest weight for some 1 ~ " ~ N - 1. The only combinations left are: 

eier e; with >'r = -(i +1) (5.33 
or 

eN	 i - {,. {:r.i~1  with ~,. = i-I. (5.34 

In the second case (5.34), we have eN - i (e,. - ~e;) = 0, so that, by a similar reason 

ing, er - ~{; is of highest weight. We then have er = ~(; +.Be;, which is impossible 

since fer] :/: o. 

In order to exclude the second case, we first note that 

e!,{; =f'ee; =fi 
-
1(fe)e; == !'-le; = 1'e~i' (5.35] 

for some l' ::j:. O. Since f'{} = 0, e~i is the lowest-weight vector of the subrepresen· 

tation generated bye;. Furthermorewe have that e'-I{~j  = 1'ej, so that, by (5.33) 

iwe have that e -
I (e~i - "Yee,.) = O. Thus e~i  = 1'eer. By (5.35), this implies thai 

e (1'~er - f'{j) = 0, and again, with Lemma 5.3.2 a), -y2er = fie;. This shows thai 

rer] = 0, completing the proof. 

We complete our analysis on the decomposition of tensor products with an explicit de 

scription of the repr~sentation  spaces Wi, equipped with natural bases determined by { 
and l; in Lemma 5.3.3, with normalizati.on (5.28). 

132 

c 



.. . 
The space W. is spanned by 2N vectors • .. 

e~, {:n, m }, (} - 1) ... ­ j ; 

lp~ , cp~  ) m j',(j'-I) ... -j'; 

with j = i;l and l' =N-;-l. 

The representation is given by 

h{:" = 2m{;") 

m,~-{j-l);  

2me:.., 

/(j +m)q(j - m + l)q e:"-1 , 

hcp:; = (±N +2m)cp~; 

/(T +~Mj -=..-m+ l)q l:"-l I 

he:" 

Il:.. 

ie:" (5.37) 

(5.36) 
2m= N 

j'-\O/-+ 
I 

---+----­I 

'n 
i 
+T·', ~I-J '­

e!-­ ./'e~ 

J J 

and 

ee:" 

el:" 

elp~ 

Ilp~ 

If.~j = 0, fl~i  = i­
lpj' , 

ee; = 0, elj = cp~j,  , 

icp~, = ej, i­ = e~j,e:pj' 

m::;(j-l)i 

m $ (i' -1); 

m ~ -(j' -1)j/(]'+ m)qU' ­ m + l)q 'P~-1' 

J(j +m+ l)q{j - m)q e:"+1, 

J(j +m + l)q{j - m)" e:"+l 
1 . 

+ . Cn+!,vU +m + l)q(j .,.. m)q 

-JU' +m + l)q(j' - m)q CP::+1 ) 

(5.39) 

(5.38) 

2m =-N 

-i 
-,~.  

-J 
'r-­

~~  

-I r' 
cp.,i­ ,_.:...1_--:­ _ 

I 

L-~:: 

: I 
• I . 

• I I -, 

~~--N'/"e~  

I """" 
J 1---'" t' 
: I '" m-l 

e:p~T  = 0, f'P~j,  = O. 

Figure 5.1 
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~ The representation Wi is visualized in Figure 5.1. Each dot marks a basis vector, its 

height in the diagram indicating its weight. The arrows in upward- or downward direction 

stand for non-zero matrix elements of the step operators e, f, respectively. 

For a better under.tanding, we introduce the Casimir element 

D; = [Q - mJ= f. - (i+; +1), (; - ~),  

(5.40) 

= 'f-(i+;),(j+l-~),. 

By construction, we have that ej == fee; = Die}. So if we inductively define e:n by (5.37) 

the action of f on e~ is determined bye:" = D..{:". Having e~; = efe~;,  the l()t;/ can be 

consistently defined by equation (5.39). Notice that the e:n are the basis of an irreducible 

subrepresentation and that Di is zero on e:n and l()~~,.  This is now used for an inductive 

definition of l()~ as in (5.38) and l():; as in (5.37). By comparison with the proof of Lemma 

5.3.3, we see that,e.g., l(J~t  is proportional to {~:~_;.  

In this basis the form (., ,,) has the values 

(e:..,{~) 	 = 1, (l():;,l(J:;) =(_l);':I:m 

(5.41)
j-m	 1 

({~,i~) = E(k)o(i - k)o 

and on all other pairs (., .) vanishes. 

5.4	 Fusion Rules, and q-Dimensions: Selecting a 

List of Physical Representations 

I'll. order to show that the tensor product decomposition of ~d.  (al2) defines a fusion-rule 

algebrtl, in the sense oj Section !.5.1, we need to verify associativit1l' i.e., we have to show 

that the e:cluded representations are an ideal under Jorming tensor product8. This is done 

using a condition introduced by Pasquier and Saleur {5f] which chartlcte;rizes saturtlted 

representations of the Borel algebras of Uo(al2)' It is shown that this criterion entail! 
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the vanishing of q-dimensions oj representations for which it holds. Our criterion an 

the vanishing of q-dimensions are, in fact, equiv4lent for indecomposable representatioN 

The group-lilc:e elements oj ~  (al2) are used to define chartlcters which diagonalize th 

fusion rule" and the so-called S-rnatriz is ezpressed in terms of q-numbers. . We defin 

a subset of representations which will be used in our duality theory. 

It was already pointed out in [52] that the representation spaces "'i have the propert: 

1that ker e = imeN - , which we will abbreviate in the followin:g by (E). It is conclude, 

from a .simple calculation for ~ ® W and an iteration of tensorproducts, that if (E) hold 

on some space W, it is also true {or ~ ~ w. 

Lemma 5.4.1 

i) If (E) holds on som~module  Wand W =A mB I then (E) holds em A and B. 

ii) (E) holds on ~  only ifp =N. 

iii) II(E) holds on W then it also holds on Vp ® W,p = 1, .. . ,N. 

Part i) is a trivial consequence of the definition of direct sums of modules, .and ii) 

immediately checked for the representations given in Proposition 5.2.1. We show ij' 

first for p =2. Let v =q ®w+ +e~~ ®w_ be in kere, with hw% = (2m =f l)w:l:, 

that A(h)v =2mv. Then 0 = A(e)v = qlet ® ew+ +q-(m+t)ei ® w_ +q-ie~l ® e 
f· 2 2 

implies ew_ =0 and ew+ =q-(m+1)w_. By hypothesis w_ == qN;l eN- 1y, so that 5v : 

A(e)N-l (e~~  ® y) = e~ ® w~ + e~~ ® w_ for some w~, where we use that the (0, 

graded summand of A(e)n is qn-t ® en. Hence it is sufficient to show, that v' e·ime, wi 

v! = v - 5v = el @ (w+ - w~), Le., we can assume w_ =O. In this case we have frol 

A(e)v = 0 that ew+ = 0, thus w+ =q-¥eN-1:t andw = A(e)N-l (e! ®:t). In order 

show iii) for general p, we use the fact, that v;, ® W occurs in V2~(P-l) ® W as a dir 

summand and apply i). 

This statement only depends on the representations of the Borel-algebra generat 

bye and k. For these, however, the tensor product decomposition is solved by a sjm 

basis transformation, showing immediately the invariance of "saturatedll representatio 
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as proposed in iii). This, together with the fact that if a direct sWn satisfies (E) then 

all the summands do, makes the convenience of working with this property evident. All 

of this can be understood from a more general representation-theoretical point of view in 

a very natural way (6]. 

In the decomposition given in (5.19), (E) i. true on the right summands and false 

on the left ones, 80 that we are led to the definitIon of the fusion rules 

, 1 if 11'1 - 1'2 I+1 ~  i 

1 ~ min(1'1 +1'2 - 1, 2N :... 1 -C1'1 +1'2» 
NPlPJ,t = (5.42) 

i == Pl+P2+1mod2 

0, else. 

The fusion matrix Ni is then defined in the usual way, Le., (Ni)&A::= Nii ••. 

These fusion'rules show that the list of algebraic objects producing the combina­

tories of the AN-l series, beginning with &U2-symmetric models in rational conformal 

field theOry, and continuing with SU2-Chern-Simons-gauge-theory and towen of algebras 

arising in local quantum theory, can be completed with the quantum group U.(.sl2). with 

q = exp(i7rjN). 

In order to compute the eigenvalues of Nil we introduce quantum group characters. 

Lemma 5.4.2 If we define the r:.th q-dimension of a representation space ~  ely, a.s the 

character 

dV = try (qrh) ,	 (5.43) 

then 

aJ for the irreducible representations "", 'With highest weight ~ = p - 1 E Z, these 

characters have the values
 
~_ (rp),.
 (5.44),,- (r), I 

bJ	 tf" = (p), is positive, for all p = 1... N -1, if and only if n =1, a.s for unitary 

representations. 
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I 
In the next lemma we draw the connection of vanishing 9-di~ions  and property (E). ~ ~  

I 
.1 

, ' ' j 
1 , Lemma 5.4.3 Ifkere = imeN

- , i.e., ij(E) holdl on.tome repre.tmtation "Pace V, and 

if I intertwine.s V with weI/, then I 
i 

try (9""/) =0, for r = l, ... ,N'-l. 

.: 

ProoJ.We derive from (E) by induction, that l't =kere' =i~eN-l for alll, with 

I
0= l'. c l'I ... C VN - 1 C VN =V. 

j 
I 

Because of (9""/) (l't) c l't, the trace can now be rewritten as a sum over characten on 

the successive quotients: 

N-l 

try (q""/) =E trv,+1!v, (9""/) . _ (5.45) 
l=O 

Obviously, ~ maps \'tH onto \'t, with e-1(\'t_l) = \'to We therefore have an isomorphism 

e·, with 

e·,: \'t+1 /\'t -+ \'t/ \'t-l	 (5.46) 

with 

[h,e-] =2h and [I, e·] = o. 
Hence 

trVl+1/V1 (q""/) = q-3t'trV,!V,_l (9""/) , 
leading to 

try (q"hl) = (E q-2"').tr~1!v. (9rhI)'~ o. 
l=O	 ! 

q 

With these tools in our hands, we are now in a position to compute the eigenvalues of the 

fusion matrix and to show that the fusion rules are well defined, in the sense that we have 

associativity, i.e., NiNi =NiNi. As the fusion rules themselves (with the representation­

labeling introduced in Section 5.3) do not depend on n, we ~ill restrict our analysis to 

the cases n =±lj (I n I> 1 will just permute eigenvectors and eigenvalues). 
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Proposition 5.4.4 For q = e:i' let N'i" =(Ni)" E {O, I}, be the multiplicity of ~  in 

Vi ~ l'J. 

Then the eigen"aJue. o/N; ere e:mctly dj, r =1 ... (N - 1), end we heve that. 

IINi lf = d}. (5.47) 

Proof. Taking traces of t/'" on both lides of the decomposition, we arrive 'at the familiar 

equation 

tlJ·f{ =EN'i.lelt, (5.48) 

or in terms of the eigenvectors 

q.. (dl, ... ,d"N_l) 
(5.49) 

Ni9r = djqr. 

In the Ipecial cue of q = e:i', the vectors 9r, r = 1, ... ,N - 1, are linearly independent, 

and 91 hu pOlitive components. Note that N1=1 and Nlr-l =1. For evenj< N -1, we 

can infer the ergodicity of Ni from the fact that any unitary representation is contained 

in a tenlor product of l';. By a Perron-Frobeniul argument, we conclude that 91 il the 

unique vector with Niql = IINi1l91' Similarly, we find that, for odd values ot j, N; has 

two ergodic invariant subspaces, one spanned by even-dimensional representations, one by 

the odd-dimensional ones. IINi ll is now doubly degenerate, with Perron-Frobenius vectors 

91 ± 9N-l' 

With these results, it is not hard to see that t~e  converse holds, too. 

The multiplicity, matrices obey II Ni II =d}, for j = l, ... ,N -1, only if 9 =e:l:f. 

o 

Since the matrices Ni are all diagonalized by the same matrix, 

t/J'i =die;), = (ij), t (5.50) 

they evidently commute. In terms of representation spaces, this can'also be inferred 

from the usociativity of the comultiplication (4.2) and the invariance of (E) under tensor 

products. 
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The first 9-dimensions, d} = IINi ll, can be interpreted as ~he quantum dimension. 

the lI;'s. For the fundamental representation ~,  for which N~ is indecomposable, thit 
" 

the well knoY(n formula . 
11' 

IIN2 11 =2COl N' (5J 

We conclude this section with a summary of those conditions irriposed on a quantum-gro 

and a list of those representations of the quantum group tha~  appear in applications 

local relativistic quantum theory. Theration8.1 fusion rules are only reproduced by 1 

subset of representations with- .\ E lZi (i.e. p2ft =1). H we denote the representation 
" , i -

in (5.3) by [p.\, k.\] then we have that ; 

N[J1.I:l)[r1.I:~),[pV1J  = 1, 
(50! 

for kl =kI +kf and Np ),ap),2 ,p),~: =1 

and zero otherwise. The smallest subset of representations,:~ invariant under fusion, 
'J; 

therefore obtained by setting k.\ =O. From Proposition 5.2.1 we see that it contains t 

trivial representation and closes under conjugation. 

By Proposition 5.2.4, these representations are unitarizable only if n = 1 

n=N-l. 

~  

~l  

) 

140 

, i 



Chapter 6 

Path Representations of the Braid 

Groups for Quantum Groups at 

Roots of Unity 

6.1	 Quotients o.f Representation Categories : 

The Vertex-SOS Transformation for 

Non-Semisimple Quantumgroups 

We develop an intertwiner calculus for non-semisimple Hopf algebras in which the notion 

oj irreducibility is replaced by indecomposability, so that Schur's Lemma is not applicable. 

We use this to generalize the "vertez-SOS-transformation" which is defined as a map from 

an intertwinerspace, e.g., a space of intertwiners between tensor product representations, 

to linear maps on quotients oj intertwiner spaces. This yields a rigorous procedure to 

obtain braid gro1J,P representations of rational local field theories and Boltzmann weights 

of the restricted RSOS-models from quantum groups at roots of unity. (In this contezt, 

we shall speale of a "rational", or "restricted" vertez-SOS-transformation,) The ideal 

property of the ezcluded representations is used to show that the resulting SOS-fonns 
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oj the intertwiners can be written' ill lineAr map. on patA sp~ce.. A trace form= for'l 
.	 .j .. 

the rational vertez-SOS-transJormation is given. Amore cO:mpact presentation oj tAis 
.	 . ,1 

construction mar 6e found in [61}	 ~ 

From the universal element 'R. e ~~~ of a quuitriangular Hopf-algebra ~  one can derive 

representations RV of the braid group. B,. on an n-fold tensor:produd 

'V = E- 1';"'1) ~ ••• ~  1';w<.) 
f~ 

..e$. . 

of representation spaces Vii of the algebra ~,  by setting 

., 
RV(CTi) = 1 ~ ... ~.~i+1  ~  : .. ~  i : 

for the generator CTi of B,.. Here the matrix 

~i+l  : 1';-(i) ~  VJW<iH) ~ 1';W<H1) ~ 1';.ii) 
It 
!is given by 

Rii+1 =PH+1 (Pi"'i) ~ PiW<iH» w" 

and commutes with the action of ~.If  the representations of ~  are cOIJlpletely reducible 

it is we11known [53, 43] how to a>n.truct representations, RP, of B,. on the path space 

P(iIUi}li) = E ep(ilitr{l),'" ,itr{n) Ii)· 
. ..e$.. . 

Here the path space 'P(ilih' .. 1 inli) is defined to be the linear span of paths 

w = (~l all I-'zazl ... ,"",a,.), with "'" = i, 1J0 = i, and V,.~·  i~  an irreducible .ubrepre­
• . .	 I 

sentation of ViI._l ~ 1';., where a. = 1"", H,.._dla.,.. labels the IJlultiplicity. 

The ~nstruction  of RP (Vertex-50S-transformation) use~  the fiLet that the COIJlPo­

sitions of Clebsch-Gordan IJlatrices 

pw(ja),i =(Piil",l (al) ~ ~ Ii•.)'" (P,.._li.",,(a.) @ li.H ... ~ 1;..) 
(6,1) 

... (p....-a;..-i -1(a,.-1) ~  1;..) (p....-1;..·,i(a,.») 

and' 

Pi.W(ja) = Pi.,..-d..(a,.) (P....-l~-a;.-l(a,.-l)~ Ii.)'" 
~  (6.2) 

(p,.•.,.._d.(all) ~ ... ~  Ii.)" . (P"l.iil(al) @'.:.. ~ 1;..) 
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.. are a basi. of intertwinen between the .paUl V; and V; ~ VA'" ~ V;.., and can be Since intertwiners Pi;). can be defined for all i,;, I: ~ N obeying the fusiol..• normalized IUch that ordinary 5U(2), see (5.20), a basis of Int(W, V) i. given by 
Pj'....(;i)Pw(;;)J = 6.....6#•. (6.3) 

P(N-l)n,(N-l) = (P(N-l),.N-' ~ 1,) P(N_,),,(N-l)
The matrix elemenb of and 

P(~-l)n,(N-l) = (P(N-l)'.N ~ 1,) PN,,(N-l)' 

RP(b) : P(ilill'" ,;"Ii) ..... 'P(ilj.,(l)' ... ,j.,(,,)I;), As in the generic case, we have a natural map'from the space 

where (1 i. the image of b under the natural projection of B" onto 5", are given by Int(W".W1) ={R: W1 -+ W" Ra. = a.R, Va. E 1.:} 

R
V 

(b)Pw(j;)J = E RP(b)"" ... P",'(io(i»J' (6.4) into Hom (Int(W
h 

V), Int(W,. V)) by left multiplication, denoted by
""€"( "Uo{I ).. .i.(~) 111 

Let u. note, at this point, that the path spaces carry a multiplicative .tructure by simple 
1': Int(W" W

1) Hom (Int(W1, V). Int(W" V)) 

composition R peR). 

E81 To recover the path .tructure for the rational case, we have to divide out' subSl 
i 

p (ilill'" ,itl;) x l' (j1;1+1I'" ,;,,11:) ~ l' (i\jll'" ,j"ll:) , (6.5) 
,intertwinen. For this purpose let 

giving rise to a pa.th a.lgebrtl. 
Into(W

h 
W,) = {I E Int(WlI W,) I tr(gIJ) = 0, VJ E Int(W,. W1

)} •

In the absence of complete reducibility, e.g. when 1.: =U.(~lll+1) with q =e.... )t, the where 9 implemenb the square of the antipode; e.g., for U.(sl..) it is given byVertex~SOS transformation has to be modified. For this purpose, let us int,roduce linear If one of the representations Wi = V is an irreducible representation with non Vispacei of intertwinen between an irreducible representation space V and an arbitrary I q-dimension we see that Into(Wrepresentation space W. h 
W,) can be given as the subspaces of interl 

without left or right inverse. More precisely. we haveIn order to describe the set of irreducible subrepresentations of W isomorphic to V, 
V} E Int(V, ~)}we shall make use of their embeddings. Therefore, let us introduce the linear space of 

Into(W, V) = {I E Int(W, V) I J I ,,:r. 
"


intertwiners,
 
and


Int(W, V) := {I : V ..... W, Ia. = a.1, Va. E 1.:}. (6.6) . 
Into(V, W) ={I E Int(V, W) \ 1J = 0, VJ E Int(W,V)}By rnt(V, W) we denote the space of intertwinen i~ reverse direction'. It identifies 

subrepresentation., ve = ker I, with the property that WIve :::: V. As an example, let If we assume V only to be indecomposable rather thB11 irreducible, "}I = on and
us consider K; =U.(~l,), with q =ei and W =VN-l 0:0 Vi 0:0 Vi and V =VN-l' Since the in (6.9') have to be replaced by "JI and IJ nilpotent, VJ". These sets are lint
number of highest. and lowest-weight vectors for a: given weigb,t is the same as in the and yi~ld common invariant subspaces of the generic 'VerteJt.SOS-transformat~ 

generic case, the dimension of Int(W, V) is unchanged. sense, that 
'We prefer the more IUUeatiYe notation Int(W, V) to Bom.c(V. W). peR) : Into(WlI V) ...:. IntDC W" V), 

143 144 



Co " 

all R E Int(W2, WI). The complemented irreducible representations in W isomorphic which satisfies (5.25) and (5.26) of Lemma 5.3.3, and therefore yields a subrepresentatiozf ., 

, are identified with points in 
WN-l of VN-l ® V2 ®Vi. In fact, it can be shown that all tensor products decompose 

"t 

into three sets of subtepresentations: 

Int(~ V)/Into(W, V) . 

our example Into(VN _ l 0 ~ 0 Vi, VN-I) is spanned by l(t-l)22,N-1' This can be seen a) irreducible represe~t4tions with highest weights .\ E {O, ...;. J N - 2} 

m the explicit {orm of the interhviner 
b) irreducible represe~t4tions oj dimension N 4ntlweights E NZ-1
 

P+ =
(N-l)22.(N_I) 'om
tN-l 

c) 2N-dimensionoJ, indecompos4ble representations, whose structure differs from the 

one given Jorthe "" in Section 5.9 only by shifts, Q - a
I

+N, i~ the weights.
qm-fV(N;2 +m)q (f - m), eN

- 0 e®em-l
l 

i l 

+	 qm-i (f)lI ~~-l ® e~l. ~a (6.11) In order to define the rational Vertex-50S-transformation, we put 

a I 

+ qm+i (f +m)q {~-1 0 e. ®e~l	 P(W, V) =Int(W, V)jlnto(W, V). (6.13) 

{N-l	 For 
"-
any linear map T: Int(Wh V) _ Int(W2, V), that maps

+qm+/f I(N;2 - m\ (~+ m)lI 
m+l ® e~l. ®e~l.'

I I 

n this case 
Into(W1, V) into Into(W2, V), 

t N -l+ 
A

2
(f) (e¥ ~el @{l) ,	 we have-a well defined map l' :P(Wt , V)- P(W:l' V), given by the condition, that thel(N-I)22,(N_l)\llT!


and
 
diagram

l(t-l)22.(N_l)e~N~2 = A 2(e) (e~N~2 ®e:i ® e: t) 
, 

Into(W1, V) ...... Int(W1, V) - P(WIt V)
here A2 == (A®l)A. A left inverseintertwiner PCt-l).CN-l}22 to P(t-l)2:l,(N-l) therefore 

s to be ill defined on {¥ ~ {f ®Ei' as iT iT 11' 

Into(W2, V) ...... Int(W2, V) - P(W2 , V) 

tN-l - tN-I t2 t:l) E' ff (1',+
(N-I) (N-I)22"l!.:1 @\l. ® H 1m.. ~ -

, 2 2 .:12 

not possible for highest-weight vectors of irreducible representations. A similar result Figure 6.1: 

: first obtained in [301. 

commutes. Stated differently, if [TIJ2 =0 whenever llh = 0, then T is defined by 1'[1). = 

A. in the .... 0/ the t.,."or product decomposition, we can find & vector (':fi E 
ITI}" from the set of equivalence classes of Int(W1, V)/Into(Wh V) into the quotient space 

·1 ® Vi 0 Vi, given by 

Int(W:l 1 V)/Into(W2, V).
2(N-l

N -2 1f'2) tN-1 t:l 2 l!.=! tN-t 10. t:l iOI t2
2a V~~Jq \ '1i=1. ~ ~l 0 {t- + q ..¥ '0' Ll '0' \.	 

As mentioned in (6.10) this is the case for T = P(R), for any R E Int(W2, W1), so 

(6.12)
k.l N 

-1 ® e:l @e	 that we have the following definition:+q- I { 

~ ~ -i' 
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....... Definition 6.1.1 The rational Vertez-SOS-transfoNn4tion u the m4p 

' .. Int(W2, WI) Hom ('P(WlJ V), 'P(W2, V» 
(6.14) 

R 'Pra'(R) , 

where 'Pra'(R) U the ezteMon ofP(R) given by pra'(R) := 'P(R). 

For IN-l 0 R E Int(VN _ 1 @ "2@ "2, VN - 1 0 "2 0 "2), with R = ),l Pl + ),oPo, Pi being the 

projections onto the respective subrepresentations of "2 0 V2 , the ordinary Vertex-50S­

transform is given in the form 

), i ~.-"I  )
'P(R) = I ('l.. (6.15) 

( o ),0 

where the invariant subspace of 'P(R), spanned by the vector (~),  is identified with 

Into(VN _ 1 0"20 "2, VN- 1 ) = (P(t-l)22,N-l)' Taking quotients for the rational case we 

arrive at the one dimensional space 'P(VN-l ® "2 0 "2, VN-l), on which pra'(R) acts as 

multiplication by ),0' 

Clearly this map factors through the composition of intertwiners 

Int(W3 , W2) x Int(W2, WI) .... Int(W3 , WI)' (6.16) 

Next, we use the results of the tensor product decomposition (Section 5.3) of UIJ(Sl2) to 

identify P(l-'i ® 1';1 ® ... ® \';",1';) with the restricted path sp4ce, ~r.,(i I il,'" ,in I i). 
The latter space is defined in the same way as in the case of complete reducibility, with the· 

restriction, that N"._d",". =F 0 and P" E L, for all k, For any restricted path, the inter­

twiners Pw(;;)J and P;,we;;) given in (6.1) and (6.2) are well defined and can be normalized 

as in (6.3). 

Lemma 6.1.2 

a)	 If for] E Int(Vi 0 \';1 ® ... @ 1';",1';), p;.w(;;)] = 0, for every restricted P4th w, then 

] E Into(Vi 0 \';10 ... ® V;.., l';). 
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b)	 The im4ges of intertwiners PW(;I)'; in the quotient 'P(Vi @ \';1 @ ••• 0\,;.. , \';) fOT 

4 buu in 'P(l-'i 0\';1 @ •.• @ 1';.. , \';) . 

The corresponding st4temenu 4re t~e,  if we pick 4 different ordering of the intertwine 

in (6.1) 4nd (6.!) 4ndl moreover, if we ez~hange left with right intertwiners. 

Proof· 

We first show, that if 1'; C V"'_1 ~ \';. @ ••• @ \';... is complemented, i.e., its injectic 

has a left inverse J : V"._I @ 1';. @ ••• ® V;.. .... 1'; , then there exists some Pit, for whil 

N",_d,.", =F 0, so that VI" = (p",,"'-d' @l;HI '" @ 1;,,) (\';) is non-zero and compI 

mented in VI" @ \';'+1 @ '" ® \,;". Statement a) then follows by iIiduction.. 

Suppose that, for any Pit, VJ:.' is either zero or not complemented. This means th 

J: (P"'-d',,,, @ 1;'+1 .. , @ 1;.. ) (Vr.') = 0, for all p". Hence JP,,(\,;) = 0, where 

PIc = E P",-d"", p",.",-d, @ I;HI '" @ 1;" 
",:N"'_I;""''j!o 

is the projector on the first summand of the decomposition 

V"'_1 @ 1';, @ ••• @ 1';.. = 

{6.1
~$ VI" @1';'+1 0 ... ® \,;,,) $ (~$Wi ® \';11+1 @... @V;..) . 

(
 

N"1I_1;""1It10 .
 
I 

Therefore i'; = (1 - PIt )(\';) =F 0 can be complemented and is contained in the seCOI 

summand of (6.17). However, we know that property (E), introduced in Section 5, 
.	 J. 

extends to tensor products and direct summands. As (E) is satisfied for all Wi, it al 

has to hold on "Cj. For i .~  N;2, this leads to a cOl!tradiction. The second st~tement 

. ' 

an immediate consequence of a), since for any J E Int(Vi @ Vii @ ••• @ l';",l';) 

J - LCw pw(;;)'; E Into (Vi @Vii @... @\';", l';) , 
w 

with I;Cw = p;.wU;)], (by the normalization chosen in (6.3». From Lemma 6.1.~,;a)  1 

find that the rational Vertex-50S-transformation preserves the multiplicative struc~t.:  

of the path spaces, as explained in the following remarks. 
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Under the natural composition, the spaces Into(W, V) have the ideal property 

Int(~  ® Vii ® ... ® \';.,\';) X Into (1'; ® \';"1 ® ... ® \';",~)  

(6.18) 
C Into (Vi ® Vii ® ... ® \';.. , ~) , 

as well as 

Into (Vi ® \';1 ® ... ® \';., \';) X Int (\'; ®\';.+l ® 0 V;.., ~) 

(6.19) 
C Into (Vi ® \';1 ® 0 V;.., ~) . 

With the identifications made above, we can view the rational Vertex-50S-transforma­

tion, in the case of Uv(Sl2), as the map 

Int(\'.1 0 ... ® ~., Vi1 ® ... ® Vic) -. Hom (1'C'1i1 ...;,I;), 'P(,1.1 ...•• I,») 
(6.20) 

R 1-+ p[;t(R). 

By (6.18), (6.19) and (6.10), this map is evidently compatible with the multiplicative 

structure defined in (6.5), in the sense that for 

A E Int(~1 ® ... ® ~.,  1';1 ® ... ® \';,,)
 
and
 

B E Int (~.;1  ® ... ® ~.+C'\';"+l 0 ... 01';".",) , 

p[;t(A®B) maps 'P(ilil"" ,inIP) X p(plin+1)'" ,in+m'i) into the product of path spaces 

p(ils1 , ••• , Skip) X 1'(pIS1+1I"" sk+t1i) by p[;t(A) 0P;t(B), for all pEL. 

The kernel of the rational Vertex-50S-transformation is given by 

n K: (~1 ® ... ® ~., 1';1 ® ... ® 1';c Ill,.) , (6.21) 
r,N;r';#-O 

where .(W21 WI I V) is the subspace of intertwiners in Int(W2, WI), which map all 

intertwiners Int(W1I V) to Into(W2, V). 

A more efficient way of characterizing K:(W2, WI I V) can be given with the help 

of Lemma 5.4.3. From the proof of Lemma 6.1.2, one can see that the common kernel 

~i.)  := nker pi ,,,,(;;) is the maximal subspace in W ~= 1';1 0 ... 01';" satisfying (E). We
,'"

associate to it the projection Po = 1 - ~  p",(;;},jPi,"'(i,) , and, as Po E Int(W, W), Wci;) is 
','"

seen to be a subrepresentation of W. 

or". 

Lemma 6.1.3 If C e Int(W, W), where W is an n-fold t~or  product of irreducibl: ~  

representations with dimensions lell than N , and a e U..<sl~),  then the following trace 

formula hold.s I 

tr(aC rW) = 

N-l (6.22)
E tr(a r l';) tr (pat(C) r'P(W,\';») + tr (aC. rwci,») ,
;=0
 

where Co = poCP•.
 

Proof· 

The second term on the r.h.s of (6.22) can be identified with the second term on the r.h.s 

of tr(aC) =tr«l - Po)aC(l - Po» + tr(PoaCPo). 

In order to evaluate the first term, we note that 

tr (p",c;.).;p"",c,,)aC P",'C;.)';'P"'''''C;.») 

S",tr (aP,....Ci,)O P",'Ci.).;, Pi' .loI'Ci,)P...ei;)';) 

6",,,,,6,i' dlolCot,tr(a r\';), 

where c!,loI,l, := P'.loICi,)O P",'Ci;)'; 

are the matrix elements of pr&t(C) on peW, 1';). a 

Next, we choose functions {f,},=l .....N-lJ such that tr (J,(qla) r -v",) = 6,,,,, and 

tr (J,(qla) rW) = 0, if W has property (E). With the help of Lemma 5.4.3' we see 

that any function with f,,(I) = 6".11 f,,( -1) = -6".N-h f,,(qr) = I (6",,+i - 6"r-l), 

r = 1, ... , N - 1 and f,,(q") = f,,(q-"), is a candidate. This defines an inner produ~t  or 
A E Int(W2, WI) with BE Int(W1 , W2 ), by 

(A, B), = tr (J,(qla)AB rW2) 

(~.23) 

= tr(pr&t(A) pr&t(B) rP(W2, -v"n . 
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·J .. 
... .., 

" 
Since the map 1'r.' : Int(W" W,) - End(1'(W" ~»  is surjective, we have from (6.23) 

that 

~(W"  W1 I~) = {A I (A,B)., = 0, VB E Int(Wtt W,)} . (6.24) 

Let usconc1ude our discussion of the rational Vertex-50S-transformation, with some 

comment. on the structural properties that are present in the vertex picture, but not 

observed in the SOS-picture. First, it i. essential to restrict j S N;', since every subrep­

resentation isomorphic to V¥ is, by Lemma 5.2.3, complemented, i.e., Into (W, V¥) == 

0, and since the dimension of the highest weight spaces is larger than in the generic 

case, 'P (W, V¥) i. described by unbounded paths. An explicit example is given by 

W =V.n @ V.iI and V =1';, with Nii.ilJ =0, j =F N;1. From the decomposition ~f  tensor 

products, discussed in Section 5.3, we see that Into(W, \';) is given by the embedding of 

1'; into W;, (mapping e~  ~  e~),  and Into(\';, W) by D;, (mapping l~  -+ e~,  rest -+ 0), 
where D; is defined in (5.38). 

151 

6.2 Braid Group Representations and Fusion Equ~  

tions. 

With the help of the rational Vertex-SOS-transformation, as defined above, we obta 

a faithful representation of the braid group on n-strings, Bn , on the space of restrict 

paths 

1'mt (i I{ji} Ij) = E el1'rat (i Ii1r(t}t ... ,j1r(n) Ii) . (6.~ 

1reS" 
By compatibility with the multiplicative structure of the path algebra, if is sufficient 

give the generators in Hom('P(k I p,q / i), 1'(k Iq,p Ii», by 

(la: ® Rit) (Ptep.;(f3) ® Ill) P;ll,i(a) = Ep:!:(k, q,p, i)~~:  (Pkll,i(JI) ® 1,,) Plp,i(P) 
i",. (6.~ 

mod Into ("1: ® l'v ® Y;" Vi) . 

Here we put R;, = (R~)-1. 

Since by the arguments of Section 5.4, for all dEN and q a root of unity, 

can find a family of indecomposable representations, with nonzero 'q-dimensions, a 

fusion rules for Ull (sid+!), such that ,1', (Vi ® V.n ® ... ® \,;", "1:) admits a path basis 

the above sense, we explicitly include the ~u1tiplicities  in the following formulas. It 

convenient to 'use the following graphical notation for products of intertwiners. A ten: 

product \';. ® ... ® V;.. is represented by n-ordered strings with colours it, ... ,in, and 

intertwiner I : 1';. ®... ®1';" -+ 'Vi. ®... ®Vi", by a "defor,mation" of the strings it, ... 

into itt ... ,im • Schematically, this is shown in Figure 6.2: 
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• • • 

--
• • • 

• A.­

The normalization (6.3) is then represented by -- ..... 

i 1 1m 
k 

-
I =6",l6".,,' 

I
 
i1 in
 

Figure 6.5 
Figure 6.2 

and equation (6.26) by The generators of these lldeformations" shall consist of the intertwiners Pi;,,, (0), 

PIc,i;(fJ) and R~,which  we represent, graphically, by braids 

k p k q p 

J J 

":J::(k .)jJJtJJ---. Rt.'J' 
---. Rij = (Rji f 1 =LJP ,9,P,' l."", 

tv"X X 
I J . 

Figure 6.3 
Figure 6.6 

and forks Figure 6.4 
The proof of Lemma 6.1.2 shows that a choice of basis in 'P(~  ~  \.';; 0 ... 0 \.';.. , Vic) can 

be given for a~y ordering of the Clebsch-Gordan matrices. In fact, a change of basis· 

j k by reordering can be entirely expressed in terms of the 50S-weights (p=!:(k,q,p,i};~:).. 
The following fusion identities mainly rely on the duality relations (4.9) which can be 

---. PIc,i;(IJ)·......... P;;,,(~}.
 reexpressed in terms of intertwiners by y A 
(Ii ~  Rt) (Rt ~ Ij) (Il ~  Pij.m(a» = (~j.m(O) ~ I l} Rf", (6.27)

k 
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-'J .. 

can be computed from p-matricel: 
and i. represented, graphically, as follows ... 

' 
4jJ(i,j,l, 1e)'M·Q/J ­

~ r.IW ­

= 

m	 m 

Figure 6.7 

Analogou. equ&tiona hold, for the reflected version of Figure 6.7j see also [43, 44]. Note 

also, that the labels in (6.27) do not have to correspond to irreducible representations. 

Let UI assume that we have chosen a basis of intertwinen such that 

(I, ~  A)Pp1 ", = (A ~ 1")Pl ",,, =A(v.) I" (6.28) 

for all Ae ~., with v. independent of p. Then we have 

Lemma 6.2.1 

aJ	 The imagel of {(Ii 0 Pjt.m(ex»(~m,.. (,8»}m.a~ in 'P(t'. @ 1'; @ lr" \tA,) form a second 

6uu. 

bJ The coefficient4, ip I ezpreuing the change of basu 

(Ii ~  Pil,... (a» Pi ...,A:(,8) = 
. (6.29)

L y,(i,j,l, Ie)':;;:! (Pij,r(Jl) ~ It) Prt,,,(v) mod Int. (t'a @ 1'; ® lr" \'.) 
r,w 

and 

(~j.r(P)  ® It) Prt,.. (v) = 
(6.30)

L ep(i,j,l, k)~(li  ® Pil.m(ex» ~m.A:(,B) mod Int.(t'. ®l-j ® lr" "k) 
IA~ 
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(6.3] 
~ 1=(1 • L)"l1' %( •. 1 L)m,Ot7 :1:(1 . ·)i.1(LJP ,m,I,"""l"P ],1, ,II: r,(., P ,I,],r i.l1' , 
~ 

and 
q,(i,j,l,Ie)~  = 

(6.3~ 

~ 1=(1' L)'M.l" %(. l . L)r,(., :1:(1" ),,11'LJP ,I,m, II: i,l1' p ], ,I,ll: m,a" P ,],',r i,l(' 
~  

The proof of Lemma 6.t.l is purely computational. For convenience, we understan 

the following equations modulo Into(W, V), wit~out  further-mentioning. Since A@ 1 

\.'t 0 W -+ W is an intertwiner, for any AE l't·L~e obtain from (6.26), for Ie =1, 

R;,Ppq,i(ex) =L p%(I, q,p, i)::~:  Pqp,,(Jl). (6.3~ 

I' 

Applying R~  ® 1" to (6.26) and making use of (6.27), we have that 

(Ill ~ PIcp,j(,B» Rj. Pill,i(ex) = 

(6.3~

L	 p:l:(Ie, q,p, i)~~:  (R~PI:9"(V)  @ 1,,) Plp,i(Jl). 
t''',1£ 

We now use (6.11) on both sides of (6.12) and invert p%(I,j, q, i)'::; by using 

~ T(l . ')i,l1' =(1' ')9.1a - 8L.,P ,q,J,I 9,laP ,],q,' i,l" - 1'1'/' . (6.3 
a 

This yields the desired expansion of the basis {(Ill @ PI:pJ(,B» Pllj,.(,,)}j~,,,  in terms 

the path basis, with coefficients e,O(q, k,p, i)~~: given by (6.31). 

The ~pression  for q,(p, Ie, q, i)t~ are obtained by applying the product of R-matri 

(Rt, ® 19) • (11: ® R~) to (6.26) and proceeding in the same way as above. 

156 



·"," 

Expression (6.29) is expressed, graphically, as follows • 
~ .. 

k 

= L rp(i,i,l, Ie)':.:!,.,.., 

k 

k p 

. ,),.1a
= LP-(l.J,q,~ ;,1" 

II 

k 

k p 

Figure 6.8 

To demonstrate the convenience of the graphical notation, we repeat the proof of equation 

(6.31): 

q k p k p 

q k p ~ -(1' ')1.10 +(k .);,/Jo= LJ P .J,q,~ ;.1" P ,q,PI~  l.,,~  

'I"'~ 

k 

q 

q k p 

, I 

~ -(1 . . ')9,la +(k . ,);JJQ +·(1 k i)l,l"= LJ P ,1,'l,~  ;,1" P ,'l,p,' l.,,~  P ,'ll' 9,1(
Q",.q 

Figure 6.9 

o 
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-'J .. 

<It In the l&me way we obtain 

...' 

'" "(.. l le)r.1W 
= LJ 'P 1..1" ",.o(J 

mo(J 

k	 k 

Figure 6.10 

Since the Pii,.(a) form a basis of left invertible intertwiners in Int(\'. ® \,;, Vk), we 

find a dual basil Pk ,ij(f3) in Int(t.'J., \'. 0 \';), with 

Pk,ii({3)Pii,k(a) = 6o(J'	 (6.36) 

The path expansions of these intertwiners are evidently given by 

(110 P..,r.(II» (P'r,,,,({) ® I.) P",.,i(-Y) = 
(6.37) 

Efi'(l,r,,,,i);'~t'  Ptp,i(p) mod Into (\', 0~,  \'.) . 
.., 

With these orthogonality relations, we obtain the fusion equations in 50S-form, by 

expanding both sides of a version of (6.27): 

R;' = (P,.u(6) 0 I,) (lr0R;.) (R;'0 1.) (lp 0 Pu,,(6». 

Together with the reflected version, this yields 

t t ± (Ie .)i.Pa 
an' O•• i p ,9, p,' t,"" = 

'" A(' ')","a ±(Ie )i.PE	 (6.38)LJ 'P ],r,",' "',hP ,r,p,m ",',('"
",,,,'. 
U""'" 
±(' ')""'I"Y "(Ie l)"" ,E'..,'pm, ", P,' t,..,',. 'P , r, ", ,,'"
 

and
 
t t	 ±(Ie .),•.,,. ­
Ott' 066' P ,p, 9,1. i.Pa ­

'" epA(1e l)""'"m'.('..,'P±(' ')"""" (6.39)LJ	 ,r,", m,p,",' "','I"Y._'. 
U""" 
±(Ie )"".E'" -( .,)""(..,,P ,p,r,m i.Pa 'P ],T,",' ,,'a . 
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6.3	 Unitarity of Braid Group Representations 01 

tained from Uq{ Sld+l) 

If it. is possible to generate all representations in L out of a set of fundamental repres«: 

tations :F := {II,' .. ,Ir}by taking tensorproducts and decomposing, then, by equatio 

(6.38) and (6.39), all 50S-weights can be obt&ined from the weights p±(Ie, Ii,!;, i)~:  

andVJ(Ie,r,fi,l):;"~;..,.  Comparing the complex conjugate of (6.38) to (6.39), we arrive 

the following expression of unitarity: 

Lemma 6.3.1 For a given choice of basis {Pii,l:(a)}, the representations of Bn on j 

path sapee P(i I{ill'" ,in} I;), as defined in (6.!5), are unitary iff the representati~ 

of Bn are unitary on P (i I{/l:l , ... , fk..} Ij), for arbitrary Il:l E F, l = 1,.,., n, and 

. ( . . f,	 l).. ,611 • (. • f, l)'" raIJ'P.1.,], .r, m,raIJ = 'P 1..1, r, v,611 •	 (6.4 

As an example we may apply this result to Uv(Sl2), where :F = {V2}. 

Since all the multiplicities are unity, we can set Pi';lc =plio In this case 

ep(Ie,2,p,i)~ = ~(1e,2,p,i)i,	 ; (6.~  

and it is sufficient to check, that the expressions 

m
?r ( Ie, 2, p, i)~ := ~(Ie,  2, p, i)~ ep( Ie, 2, p, i)i , (6.~  

which are invariant under scalings of Pii,Ie, are positive. 

Their values.can be expressed in terms of q-numbers: 

p±l ' . HI _ (;p + l +ii -;1:) v (;1: - ip+ l +ii), 
(6.'?r (Ie, 2,p, ')j::i:l - (2' + 1) (2' +1)

}p. v]1: f 
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and 

1I"PTl(1:,2,p,i):it = 1 _ 'lI',,*1(1:. 2 p 4)1:%1 _ (j~  + i, + j. + n, (ip + t + i, - i.) 
, , '·113:1-. ' (2Jp +1), (2j, +1), ' 

(6.44) 

where 2iIJ +1 = 1:, 

The computation of the braid matrices, for p = q = 2, gives 

p±(1: +2'1,2,2, 1:)~+:, =qTt 6",6"", 

for 71, (1, (1' = ±1, and 

p±(1:,2 2 Ie) = q:i: l [ ._qH . J(1: +1),(1: - 1).. ] 
(6.45)" (1:) .. 

f J(1: +1),(1e -I), qT' .' 

These representations are therefore unitarizable, iff all q-numbers (n)" with 0 ::; n < N, 

are positivej or, stated differently, iff q = e:i:ii. We will see in Sectiop 7.3 how this is 

related to the result obtained in [54) for Heeke-algebras. It is possible to rewrite the 

expressions (6.43) and (6.44) in the form 

P+1(1c 2 ')1:+'1 __1_ >'.(P+1),' >'2p,p+1 (6.46)11" " p, \ 1'+'1 - ( ) 12 \ \ ,
P ,. A(I:+"lP,i AI: 2,1:+'1 

with 

. _ (il: + jp +ii+ 1),' (ip + i. - i.),' (ip + ii - i.,)" (2ip + I), (6.47) 
>"P,I - (ik - jp +i,),'(2j, + I), 

where 1c= 2il: +1 and '1 =±l. 

This enables us to set ep(1c,2,p,i):t~  =~,  for all1c,p,i and '1, in a normalization, 

where Pl'"" Plep" = >'1:11," The recursions given in (6,38), and (6.39) then take the form 

p;(k,p,q + l,i)~  = E p;(1c +'1,p,q,i)~+,  p;(Ie,p,2,i + (1)~+" (6.48) 
,=±1 

and
 

±(L 1 '); ~  ±(L 2 . ); ±(L ')H'I
Po ~,q+ ,P,\ l = LJPo ~, ,P,J+'1 1:+, Po ~+(f,q,p" l , (6.49) , 
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• J' 

where the subscript ~o"  refen to our new normalization in wh~ch  Pl;,i Plop,. = >'lIp,i' with· ~  

~....... in (6.47). These expreosioDl and lh. <qualioDl I 

p;(1: + 2'1,2,2, 1:)~;:. = qT.6",6"", . for :'1 =±1 , 
I 

q:i:l q±1I-
I 

(Ie +1), ] (6.50) 

p;(A:,2,2,A:) = [(A:), (1:-1), 'qTII 
; 

I 

show that the p;-braid matrices can be identified with those' found in [9, 55], with the 

indices in reversed order; (one must compare the recursions gi~en  there with (6.49». 
i 

In the following, we show how to construct an inner product on the representation 

spaces of on the braid group representations derived from U,.( Slcl+1 ),. in order to isolate 

requirements for the spins in the spectrum of the monodromy matrix and investigate 

unitarizability of these representations. We conclude this 'section with a more systematic 

proof of the above result on unitarizability for U,(Sl2)' We start by taking the star­

conjugate of (6.26) and insert the transposition 

P,.: l','~  VI: ..... ~ ~ l ', : 11 ~ W ...... W ~ 11 • 

Using 

R:"· = P'lP Ii:., P'lP' (6.51) 

see formula (4.24), we find the following equation for R;". 

Pi,t;(a) (1. ~ Pj,pil({i}) (R;" ~ 11:) = 
(6.52)

L p±(1:, q,p, i)~~: Pi,Jll(JS) (1" ® Pl,qA:(v») , mod Into (~, l ', ~ ~ ~  VI:) , 
l,vlA 

where we have set 

P.,,;(a) = P;"i(at Pv;' , (6.53) 

If we represent Pi,,;(a) by 
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.' From the 50S-form of (6.54) we find the following factorized relation for the S( 
'if; 

weights: 
± . ;Jja '( T )./., ( T ),.,,._,LP (k,q,p,l)l,v,., }I"",l }I"p,; ­

v,.' (6.'" (NT )fJlJ' (afT ,)QQ' T(k ')".,,.LJ ;"" .lV;9.> P ,p, q,l jJj'o! • 

Q'fJ'-- 15.,,,;(0) 
Here the sesquilinear forms .N,,~,l on eN.,.,. the spaces of multiplicities, are defined b ~ 

q (.M+ ).,'"
"4,1 .- 15,.4,,(V') Rt" P"",l = P..",/(v') 'RP"9,t{V). 

and (6. 
Figure 6.12 (.N."4,1)"'" .- 15..,,,,,(V') Ri" P..",I(V) = P",,/(v') u'R-1P..",I(II). 

then. in addition to Figure 6.6. we obtain the graphical expansion (see(6.45)): with 

}ltv.l· =N,,~,l . (6. 

Using the graphical expression for (6.56) 

'" ±(k ')~Q= LJ P ,q,p,l I,.,,.
I,.,.,. 

q ,~) k
 
q k p q k
 

k (" = 6", (N.~.tr' 

Figure 6.13 -.) q 

Applying 

(1, @ RT4 ) (RTp @ I,) (II; @ R:p ) 

to (6.52), and making use of (6.27) and of the Yang-Baxter equation (4.12), (6.52) takes 

the form Figure 6.13 

]5',4;(0) RTf (Pj.pk(P) RT, @ 1,,) (1 .. @ R:';) = and with the help of Figure 6.12, (6.55) can also be derived from the diagran: 

Figure 6.14, by either expanding the first braid from above, according to Figure 6.12 
Lp±(k,q.p,i)i~;  15i ,pl(Il) Rip (15l,,,a:(v) R"4@1,,) ,mod Into(t'a, Vic @ ~  @~).
 

I,.,,. the first braid from below. according to Figure 6.6.
 
(6.54) 
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410 

k 

Figure 6.14 

The symmetry properties of these forms can be expressed by the monodromy matrix 

M =u'R..'R, (6.58) 

which has matrix elements p(l, Ie, 9,l)::~:" defined by 

MP"9.l(V) =:EfL(l,k,q,l)::~:' P"9,t{V'), mod Into (VA: ® l'", l-'l) . (6.59) 
v' 

If we set 

"-"
 
..
 

where ~ acts on CHill'''l ~  ••• ~eH,.-li."'"  by ~(l,i,jll~l)~"  .~~(l,~n-l,jn,Vn)'  With 

the help of (.,~.)_,  (6.55) can be reexpressed by 

(RP(T,>w', RP(T,)W) _ = (w',w)_ (6.63) 

and 

(RP (Ti-1)w', ~RP (Ti-1) ~-IW)  _ = (w',w)_. (6.64) 

Since by the definition of the intertwiners {PA:v,t{a)}, the form {.,.}_ is nondegener&te, we 

conclude from (6.64), that ~  commutes with RP (6) for all 6 E Bn , and equations (6.61) 

and (6.64r simplify to 

(RP(b)w', RP(b)w)_ = (w',w)_ (6.65) 

and furthermore 

(pw',pw)_ = (w',w)_ . (6.66) 

If we assume cert&in weak indecomposability conditions on RP , we C&D deduce from 

~ E (RP (Bn »)', that ~  is diagonal, Le. 

L l)A:,I" r 2".S" 
~(1 ,"',9, 1:,111' = owe ••.c (6.67) 

and proportional to unity on P(i I {jill1c), which implies 

S't. .+Sf! . = S'!_,l +st . mod 1, (6.68)a"" '4,' ..., .....,.
 

whenever all ind~ces obey fusion rules. A solution of (6.68) has the form
 

s~,; = ,sA: + Sv - ,s; +mA:9J ' mod 1, (6.69) 

)"", (6.60)(X,Y)k,.l = Ex" (N,,~,l  y,,' with "1 = 0, SA: = S1 and m"vi is totally symmetric, 
III" 

for X,Y E eN••", we compute from (6.56) ..: (6.59) that 
m",i -m1ri 

and (6.70)
(6.61)(x, Y)k9,l = (Y, ~(1, le, q,l)X)k9,l' mlcpl +mjff = m",l +m,pr • 

Identifying P(ilil"" ,inlk) =LT,.} CNi;"", ~ ... ® CN,...-I;"''''', the inner product (., .) ­

denned in (6.60) extends naturally to the pathspace P(il{ji}lk}, so that by (6:61) 

(w',w)_ = (w,pw')_ for w,w' E l'(i I {ji} I Ie}, (6.62) 
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For highest weight representations., it follows, by application of x, see (5.6), to (6.59) 

that 

SlV,l = S'f.l 
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~.. ..
 

.., 
• 

and eventually 

mq;=O and 5. = 51. 

Hence p. i. given by 

11.(1 k q t)l,l'" = 6,--, ~2...(••+s,-.d (6.71),.. , , 'l,bl --, . I 

Since p(l, k, q,t) and p(l, q, k,t) are equivalent matrices (by conjugation with a p-matrix) 

and, further, are unity if either k =1 or q =1, we find with (6.71) that 

Sl = "1.	 (6.72) 

The spins of the monodromy-spectrum can be deduced more directly if we assume that 

X; is a ribbon-graph Hopf-algebra (Section 6.4 or [43, 44]), i.e. 

M = V ~ V ~  (V-I) and V central in X; , 

so that (6.59) reads 

Pl(V) ~ P.(v) P..,l(V) =. 
(6.73) 

LP(l,k,q,l)::~::' 	 Plll,l(V')Pl(V) mod Into(\.'k @~, Vi) 
v 

For an indecomposable representation ~ we have 

2trip,,(v) =e •p 1 mod Into(~, ~), 

so that again 

p(l I k, q, t)::~::' = 6.", e2"'(.,+s,-.,) (6.74) 

with "0= 0, "" = 3" by E(v) = 1 and 5(v) = V. 

For Ull(3lcl+1) the spins are determined for highest-weight representations, with 

highest-weight .\, by the classical Casimir values 

CA = (.\J.\) +2{p,.\) I	 (6.75) 

so that 

PA(V) = e2....~  = qC~ . (6.76) 
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,The original computation [43] used the fact that U.(3lcl+1) is a one parameter-deformatil 

of U(31c1+1) and proceeded by analytically continuing the spe~trum  of M in q. A me 

explicit way to find these values is given by computing the ribbon-graph-algebra eleme 

v = L ~ R (0''R~1)  (q6) ,	 (6.7 

. with L ~  R(a ~ 6)(:z:) = a:z:b, from known «4.87), [48]) formulae. If one applies the e 

( E ha+E.hi1ai)
pression (6.77) to highest-weight-veetors VA, only the term q A>: '.. • VA will survi, 

yielding the above expression for PA(V). For U.(3l2) we obtain: 

CAp = ~  (p2_ 1) ,	 (6.7 

so that for q = eij, 
p2 -1 

3" = 4!i""' (6.7 

Continuing our discussion 

(:z: y)- =e2"'('I&+"-'t)(y x}- with 3- E IR/Z
J . 1cll,l , "'Zll I , , 

so that for any choice of 3, E R/2Z the form 

{:z:, Y)~-l = (:z: y)=F e±itr(••+.,-.,) (6.~..." I II ,Ill 

is symmetric and hence admits an orthogonal basis {elll of eN.", with 

(elli e",) = (-It",' 6 (6.~11,,,,. 

Inserting (6.81) into (6.55) we see by 

p±(k, q,p, i)~~= (-ltt",+n~"i = (-It:p .;+ni,,i p=F(k,p, q, i)~: (6.! 

that for this choice of basis RP represents Bn in some U( N, M). If we assume unitari 

the numbers n~,l  E Z2 will satisfy constraints similar to the ones imposed on Sr ,l
9

(6.68), so that they can also be presented as 

nij,1c =ni +n; - n1c mod 2 

and thus correspond just to a redefinition of t~e spins. We summarize these argumel 

in the following Lemma. 
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Lemma 6.3.2 The representations RP of the iraid group, defined by a quasi-triangular 

ribbon-graph Hopf-algebra with .·involution are unitarizable iff there ezists 0. choice of 

spins 

. 

for v:-hich we find by (6.84), (6.85) and (6.86) 

N:1Pl.i(t) = (ei(t), u('R(i)'R(t» 'R(t)ei(t» . (I t I .t)-H"~+PI-i.+1)  . 

... 

(6.88) 
., 

,. 

Si E'R/2Z Here (.,.) denotes the canonical inner p~oduct  on the tensor product space V
Pl 

@ V
P2 

• 

such that all the forms (., .}~,l  defined in (6.60) and (6.56) are politive definite. Hwe restrict the values of t E DN' by ItI= I, (6.88) implies 

As a.n application of Lemma 6.3.2 we shall show unitarizability of R P for K, = U9(sl2) N~J12.i(t)  E R. (6.89) 

with q2. a primitive root of unity. 
Comparing (6.87) to (6.56) we see that N~J12.i(t)  is the square of a multiplicity vector 

For Pl,P2 = 1, ... , N ­ 1, q =I: 0, we define the continuously q-dependent matrices 

e(q) and J(q) in Mat(~),' ~ being the inner product space ~ =((P £::1,''', e£::1.)' by 
- 2 2 

the normalized representation (5.17), so that 

with respect to the form defined in (6.80), and is therefore nonzero for 

dim Pc (~1 ® VP2 , l't) =1. . (6.90) 

In the domain DN = {t Eel t =I: OJ t4; =I: 1 j =1, ... , N -l} the map 

e(q) = e(q-l) and e(qt = f(q). (6.83) 
If for fixed i,PhP2 (6.90) is true for t = ei"'ik, (n, N) = I, then we find from the fusion 

rules (5.19), that it also holds for t = ei,..fip, (n', N') = 1 with N' ~  N or for generic t. 

Hence if, for t = eN" Np1P1•i = I, then we have 

DN -+ 

-+ 

Mat (VPl ® VP2 ) 

'R(t) 
From 

N:,Pt.i(t) =I: 0 for 
'lI' 

arg(t) ~  2N' (6.91) 

is by (4.87), with t = qf , well defined, continuous a.nd obeys by (4.23), (4.2,4) and 

(6.83) 

(6.84)nett =un(i).n(tt1 =n (c1
) and 

The spins Sp E 'R/2Z are determined by 

. 2 
e'w,p = t E:j! . 

From (5.23) we have highest weight vectors {i in ~1 ® VP2 , with 

hei 
(t) = (i ­ 1) ei 

( t ) and pplP2(i(t) ={i(t-1 ), 

(6.85) 

(6.86) 

for i = Ipl - p21, .. . ,Pl +P2 - 2,Pl +P2' We now consider the expression 

I 
Com~ining (6.93) with Lemma 6.3.2 we find the following lemma. 

N~PI.i·(1) = (ti(l), (i(l» > 0 

t = eim .forN:,PI.i(t) > 0 

we obtain 

Lemma 6.3.3 For U9(sl2), with t = eim , the braid matrices 

p±(i,P, q, k)~ 

define unitarizable representations of the braid group. 

(6.92) 

(6.93) 

N: 
1P2 

,i(t) = ({i(t), 'R(t}{i(t» t-t(pf+p=-i2 +1) (6.87) 
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6.4 Markov Traces 

The definition of q-dimen.noM it generalized, uing the observation of 1?rinfel'~  [5J, that 

the ..quare of the antipode of a quasi-triangular Hopf algebra is an inner automorphism 

. We t%tend the selection criteria already encountered in Section 5.-1 to the general cG&e, 

i.e., we show that the ,et of indecompo..able representatioM with zero-q-dimensioM is 

an ideal under forming teMor products. This complete, the rigorous cOMtruetion of 

brai group representations on path spaces from quG&i-triangular Hop/ o.lgebrtU in the case 

where semisimplicit'1l is not G&sured. We define a Marlr.ov trace on these representatioM 

and identify spin, statistics parameter and statistical dimension with central elements 0/ 
a ribbon-graph Hopf o.lgebro., as defined by Reshetikhin and Thraev (4-1]. 

The discussion of Markov traces and their role in the vertex-SOS-correspondence re­

quires certain restrictions on the Hopf algebra 1C and its representations. The first is the 

restriction to quasitriangularribbon-graph Hopf algebras, introduced in [44], that contain 

a central element v with 

(6.94)E(v) = 1S(v) = v,v2 = uS(u) i 

M = v ® v6(v-1
), (6.95) 

and 

where u = m(l ® S-~ )O''R. Suppose that 1C admits a star involution satisfying (4.24). In 

this case u is unitary, so that we have p2 = I, for p = vv·. On unitary representations we 

therefore have, from p;(p) > 0, that v isunitary. Its eigenvalue on Vi is thus identified 

with the phase factor e2fri
' J and we have s; =SJ. 

The element 9 = uv­1 satisfies 

52(a) = gag-1 

6(g) = g@g 
(6.96) 

'Va E 1C 
and 

and gives rise to a general definition of the q-dimension, 4, of an indecomposable repre­

sentation V,: 

4:= tr(g f -v,,). (6.97) 

171 

-In the following we shall consider a set £' of indecomposable representations that clOSE 

I under taking tensor products, Le., 

Wa ® W~= Ee W., ® CNaIJ,'f , (6.9~ 

. \ ., 
and conjugation, i.e., for each a E £', there is some a V E £~, with Pav(a) = p~(S(a) 

The fusion rules {Na,S•.,} again commute and are symmetric in the first two indices. ~ 

have the following result. 

Lemma 6.4.1 For a system £' o/indecomposable representati~ns  o/a ribbon-graph HOJ 

algebra, closed under taking tensor products and conjugation, we have 

NafJV,l = 1 iff a = {3 and da =I o. 

This follows from the fact that we have the identifications 

Int (Wa @ WtJ V , 1) ~ Int (WfJ , Wa ) ~  Int (I, Wa ® W~v) 

given by 

(l®z, PafJv,t(I)) l(Iz)
and (6.9! 

Pl,afJv (I') l ® z = l(I'g:c) 

for I, I' E Int{Wa , WfJ ), z E WtJ , l E W~. 

The composition is given by 

P1,a,SV(I) Pa,Sv ,1(1') tr(gII' r Wa ) 

(6.10 
da (' )(dim W ) tr II r Wa • 

a 

In the last identity we used the fact that the WQ is indecomposable, i.e. 

Int (Wea , Wa ) = C· 1 E9 Into (Wal Wal, (6.10 

where Into (Wa , Wa ) only consists of nilpotent mappings. The expression (6.100) is nc 

zero iff da =I 0 and I I' is invertible. Since WfJ is also indecomposable, by assumption; t 

latter implies Wa ~ Wt!. 
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From the commutativity and associativity of the tensor product we infer, that 

Na lJ.,,1 = NQfj.-r''' N.,v.,,1 

is completely symmetric in all representation labels. If t! is generated from some fun­

damental set F with :F" =F and F n L., =0, where L., is the set of indecomposable 

representations with vanishing q*dimension, then {,o := L., n {" is a maximal conjugation 

invariant subset that obeys 

L.' ® L.o c L.o 
(6.102)and 

.Tn!~  = 0. 

Hence, defining! = £'\L.o , we have the following decomposition laws 

\'i ® 11; = Eel VI: ® CNii ,. ED EED Wa ® CNii •• 

I:E~ aE~. 

\'i ® Wa E ED WIJ ® CNi• .1 (6.103) 
IJE~. 

Wa ® WIJ = E ED W., ®CNaP.~. 

.,E~. 

Generalizing Lemma 6.1.3 by using (6.101), this allows us to identify the quotient space 

l' (\'i ® 11;, ® ... ® 11;.. , VI:) with the path spaces 'P (ilit,··· ,inlk) constructed from the 

fusion rules {Ni;p,l:} for ijr, It E !. 

pv 

pv 

Figure 6.15 
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Consequently, it is always possible to assign to a pair (K,F) a path representation· .. 

of the braid group in .. unique way. For any path representation of the braid group B" .. 
with fusion matrices {F} (resp. {'P}), we can define Markov trace as in (2.61). If we take 

the SOS expansion of the operator depicted in Figure 6.15 and use (6.99) we obtain the 

following expression in the vertex picture. 

Lemma 6.4.2 For any pair (K,F) with r = F and;: n!, = 0, and for the definition 

of the path representation of Bft given as above, the Markov trace is determined by 

7"r,(6) = cJr! 
1 

tr (l~"RP(b) rV"en
) • (6.104) 

p 

o 

This trace has an obvious generalization to different colorations (Le., different represen­

tations involved) if we restrict b to the appropriate subgroup of Bft • 

By Lemma 6.1.3 we have that 

7"L(b) = E ~~ tr (RP(b) rp (v"e", VI:)) . (6.105) 
I:E~ p 

This show that 7"L is positive for all n iff tip > 0 for all p E !. 

We can easily compute the statistical par~eter  of a representation from the diagram 

= (lp®P1,ppv) (llp,.®lpv) (lp®P""v,1) (6.106):~PV 

p 

=>'.. 
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Of From a ~ l ..v PppV,1 = 1.. ~ S(a)Pppv,lt 'Va e Je, u =m(l·~ S-1)C1'R and (6.100), we ha.ve 
~' 

e-2wi1 P.. (,,-1) ,.. 
~.. = tr(u r~)  = ~ =~'  

The ana.logue of Theorem 2.4.c) can be shown by inserting the projection IP"pt 

E Ppt,r(v) Pp..,.,(v) into (6.105) and making use of
 
"
 

tr (P"pt t'P(~ ®~, Vi») = Npt,r6lr' 
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Chapter 7 

Duality Theory for Local ,Quantum 

Theories, Dimensions and Balancin~  

in Quantum Categories 

7.1 General Definitions, Towers of Algebras 

In. this section we give the complete definition of a quantum category. We show that 

quantum category can equivalently be described by a system of structure constants, naml 

fusionrules, and R- and F-matrices. We also introduce C·-structures and discuss thl 

consequences for theezistence of balancing phases, positive traces and dimensions. J 

explain the result oj Doplicher and Roberts on the duality of compact groups and propOSI 

generalized notion of duality. Finally, we show how quantum categories arise in algebr, 

field theory and relate them to the theory a subfactors and towers developed by Jones. 

The structural qat,., of local quantum theories, in terms of fusionrules and R- and 

matrices, which we investigated in chapter 2, and the data obtained from the intertwiI 

calculus for quasitriangular Hopf algebras explained in chapter 6 fullfill the same tYl 

of equations, which were, in our language, interpreted in the graphical Yang-Baxt 

and Polynomial Equations. In fact, in the construction of charged field operators w 
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permutation statistics and gauge group symmetry, as proposed in [19] it is needed that 

these two sets of structure matrices are equal. In order to organize our language, it is 

helpfulto observe that fusionrules, It- and F- matrices are precisely the structure constants 

needed to deteI'IIline (up to equivalence) a certain type of braided tensor categories. We 

review the notions entering their definition: . 

i)	 We start with a semishnple, abelian, finite, reduced category over C. It consists of a 

set, Obj, called the objects. To any pair of objects X, Y e Obj is associa.ted a vec­

torspace, denoted Mor(X, Y) or Int(Y, X), over C, called the (space of) morphisms 

from X to Y. We have distributive, associative composition 

Mor(Y, Z)® Mor(X,Y) -+ Mor(X,Z) 

so that, in particular, End(X) := Mor(X, X) is an associative C- algebra with 

unit. Semisimplicityof the category ~eans that End(X) is semisimple and that 

the pairing Mor(X, Y) ® Mor(~X)  -+ End(Y) is non-degenerate. In this case the 

category is. abelian iff it has subobjects and direct sums. The subobject requirement 

is that to any projector II E End(X) there exists an object U andmorphisms 

Iu E Mor(U,X) and Pu e Mor(X, V), such that PuIu = 1 and II = IuPu. If we 

consider also the object V and morphisms Pv and Iv associated to the projector 

1 - II we obtain what is called a biproduct, X = U E9 V. The axiom of direct 

sums states that to any pair of objects, U and V, there exists an objeet X with 

a biproduct, X = U E9 V. We call a category ~ if equivalent objects are 

equal, i.e., if for two objects X and Y there are morphisms J E Mor(X, Y) and 

9 E Mor(Y,X), with Jg == 1 and gJ = 1, then X = Y. With these assumptions 

any object, X, with dim(End(X» < 00 can be decomposed into a finite direct sum 

of irreducible objects, 

X	 = €a Nx.;j, 
jEt. 

where j E ! iff End(j) = C. The category is said to be ~ if dim(End(X» < 00 

for all objects X E Obj and ~ if III < 00. Thus, the objects are naturally 

identified with Nt.. 

ii)	 A tensorproduct on such a category consists ofa binary operation, 0 : Obj x Obj -+ • ".
Obj : (X, Y) -+ X 0 Y, together with a bilinear produetof morphisms ... 

. 0 : Mor(X, X') ® Mor(~  Y') -+ Mar(X 0 ~X' 0 Y'): I ® J --+ I o}. 

This product shall be compatible with composition, in the sense that 

(Io J)(I' 0 J') = (II') 0 (JJ') ': 

whenever defined, which makes 0 into a distributive operation on Nt.. Thus, the 
*	 . ; 

tensorproduet on Obj is completely determined by the fusionrules:
 

i oj =E Nij,lele.
 
IeEt.
 

with i,j E !.
 

iii) A category is called a tensor category or monoidal category if there is an isomor­

phism, a(X, Y, Z) E Mor(X 0 (Yo Z), (X 0 Y) 0 Z), which satisfies the pentagonal 

equation 

a(WoX, Y,Z)a(W,X,YoZ) = (a(W,X,Y) 0 lz)a(W,XoY,Z)(lw oa(X, Y,Z» 

and the isotropy equation 

a(X', Y', Z')(I 0 (J 0 K» «10 J) 0 K) a(X, Y, Z) 

for all possible objects. This makes (Obj, 0) into an associative algebra. Moreover, 

we may define F- matrices by the commutative diagram of isomorphisms: 

EBIEt. Mor(l,jole)®Mor(t,iol) F~,t)  EBIEt. Mor(l,ioj)®Mor(t,lole) 

l~ 	 l~  

1lI~)Mor(t,i 0 (j 0 le»	 Mor(t, (i 0 j) 0 le), 
(7.1). 

with i,;, le, t E !. Here the vertical arrow,s are given by the compositions I ® j -+ 

(1 0 I)J, and I ® J -+ (I 0 1)J, and the lower horizontal arrow is defined by left 
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.., multiplication of a. The F-matrices obey an analogous pentagonal equation, 
4/' 

(ED.F(i,j,k,,,)	 ~IN.I,.)(ED.INi•.• 0 F(i,.s,I,t»(ED. F(j,k,I,,,) 0 IN;.,') 

= (ED. INti,. 0 F(", k, I, t)) Tn (ED. IN.I,. 0 F(i,jl ", t)), 
(7.2) 

and any such system ofF-matrices defines a unique associativity constraint a. Th~  

category is called IlJig if a = 1 E End(X a Y a Z). 

iv) A tensor category is called ~ if there exists for any pair ofobjects X, Y E 

Obj an isomorphism t:(X, Y) E Mur(X 0 Y, Y a-X), which satisfies the hexagonal 

equations: 

a(Z,X, Y)t::t(XaY,Z)a(X, Y,Z) = (t:(X, Z):t a ly ) a(X,Z, Y)(lx a t::t(y, Z», 

wheret: == t:+ and t:-(X, Y) = t:(Y, xtl ,and th~  isotropy equation 

t:(X', Y')(I a J)	 = (J a l)t:(X, Y). 

We define structure matrices, 

r:t(i,j, k) : Mur(k,i a j) ~  Mor(k,j a i) 

by left multiplication with t::t(i,j). They fullfill the respective hexagonal equation, 

(ED, r:t(i,k,l) ~INli.• ) F(i,k,j,t) (ED, r:t(j,k,l) 0 IN;I,.) 
(7.3) 

= F(k, i,j, t) (ED, IN;i,1 0 r:t(I, k, t» F(i,i, k, t), 

and a system of r-matrices obeying (7.3) defines a unique commutativity constraint 

t:. Frequently, we shall use the a-matrices, 

. R:t(i,j, k, t) : EB Mor(l, i 0 j) ~  Mor(t, I ak) -+ EB Mor(l, i 0 k) 0 Mor(t, I 0 j), 
'e"' Ie", 

defined by 

R:t(i,i, k, t) = F(i, k,i, t)(EB r(i, k, .s):t 01)F(i,j, k, ttl. (7.4) 
• 

A braided tensor category is called symmetric if t:+ = t:-. 
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v) The category is rigid ifto any object X E Obj one can as,sodate a conjugate objec 

X" and morphisms"x E Mor(l, Xv 0 X) and ,,1 E Mor(X 0 X",l), such that 

i("10 1x ) a(X ,X", X) (1 x a"x) :k Ix 

and (lxvo,,1)a(XII,X,XII)-I("xOlxv) llxv. 
(7.~  

IT these objects and morphisms exist then they are unique up to isomorphisn 

starting in Xv. Also the equations (X eY)V = X" mYV and (X 0 Y)V = YVoX 

hold true in a reduced category. A choice of conjugates yields a transposition 

i 
t : Mor(X, Y) ~  Mor(Yv,X") 

and more generally an isomorphism 

Mor(X, Yo Z) ~ Mor(X 0 ZV, Y), 

which for the symmetric, bilinear form (X, Y) = dim(Mor(X, Y» provides equl 

tion (3.2). The conjugation defines an involution on the set of irreducible objec1 

(" and we can verify the axioms of a fusion rule algebra given in chapter 3.2 for n 
algebra (Obi, 0 ). 

In the following we shall call an abelian, semisimple, finite, rigid, braided. tense 

category a quantum category. As opposed to symmetric categories the equation 

(lxv OT(X»"X = p.(XV,X)"x,	 (7.t 

with p.(X, Y) := t:(Y, X)t:(X, Y), defines set of non-trivial automorphisms -reX) 

End(X). 

Lemma 7.1.1 The automorphi.sms defined in (7.6) have the following properties: 

a) T(X) i.s independent of the choice of conjugates (X","t"x) 

b) T(Y)I = heX) for alII E Mor(X, Y) 

c) T(XV) =T(X)' 
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·... ,. 
d) T(X) 0 T(Y) = ~(X,  y)2 T(X 0 Y) We have that AX iI normal and that iff unitary part fTo E U(X~ in 0. polar decom.position ... 

Considering equation d) of Lemma 7.1.1, it is reasonable to introduce a noiion of a square 

root of T(X). Also we wish to introduce categories with a *-structure : 

vi) A quantum category is balanced if there exist automorphisms fT(X) E End(X) 

such that 

a) fT(X)2 = ,.(X)
 

b) fT(Y)I = IfT(X) for all I E Mor(X, Y)
 

c) fT(XV) = fT(X)'
 

d) u(X) 0 u(Y) =~(X, Y)fT(X 0 Y)
 

It is evident that any balancing {fT(X)}x can be multiplied by a Z2-grading of the 

cCl-tegory, in order to obtain a new balancing st,ructure and that any two balancings 

differ by a Z2·grading. From b) we have that a balancing is uniquely determined by 

the numbers u(j) E C. 

vii) A C· category is an abelian category if the morphisms form Banach spaces with 

an antilinear involution· : Mor(X, Y) ..... Mor(Y,X) such that II I JII :S 1111111111,. 
IIrll = lilli, IIrIII = 11111 2 and (IJ). = J.r. It is clear that any C··category 

is semisimple and that it is, up to •-isomorphism, uniquely determined by the set 

[, of irreducible objects. A C·-quantum category is a quantum category with a 

C·-structure such that (I 0 J). = r 0 rand Q and e are unitary. The spaces 

Morele, i 0 j) thus admit an inner product and the R- and F· matrices are unitary 

with repect to this product. Conversely, any unitary set of such structural data 

uniquely defines a C·-quantum category. 

A peculiar feature of C·-quantum categories is that they are always balanced. 

Lemma 7.1.2 In a C··quantum category let AX E End(X) be defined by 

(e(XV,X)"xr = "l(Ax 0 1) (7.7) 
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AX = fTo(X)-l Px, withPx > 0, iI 0. balancing structure of thJ category. . I . 
A final important structural ingredient in the study of C··quantum categories are 

I 

traces. In order for a trace on the endomorphism spacel to factorize with respect to the 

tensorproduct, we have to use the balancing structure in its definition: 

! 

Lemma 7.1.3 For 0. balanced quantum. ca.tegory we define 0.' set of linear functionals, 

trx E (End(X)t, 61/ 

trx(I) = "l«IfT(X)Tl) 0 l)t:±(XV,X)"x (7.8) 

It htu the follo'lJJing properties: 

a) trx iI independent 0/ the choice of conjugates.
 

b) try(IJ) = trx(JI) for all I E Mor(X, Y) and J E Mor(Y, X).
 

c) tr(xoy)(Io J) 7= trx(I)try(J) for all I E End(X),. J E End(Y).
 

d) trx(I) = trxv(I') for all I E End(X).
 

e) If we have 0. C· .quantum category and trX iI defined with respect to the canonical
 

balancing {uo(X)}x given in Lemma 7.1.1 then it iI 0. positive state on the C·· 

algebra End(X). 

From Lemma 7.1.3 it follows that 

d(X) := trx(lx) (7.9) 

is a dimension and, for C·-quant.um categoriet, it is positive for the balancing {uo(X)}x, 

Hence, in the latter case it coincides, for rational categories, with the unique Perron 

Frobenius dimension given in (3.30). 

The best known example of a C··quantum category is the representation category, 

Rep(G), of a compact group G. Its obejeetl are the inequivalent, finite dimensional, 
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., unitary representations of G and the morphisms are the intertwiners, HomG(V, W) = 
t 

1Io	 Int(W, V) = Mor(V, W), between these representations. The conjugation is given by 

passing to the contragredient representations, and the commutativity constraint is given 

by the transposition ,(V, W)(v @ w) = tu@ v of factors in VoW =V ® W. This is a 

strict, symmetric C·-quantum category, with CT~(X)  = 1, for all X E Obi. 

More generally, we can consider the representation category Rep(~)  of a quasi­

triangular quasi Hop! algebra~. The antipode, the 'R.-matrix and the q,..matrix yield 

the conjugate objects, the commutativity constraint and the associativity constraint, re­

spectively, using formulae (5.4) and (5.5). A balancing structure is implemented for a 

ribbon-graph Hopf algebra by the special, central element v from (6.94) and(6.95). This 

category is semisimple - and hence a quantum category - if ~iS  semisimple. However, in 

the case of primary interest to us ~ is not semisimple and we have to divide out the ideal 

of intertwiners discussed in Chapter 6.1. Using the trace introduced above we can give a 

more general and concise definition of the l,."to-spacesi namely 

lnto(V, W) := {I E lnt(V, W): tr(v)(lJ) = 0, VJ E Int(W, V)}. 

We denote this quotient category by Rep(~). Here, the trace tr(V), defined on Endl\:(V) = 
End«V» in Lemma 7.1.3, is related to the canonical trace try on Ende(V) by 

tr(V)(I) = trv(gl) , 

where g is as in (6.96). 

Two quantum categories are equivalent if :here exists an invertible, compatible ten­

sor functor between them. On the level of structural data, equivalence is expressed as 

follows: Suppose we have two quantum categories, one characterized by the set of struc­

tural data{l, Ni;,A:, F(i,i, k, t), R(i,i, k, tn, th~ other one by the respective set of data 

{C,Hi ;,1c, rp(i,i,k,t), p(i,i,k,t)}. Then the two categories are equival~nt iff 

a) There is a bijection 

'. J:.~l  : i~i'  (7.10) 

such that 

Nii.1c = Hi'i'.lel 
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b) There is a set of isomorphisms 

Ti~ : Mor(k,i oi) --+ Mor(k',i' o~')  

such that 

rp(i,i,k,t) (Ea, TJ. @ T~) = (Ea; T!j ® 71~) F(i,i, k,t) 
(7.1 

p(i,i, k, t) (Ea, Tf; @ 71~)  (Ea, Ti ® T,~) R(i,i, k, t) 

Note that it is sufficient to specialize to i = I, i.e., to th~  r(i,i, k) -matrices, in tl 

second equation of b). In the case of C·-categories the isomorphisms Ti~ are assumed· 

be unitary. We next quote the famous result of Doplicher and Roberts on the duality 

compact groups. 

Theorem 7.1.4 [~g}  Suppose C is a strict, symmetric C·-quantum category with O'o(X) 

I, /orall X E; Obi. Then there erists a unique compact group G such that C is equivale 

to Rep(G). 

In local quantum field theories in the formulation of [19], as described in Chapter 

C·-quantum categories arise in a natural way. The fusion rule algebra was already derivi 

at the end of Chapter 3.1, using *-endomorphisms of the local algebra rot localized in 

given spacelike cone. More generally we consider these endomorphisms to be the objec 

of a category where the tensorproduct is given by the comp6sition of endomorphisn 

The morphisms are the intertwiners .; 

Mor(Pl,P2) := {I E rot : Ipl(A) = P2(A)l, VA E rot} 

and the tensorproduct is given by 

10 J := lO"(J) = O'(J)l, for all I E Mor(O", 0'), J E Mor(p', p).' 

The category is strict and the commutativity constraint is obtained from the chal 

transport operators. The structural data of this category are disussed in Chapter 2. 

four and more dimensions, this category is also symmetric and the natural balancin~  

trivial, so that we can apply Theorem 7.1.4. We say that the local quantum theory is g 
i 
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to the group G associated with the category where the commutativity constraint e(i,i) 

is multiplied with a - sign if i and i obey para-Fermi statistics [19]. 

The main purpose 'of finding a dual group is 'te;) co~truct  field operators with a 

group symmetry. To this end we ~se the intertwiners betw~ the representations of the 

local algebra rather than the intertwiners between the endomorphisml. They. are' related 

to each other by (2.18). We define the physical Hilbert space of the theory as 

rtph,a. := EB\'i, ® rt; , (7.12) 
ie£ 

where 'Hi is the representation space of representation i E L of 21, and Vi" is the represen­

~,atio~  space of the corresponding representation i' of G. Let{eA}~~~ be an orthonormal 

basis in \'i'. We define a linear map P"i,(aj eAl from \-'i, to \'A:, by the equation 

I 
(11, P"i,(aj eA)w) = (Pi'i'.Il,(a)l1, W~ eA) , (7.13) 

for arbitrary 11 E \'A:, and W E ~,.  

IT the local quantum theory under consideration is dual to' the group G, in the 

sen~e  of the definition given above" we can introduce charged "fi~ld operators", ",,1(pi), I' 
i 

by setting 

""l(pi) = E P"i' (aj eA) ~ VQU(pit , (7.14) 
UQ 

where the two intertwiners are related to each other by the isom~rphisma  Ti~'  It is easy 

to check that these fields obey ordinary Bose- or Fermi local commutation relations: H pi 

and l are localized in space-like separated space-like cones then 

",,1 (pi) ""t (p') = ±""t (p1) ",,1 (pi) , (7.15) 

where the minus sign is chosen if i and Ie obey para-Fermi statistics, and the plus sign is 

chosen otherwise. 

Let r and w' denote the representations of 21 and G, respectively, on ~•., Then 

we have from (2.20) and (7.14) that 

r(A) ",,1 (pi) ,= ",,1 (Pi) r (pi(A») , (7.16) 
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I 
I 

for ill A E 21, and j • •J 
, :1 

r'(g)1/J1 (pi) -i' (g-l) =Ei'(g)A.v""l, (~) , (7.17) 
A' ,
 

where {i'(g)~~,} are the matrix elements of ;'(g) in the basis!{e~}  of \'i,.
 

In lo~  dimensional quantum theories with braid statis~iC8  our notion of. duality 

must be modified. We say that 'a local theory is dual to a qu~itriangular Hopf algebra 
I 

A: iff ita category of superselection secton is equivalent to the quotient category 1lq(A:). 

Contrary to the case. of semisimple groups or Hopf algebras,i this causes difficulties in 

the construction of field operaton with an explicit Hopf-algeb~  symmetry, since Rep(A:) 

is in general non-Tannakian for non-semisimple IC, i.e., it is not realizable in termS of 

vectorspaces and linear maps between them. The extent to which analogous field operators 

obey local braid relations is discussed' in Chapter 7.2. 1 
~ ~I 

An important consequence of properties (PI) and (P2) of Chapter 2 - in particular :, 
of the rigidity assumption - is that the iJukx of an irreducible'sector is finite, i.e., 

Ind(p) = (P(rot): rot] < 00, (7.18) 

where the index, [N: Ml,'of the embedding of a von Neumann algebra N in M is defined 

in [41]. It has been shown in [23] that (7.1~)  is equivalent to (PI) and (P2). Also it i. 

proven in [23] that the dimension given in (7.9) is related to the index by 
.I . 

.Ind(p) = d(p)2 • 
'I (7.19) 

I 

For an irreducible endomorphism p, we have by rigidity isometries rpo',l' e MoreI, pop) 

and r,op,1 e MoreI, pop), with l 
p (riop,l) rpo',1 =±d(p)-l and p (r:O',l) rJop,; =±d(pr1 

, (7.20) 
i

" . . I 
where the sign is always + if p ~p and an invariant with respect to normalization if p 

is selfconjugate. In this case, if the + sign app~ars we call p ,GIl and pseudoreal if the 

- sign appears. 

Finally, we present some elements in the categorial description of local theories that 
. ,I 

are related to the theory of subfactors. Assume that mc rot i~ an i~c1usion  of type 1111 
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t	 von Neumann algebras (with the same units). Let L2(rot) be the Hilbertspace obtained 

from 001 and from a state on rot, and let Jrot denote. the modular conjugation with 

respect to a cyclic, separating vector n E L2(rot). We then define the modular extension 

0011 C ~(L2(rot»  of rot over CJt as 

rotl := JrotCJt'Jrot . 

It is shown in [23) that the modular extension of perot) by p 0 perot) is isomorphic to rot. 

The action of rot on L2(p(rot» is given by 

M.p(A) := ±d(p)p(r'O"lt p0 p(Mp(A)rpo"I) 

where A, ME rot and the sign is as in (7.20). For the projection 

eo := rPO"lr:O,,1 E rot , 

we then check that
 

eo.p(A) = to(A) , for A E rot
 

where 
to: p(rot)-+ po perot) 

peA) po p(r:O"IP(A)r,0,,1)1-+ 

is a conditional expectation 

indexconditional expectation, Le., a positive, linear map t : rot -+ ·iJl between included 

von Neumann algebras such that 

t(mn) = t(m)n, if n E CJt. 

It is a known fact that this projector together with the extended algebra generates the 

extension: 

(perot), eo) = rot. (7.21) 

Inductively, we thus have a tunnel (tower) of successive modular extensions 

... Cpo p 0 perot) Cpo perot) C p{rot) C rot . (7.22) 
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Furthermore, from the series of isometries 

f(2n) := (p 0p)n (rPO"I) , (7.2:
r(2n+1) := (p 0 p}n 0 p(rpop,l) . 

we obtain the conditional expectations 

£n(A) = pop(r(n)·Ar(n)}' (7.2' 

They correspond to the sequence of projectors 

en := r(n)r(n) , (7.2. 

which obey the relations of the so called Temperley-Lieb algebra: 

and 
{3,en en±1 en 

en em 

en, 

em en if In - ml ~ ~ . 
(7.2 

Here 

(3, == Ind(p). 

As an alternative to the chain in (7.22) we can considerthe sequence of inclusion 

... C Mn C Mn+1 C ... ,	 (7.2 

where 
M 2n .- (p 0 p)n(rot)' n 9Jt _ End«p 0 p}n) , 

(7.2 
M2n+l .- (p 0 p)" 0 perot)' n rot == End«p 0 p)n 0 p). 

The advantage of confining ourselves to the commutants Mn is that they are all type l,e 

111 von Neumann algebras and that they are purely categorial. We also have c~nditioll 

expectations E:+1 :Mn +1 -+ Mn by setting 

E:+1(a):= f(n)af(n), a E Mn +1 "	 (7.2 

However, (7.27) is in generalnot a sequence of modular extensions (tower), i.e., t 

modular extension of Mn over Mn - 1 .is contained in, but not equal to M"+1' ~till, if t 

theorl or category is rational then the sequence·(7.27) becomes a tower for n > I.CI.Me 
precisely, we have 
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Lemma 7.1.5 

Let Ml C ... C Mn - l C M" C ... be the chain of algebrcu defined in (7.f7), and letC~), 

# = 0, I, be given by ci") ={j I j E (p 0p)"} and C!") = {Ie I Ie E (p 0p)n 0p}. Then 

M2n+# has a decomposition into simple factors 

M 2n+# = E9 M:n+# 
A:EC~")  

where M:,,+# acts faithju.lly on Mor(k, (p 0 p)n 0 pi), by left multiplication, i.e., 

M:n+# e! End(Mor (Ie,«pop)n op#»)). 

The inclusion matri:J:, A(2n+#), of M2n+#-1 C M2n+# is equal to the restrictions of the 

ju.sion rule matri:J: Np : c!n-l) ~ cin), for # =0, and N~ : cin) ~ c!n), for # =1. 

The sequence ... C c~n)  C c~+l)  ... C C# is strictly monotonously increasing, or 

c~n)  =C#, where C# are the minimal invariant sets of ~Np  given in Chapter 9.f. 

A very important ingredient in the study of inclusions of von Neumann algebras are 

Markov traces. On the algebra Moo = UMn a Markov trace, TM, is characterized by the 
n 

properties that it is a positive trace and that 

TM(ae,,) =. P;lTM(a) , for all a E Mn+l . 

It is easily shown that the functional given by the formula 

TM := d(pt(2n+#) tr(po1)"op,(a) , for a E M2n+# , 

where tr is as in Lemma 7.1.3, is well defined on Moo and is a. Markov trace. It also 

satisfies 

TM(E~(a» = TM(a) , for a EM" 

so that 

TM(a) = Ef ... E:(a) , for a EM". 

This trace is in fact the only possible normalized Marltov trace on Moo. 
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7.2 Quantum Group Symmetries of Charged Fields· • 

We start from a physical Hilbert space which carries unita~ representations of an observ­

able algebra over M3 and a Hopf algehra, K:., and define, in analon to the ccue where K:. is A 

group algebra, spaces of field operators thAt transform covariantly (contravariantly) under 

the adjoint action of K:.. -We e~lain how this notion of symmet~  eztends to conjugates 

and compositions of field operators And d,rive the resulting commutation relAtions And op­

erator product e~ansions,in ccue K:. is ,emisimple. We show that commutation relations 

and operator product e~ansion.s hold for non-,emisimple algebras K:. only in a weak sense, 

i.e., the respective equations have to be contracted 'With K:.-tensors with non-zero quotients 

in the intert'Winer calculus of Section 6.1. For Uq (Sl2)' we show that if the total order 

of the monomials does not ezceed the level these contractions can be omitted. It would be 

interesting to see how these subtleties have to be treated in conformal theories [9} , where 

we have a similar construction of prima~  fields in which the quantum group is replaced 

by a current algebra. 

In general, there is no procedure to construct afield algebra, F(C), generated by charged 

fields, ,p(p"), where I'" is a morphism of the observable algebra A localized in a cone C, 

which has a quasi-triangular Hopf algebra K:. as a symmetry algebra and closes under the 

commutation relations determined by the universal R-matrix of K:.. 

In our context, charged nelds with K:. symmetry are defined as follows. 

The "fieldspace" F;OY(C), with elements 1/J(PP), PP being localized in C, is a s':lbspace 

of ~(1-£ph71.). The Hilbert space 'Hph71. carries unitary representation s, denoted r, of K:. 

and 21, with 

K:. c 21' , (7.30) 

and contains the vacuum sector, 'HI, which is determined by 

1-£1 ={" E 'Hph71.1 11"(0.)" = E(a)"jVA E K:.} 
(7.31) 

and n E 'HI, 

where n denotes the vacuum vector. 
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The Ip&Ce .1';0Y(C) is defined as the span' of finite dimensional Banach spaces, 

• 
~  

F" C ~ (1tpbJ•.), that are characterized, for any *endomorphism ~ localized in C, by .. 
Fpp = {,p (p") E ~(C) I ,p(P")1I'(A) = 11' (P"(A» ,p(P") , VA E 21} . (7.32) 

1: symmetry is expressed by the fact, that ~Y(C)  is invariant under the &Ction of x:; on 

~  (1tph7.')given by the adjoint representation ad~  defined in (4.8). 

It is not hard to see that the finite dimensional spaces Fpp are also invariant under x:; , 

and if pi' and fJ' are equivalent as representations of 21 on 'H.1J then Fpp and Fp are 

equivalent as x:; modules. 

We now assume that Fpp is irreducible as a /C representation, and 

,..(21)~OY(C)n =1tph7" • (7.33) 

F", is identified with an irreducible X:;:-representation lI" by 

lI" -+ F", : z -+ ,p ('J:, I) , 

with . 

adi(a)(,p(z,I» = ,p(az,I)· (7.34) 

For the charge transport operator rp.", E 21-, see (2.19), with 

rp,,,I(A) =peA) rp,P' , 

we have 

1I'(rp",,) ,p(z,I) = ,p(R(P,'!)z,i!) =r(p,,!) ,p(z,P), , (7.35) 

where we use that rp,,,, E ~c_ and hence R(P,';) c-ommutes with the action of /C. 

From (7.31)-(7.35) it follows that 1tph7•. is described by 

'H.ph7" =E lI" @ 'H.p (7.36) 
peL
 

and the fields are given by
 

,p (z,,I) =~:Cli  @ ('J:, .))Pi,.;(JI) @ v:j (I) (7.37) 
ij" 
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for some set of intertwiners 1'.,.;(JI) E Int(V. ~  l'" l';). 

From now on we assume that the /C-representations associated to different secto 
j 

are inequivalent and that the intertwiner P'I.;(JI) are a basis of 'P (Vi ~ v" l';). With tl 

conventions (5.6) and (6.51) we can compute the*-conjugate of (7.37): 

(,p (z, I)t = ,pt (xz,I) (7.3l 

where 

,pt (z, P") =E (J5,,pj(JI)(z ~ I;») ~ V! (P") 
ij" ' 

with 

~  (1"') := vj' (P"r . 

The relations of these fields with x:; and 21 are given by 

adHa),pt (z, p') = ,pt (az, P") (7.3' 

and 

w(A),pt (z,P") =t/Jt (z,pP) 1r (PP(A» . (7.4 

The total covariant (contravariant) field-algebra POV(C) (PODt(C» is the algebra gene 

ated by elements in, .Fi0Y(C). Note that .1;0nt(C) = .1-:OV (Cr. The transformation laws 

the monomials in POV(C) (ponl(C» are 

adi(a)(t/J (ZI,';l) 1P. (Zn,,oP"» = 

(~'(n-l)(a) ZI ~ ® Zn, t/J (., P'1) .. .,p (., P'''») 
(7.4 

a4(a) (t/J f (ZI, pl'1) t/Jf (Znd'''''») = 

(~(n-l)(a)  ZI ~ ~Zn,'t/Jt(.,PP1) ... ,pf(.,P""») 

with ZI ® ... ~zn  E l'"l ® ... ~  V,.... 

Let us assume that x:; is dual to 21, in the sense explained in Chapter 7.1, so that t 

identifications of /C-representations with supers~lection  sectors coincides with (7.10). 

192 



JC is semisimple, this implies commutation relations for the fields, that close in pOY (21) 

and are given by the universal R-matrix of JC: 

,p (:Z:p, 1") ,p (Y., pf) = 

=(:Z:p®Y., R~,p(.,pf) ,p(.,P'») (7.42) 

= (PJIIl R~PJIIl :Z:p®Yp,W(.,pf) ,p(.,P'») 

and 
,pt (y" pI) ,pt (:Z:p, 1"') = 

= (R:,y,®:z:p, ,pt(.,PP) ,pt(.,p'») (7.43) 

= (y,®:Z:p, PHR;pPp«,pt(.,PP) ,pt(.,p'») ' 
where pP and p', resp. I" and pI, are spacelike separated, PJI9 is the transposition of 

tensorfactors, and :Z:p E ~, y, E ",. Moreover, with the relation (7.11), we have the 

pperator product expansions: 

,p (:Z:p, 1") ,p (y" pI) = 
(7.44)

=E u,,(fjp, q) F(l,p, q, f)::i~ r P'opf,p.(Jl) (:Z:p ® y" P,v(v),p (., l»),,,,,v 
and
 

,pt (:Z:p, PP) ,pt (YP' pll) =
 
(7.45) 

= E u,,(rj q,p) F(l, q,p, r);:i~,pt  (Pr,pq(v)(:z:p ®y,), l) r ptop',p·(Sl).
r.".v . 

If we turn to the case in which JC is no longer semisimple equations (7.42)-(7.45) no longer 

hold, since the intertwiner spaces Into (l'i ® Vf ® 1'" l'A:) and Into (l'i, '" ® ~ ® l'A:) are 

nontrivial. There is, however, a way of understanding commutation relations if we consider 

the subspace of ~ (1iphyl.), spanned by the monomials',p (., P'I) ... ,p (., 1"") "smeared out" 

only over a certain subsp"ace of VJll ® ... ® ~". To be precise, we define the subspaces 

:F::'~  (PPI" .. , pp,.) as the restriction of,p (.,1"1) .. .,p (., ~) to 

E e 
~ ® Int (\.), 1',1 ® ... ® VIJr) , 

pEL 
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.­
seen as a subspace of ~-1  ® ... ® Vp,., i.e., pn:~  (f"'1, .. :,~) i. the linear span of all It 

fields I 
(:z:,I'#1 .."" ,p (.,1"1) .. . ,p (.,""'» , ;

I 
with :z: e V; and 1'#1...", e Int(l'" V" 0 ... ® V",) . 

Similarly we define .r:~ (pill, ... ,PP-) by restriction to the sub~pace  

$ . ,

E Int(VJll ~ ... ~  Vp,.,~)  ~  ~  

peL 

of VJll ~ ... ® Vp,., i.e., the span of all 

t t) .(1Jll ...""",:z:, ,p (., pill ) .. . ,p (., P"") . 

Note that the spaces r:,~/com (pill, ... ,PP-) are invariant under the adjoint action of JC and 
1 

coincide, for semisimple JC, with the total space of monomials. 'However, the collection of 

these subspaces doe~  not form an alg~bra.!  

From the definition of the vertex-50S transformation and assuming that we have 

duality in the sense of the equivalence (7.11) , we see that we have to reinterpret the 

commutation relations (7.42) and (7.43) as being valid only inside of the contraction. 

restricting them to p,=. 

They can be expressed in coordinates if we fix a basis eo. iIi Viii and a dual basis 1.0' 

in 1'". 

If we denote the matrix elements of 1'"1",''' e Int (\.), 1',1 ~ ... ~  1',,,), Ip1 ...",.", E 

Int(~1 ® ... ~  ~"'~)  and R~  by 

(elJ,I'.P1 ...",r1 ~ ... ~  r") = (lp"'I .."");I'''o 
,, 

(r1 ® ... ® r", IJll ...p"",e,,) = (1Pl ...",.",)~I".Q"  

% ).." and ({' ® I!, R; e" ~ eo) = ( RlIP 1J0 

i
I 

and the field components I 
I,pa(P') :=,p(ea,P') j,pl(pp) :=,pt(ea,p") 

. I 
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For this purpose we cOllsidcr three irreducible, a.rbitrarily localized *-endomor­

phiSInS, pi, i ='1,2,3, which are equivalent to causally independent cndomorphisInS, pi, 

with as (PI) > as (P2) > as (P3)' Then there exist charge transport operators f;.tPi, E ~c· 

obeying (2.19). We choosc the frames, {V..u:(Pi)}, {V~(Pi)}' of different fibres Vl(pi)., 

Vt(Pi)• ...... Ztpo,k, related by (2.26). This yields a relation betwecn the natural frames, 

{V:l (1'1) .•. V::-1P (Pn)}, of V, (1'1 0 ••• 0 1',,). -- Z"Pl ...,..•• gven by the equations 

V: (PI) V"lcl(P2) =i(fh .P1pdrh.P2» V:{p1) VI' (1'2) (7.59) 

and 

V~· (h) V"kl (P2) v,:m (h) = 
(1.60) 

i (rh.PlptCrP,.I':I) 1'101'2 (rh.P2 » V~1c (1'1) V,,1cl (1'2) V;- (1'3),'
 

The statistics operator ,+ (1'1,1'2) is given by
 

(7.61),+ {PI, 1'2) =1'2 (r~.Pl) rh,l':I r p1 ./ll 1'1 (rp"l':l) . 

Clearly, it is a unitary operator in ~c·  intertwining 1'1 0 1'2 with 1'2 0 1'1 and, a priori, it 

, might also depend on PI and P2. The connection to the statistics matrices is obtained if 

we combine eqs. (7.59), (7.61) with (2.27), using that PI AP2, and as (Pl) > as (P2)' We 

find that 

i(,+{pl,p2») V:(pl) V"kl(p2) = E R+ (i,pl,p2,l)'i:l' V~f(p2)  V;,"(pl)' (7.62) 
k'a'S' 

Since ,+ (Ph 1'2) : lnt (1'201'1,1'101'2) - Hom (Vi (1'1 0 1'2)., Vi (1'2 0 P~)AJ  is an isomor· 

phism, we infer from the properties of statistics matrices (see Theorem 2.3.1) that 

,+ (PI, 1'2) only depends on the asymptotic direction of PI and P2 , and we will write 

,- (1'1,1'2) if as (1'1) < as (1'2)'	 Obviously we have that 

,- (1'1,1'2) = (,+ (1'2,1'1)r1 
• (7.63) 

Equations (7.60) and (7.62) also imply the identity 

i (pdt:± (P2' 1'3») V: (1'1) Vt!kl (1'2) v;m (p3) = 
(7.64) 

~ ± "IJ'.,' iJ: Icl' l'mL..t R (k,p2,p3,m)LS., Va (1'1) V", (p3) V,., (p2)' 
l't!'.,' 
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This identity, eq. (7.62), the Yang-Baxter equation. for the statistiea matrices, and the 

injeetivityof Int (Pa 0 pa 0 1'1,1'1/0 P2 0 1'3) &.-+. Hom {Vi {PI 0 P2; 0 1'3)"" Vi (Pa 0 1'2 0 PI )",) 

yield the ¥cmg-Bater equlltiou lor the ,ta.tistic, operator" i.e~, 

! 
t:i: (P2' 1'3) 1'2 (e:i: (PIt P3» t::i: (Ph 1'2) = : 

I (7.65) 
1'3 (t±(Ph P2» e:i: (Ph P3) 1'1 (c± (Pa, ~3)} . 

i 
For detailed calculations see [24}. If we specialize (7.62) to i ~ 1, Ie =[I'll, and use the 

normalization V1lP11 (1'1) Vcr Jl (Pa) =rPlOP2,;(Q) Vll (l)for t~e  isometries, f /llOP2,p'(Q), 

we obtain the foilowing presentation	 I 
I 
I 

,:I: (P1IP2) = E R± (1,php2Il)~~:' fp,oPl,r(a') r:10P2.r(a). (7.66) 
lao'	 , 

In the case of interest we have that 1'1 = 1'2 = p, and the summation in (7.66) ranges over 

1" E {O',,p}, 'r/J ~ 0', a =a' =1,80 that 

,+{p, 1') = z,«q,+l) e6 (p,p)-1),	 (7.67) 

where
 
R(l,p,p,O'):~~..J.  1 R(I .,,)'11


9, = R(I 01')',11 r"", zp = - ,1',1', 't" ,11',1',1', 't" ,11 

The consequence of having ~ two-channel decomposition is that the braid group rep­

resentation given by the generators 1',,:= *p'!(e+(p,p», with 1'.-1'"+11',, = 1',,+11',,1',,+1, if 

contained in the set ~f  representations of the Hecke algebra, H,;.oo, since we a1s~ have thai 

1'~  = (qp - 1)1'" +qp, i.e., the ideal Ice [Boo], with C [Boolf 1= H,."oo, is annihilated b: 

our representation of Boo. As remarked in [22], one can then utilize the classification c 

unitary representations of HIl"	 as given in 154], to find the possible values of qc: J4 ~ e±a;j 

N =4,5, ... ,00. 

For the associated projeetions en = ;:$t = pn (e6 (p, p}), we find the usual Tempe 

ley-Lieb relations (7.27), with Ii =cP" provided 0' is an automorphilm and using {7.5' 

and (7.58), with I' = Pi, i = 1,2,3, and 0' =q' =q". In this cue, one finds, by insertil 

(7.67) into the Yang.Baxter equation, the compatibility condition 

Ii = 9, +q;1 +2.	 (7.f 
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decompositions. 

We fitst note that if 0'1 e pop, which means that there exists an isometry 

o :f. r'0'1'1. elnt (p 0 P, 0'1), and 0'1 is a localized automorphisIDI, then we have, for the 

·-endomorphisms P :=0'110 p ~ P0 0'1
1 ("=", for O'tXp), that po p(A)rJop,l = r~o"lA, 

for all A e !Bc_, where r Jop,l := 0'1
1 (rpo'''I)' Similarly, we find an operator r poJ,I, with 

po p(A)r,oJ,1 = r,o~,IA, V'A e c:Bc_, such that there always exists a conjugate sector. It 

follows from the result in [23], that Ind(p) < 00, {or all cases. Hence Ind(,p) < 00, 'V,p e ~, 

t being the sectors genera.ted by p. Moreover, we find from i) that 

pop=l$,p' (7.50) 

and from ii) that 

pop = 1 $ 0' $ ,p' (7.51) 

where,p' := 0';1 o,p, and 0' := (1i1 OO'a. 

The usertion follows for cases 0), iii) and iv) from the basic properties of sta­

tistical dimensions, namely: dPi 0Pa = dPt . dPa , dPt Ell" = dPt +dPa and d, = 1 iff 0' is an 

automorphism. For 0), we have dp =1, for iii) tP, =dl + d'i + d" + dva = 4, and for iv), 

~ = 1 +dy, dydp = d, +d'i d, +d"d, = 3d" hence dy =3 and dp = 2. The proofs of i) 

and ii) require some additional knowledge on connections of automorphisms to conditional 

expectations and Temperley-Lieb algebru. 

We first consider two irreducible *-endomorphisms, PI and Pa, which are arbitrarily 

localized and have finite index, and assume that there'exists a localized automorphisms, 0", 

with 

0" e PI 0 Pa. (7.52) 

From an isometry, r Pl0Pa,", intertwining 0" with a subrepresentation of PI 0 Pa, we find 

anisometry (O"ft (rPtoPa",) which intertwines the vacuum representation with the 

·-endomo~phism  (O"f1 
0 PI) 0 Pa, so that Pa ~ (0"f1 

0 Pt by property (Pl) and r Pt0",r 

is unique up to a phue factor. It follows that NPtPa .., = 1 and dPt =d". In particular, 

for some choice of Ph there exist a localized u'nitary operator, r"oh,PlI and an isometry, 
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IrhO",t, such that I 
r PlO"..' = r;'oh'PI 0" (rhoPa,I). I (7.53) 

These properties imply that the projections e" (Pt, Pa) := r Plo~
I 
...,r~oPa," are unique and 

obey i 

e" (Pit Pa) = r;'ohoPl 0" (el (P:z, Pal) r ,'oh,PI , (7.54) 

where e" = el (Pa, Pa) is just the Temperley-Lieb projection ;introduced in Section 2.5. 

Moreover, we ha.ve that elf (PI, pa) = elf (Pa, PI). Let us us~e there exist an endo­

morphism, P3, and an automorphism, 0''', with 0''' E Pa 0 P3. We immediately find that 

Pa 0 0''' ~  P3, dPi = d" = d", that the isometry, r"0",'", is unique up to a phase and can 

be expressed,similarly to (7.53), by 

r.......... = p, (r;,_.....) r.......1. I (7.55)
 

where rhovll,PI is unitary, and r PJOh,1 is norma.Iized, relat?ve to r"OPa,I, such that 

(7.20) holds. The identity following from (7.55) for the (uniqu~)  projection e,II (P2' P3) = 
r PJoPl" .. r;,oPl,," is expressed by 

e,,, (P2' P3) = Pa (r;'oo-II,PI) el (P:z, p:z) P2 (rho,",PI) . (7.56) 

It is straightforward to derive the generalize,d Temperley-Lieb relation 

{3P1 (eVil (Pa,P3» e" (P1,Pa) PI (eer ll (Pa,P3»= PI (e,II (Pa,P3» (7.57)
i
 

from the previous equations and from relation (7.27), i.e., 
:
 

{Jpa (etCPa, P2» el (P2' P2) Pa (et (P2' P2» = p:z (e1 (Pa, h» , 

and, similarly 

(3e,,'(P1,P2) P1 (ecrll (P2,P3» e"'(Pt,Pa) = e,'(PI,P2)., (7.58) 

From (7.57) and (7.58) we can infer that Ind(p) $ 4, in case i), by using the st~tis­

tics operator which is fundamental to previous approaches 119] to braid statistics and 

whose definition requires the explicit use of charge-transport operators and ;refere~ce­

(spectator-)endomorphisms. We therefore briefly rederive its properties from t~ose of the' 

statistics-matrices discussed in Theorem 2.3.1. 

204 



constraint (3.68) imposed on A~  := N;, rCr :Cr -+ Ci, i.e., by determining the solutions 

of AooA~  =AooA~. We first note that, since 2 ~ IIAoo lI =IIAooA:'1I1 = P.ool, the graph 

associated to Aoo has to a.ppear in the classification of graphs with norms not larger than 

two, given in Theorem 3.4.1 . Since any cycle (subgraph isomorphic to A~»  has norm 

equal to two, the only graphs in this set with cycles of length two, four or six, are A~l),  

A~I)  and A~I,).  All other graphs, in particular those listed in 0) • iv) of Propositi~n  7.3.1, 

fulfill the prerequisites of Corollary 3.3.7. Thus if there is some Aoo ' IIAoo ll $ 2, for which 

the~e  exists a non.isomorphic solution, A:.c., of the normality constraint, A:.c. ha.s to be of 

type, A~~+t,  n =0,1,2. Since Aoo : C:' -+ Cr hu no cycles of 'length two, four or six, 

we have, by Lemma 3.3.6, that the component 04:= (r~)~ = (r::t of the twice iterate 

of one coloration obeys a) - c) of Lemma 3.3~6,  so, by iv) of the same lemma, roo =g.A' 

For A~l),  we see that 042 := (A~1 )2t contains a double edge and is therefore excluded 

as a candidate for 1"00' but, for Al := (A~I)2)~  andA3 := (A~I)2)~  statements a) - c) are 

easily verified. We therefore obtain the only roo =(Aoo,C:' ,Cr) with non-isomorphic 1"00 

by going through the construction of g.A given in Lemma 3.3.6. We conclude that 

g.Al ~  D~I),  

and (7.48) 
I'! 
"Aa 

~ 

-
E(l-) 
6' 

It foll~ws  from (7.48) and the positions of (*) in (AlO) in Appendix A, that, for real­

izations of D~l)  in a fusion rule algebra, we have that Out (C:') =c:' ={I, 0'1, 0'21 C13}, 

(thus 9!! Z2 x Z2 or Z.), and dec~mposition  iii) follows. Similarly, we have for E~I), that 

2Out (C:) = {l,O'lt0'2,} (hence 9!! Z3 and eTl = 0'2 ), and thereforeCr ={P'O'l 0 P,eT2 0 pl. 

If we define ..p eC:' by pop = 1 $.,p, (i.e., C:' = {1'0'1,C12'..p}), decomposition iv) fol­

lows, since .,p is a neighbor of every element in Cr in the graph E11
). For all other 

graphs, listed in 0) • ii), we have by Corollary 3.3.7, a. bijection, E : C: -+ Ci, such tha.t 

AooE = Aoo. If we apply E to the C:'-part, tf', of the Perron-Frobenius eigenvector of Np , 

d= (et', d1, ...) E C: e Cr $ ... (if C: =C;o put et' =d'), obtained from the statistical 

dimensions, dp , w.hich is the Perron-Frobenius eigenvector of Aoo in the finite case, then 

we find that 

Eet' = d- l EAl d1 = d-1 (A E-1)l d1 = d-1 =d-1Al d1 =d2 
p 00 ,010 "00' 
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By (3.55) the equation dI:(i) =; d.- implies that t(Out (C:» =iOut(C;'). Hence there il 
I 

at least one automorphism in (C;o), namely eTl := El. More genera.lly, the set 
t 

stab(p) := {o I cr 0 p = p} I
I 

I 

is a subgroup of Out (C:'), since 1 = ~ , = ~ and because ~f  grading considerations. 

Hence, using sta.b(p) ~ Aut (rGO) : 0' H ~ rC:, stab(p) is also a subgroup of the graph 
, 

automorphisInB of roo tha.t fix the vertex usociated to p. It consists of the vertices in roo 
of edge degree one that are joined to p and is given, in the c~e  where I/r_II $ 2, by Z. 

or Z2 x ~ for D~I), Z3 for D4, ~ for D., Di~1  and A3, and i~  trivial for all other cues. 
' - i 

If E : C: -+ Cr, a.s defin~d above, exists it follows, that E(o) 0 p= p for any Z := 

E(sta.b(t» C {p 0 pl· Also, Z consists of a.utomorphisms and, u 6. := E-IE' is an a.uto­

morphism of roo fixing p, for any E' : C: -+ Cr with AooE' = Aoo , we have tha.t 6. maps 

stab(p) to itself. Thus I is independent of E. Conversely, if, f~r a: E C;e, Q 0 P=p holds 

we have, from Lemma 3.3.4, that a: e {p 0 p} n Out (Cr). For a.ny such a.utomorphism, 

we can define EII :== N~ fC: : C: -+ Cr, with AaoEII =Aoo, so that a: = Eol eX. In 

conclusion 

I =E,,(sta.b{p» ={a: e c;o : a: 0 p=p} ={p 0 p} n Out (Ci) ,
 
and
 

(7.49) 
III =Ista.b(p)I, for Out (Ci) # 0, and Z =0, for Out (Ci) =0. 

We now can usign to the remaining inclusions the decompositions 0) _ii) by comparing 

the isomorphic inclusions r ao and 1"00 and their automorphisrni. Since, in these'cues, thel 

number, vp,of representa.tions in pop is less than four, we have that VI' = lip 0 pll2 

lip 0 p1l2 is equal to the number of representations in po Pi (here 11(,)11 is the 'euclide 

norm of eq. (3.3». Since Vp $ 3 and jsta.b(p)1 ~ I, the number TIp = v p -jata.b(p)1 0: 

non-automorphic representations in pop obeys f'/p $ 2 and f'/p = 2 only for tip == 3 an 

Istab(p)l =1. However, the only case. with "p =3 are D~~h  DOlI a.nd D. for whi 

stab(p) =Z2 or Z3' so that there is a.t most one non-automorphic representation in po 

This completes the first part of the proof, showing tha.t Ind(p) $ 4 lead. to therdecomp 

sitions listed in 0) - iv). 

It remains to prove the converse implication, i.e., to derive Ind(p) $ 4 from the giv 
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restriction of the fuion rule m4triz to fiuion between 0- Gntl t-graded sectors is given by (A2,,+1JC!,,).q"»). we have that f" i. a subgraph of f n+1 (i.e.• it i. obtained from
the incidence matri:t of one of the following bicolorable graphs: r ,,+1 by amputating only the edges that are joined to vertices in Irn+11 \If"D. These 

0) A2i	 graphs therefo~ inductively define roo = (Aoo.C,:o.Cf). with Aoo = N, rC:o :C,:o -+ Cf. 
A:.o = ~ rCr :Cr -. C:. As in iv) of Proposition 3.2.1. we have Perron-Frobenius vec­i) ~~3' D"~I. Ee",a(Ind(p) < 4); Aoo ' E~~~,a(Ind(p) = 4) i tors. (.,.,n ,1") E C: x Cr, with finitely many non-zero components, such that A",.," = !3l1"

ii) D.('t/J = 0'3 ,Ind(p) < 4) i D~s. Doo ('t/J ::f: 0'3, lnd(p) = 4) j	 and A~1" = P!.,.,n. and. for the vectors form~d'from the statistical dimensions d# E C:. 

iii) D~I);	 

we have that Aootl' = pjdl and A~J1 = pIt/'. Since Aoo - An has non-negative entries. it 
follows from 0 :5 (dl, [ADO - An] '1n) +(1", [Aoo ­ An] dO) = (pi, - pi) [(J1. TI") +(t/'.1")J

iv) E11
). that Pn :5 pp. ThuI, as the fJn are monotone increasing, fJn J.... sup fJ", :5 fJ,. (In order

(For the definition of these graphs see Appendiz A.) 
, '. nto show that {3, = sup (3", for the general infinite case. one has to go back to the defi­

" 
Proof. 

nition of the index [23), since, for general infinite Np , there ~orresponds to any cigen-We ,first assume that Ind(p) ~ 4 and show that 0) - iv) are the only possible valueVTJi ~ Js~p (3.,,; a sequence of numbers, di. which form an eigenvector of N,). Forinclusion graphs. We consider the superselection structure, ., generated by p. Since lnd(p) :5 4, it follows that any subgraph f", C roo has norm lIrn ll == HA,,/I ~ 2. ,!he finite;lnd (PI 0 P2) == (PI 0 P2(VR) : rot] ~. [PI 0 P2(VR) : P2(rot)] [P2(!m) : rot] = lnd (PI) Ind (P2). bicolorable graphs with norm not larger than two have been classified in Th~rem 3.4.1[23]. we have that Ind (Pi) < 00, for any sector Pi E t. and can thus ass~me properties (PI) and are given by An, A~~+1' Dn , Dil ). Ee,7,8' E1~J,8' from which we also find the non­and (P2) of Chapter 2 to hold on •. It follows that the fusion rule matrix, Np , is well de­ bicolorable graphs An. A~~. D~~ and A". (These graphs are given in Appendix A.) Itfined on t and has only finitely many entries in each column and row. Moreover. we can as­ follows from AnI = ¢JP' that each of the indecomposable graphs. r",. has atleast one ver­sign to the sectors Pi E t the statistical dimensions, ~ = Ind (Pi)l< 00. which form a pos'-­
itive eigenvector ofN" according to (2.54), with eigenvalue dp == pj =Ind(p)t. Further, it 

tex, I. with edge degree one, which excludes A~l) from the above list of bicolorablc graphs. 
It is easily verified that the only infinite ser.ies of graphs rn ~ r "'+~ ~ •.•, which can befollows from (Pi) and (P2) that, in sequences .. .C~) C C~+1) t ...,# = 0,1, each of the constructed from the above list are A", C An +1 C ... and D", C D"'+1' C ...• where th~subsets C~) of t, as defined in Lemma 7.1.5. is finite. We denote by C: ~ UC~) c t then	

"

common vertex, 1, is given by an endpoint of Ani in the first series, and the endpoint of(possibly infinite)\1nion of these sets, whose elements are the "i-graded sectors". We use the short leg of D",. in the second series. Besides the infinite graphs Aoo and D oo • we arethe inclusion matrices, A(m) , of the commutant algebras Mm- I C M", which are, by Propo­ left with the finite graphs A"" D". D~l), Ee,7,8' E~~J,8' which are listed in 0) - iv).ln anysition 3.2.1 i). just the restrictions A(2") := Np rcin- 1
) -+ cfn). A(2"+1) := ~ rcin

) -. C~n). 

C~n) labelling the factors of M2,,+#, in order to define matrices An : C: -. Cf, with only 

case. we have that fJ" -. 13,. since. p", = 4cos2"~1 (= 4 cos22,,11'_1) tends to 4. ~_ A,,_ t Aoo

(Dn t Doo ). and we have that 13" = Pp , for n > diam (roo), when the graph f 00 is finite.finitely many non-zero entries, by setting The sites in r co at which we have automorphisms, i.e., the sites corresponding to the 
A

2n 

(A
2
,,;I) := { A(2")' (A(2n+1») on cin

)	 smallest component of the Perron-Frobenius vector of the incidence matrix of roo, have 

O. elsewhere.	 
been indicated by: (*) in the graphs ofthe Appendix. 

For these matrices, A"'+1 - An has non-negative entries. which are zero at positions	 We are now in a position to derive the decompositions of pop and pop. stated
where entries of A" are non-zero. Thus. for the graphs, r 2n = (A2n,C1"').C~n-l»), f 2n+1 =	 in Proposition 7.3.1, from the list of possible inclusions by considering the -.normality 
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7.3 The Index and Fundamental Decompositions 

In thu section we investigate, Jor C--quantum categorie", the connection between the 

struct~re oj the tensorproductl pop and pop oj an irreducible object p and itl ~ta.­

tistical dimension d(p). I'll. particular, toe find criteria in term.s oj these fundamental 

decompositions which are equivalent to the statementl d(p) .~  2 and d(p) < 2. We also 

prove that iJ the fundamental decompositions contain. only invertible objectl then the ele­

mentl in pop Jorm a group uomorphic to (~)M. The prooJs are given in the Jormalum 

of C--quantum categorie" a..s aNing in local quantum theorie" ("ee Chapter" f and 7.1). 

They can be translated into the language of abstract tensor categories 'Without difficulty. 

The classification of fusion rule algebras presented in Section 3.4 was based on the ADE 

classification of graphs with norms not larger than two and is therefore associated to 

local quantum theories that are generated by a single localized *-endomorphism, p, with 

lnd(p) ~  4. In general, the computation of the index, Ind(p) = [perot) : rot], is rather 

difficult, so one is interested in replacing the index by other more computable quantities, 

. which involve the use of locality and braid group statistics. 

From the obvious inequalities for statistical dimensions, 

c4 ~ I, and ~ = ENpap.",d.; ~ #{.,p:.,p E pop}, 

'" it is clear that if lnd(p) :5 4, pop, as well as pop, cannot contain more than four 

irreducible subrepresentations. Also, it has been observed in [23] that, for selfconjugate 

sectors p with two-channel decompositions, pop = 1 e.,p, the existence of a unitary braid 

group representation enforces that lnd(p) :5 4. Below, we extend this result and list five 

classes of endomorphisms, characterized by the decomposition of pop and pop, for which 

lnd(p) :5 4 follows. The purpose of Proposition 1.3.1 is to show that iUs possible to find 

constraints on the decompositions of pop (resp. pop) equivalent to the index restric­

tion.More precisely, we prove that, for any endomorphism p whi.ch does not belong to 

one of the five classes, lnd(p) > 4. In the descriptio~  of these decompositions we not only 

count the total number of irreducible subrepresentations, but also the number of automor­

phisms in pop (p 0 p, resp.). We shall see that the representation (1 in the decomposition 

pop ~  (1 e ,p is found to be an automorphism if and only if the corresponding projectiol 

e,(p, p) E p2(rot)' nrot satisfies a Temperley-Lieb relation. The group of automorphislI1l 

in pop, i.e., ! 
Itab(p) := {C71 C7 0 p ~  p} 

- which is important in cases ii) and iii) of Proposition 7.3.1 .....; i. studied in generality, iJ 

the course of the proof. During the proof, wesh&1l have to make a sm&1l detour, in ordel 

to rederive the braid-statistics formulation in terms of statistics opera.tor. from the theorJ 

developed in Section 2.2. The possible forms of the fusion rule ~atrix,  Np , restricted to tht 

O-graded sectors, will be given in -terms ofgr~phs, for each cU:e separat~ly, and knowini 

that the index of p is given by the square-norm of these graphs we can find the possiblt 

values of Ind(p) : Ind(p) E{4 cos2N}N=3,....OO. In the more complicated cases, ii) (t/J :/: (1: 

iii) and iv), of Proposition 7.3.1, we shall reach the accumulation point, 4, of this set 

and it turns out that, for p = p, the fusion rules are dual, in the classical sense of [29], t< 

the dihed~al-(ii)  and iii» and the tetrahedron-group (iv», regarded as discrete subgroupl 

of SU(2). 

Proposition 7.3.1 Suppo"e that p is a localized irreducible *-endomorphism oj a loca 

quantum theory with braid group statistics. Then 

Ind(p) ~  4 

iJ and only iJ the composition oj p with itlel! ha.s one oj the Jol~owing decompositions int 

irreducible endomorphism.s: 

0) p is an automorphism 

i) pop = .q e .,p j 

ii) pop = (11 e (12 e t/J , or, equivalently, pop=le(1et/J'ji 

iii) pop = 1e (11 e (12 e (13 i 

iv) pop = 1 e1P, with .,p 0 p = pep 0 (11 e p 0 (12 j 

where (1, (1i, i =1,2,3 are localized *-automorphism.s, i.e., (1i 0 (;i ~ (;i 0 (1i ~ id,' a 

t/J, t/J' are irreducible localized *-tndomorphis~. Under the"e a.s"umptions p: gen~rat 

a Z- or Zn-graded super"election .structure in which all "ector" have finite indez, and 
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we obtain in ple.ce of (7.42) and (7.43): 

E (1,,,. ..."')=1...0.. ,pOl (~) ... ,pO.. (I"") Vo 
{o,} 

_ "(1 )01...0,. (D:I: ),..,.••1 .1. (~) (7.46)- LJ ,,,. ..,,.. ~ •"p'+lJI. 'f'0l IF ••• 
{o,h.,..., OHIO' 

,p".+l (pJ'+I) ,p,.. (,I") ... ,po.. (pJ.. ) Vo 

and 
E (I", ...p..,p)='''.o.. ,p!, (~) .. .,pi,. (P"") Vo 
{o,} 

="(1 )0' ...0.. (D:I: )"'''''-1 ~/.t ("'1) .LJ Pl ..·p,." ~ •"p.-1Jl. I' (7.47)
Y'01 •• 

{gil °'-1°' 

,pt. (p".) ,pt.-, (P"'-l) ,pl.. (P"") Vo ' 

for any 11, 1'''1'''''' E Int("" VIlt ® ... ® V",) ,lPl p,." E Int (VJIl®'" ® Vp,., ~), Vo E 1f.1 

and pJH' and "', resp. "".-, and ""', spacelike separated. The expressions from (7,46) 

and (7.47) are contained in (e~) ® 'H., I e~ E l'" and vanish if we insert I,,,, ...,,. E , 

Into ("" VIlt ® ... ® V",), resp. IJIl ...p..,p E Into (l'" ® ... ® Vp,., v;,), so that the "internal 

states" on which 1C e.cta are actually described by the path spaces P (l'" VIlt ® ... ® V",) 

and P(VJIl ® ... ® l',.. , l',.). 

In the same way we find operator product expansions in constructions generalizing 

(7.44) and (7.45), relating the restricted monomial spaces by e.g. 

.r:~ (,It, ... ,"..) C w(21) E .r:~ (,It, ... ,".-1,,I, ,1.+2 , ... ,1"") , 
PE~ 

so that, eventually,
 

.r:e:~  (,It, ... ,,I") C w(21) ,E :Fi (,I) .
 
Jle~  

The necessity of contracting the fields is in fact not surprising, since we cannot expect to 

recover the entire R-matrix, Raj, if ~  ® \'; contains representations of zero q-dimension, 

from the information (the braid matrices) given by the statistics of su~erseleetion  sectors. 

We conclude our discussion of the field construction with a remark on U.(Sl2)' 

If we put q = ef, we see from the'tensor-product decomposition (5.19), t~at  any 

monomial expression ,p (., "") ... ,p (., ,11) can be reproduced from the contracted prod­
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ucts, i.e., we have 

,pOl (,II ) ... ,pO.. (I"") E .r:e~ (~ ,... ,I"") 
for all {as}, whenever EP. - (n -1) < H, where the labels pi are the dimensions of the

.=1 ' 
quantum group representations. Thus, with these bounds on the dimensions, (7.46) and 

(7.47) hold even when the tensors I,,,, ...,,. a.nd IJIl ...p.." are omi~ted.  
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b) stab(p)= ~  x 71, with ?1 4S in a), and an additional genertJ.tor T of Z2, so 

tha.t 

q(T' g) = i-I q(g) , for£E{O,I} 

and-g E 71, q(g) e ~ U in 0.). FUrthermore, A =±e~,  and 

8ra ± i1 = 411, mod 1 , (7.105) 

where + applies for a e CTI 0 "(J,and - for a e TO CTI 07:1. 

c) stab(p) = (z, x Z2) x (1, with additional generators T andb, so that 

q (T' b6g) = (_ly6 i6q(g), (7.106) 

'With ',0 E {O,l} and 9 E 0, q(g) e Z2 4S in a). We have A = ±1, and 

era = 46, mod 1, for 0 e G' , 
(7.107)1 

8 +­ 48, mod 1, for 0 e bo G' , .. 2
 

where G' ={I, T} x (1.
 

Proof: 

i) These are simple consequences of the fact that CTI E pop and 0'10 CTI = 1 implies 

p = CTI 0 p. 

ii) For some CT1, let A and q be defined by. equations (7.98). We first show (7.99), using 

the fact that q(a) can be interpreted as the ratio of two particular intertwiners. To 

see this let Ra, La E Int (p 0 p, (,1 0 ex) be given by 

Rts:= r;Op,crl p(rpoa,,) and La := r:Cp,crl p(t:+(a,p») rpoa,p. (7.108) 

First, it follows from 

2ri9A e- " q(a) Ra	 R..,+(p,p) = r;Op,crl p(r~a,p) t:+(p,p) = 

r:C,,crl ,+(p,p) p(£+(a,p») rpoa,p 

Ae- 2tril	 Ae-2riB
" p (e:+(a,p») r,oa,p = " La 

that 

R.a = q(ot1 La. (7.109) 

This implies ! 

r~p,crl  perpoa,p r ,o~,p)  = q(ot1 r:O'Pl p (£+(a, p») r poc.:" p(r,08,,) 

= q(at1 r~,,crl  p(r:+(a,p) o (rpo8,p») rpoa,p
 

q(at1r~p,crl p(p(e-(.8,0») rpo~,,£+(a,p») rpol.,
 

q(at1ul (£-(,8,0») R8 p(e+(o,p») rpoa,p
 

= q(ot1 q({3t 1 
CTI (e-({3, a») r:Op,crl p (,+({3,p») r,ol3,p p (e+(a,P») rpoa,p 

q(at1 q(pt1 r:Op,crl p (p (e-({3, a») ,+({3, p) {3 (e+(a, p»)) r pol3" r poa,p 

q(at 1q(I3>-1 r;Op,crl p (f+(a, p) a (e+({3, p») ,- (P, a») r pol3,P r poa,p 

q(ar1 q({3t1R-(p, {3, a, p): r:x,p,crl p(,+(a, p) 0 ('+(,8, p»)) r ,oa,p r p08,p' 

For fixed a,p E stab(p) there is a unitary, r aotl,a8' with p (r;o8,al3) rpoa,prpol3,p = 
r ,oaS" and p (r;o8,atl) '+(0, p) a (,+({3, p)) = ,+(ap, p) r aotl,aS.Hence muitiplying 

both sides of the above equation with 0'1 (r:oiJ,a.8) from the right we obtain 

RQ13 = q(at1 q(.8t1 f({3, a) La l3' (7.110) 

But by (7.109) this implies (7.99). This, however, implies that I is symmetric as 

well as skew symmetric, hence f E Z2 C U(I) and P == 1. Now we use the non­

degeneracy of f on stab(p) x stab(p) and the normal form of Lemma 7.3.2 to see 

that all 11; = 2 in (7.85), i.e., the claim of ii), stab(p) = (Z2)M, is true. If we 

specialize 

l(a,p) = q(a)q(p)q(ao{3t1	 (7',111) 

to a = (3 and use a 2 = I, we find q(a)2 = f(a,a), which together with (7.87) gives 

(7.100). Finally q(a)4 = I(a, a)2 = I, so q : stab(p) -+ Z. C U(l). 

The formulae (7.102), expressing the depen~enc:e  of A and q on O'lJ follow directly from 

the defining equations (7.98). 
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where we use the basic commutation relations and (7.20). If we insert (7.91) we 

obtain 

1; E,ll1& . ~  (1(0,,8) r:o,,, r~op,p) rlJop,p (f(6, a) r0I0P,p rpoS,p) 

1 
(7.94)Istab(p)jl (0, a 0 p) ,
 

hence
 
1 . 

E, 10. = Istab( )1 E f (0, p) 10.olJ· (7.95) 
P /JEllab(p) 

For any character (1 E Gof a finite abelian group G, we know that I~I  E u(g) = 0",1,
,eG 

So if N C stab(p) is the degenerate subgroup of a bihomomorphic form /, i.e., 

N = {a I /(a,l3) = 1 "113 E stab(p)}, then this means 

1 { 1. for a EN 
-Ib()1 E /(a,l3) =	 (7.96)
sta p . IJ 0 else. 

With this formula we find from (7.95) 

EE, 101 = E laCY'('	 (7.97) 
, "'teN 

However, by completeness, ~ E, =I, this implies N ={I}, i.e., / is non degener­, 
ate. With this knowledge the orthogonality relations EQEIJ' =,~EOI  can be easily 

verified. 0 

The remarks made in Lemma 7.3.3 will now serve as an important tool to prove the' 

following assertions on the situation where pop decomposes entirely into invertible ele­

ments. Proposition 7.3.4 classifies the possible groups, stab(p), to be of the type (Z2)M 

and gives the general spectra of the statistics operators ,(a, (3), ,(p, p), in a suitable choice 

of generators of stab(p). 

Proposition 7.3.4 Suppose p is an irreducible object 0/ a quantum category and assume 

that pop decomposes into invertible elements. Then 

i) supp(p 0 p) =stab(p), a.nd for any UtE pop we ho.ve pop = ~ 0'100:.
 
o.eltab(,)
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ii) All elements in stab(p) are set/conjugate, i.e., there is some M E N, such that 

stab(p) ~  (Z2)M , 

so, in particular, Id,l = 2( ¥). 

iii) For any given 0'1 E pop, let q : stab(p) -+ U(l) and A E U(1) be defined by 

2ft1,(p,p) = A e- , E q(a) e"100l(p, p) (7.98) 
OIEltab(p) 

and q(l) =1. Then we have that the bihomomorphism I defined in Lemma 7.3.9 

is a f-coboundary given by 

/ = oq. (7.99) 

We have 

2wie• ,q(0:)2 = e (7.100) 

and further 

q4 == 1, /2 == 1.
 

The constant A2 is given by
 

AII = e2n(4e,-e.1 )
 • (7.101) 

II (71 is replaced by (1i = 13 00'1, 13 E stab(p), then the quantities A' and q' associated 

to u~  are given by 

A'=q(,B)A, and q'(o:)=/(I3,o:)q(o). (7.102). 

iv)	 There is a choice 0/0'1 and a system 0/ generators o/stab(p) such that the qua.dratic 

function q : stab(p) -+ Z4 is as in one 0/ the following cases: 

a) stab(p) =G = (Z2 X Z2)N with generators ell 11il i =1, ... , N, and' 

N ..) Ec;6; 
q	 !! e:' 11:' = (-1)i:1 ,for til Oi E {O,l}. (7.103)( 

In this case A =±1 according to whether p is real or pseudoreal (if. sd/conju­

gate) and 

801 =48p mod 1, Vo E pop. (7.104) 
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.

the skew synunetry, I(a, (3) = J(P, a). The polynomial equations on the one­

dimensional intertwiner spaces, tnt (p 0 a1 0··· 0 a2'p), are given by 

F(p,a,{3,p):o~  R±(p,ao{3,"'(,p): =R±(p,a,-y,p): R±(p,{3,-y,p)' F(p,a,{3,p):o/J. 

etc., which imply that I is homomorphic in every component, after cancelling the 

F-matrices. 

It is clear that we always have a normalization of intertwiners such that 

r~&,1 a (r&Q,I) = a(r~,l)  r Q&,l =1 (7.88) 

2for all a E stab(p), with Q l' a.However, for a == 1 this can a priori still vary by a sign 

(pseudoreality). To exclude this possibility note that in general 

2ri8
£ (a, Q) = e • r QQ,I r~&,l . (7.89) 

For a 2 = 1 this specializes to ,(a, a) = e2nB• and hence I(a, a) =-e2nB• E Z2' The sta­

tistical parameter is then AQ:= q (r~Q,I)  ,(a, a) a (rQQ,I) = e211'aB. but also AQ:= 

e211'iB o r~Q.1  a (rQQ,I)' With e4nB.. = 1 this implies reality for a and (7.88) holds for any a, 

i.e., by unitarity we have r QO&,l = a (r&DQ,l)' For the unitary interty.riners, r poQ,P we have 

an F -matrix identity 

r POQ,P r pO&,p = 'PQ P(rQO&,I) 

for some 'Pa. We obtain 

r po&,p = 'PQ r~a,p p (raOli,l) = 'Pa r;OQ,p p 0 a (rliOQ,l) = 'PQ P(r&OQ,I) r;OQ,p , 

which yields, after multiplication of r POQ,P from the right, 'PQ = 'Pli' Hence 

p(t (a, Q» r poa,p r pod,p = 'PQ e2ll'lB. p (rliOQ,l) 

e 211'aB.. r pod,p r POQ,P 

and therefore I(a, a) e211'aB.. , for general a . 
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iii) First let us record a simple consequence of the equation : 
I 

¥( .. L i)-IW ~ R±(l' i)ll~'  RT(' L i)-a'" R'T(l .. )dl' (79•"P',1,", rQfj=LJ ,',r, ll~ 1,",', rQfj' ,],','dQ' .0, 
!J'a! I 

(compare (2.38» {or the matrices, rp, defined by ; 
j 

pa (rpio~,p"(a»)  r piop.;(P) = L~(i,j, le,i):Z rp;~pi,p'(J.')  r pio~,pl(v). 

-IW 

If (7.90) is specialized to j = i = , = r = p and Ie ::::: a, i = PE stab(p), then we fine 
i 

rp(P, p, a, p): =R±(p,a, P, p):: 
! 

and therefore 

13 (rpoa,p) r ~op,p = I(a,l3) r !Jop,p r poa,p' (7.91: 

We introduce an orthonormal basis, {IQ}ae.tab(p)J on the ]stab(p)l-dimensional In· 

tertwiner spa.ce Int (p 0 P0 p,p) by 

1a := r~opoP  Q (rpoP,l) r aop,p (7.92: 

and consider the action of the complete set of orthogonal projectors, {E6he.tab(p) 

given by 

E6 = p (rpop,6 r;op,6) = p (p (r;06,p) r pop,l r pop,1 p(rpe6,p») , (7.93: 

on Int (p 0 pop, p), wi,th respect to the basis (7.92). A matrix element of E6 il 

given by 

1; E6 1a r~Op,p {3 (r;Op,l) r/JopoP p (p (r~,p)  r pop,l r pop,l perpoi,p») r~op,p 

a: (PpoP,I) r QOPoP 

r~op,p 13 (rpoP,l) 13 0 p (p (r;06,p) r~p,l) r~op,p r~op,p a 0 p (r~;,l) . 

p (rpo6,p) a (rpoP,1) raop,p 

r~Op,p P(r;06'p) 13 (r;Op,l p(rPOP,l») r ~op,p r~op,p a (p (rpOp,l) r poP,1 ) 

a (rpoi,p) r aop,p 

_1_ r~op,p {3 (r~,p) r !J~P,P r~op,p  a (rp06,p) r aop,p 
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For the proof of these assertions the following presentation of skew-bihomomorphic 

forms on abelian groups will be useful. 

Lemma 7.3.2 Let G be 4 finite abelian group and 

f: G x G -+ U(I) 

a nondegenerate bihomomorphic form. 

i) If 1 has triviaJ diagonal, i.e., f(a, a) = 1, Va E G, then 

G:::! (ZII1 x ZII1) X (ZI'2 xZI'2) x··· X (Zlil x ZlIl) (7.84) 
. 1. 1. 1. 

IIXwhere the orders divide each other as VI I V2 I ... I Vic and " means orthogonal 
1. . 

with respect to I. On each lactor Gi = Zv; x Zv; with generators e and TJ, 1 is 
determined by 

f(e,TJ) =e'l;f . (7.85) 

ii)	 If 1 is only skew symmetric, i.e., f(a,l3) = f(f3, a), Va,f3 E G, and f(a, a) =±1, 

then either 

a) ! has triviaJ diagonal; or 

b) G = Z2 x?J, with f(T,T) = -1 for the generator T 01 the ~-part, and 1 is 
1.
 

nondegenerate and has trivial diagonal on ?J, or
 

c)	 there is some (unique) m ~ 1, such that G = (Z2'" XZ2"') x 0, where f is given
1. 

on the generators eand TJ of the (Z2'" x Z2"') part by 

!(e,TJ) = e~ , fa,e)=1 but f("I,"I)=-1. (7.86) 

, Furthermore, ! is nondegenerate with trivial diagonal on ?J. 

We shall not give a detailed proof of this fact here but satisfy the reader's curiosity with 

a few remarks. The first part is a standard exercise in normal forms, using the invariant­

divisor form G = ZIl1 X ••• x Z."., V, IV'+1' of the group and the nondegeneracy of f. If 1 
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is only skew, then a --+ f(a, a) is a homomorphism G --+ Z2' so there is some T E G, with 

!(T, a) = f(a, a), 'Va E G and T2 =1. In case a) we have T ~ I, in case b) T :f:. 1, with 

!(T,T) = -1, and G is simply given by G =T1..The complicat'ions arise when T :f:. 1 and 

!(T,T) = 1. Then T is contained in some maximal Z2- with generator e, so T = e(m-l). 

The relevance of studying nondegenerate, bihomomorphic forms becomes clear in 

the next lemma. 

Lemma 7.3.3 Suppose that, for an irreducible object p, of a C·-quantum category, 

supp(p 0 p) = stab(p). Then 

i)	 the multiplicity of q E pop is one, for all U E stab(p), and ~ = Istab(p)l. 

ii) Let f(a,f3):= R±(p,a,f3,p)~  for all a,f3 E stab(p). Then 1 is bihomomorphic and 

skewsymmetric, and 

f(a, a) = e±2,"9~  E Z2. (7.87) 

All selfconjugate elements a E stab(p), i.e., a 2 = 1, are real. 

iii) f is nondegenerate. 

Proof: 

i)	 V>le first repeat an argument given in the proof of Proposition 7.3.1. We have that 

q 0 p = p is irreducible. Thus 1 = N(Top,p = N(T,pop, From pop = L: U we have 
(TE.~ab(p)  

that 

dp'dp = E 1 =lstab(p)l, 
(TE.~ab(p)  

as d(T = 1 . 

ii)	 The number f(o:,f3)Slcp Spp:= R±(p,o:,f3,P)~ E U(I) is well defined because 

dim (Int (p 0 0: 0 f3, p» = 1. The claim of Lemma 7.3.3 is that the sectors in stab(p) 

obey trivial statistics, so m( 0:, (3) = t(f3, 0:) t(0:,13) = 1, which on the level of R­

matrices means R+(p,f3,a,p)~R+(p,a,f3,.p)~ = 1. But this is just expressed by 
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the ~onodr~my  m(p,CT) =£+(CT, p)e+(p, CT) =U-(CT)·U+(CT) =e2rif• defines a character 

on stab(p). 

We can define a second operator U(CT), which is different from U:I:(CT), for p =I p, by 
I
I, 

setting 

U(CT) := dp po CT (r:Op,1) rpop,1, (7.76) 

so that U(CT) E Int(p 0 CT, p). Also, since CT 0 P=P and by (7.76), we have that iT(CT) E 

P0 p(rol)' n rol, and 

U(CT) rpop,1 = rpop,1 • (7.77) 

From the irreducibility of pand p OCT and from (7.76) it follows that U(q) is unitary. Thus 

qU(v) 0 P= p0 q. This shows that CT -+ U(0') is a unitary representation of stab(p), since, 

by (7.77), no 2~cocycles (as in (7.73» can arise. Therefore we can write U(q) in the form 

N,..",. 
U(CT) = E (h.(q»~ 'rpop,.(a) r;op,I:(,B), (1.78) 

1:,01=1 

where hI: : stab(p) -+ End (eNJ.",.), 0' ...... hl:(0'), is a unitary representation of stab(p) on 

eN,..",., and h1(q) = 1. 

The left inverse, I{'p, of p, defined by 

I{'p(A) = r:Op,1P(A)rpoP,1 , A E rol, (7.79) 

maps Int(p 0 CT, p) to Int(CT, 1). It therefore follows from Schur's Lemma that 

I{'p (U(CT») = 0, for 0' =F 1. (7.80) 

Note that, by the "generalizedD Temperley-Lieb-relations (7.57), we also have that 

I{'p(ev(p 0 p» = f3-1 
, (7.81) 

for all 0' E stab(p).
 

In the case of interest, pop= 1 (f)CT(f)'I/J, (7.78) specializes (with rpop,.r~p,.= 
 

1- e1(p,p)- ev(p,p» to
 

U(q) = h.(q) + (1 - h.(q»e1(p, p) + (hv(q) - h.(q» ev(p,p). (7.82)
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, 
If we apply the left inverse to (7.82) and use (7.80) and (7.81) this yield. the following 

equation for f3: 
f3 =2 _ 1 ~ ~,_\CT) . (7.83) 

I 

Here h,(q) and h.(CT) are characters of stab(p) and, because of the equation 

f3 =a:= d1 +cl,+4 =2+4, 

they are constrained to satisfy _1::rJr) = t4 ~ 1. If,p is :m automorphism stab(p) 

is of orderthree,thus isomorphic to ~,  and therefore ,p == ii.' Also, we have that 

hv (0') = (h.( CT» -1 is a third root of unity, and it follows that ~  

f3 = 3. 

For a 'I/J which is not an automorphism, we show that stab(p) 9!! Z:I, so that h,(CT), 

h.(q) E {I, -I}. The only solution of (7.83) with f3 > 3 is ther~fore h.(q) =-1, h.(q) = 

I, and we obtain that : 

f3 = 4. 

This completes the proof of Proposition 7.3.1. o 

The statement of next lemma can also be expressed as the fact that allsectora in stab(p) 

are either fermionic or bosonic and obey trivial statistics relation•. among each other. 

. The superselection structure of stab(p) may be realized by any finite, abelian group. 

This changes if we assume that the automorphisms stabilizing p constitute the entire 

decomposition of pop, i.e., if we assume supp(p 0 p) =stab(p) and pOp contains at least 

one invertible element. Still there exist fusion rule algebras for any abelian group G such 

that G ~ stab(p), but if we require this fusion rule algebra to describe a quantuql catego~  

(resp. a local quantum field theory) these automorphisms are given by the representations 

of a finite, abelian reflection group,i.e., stab(p) ~ (Z2)N for some N. The best known 

examples are those for N = 1. which arises in the quantum category constructed from 

U;cd (",l:l)' q = eif, with A3-fusion rules, realized by the SU(2)1:=:a WZNW-model ( or any 

other c = l-RCFT ) or the critical Ising model, and for N = 2 where the category i. 

obtained from the dihedral group, D:a C 5U(2)1 with D~1)-fusion  rule., and realized by 

the 5U(2)/D2-orbifold model at c = 1 or a 4-state Potts model. 
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More precisely, {or H."oo = C[BoolII~, A~,DO =C[Bool/ It, we have that I~  cIt, Le., 

A~,DO is a quotient of H."oo, if and only if (7.68) holds. From this we obtain the possible 

val ues of d,: 
'8 

d, =2cos/i' (7.69) 

which, in particular, shows that Ind(p) ~  4. 

We remark here that, {or the situation where pop ~  u e,p, the Temperley-Lieb 

relations for the projections e" := pta (e..(p, p» imply thatu is an automorphism. This is 

most easily verified by computing £+(u, u) from £+(p, p) with the help of the polynomial 

equations and the cabelling procedure. It turns out that 

£+(u,u) =z: q" I. (7.70) 

However, a result in [19] tells us that if £+(u,u) is proportional to the identity u is an 

automorphism. 

Finally, for case ii) we only assumethat po p= 1 €a u e.,p and show that Ind(p) =4 

follows. The peculiarity we exploit here is that the decomposition of pop yields an 

automorphism u, withu 0 p ~ p, which, in the language used above, means that the 

subgroup stab(p) C Out(t) is nontrivial (~  Z2)' At the level of a local algebra, a stabi­

lizer subgroup of Aut(C) can be defined similarly, by stab(!21) := {u E Aut(C) : u(A) =A, 

'VA E 2l}, wbere 21 c rot. If we restrict the projection '8' of Aut(C) onto the quotient 

Aut(C)/ Int(C) ~ Out(~), as discussed in Section 2.5.3, to stab(p(rot» it is clear that its 

image lies in stab(p), i.e., we have a group homorphism ?I' given by 

'K: stab(p(9Jl» -+ stab(p) 

! ! 
Aut(C) - Out(t). 

For a representative tT' E Aut(C) of [u1 E stab(p), there exists a unitary operator 

f r'o", E U(C), with u' 0 p(A)f"'0'" = f "'o",p(A). Thus u := ur;,oP., 0 u' is an element 

in stab(p(9Jl» with [u] = [u1, showing that 'K is surjective. Since p is irreducible, it also 

follows from perot)' n U(C) = CI that 'K is injective. Hence 

stab(p(rot» ~  stab(p) . (7.71) 
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In particular, this implie. that stab(p(rot» is an abelian group, although its elements are 

in general not causally independent, and the group extension 

o -+ Int(C} -+ g -+ .stab(p) -+ 0 

splits. Here, g C Aut(C} is the respective preimage of stab(p} . 

The one-dimensional space Int(u 0 p, p 0 u} = Int(p, p 0 u}, is spanned by either 

U+(u):= £+(p,u) oJ' U-(u}:= ,-(p,u), so U+(u} = ehi".,U-(u) and by the definition 

of the statistics operator, we have that 

p(f.. :I:,.,) =f.,:I:,., U±(u), (7.72) 

where u±Xp and as (u±) ~as(p). 
Since po u = UU:l:e.,) 0 p, we find that u -+ U±(u) defines two projective r~p~esent~~  

tions of stab(p) in U(C). Thus there are 2-cocycles 1± E B2(stab(p», with . 

U±(u) U±(~) = 1±(u,~) U±(u o~), (7.73) 
I ' 

where 1+ ..... 1- by 1- = 1+' 6 (e2n") 

If we let f,..:l: o.,:I:,,.OI1 = ~± (r.,:I:,cr) r,.:I:." be the charge transport operatoI'" for the 

composed automorphism u 0 ~  = ~ 0 u E stab(p(rot», we can relate these cocycles to the 

charge transporters, by inserting (7.72) in (7.73). This yields 

~(r.,:I:,.,)  = 1±(u,~)  r.,:I:,cr. (7:74) 

Applying ~ to (7.72), it follows that 

~  (U±(u») = 1±(u,~)  U±(u). (7.75) 

From (7.73) and (7.75) it follows immediately that 1±(O',~)  IS a homomorphisin in both 

arguments separately, and, by (7.61), we have that £±(O',~)  = 1±(O',~)I. Since U+(u) 

is proportional to U-(u), we conclude from (7.75) that 1+(O',~)  = 1-(0', ~).) In other 

words, the sectors in stab(p(rot» obey ordinary;Fermi-Bose statistics among themselves, 

i.e., £+(O',~) = £-(O',~) =: 'Y(O', ~). Moreover, it follows that 6 (e2n") = 1, so the value of 
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....
 
• 

The equation (7.101) follows from the monodr~my  spectrum m(p,p) = e(p,p)2 = 

• 
~ 

E e2";(21_-·.1•• ) e"iOci(p,P) and relation (7.118) of Lemma 7.4.1, below. If we attempt 
o Eetab(p)
 
to compute the statistical parameter of, p, we find from
 

\ ._ 1 ':2";'_ - (r· ) ( ) (r. )
A p .- d e - p po',1 t: p, P p. po',l , 

P 

and the generalized Temperley-Lieb relation (7.57), that 

A-I = -
1 E q(a) , (7.112) 
dp caEltab(p) 

where dp = ±y'lstab(p)I, the sign depending on the reality of p. In order to obtain the 

more detailed information on the braid matrices, given in part iv), we have to use the 

presentation of stab(p) and 1 in Lemma 7.3.2. We shall restrict our attention first to 

case a), where 1 has trivial diagonal or, equivalently, all sectors in stab(p) are bosonic. 

This implies that q2 == 1. G has the decomposition 71 = (Z2 x Z2) x ... X (Z2 x Z2), with 
i i 

generators '7i, {, in each factor, and 1 ('7i, '7;) = 1 ({,;t;) = 1 and 1 ('7i, {i) =(_1)6,,;. Thus 

from (7.111) the value of q on a general element in 71 can be computed from q ('7i) and 

q (ei) E {+1, -I} as 

II q (e:' '7:') = II(-1 )e, 6, q(C,) q ('7:') 
1=1 i=l i=l 

N (7.113) 
. Ec,l, N 6 

q(n ei' '7:') 
N N 

(-1)'·1 -II q (ei)C, q ('7i) i • 

i=l 

To prove (7.103) we have to show that (11 can be chosen such that q cei) = q ('7i) = 1. 

Clearly any map q from the generators of stab(p) to Z2 extends uniquely to a homomor­

phism q: stab(p) -. Z2, such that q(ei) = q ({i), q('7i) = q ('7i), (but in general q# q). 

Since 1 is nondegenerate there exists some aq E stab(p) with 1(aq , g) =q(g). If we now 

set O'~  = all 0 0'1 we find from (7.102) that q'({i) = I(aq,e.)q(ei) = q(e,)q ({i) = 1 and 

also q' ('7i) = 1. Thus, for a given choice of generators e, and '7i of stab(p), 0'1 is in fact 

uniquely determined by q (ei) = q ('7i) = 1. 

Using 
N 

~( E~~  

~ -1}~  =2N ti,5, E {O,l} 
~~ , 
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and Istab(p)1 = 4N we nnd from (7.112) that A = ±1. . Inserting this into (7.101) anc 
using 8"1 0 0 = 8"1 + 80 = 8"1 mod 1 in the bosonic case we arrive at (7.104). 

For the cases b) and c) we can repeat the above procedure on the V-parts. AgaiI 

from orthogonality, 1'i =71, we have in case b) q(1'Cg) =q(1'Y q(g), that t: E {O, I}, and 

since q(1')2 = 1(1',1') = -1 and because of the freedom to change the sign ofq(7") bJ 

replacing (11 by 7" 0 (11 we can choose (11 such that q(7") = -i, and q(g) as in (7.103) on G 

From the equation E q(a) = E (_i)Cq(g) = (1- i)2N , and Istab(p)1 = 2(2N+1 
oEltab(p) c=O,l",eO 

we find the value of A. This yields ( with (7.101) ) 48p = i +8"1' and since 8T' Ogo"l = 

(JT'Og +8"1 = ~  +8"1' we find (7.105). 

Similarly we can choose (11 in case c) (with m =-1) such that q(7") =1, q( b) = i anc 

q on V ~ (Z2 X Z2)N as in a). We then find E q(a) = 2(N+1) and Istab(p)1 = 4N , se 
aEltab(p) 

that A = ±l. Similarly as in b), this, together with (JT'b'g = ~  mod 1, 9'E V, implie 

formulae (7.107). 

We can now use this result and the previous ones on fusion rule algebras, in order to obtail 

a sharper version of Proposition 7.3.1 in the case where d(p) < 2. This restriction on th 

dimension eliminates the possibilities iii} and iv) of Proposition 7.3.1. The decompositiol 

under ii) belongs to only one inclusion, namely D•. The associated fusion rule algebra 

given in (3.128),(3.129) and (3.130) of Theorem 3.4.11, with stab(p) = Z3' we can b 

excluded, by Proposition 7.3.4, to be associated to any C-·quantum category. If we als, 

require d(p) > 1 the only remaining case is the two channel decomposition in i). Th 

ratio of the two eigenvalue of the monodromy m(p, p) = e(p, p)2 is q2, related to the inde 

by (7.68). Thus, we can exclude the d(p) = 2 cases in i) if we require the monodromy t 

be nonscalar. To summarize, we have: 

Proposition 7.3.5 Suppose that p is an i1Teducible object of a C· -quantum "categoT"'J 

Then the lollowing are equivalent: 

i) 

1 < d(p) < 2 
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ii)	 We have a decomposition 

pop = u+tP, 

where 1/J is an irreducible and u an invertible object, and the monodromy of p is 

nonscalar, i. e:, 

m(p, p) = e(p, p)2~ Clpop • 

iii)	 The 0- and 1- graded part of the fusion Ml.le algebra are finite and the restriction of 

the fusion rule matri:r: Np corresponds to one of the following bicolorable graphs: 

A, (I ~  3), D21(I ~3),  E6 , E8 • (7.114) 

The results proven above also lead to the exclusion of various fusion rule algebras at 

dp = 2. For instance, if we consider the series of fusion rule algebras obtained from D~~~+2'  

p' E N, (see Lemma 3.4.5 ii) (3.93)) by the procedure given in Proposition 3.3.2, we find 

for the element f := (0, wp')' that f 0 f = E U1 0 a if grad(f) = 1 and i 0 f = E a 
aEG aeG 

if grad(f) =0, where G =Out (4)0) =stab(f). In the list of possible fusion rule alge­

bras, Theorem 3.4.11 ii), the cases G = Z2 X Z2' (3.146)-(3.150), for any p, and G = Z4, 

(3.151)-(3.158), are both represented. For p = 2p', the existence of the sub-quantum cat­

egory with generator f and Proposition 7.3.4 imply that only the fusion rule algebras 

with G =Z2 X Z2 are admissible. Comparing this to Lemma 3.4.9, (3.111) and (3.112), 

we then find as a result that all fusion rule algebras with selfconjugate generator, p, of· 

dimension dp = 2 which describe a quantum-category are in fact realized by a compact 

subgroup of SU(2) or 0(2). At the dp =2-threshold we also encounter the first two ex­

amples of fusion rule algebras, specified in Lemma 3.4.10, which cannot be deduced from 

a selfconjugate version. However if, as in the case of D~4)  (A~l»)  (11-2), a ~ 3, .pop == 2r, 

2then theinonodromy e(p, p)2, clearly has to be scalar, so either e(p, p) = e ";(Bp 
- tB.. h or 

2rie(p, p) = e (Bp- i B
.. ) (e;(p, p) - e~(p, p)). For these two possibilities,the statistics parame­

ter Ap := p (r;~,p,l)  e(p,p)p(rpOp,l) is either a phase, i.e.,IApl = I, or Ap == 0, both contra­

dictory \Apl= if = i· A similar argument applies to exclude the algebras E6 (A&l») (11-2) 

and descendents, (3.159)-(3.162), from those consistent with a quantum category. 
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7.4 Balancing Phases	 ... 
I 
1 

In this section we compute the possible balancing or statistical ~hases  for the fusionrules 
t 

determined in Theorem 9../.11, assuming that they are associfted to some C--quantum 

category. This computation, based on the situation described in Proposition 7.9.5, imposes 

consistency conditions by which the E- and D- algebras and c~rtain  twisted A- algebras 

can be e:r:cluded. It will be seen in Chapter 8 that the remaining fusionrules are in fact all 

realized as object algebras of a C- -quantum category. In the derivation of these results we 

again use the language of local quantum theories, which can b~ easily translated into the 

general categorial formulation. 

As we have seen in Lemma 7.1.2, any C--quantum category admits a natural bal­

ancing. The balancing endomorphisms, in this case, are all unitary and are determined 

by their values on the irreducible objects. We thus have phase~  6p E R.jZ) defined by 

2riB 2uo(p) = ±R(l, p,p,l)~~  =: e , = e .".8,) (7.115) 

where the sign is as in (7.20). These phases will be called spins or statistical phases, 

in reference to the spin-statistics theorem for relativistic local quantum field theories. 

For some simple quantum categories, the spins can be computed directly from the fusion 

rules, without any further knowledge of the category beyond its existence. In doing so, 

we encounter consistency relations by which most of the exceptional fusion rule algebras 

from Theorem 3.4.11 can be excluded as building blocks for quantum categori~8.  

One of the main tools used to determine spins comes from the analysis of the braiding 

relations involving invertible objects u, i.e., u E Out(4)). Since, for any u E Out(4)>) and 

irreducible.9'> E 4>, U 0 9'> is irreducible, too, we find that 

e(u, 9'» 0 e(9'>, u) =: m(u, 9'» =m(9'>, u) = e211'ie.(;) • I, (7.116) 

with 

60'(9'» = 8. + 60' - 60'0. mod 1. (7.117) 

The properties of the phases 60'(9'» that can be. obtained from the polynomial; equations 

have already been mentioned at the end of Section 3.3. We give a more complete summary 
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~  Proof. If,p3 e t/Jl 0 t/J2' i.e., there exists an isometry r¥lo¥:a,., :I 0, it follows from in the following lemma.. • 
e2....(e.h',,)+e,(~» r.,""""" 

Lemma 7.4.1 Suppos~  ~  i" the fusion rule algebra. of 4 C--qu4ntum category, 4nd let = ,pdt(1P2,a»t{,p1l0') e(O',,pl),pde(O',,p2» r~o"'.' 

(7:,
t/Jde(,p2la» t(t/Jl'U) u{r';lo~.';,) t{CT,,p3)8,(4)) E JR/Z, ;E t, 0' E Out(4') 

, 

,r., 0....;' t (,p3' a) =r .,oY:a.•• e2lrie.,(.;.) l 
, 

be defined 4.t in (1.111). Then the following 6tatements hold. 
, 

that 8C1' (,p3) =eO' (,p1) +0 er (,p2) mod I, i.e. eO' is a grading. Here we use the not~,  

, 

t/J(I), as in the framework of local field theories, instead of the more conventional nota, 
i) For any u E Out(4'), the map 

1.01, for an object t/J and an arrow I. Similarly, we have that 8"°"'(11') :::: 0erl(~ 

, , 

0O':~-R/Z  0 er, (11') mod 1, using the fa.ct, that 0'1 (£ (0'2,11'» e(C'l' 11') is equivalent to e (0'1 0 a2J 
, 

This shows that 8, is a grading, and hence, by the considera.tions of Section 3.3, '" 
is a grading, i.e., there e%ists a character, 

, 

be expressed by the homomorphism 8~,  and 0' ---. e~ is a.lso a homomorphism. Cle~,  

I 

0~  : Grad(4') - R/Z, we havetha~ 8 V1 (a2) =eer, (al), which implies 0~, (grad (a2» :::: 0~, (grad (0'1»' ~ 

I 

therefore, since gra.d (0') =I, "'Ia E Out (~O),  statement iii) of Lemma 7.4.1 follows. ", 
• • I 

"1such that 
In the Z",.graded case, the most general expression for 0 er (4)) can be found without d~,

SCI' = 0~o grad. (7.118)
 
~~
 

ii) The 4.t6ignment 

Lemma 7.4.2 .4.ssume 4' is the fusion rule algebra of a C-.quantum category a 

0' : Out(i) - Grad(4') 
Grad(~) = Zoo Let r be given by D(i) ~  l,. and the inclusion D(~)  c Grad(i) 

u - a~ a"z,. C ZCII where a = r . a". .Then there is a homomorphism 

is (I group homomorphism. '1 :Out(~o)  - la ll 

iii) If i· : Grad(4') ---. D{~) is the pull back of the inclusion D( i) C Grad(4') then and, for any fi:r,ed 0'1 E Out(4') with grad (al) =a", a number her1 E la' with 

hVI == '1 (uD mod a" , (7.1:a': Out(~o)  - keri- ~  (Grad(4')/ D(~n.  

such that 
Thus there e%ists a homomorphism 

av~o"(tP)  = (k h:1 + '1~») grad(4)) mod I, (7.1: 

e": D(~) - D(4') for all {3 e Out (4'0)' tP E 4' and k e l. 
with 0;' (92) 0;' (gl) (7.119) 

Proof. Clearly every a E Grad(~) = Z.. is determined by some number he E lal so tl
such that i- 0 e~ e;'ad(v) • (7.120) 

he
e(grad(4») = - grad(¢) mod 1. 

a 
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A character e is in keri- iff it annihilates a"z.. C Zo, i.e., iff he is a multiple. of r. Hence 

ked- ={a: 3'19 E Zo" : e(grad(iP» = :~  grad(iP) mod 1} . 

The homomorphism a': Out (to) - keri· from Lemma 7.4.1 iii), is then determined by 

the homomorphism TJ : Out (to) - Z.'" with 08(1} = ~.  Furthermore, by Lemma 7.4.1 

ii), h: Out (to) - Zo with e~(l}  = ~ is a homomorphism. Therefore, for some fixed 

0"1 E Out(t) with grad 0"1 = a", 

e~~ot/(l) = ka~1(1) + e~(1) = k h~l + '1(13). 
a a" 

h

So far this is the general form of a character on Z x. Out (to). lIowever, in order to be 

a character on Out(41), we have to ma.ke sure that it vanishes on the kernel of the pro­

jection O"~  x fJ - O"~ 0/3, which is generated by O"r x O'lr
• The latter yields the condition 

V1 ='1 (O"r) mod 1. Together with Lemma 7.4.1 i) we obtain the assertion for av~otl(iP} 

- from the formula. for a:tO,9(l). 0 

It is clear that. the above resul~  gives an exhaustive description of the homomorphisms, 

(T - av , since Z x Out (to) -. Out(t} : Ie x fJ - O'~ 0 /3 is surjective for any 0'1 E Out(t) 

.with gra.d (0"1) =a". The choice of hill depends on 0"1 as 

h"lo~  - h"l = r7J(l3) mod a. (7.124) 

In the case where 0"1 == (1,1) is the canonical automorphism of the presentation t = 

T.. (Zr * til), with Grad(t"} ~  Zo'" then h~l  is constrained by hV1 == 'I(a) mod a", as 

O"~ = a' The relevance of Lemma 7.4.2 can be understood if we rewrite equation (7.123) 

in terms of the spins: 

8. - 8,,~olJo. == (Ie h;l +'1~})  grad(¢) - 8,,~01J mod 1. (7.125) 

Suppose we know the spins of elements in Out(t). Then (7.125) gives the change of the 

spin-value of an arbitrary representationiP under the multiplicative action of Out(t) on t. 

The determination of the values 9", u E Out(t) is the content of the next result. 
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Lemma 7.4.3 Suppose t is a Zo-graded fusion rule algebra of a C--quantum category," .. 

and let a" and r be as aboue. Then there are homomorphisms : 

'7 : Out (to) - Zo" 

and 5: Out (to) - Zz, 

and, furtheT, fOT any fized 0"1 E Out(t) with grad (0"1) = a", c~nstants 

h'l E Zzo and £'1 E Zz, !. 

constrained by 

'1(oD h~1 moda" , 
(7.126) 

and b(O'n = T (e'l +hv .) mod2, 

such that 
~/3) .~ . . . 

817"0,9 = -2- - -2 (hvi +revl ) mod 1 , (7.127) 
1 r J 

for all/3 E Out (to) and k E Z, and equation (7.1f5) holds for any tP E t. 

Proof. If we insert tP = O'f 0/3' into {7.125) and use grad (O"f' 0 f:J') = a" . Ie' we obtain 

tha.t 

6v~0~ + 8.,;'otl' = 9.,~H'OIJolj'  + h;t k· k'mod 1 . (7.128) 

In particular, we find, for k = Ie' =0, that Out (to) - R/l: /3 :-+ 61J is a homomorphism. 
I . 

Since for spins we have 8~  = 9~ = 9~-1  = -8fJ mod 1 the range of this map is in !Z/Z, 
. I 

i.e. 29fj =0 mod I, '1/3 E Out (to). The spins on Out «(10) are ~herefore  given by 

1 
8t/ = 2 ~({3)  mod 1 (7.129) 

where b : Out (to) --. Zz is a homomorphism. Setting /3' =1 a~d Ie =0 we obt~i? the de­

composition 8v"o~  = Pic + l6({3). The numbers Pic E R/Z, k E Z, are defined by Pic := 8.,.. 
I , . I 

. '~ 

and satisfy Po =0, Pic = P-Ic and, by (7.128), Pic +Pic' =PIcH' t 7- kk' mod 1. The most 

general solution of these equations is given by Pic = -~, where q E Zar obeys 

q = hVI mod r. The latter constraint is solved if we pick some hili E Zzo such that its 

ima.ge under the projection Zao --. Zao/aZa =Zo is the origin~  hvl , and set 

q =h"l + r . t Vt mod (2r) 
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" .. 
.. 
.. "0 with t"1 E Z2· (ll a/' is even this is also well defined for the original h"1 E Za). Finally we 

have to make sure that 9,,:o~  as given in terms of the above decomposition, is well defined, 

i.e., we have to impose the condition is (un = P.. = -!f = - i (her, + rter, ) mod I, 

which is just condition (7.126). This, together with Lemmll 7.4.2, proves the claim of 

Lemma 7.4.3. 0 

For convenience and later applications we give a more detailed description in special cases: 

Corollary 7.4.4 Let ~  be as in Lemma 7.~.!  

i) If a" = 1 then there is some h E z'a such that for 

h 
6.:= 8. + 2a grad(tJ»(a + grad(¢)) , 

In particular, u -+ 8; is a homomorphism of Out( t) to Z2 whose kernel contains 

all ex2 , ex E Out(t), and stab(¢) for any ¢ E~.  If it also contains Out (to), i,e., 

e; = 0, "1(7 E Out (~o),  then h can be chosen such that e: vanishes for" all invertible 

elements. 

we have 

8~  +8: = 8;0. ' 'VC7 E Out(t), tJ> E ~. (7.130) 

ii) If a" =2, and, for C71 E Out(~)  with grad (0'1) = 2, there is some p E ~  with 

0'10 P= p and grad(p)= I, then there is some h"1 E Z2r and homomorphisms 

TltO: Out(t) -+ Z2 

obeying 

TJ (on = h"l mod 2 and e5 (uD = rh"1 mod 2 

such that 

IJ,,~o~  

IJ. - e,,~o~o. 

and 

~~ k(k +grad(¢» + e5~)  + TJ~) grad(iP) mod 1. (7.132) 

(7.131)O(f3) k
2 
h"l mod 1 

-2­ - 2r 
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If her, is even, i.e., there is some 1"1 E z,. With her1 = 2'''11 then 

9. := 9. + IV1 grad(¢)2 mod I" 
4r 

is well defined and there e:rists a homomorphism ij : Out(~) -+ Z2 with ij (0'1) 

such that 

no + no no 'I1(u) d(~)"v" v. - vero,; = -2- gra '1'; (7.1 

and u -+ e; is a homomorphism Out(~)  -+ ~Z/Z,  with 0;1 = O. In particular, 

have 
I 

e"ro• = 8. , for all tJ> E~ .: (7.1 

If h"1 is odd, then we have u1=F 1. If Out(~o)  = {I,un, with ur# I, and 

Out(t) -+ Z2r is the canonical isomorphism, with 71" (U1) = I, then 

e. - e"o. = ~~ (71"«(7) +grad(¢)), (7.1 

for any (7 E Out(t) and tJ> E t. 

Thus for odd her1 , u1 E stab(tJ» implies grad(4)) == r mod 2. 

Proof. 

i)	 Clearly, for a" = 1, 't'J does not appear in the formula and h = h"l is independe 

of (71. The equation (7.130) then follows immediately from Lemma 7.4.3 and imp! 

the remaining remarks in i). 

ii)	 From (7.125) and Lemma 7.4.3 we obtain, for the case a" =2 and Ul 0 P= p wi 

grad(p) = I, that 

=hV1o	 = ep - 9p = IJp - etf10p grad(p) - 0"1 = 
a 

her1 1 (. ) t"1 
t er1=	 - -;- + 2r hV1 +r~"l = 2"" ' so =O. 

The first part of Corollary 7.4.4 ii) is obtained simply by specializing Lemma 7., 

to a" =0 and inserting t"l = o. The following statements are again immedi. 

consequences of (7.132). 
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In the 'proof of Proposition 7.3.1, the unitary representations of the braid groups and the 

Temperley.Lieb algebra, that arise in local quantum field theories have been considered. 

It follows by straightforward translation that al10f the statements made there also hold for 

a general C··quantum category. In particular, we have Temperley-Lieb projectors ev(p, p), 

for ~y invertible (f E pop, which satisfy the generalized Temperley-Lieb' equations (7.57) 

and (7.58), and, fo, a two-channel-situation pop = (1 EB 1/1, the decomposition (7.67) of 

the sta,tistics operator. 

The restriction of the possible values of q, to qp = e±W, where N is the Coxeter num· , 

ber of the inclusion graph of the tower discussed in Section 3.4, evidently has to imply cer­

tain restrictions on the possible values of spins. These are given in the next lemma. Here 

we also distinguish the situations corresponding to the two signs in r;Op,IP (rPOP,I) =±t, 
d" > 0, for p selfconjugate. If the positive sign holds p will be called real, for nega.tive 

sign p is called pseudoreal. 

Lemma 7.4.5 Suppose that Jor an object p E ~ of a C·-quantum category 

pop = (11 +.,p, 

with 0'1 E Out(«}) and.,p irreducible, and assume, further, tha.t its monodromy, m(p, p) = 

e(p, p)2, is not a multiple 91 the identity. Let a be gi~en by Zo ~ Grad (<<}(p)), so a" = 1 

or f. Then there exists some t E Z4cII some N E N and a sign su.ch that 

t ' 
±8t11	 - mod 1 

a 
and	 (7.136)

3 t 
±8p = -N +- mod 1.

4 4a 

Here N is the Co:r:eter number oj the inclusion Np , i.e., IINpll = Idpl = 2 cos (W), and, 

comparing with Corollary 7.4.4 we have 

±2h moda, for a" = 1 , 
(7.137) 

= ±hv1 moda, for a" =2. 

For the representation .,p' := 0'1 o,p, with ,p' E pop, we have 

± fJ~1 =-Ii
2 

mod I,	 (7.138) 

. ..
 
~ 

independent of t. In the $elfconjugate case, i.e., if (11 :;;: I, we find t = 64, with 6 E Z4 ... . ~ 

and 40, 

6 even t 

6 odd, 

for p pseudoreal 

for p real. 
(7.139) 

; 
Proof. With the decomposition (7.67) 'of the statistics opera.tor, we can comp),!te the 

statistical parameter: 

>'p1 :=	 P(r~"l) £+(p, p) P(rPOP,I) I 

zp[(qp + 1) p (r:O',I) eer(p,p) per~Jl,I) - IJ 
I 

- Z [qp +1- 1]	 I 

- P	 (Jp 

by the genera.lized Tempf:rley-Lieb equa.tion (7.57). Using (7.68) we obtain 

zp I 
(7.140)). --- !p - 1 + qp -: 

as in the self-conjuga.te case of (23]. Comparing with the expression in (15] 

).2 = ..!.. e-4n8" = p-l e-4wil" 
p pcP, 

we find 

-24ri'l' =qp Zpe • 

Further, the monodromy m(p, p) satisfies 

m(p, p) r POP,O' =z; q: r POP,v , 

which has to coincjde~with  a similar equa.tion, where the eigenvalue is expressed in terms 

of spins, Le., 

z; q: =e2ri( a'''-''I ) 

Combining these equations we have 

eaw.(4',.-8'1) = q; . (7.141) 
I 

With qp = e±'Ifi equations (7.136) follow from (7.141). In terms of t and N we'also find 
!(z; = e±i1l'(;l,+;) .	 (7.142) 
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• ,1 

" 
" 

In the selfconjugate case we can use the polynomial equation 

p (r:c,p,l) £+(p, p) P (£+(p, p») = r:c,p,l 
to obtain 

.\p = r:Op ,l p (£-(p, p) rpop,1) = e ~ Z;l q;l (7.143) 
p 

with e = 1 for real p and £ = -1 for pseudoreal p, and dp = 2cos N' Together with (7.140) 

this yields 

z; = -£ e:i:~.  

The statement on reality and pseudoreality of p now follows by comparison with (7.142). 

For 8;, defined in Corollary 7.4.4, we have 0 =8; - 8; =8"1 0 J - 8; =8;1 " hence 

8"1 = -~ mod 1. Equations (7.137) are thus found by inserting the expressions of Corol­

laryt4.4. It follows from (7.67) that q: is the ratio of the eigenvalues of the monodromy 

m(p,p). In terms of the spins, this ratio is expressed as e 2tri('';-''I) = e2triB.;'6"1(,p') = 

e2
.".;', since ,p' is trivially graded. Thus equation (7.138) follows from a comparison of 

these phases. o 

The special situation in which the generating object p has a two-channel decomposition, 

pop = (11 + ,p, allows us to determine the spin for each object by an inductive procedure. 

Although the following arguments and computations apply to the general framework of 

a quantum category with arbitrary, compatible fusion rules, they are closely related to 

the analysis of exchange algebras in conformal field theories presented in [55]. First, we 

shall give a formula relating the matrices R+(k,p,q,l) and R-(A:,P,q,l) which is derived 

in [15] for general local quantum field theories, using the spatial rotation group in M3 and 

the'actual spins. However, the proof given below only uses elementary identities of the 

categories under consideration, so that only statistical phases appear in the statement. 

Lemma 7.4.6 For any C·-quantum category let the unitary maps 

R:i: (k, p, q, l) : E eN""i ® CN' t ,' -+ E eN",,; ~  CNi,,' 
i i 

with R-(k, q,p,l) = (R+(k,p, q, l)fl be defined as usual. Then the following equation for 

the matrix elements holds 

R+(1c p q i)~V'fj' = e2• i(B.+Bi-B,-B,,) R-(k p q l)~V'fj' , , , 'Vfj , , , Wfj , (7.144) 
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for any orthonormal basis of arrows or intertwiners. 

Proof. Fixing an orthonormal basis, r1:oq,i(V), v, = 1, ... , N1:'P,i' we consider the composi 

tion 

1:= e+(q,k) e+(k,q) k (e+(p,q») r1:o'P,i(V) rioq,t{IL). 

The definition of the R-matrices yields : 

I = E R+(k,p,q,l)1:/ e+(q,k) e+(k,q) r1:0q,j(v') rjo'P,l(J.") 
jv'fj' 

~ e2tri(B,+6"-'i) R+(k l' q l)~II'fj' rL '(v') r· t(II.')L.J , , 'Wfj ,.oq" ,301', r . 
jv'fj' 

using the fact that the r1:oq,;'S diagonalize the monodromy m(k, q). Alternatively, w 

evaluate I using the polynomial identity for rko'P,i(V): 

I = e+(q,k) q(rko'P,i(V» t+(i,q) rioq,l(JL) 

e2• i(B.+B,-B,) t+(q, k) ~ (rko'P,i(V» t-(i, q) rioq,t(JL) 

= e2tri(B.+6,-B,) e+(q, k) e-(k, q) Ie: (t- (1', q») r1:o'P,i(V) rioq,l(JL) 

e2tri(B.+6t -B,) E R-(Ie:,p,q,l):::' rkoq,j(v') rio'P,l(JL'), 
jv'fj' 

where e-(p, q) = (e+(q,p)fl. The identity (7.144) is now obtained by comparing t1J 

coefficients of the two expressions given for I. 

Note that (7.144) is not a proportionality relation among R-matrices, but it is a relatic 

of R-matrices and diagonal maps on the path space, similar to the ones used,in (7.60 

In special cases, however, where we can show that the R-matrix is in some sepse blocl 

diagonal, (7.144) implies strong restrictions on the values of spins and the possible for: 

of the F-matrix isomorphisms. The precise statement is given in the next coro1Iary: 

Corollary 7.4.7 Suppose we have irreducible objects k, i, PI so that the statistics operat 

is block-diagonal on Int(k 0 po p,l)1 in the sense that 

R"(k, p, p,l) e ~e End (eN'M ill eN,,:,) C End ( ~e eN',J 0 eN;" ) 
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(or, more specifically, R±(k, p, p,l)i:~, = 0, for i =F j). Then for any eE supp(p 0 p) n 

supp(lo k) the spins obey 

8l +81c - 28; = 8t -29p mod 1, (7.145) 

whenever the corresponding block of the F-matr= 

F(k p p l)~I"  : e NIIp,; ~ eNip" --+ CNII(" ® CNpp,(, , , '1" 

is non zero. 

If, for irreducible objects,k, land p, we have that there is a single object, j, with 

supp(p 0 k) n supp(p 0 l) ={j} 

then the equation (7.1,45) holds, without any assumption on the R- and F-matrices, and 

Be is independent ofefor all eE supp(p 0 p) nsupp(l 0 k). 

Proof. Assume R±(k, p, p,l) has the proposed form and consider the block-matrices 

pR+(k,p, p,l)~  E U (eN.. ,; ® e Nip.,), with R- (k,~,  p,l)~  = (R+ (k, p, p, l)~rl. If we spe­

cialize (7.144) to p ~  q = p and i = j we find the equation 

R+(k,p,p,l)~  = e21l'i(29i-9,-9.. ) R-(k,p,p,l)~ 

thus 
2riM( k, p, p, l)i = Q. e (29j-9,-9.. ) leN"p,; Nip,,· , (7.146),.	 ' 

As remarked earlier, the isomorphism F(k, p, p, l) : EeeN..p,i @eNip" --+ EeeN..(,l ~eNpp,(,  

; ( 
diagonalizes the monodromy, in the sense that, for 

M(k,p,p, i) = F(k,p, p,i) M(k, p,p,i) F(k,p,p,tt' E End (~eCN'"  @CNH") , 

we have 

11(k l)( C 2...i(29,-8() I 
Jt ,p, p, (' = (lU' e cH..(" Hpp,( . (7.147) 

It follows, that (7.146) is equivalent to 

F(k,p,p,l)~ e2ri(28p-9c) = F(k,p,p,l)~  e2...i(28j-8p-8.. ) , 
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for all eE supp(p 0 p) n supp(i 0 k) and j E supp(k 0 p) n supp(p 0 i), which implies the f, 

assertion. 
I 

If supp(k 0 p) n supp(p 0 l) consists only of one object, j, then the prerequisite on the 
I ' 

block-form of the R-matrix is void. Moreover, in this case the, F-matrix provides an 
. : 

isomorphism of CNu,; @ CNjp~  ~  EE9 eNII(,l ~  e N"",(, so none ~f  the different blocks can 

be zero, if eE supp(p 0 p) n supp(i 0 k). Hence equation (7.145) holds without further 
i 

assumptions.	 ! 

I 
If dp < 2 it is possible to find situations in which Corollary 7.4:7 is applicable: 

! 
I 

Corollary 7.4.8 Suppose for p and,p irreducible and Ul E Out(4» we have pop =Ul +,p 

and let the spins be given by the ezpressions in Lemma 7.-/.5. 

i)	 If, for irreducible k, l E 4>, 

lEpopok and i =F Ul 0 k 

then 

(7.148)8" +8l - 28; =± (2~ + 2
ta) mod 1 

holds for all j E supp(k 0 p) n supp(lop). 

ii)	 If for an irreducible object k E 4> also j := k 0 p is irreducible then their spins are 

related by 

± 2(8; - 8k ) = ;0. (1 +2 grad(k» + 2~ mod L (7.149) 

Proof. 

i) In the two-channel case, the F-matrix diagonalizes R±(kJ p, p, l) in the saine way it 

diagonalizes the monodromy, using the fact that the multiplicities in the decompo­

sition are at most one. If, in addition, we choose k and l such that l =F Ul 0 k we 

have an isomorphism 

e (A N Njp"F(k, p, p, l) : E e ..p'; ® e --+ eN...., 
; 
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as N1w1 .l = 0 &Dd Npp." = l..' ~ 

Clearly the &ction of the st&tistics opere-tor e+(p,p) on the intertwiner space 

~ eN....., I8l eN,,,.... is given by R(Ie, p,p,l) = -z,I, so that also R:i:(k, PI p,l) is &mul­

tiple of identity &Dd, in puticul8.l', bloclt-diagonal. Furthermore, since Fare isomor­

phisms, F« Ie, p, p,l)1 ::/: 0, for all j e supp(1e 0 p) n supp(lop), and thus, by Corol­

luy 7.4.7, 01 +0" - 20; =O. - 20, =0'1 +0., - 20, mod 1. Inserting here the ex­

pressions from Lemma 7.4.5 gives (7.148). 

ii) The final statement of Corollary 1.4.7 applies to this situation if we set l := 0'10 Ie, 

so that pol = po 0'1 0 Ie =pole = j. Cleuly 0'1 e.l 0 k =0'1 0 Ie 0 k, so that (7.145) 

holds for e=0'1 and c&n be written as 

2(6j - 61t ) = 28, - e.1 (1e) , 

where e'l is the gradation given in (7.123). From e"'l (p) =0"1 we find that 

e'l (Ie) ==F;grad(Ie), and (7.149) is obtained from the values given in Lemma 7.4.5. 

o 

The relation (7.148) among the spin values can be used as a recursion formula for the 

spins of certain sequences of objects. For any maximal sequence of this type we then 

find from (7.149) that its length has to be a multiple of the Coxeter number N. This 

observ~tion  excludes most of the exceptional fusion rule algebras. The solution to the 

recursion and the precise termination-condition are given in the next lemma: 

Lemma 7.4.9 Assum.e p,,p e t are irreducible and 0'1 E Out(t) with pop = 0'1 +,p. Let 

ej, j = 1, ... , L, be a sequence oj objects satisfying 

e. = 1, {2 =P 
(7.150) 

afJ.d e2j e po {2j-1, 6;+1 e po 6j J 

such that 

e;-1 # e;+1 Jor all i = 1, ... , L . (7.151) 
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I 

I 

i) 1ft and N are as in Lemma 7.~.5, then the spins are giv~n by 
I 

I

j2 _ 1 t i 
± Oe; =I;N + 4a grad (ei) mo91. (7.1 I 

1 

Here we have that grad ({j) =0, for j odd, and grad (ej) == I, Jor j even. 

ii) Suppose the sequence cannot be continued after L steps, i. e., 

p0 eL = eL-l if L is e1Je~  

po eL = eL-1 if L is odd. i 

Then L +1 is a multiple of the Cozeter number N. 

Proof. 

i) To compute the spins of the sequence {; it is convenient t6 use another sequence, 

of objects given by 12(;+1) := 0{ 0 e2(;+1) and "Y2;+1 := O'{ 0 {2;+1, j = 1, ... ,L. 

these we have, with "Y1 = I, the simpler recursion relations "Yi+1 E po "(j and "(j+1 

0'1 0 "(;_1. 

Equation (7.148) of Corollary 7.4.8 is now applicable to the triple k = "(j-I, j = ~ 

l = "(;+1, for any;, i.e., we have 

( It) ,
9"';+1 +8.,j-t - 26"'j= ± 2N + 2a jod 1 . 

I , 

With the initial data, ±8"'1 =0 and ±8-n = J., +:/; mo4 1 this can be ~asily  in1 

grated to
 
'2 1 ( . 1)2


± 6 . = L..::..- + ~ t mod 1 (7.15
~ 4N ~  . 

From Corollary 7.4.4 we see that, for any 0'1 with 0'1 0 p =p, where grad(p) = I, t 

following relation holds for any t/>: 

8~ =8",ro• - 8"1 n(grad( t/» + n) . (7.15 

This allows us to compute the spins Bei from the spins 8"'j given in (7.153). 'Inserti 

the value of 8"'1 given in Lermria 7.4.5 we,obtain equation (7.152). Finally (7.H 
( 
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can also'be used to find the spins of all compositions O'~  0 {; which can be -expressed 

as follows: 
P -1 t 2± QV~O(i  = ----;;]{ + 4a (grad (ej) +2n) . (7.155) 

Note that, by identification of the 1 in~adUj) E {O,l} as the conventional gener­

ator of Z4o, the above equation is meaningful, however the squared term in (7.155) 

cannot be substituted by grad(O'~ 0 (;) E Zea. 

ii) It is again convenient to work with the sequence ,j for which the terrIDnation con­

dition is po iL = "YL-l or P 0 "'fL = 0'1 0 "YL-1; We can now use the formulae from the 

proof of part i) to compute 

±2 (0.,.101'l._1 - 8,.£) = ±2 (0,.£_1- 0,.1.) ± 28171 (L -1) 

(L - 1) 3 t " 
-	 --y:r- + 2N + 2a (1 +2grad(,L) mod 1 

where grad (rL) = L - 1. If we compare this to (7.149) in Corollary 7.4.8, with 

j = 0'1 0 "YL~l andk = "YL, we find as a condition on L: ~ = 0 mod i. This is just 

the assertion. o 

Note that not all fusion rule algebras with a generator of dimension d, < 2 have a two­

channel decomposition to which the above analysis applies, namely those obtained from 

the D4-algebra. For these, however, we have that pop and pop decompose entirely into 

invertible objects, i.e., supp(i1 0 p) = stab(p). In order to discuss the possibility of finding 

spins and eventually quantum categories for fusion rule algebras of this kind, we first" 

elaborate on the observation, already made in the proof of Proposition 7.3.1 that the 

objects in stab(p) := {er : 0' 0 P = p} C Out(~)  have half integer spin. 

Lemma 7.4.10 Let t be a 'Lea-graded fusion rule algebra oj a C' -quantum category, and 

a", r as in Lemma 7.•.e. 

Then we find Jor any pE t, with grad(p) = 1, that 

OfJ == 0, "I{3 E stab(p), if a" is odd, 
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and, for 4" even, we have a homomorphism • .. 
9: stab(p) -+ Za:{3 -+ 91" 

The gradation a~  Jor elements fJ E stab(p) is given by 

ape,) = 91' grade,) mod L. 

Proof. For any p and fJ € stab(p), we clearly ha.ve that a,,(~)  = 9". Since fJ -+ S" E 

Grad(t) is a homomorphism, f3 ........ 9" is one, too. Since stab(p) f stab(p), we find from the 

gradation of a" that 0 = etJ(p) + etJ(p) ~ 291' mod I, so tha.t' 91' E ~Z/Z. Assume no~  

that p has grad(p) =1 in a Zea-graded fusion rule algebra. Then we find from Lenuna 7.4.2 

that 6.s(p) = ~,and  therefore a"9,6 = 0 mod"1. This shows that 8tJ == 0, for odd a". The 

general form of atJ follows from the same lemma. ( 
I 

The formulae and constraints obtained in the previous lenunas, especially in Lemma 7.4.9,, " 

. allow us to discard {rom the list of fusion rule algebras in Theorem 3.4.11 those which are 

not realized as object algebras of a C'-quantum category. Together with Proposition 7.3.5 

we can sununarize the results of Sections 7.3 and 7.4 in the following propQsition. 

Proposition 7.4.11 Suppose p is an irreducible object oj a C--quantum category. Then 

i)	 The statistical dimension oj p obeys dp < 2 iJ and only if we have that 

pop=er$tP, 

where 0' is invertible and'r/J irreducible, and, furthermore, m(p, p) = ,(p, p)2 is non­

scalar. 

ii)	 If i) holds for p, and p generates the fusion rule algebra, ~, oj the C'-quantu~  

category (or iJ we restrict our consideration to the subcategory associated to the 

fusion role subalgebra generated by p) then t. and the statistical phases are restricted 

to the Jollowing possibilities: 

a)	 t is a fusion rule subalgebra oj some An x Z,. (the crossed product being the 

same as in Lemma 3.3.3), namely (3.117) or (9.1eO) of Thearem 9.•. 11. The 
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inclusion, i, or. is given Q,f Jollows: 

•
.'	 .. 

for	 t = A,.. Zr , n ~ 1, 
(7.156)

i :. <...+ A2n X z,. 

is the inclusion (9.77) from Corollary 9..1.9, multiplied with the identity on 

the z,,-faetorj Jar. = A1n- 1 • z,., n ~ 2, we ho.ve 

i:. <...+ A2n- 1 X Z2fo 
(7.157)(e, Ie) -+ e® Qsrad«(.Ic), 

where eE A2n- I , grad({) E {O,I}, and Q generates Z2r' 

b) The fusion rule algebra is given by either (S.J~J),  with n odd, or (S.1~5),  with 

n even, i.e., 

• = 7a (A2n- l • 2:,.) , 

with n ~ 3, and 

r == n+ 1 mod 2. (7.158) 

iii)	 Let p;, j = 0, ... ,n -'-1 denote the irreducible elements oj the A,.- fusion rule algebra 

as defined in Lemma 9..I.! i) with fusionrules (S.75). The possible statistical phases 

can be given in tenn.s oj the standard spins oj An-fusion rules, 

Olt.._ (j + 1)2 - 1 
P; . ­ 4(n + 1) mod, 

and the set oj possible statistical phases, {01'}, of the fusion rules corresponding to 

Zr are labelled by l' E Z2r, with'l'r == 0 mod 2" and are determined by 

0;, == ~ 

l't2 

mod I, (7.159) 

where Q is the generator oJZr. 

a) IJ. is a fusion rule subalgebra oj An x z,. and i : t <...+ An X z,. then every 

choice oj statistical phases is given by 

±Olc = Oi(lc) mod I, Ie E., 
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where i :An x z,. -+ R/Z is given by , 

-	 IO(@a' =0Et. +0;, mod 1 , : (7.16( 

Jar some l' Q,f above. 

b) For. = l'a (A2m- 1 • z,.) the possible phases are give.n by 

I 27+1 i
± '(p;.Ic) = 'p~. +-s;:- (gta.d (p;) +~1e)1 mod 1 , (7.16] 

i 
Jar Ie = 0, ... , r - 1, and some l' E Z.,.. I 

Proof. First we shall use the previous results to exclude all fusion rule algebras not liste 

in Proposition 7.4.11 from those realized in a C·-quantum category. The most importaI 

tool here is Lemma 7.4.9 ii). It states that if A is the matrix-block of Np restricted to • 

and we consider the bicolored graph associated to it, every path in this graph starting at 

for which two succeeding vertices of one coloration are distinct and which terminates I 

a point of edge degree one (i.e., an end point of an "external" leg) has to have a length 

with the property that N divides (L + 1). Since all bicolored graphs with norm less tha 

-two are trees, any such path is without self intersection, thus reresents an AL-subgrap 

with Coxeter number L + 1. By monotonicity of the norm with respect to subgraphs 

follows that L + 1 $ N, and therefore by Lemma 7.4.9 ii) 

N=L+1. 

Again, monotonicity implies that the AL-graph is already the entire graph. 

This fact can also be verified by finding paths in the E- and D-graphs violating tl 

condition N/(L + 1). For dp < 2 and 0." = 2 in Theorem 3.4.11, this excludes the algebr, 

(3.118), (3.119), (3.122), (3.123) and (3.127) with two-channel decompositions of po 

The only admissible algebra with a" = 2 is the one in (3.117), since the bicolored graJ 

associated to Ais the Coxeter graph Atn . From Proposition 7.3.4 ii) and the followiJ 

remarks we learned that the D.~algehras(3.128),(3.129) and (3.130) are not admissi't 

either. The additional constraint (7.158) will be obtained in the following calcula.tion 

the spins. 
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From Lemma 7.4.3, (7.120), we find the form (7.159) by specializing to Out(to) = 1 

and a" = 1, so that both '1 and 0 are trivial. Setting T = - (herl +TeerJ, the constraint 

TT == 0 mod 1 is equivalent to (7.119). In order to treat the case t = An X Zr, with a" =:= I, 

we use Corollary 7.4.4, i). As Out (to) = I, we have 8~ = 0, so that formula (7.123) yields 

8(-0,1 =8( +8~i ,	 (7.162) 

for { E to, (i.e. grad({) =0 and e<l = 8(), where Q is the generator of Zr, with grad(a) =1, 

and T = h(a +1) mod 2aj (this form is equivalent to Ta = 0 mod 2). 

As suggested above, in the computation of the An-spins, we mainly make use· of 

Lemma 7.4.9 i). For the selfconjugate case, pop = 1+"", this has to be specialized to 

t = 5a, with CE Z., as described in Lemma 7.4.5 and we obtain 'using that ~gradaj)  = 
- ~ (i - 1) mod 1 . 

'2 1 1 
± 9(; = L..=..- (-- - 0) mod 1. (7.163)

4 Ncox. 

Let us choose a basis of the An-fusion rule algebra: {CPI =I, '1'2 =p, .. :, rpn}. Then Np 

is given by 

P 0 Ipi = rpi-l + 'Pi+l ,for i = 2, ... in - 1 , 

and po rpn Ipn + lpn-I' 

The only path, {{j}, in the An-graph, which satisfies the prerequisites of Lemma 7.4.9 is 

the following 

ei 'Pi for i = I, ... ,n , 
(7.164) 

and ei CP(2n+l)-i for i = (n +1), ... , 2n , 

so	 that
 

Ncox. = L +1 = 2n +1 .
 

Evidently we have the consistency requirement that 8(; ,Vj = I, ... ,L, which= geN-j 

turns out to be equivalent to c= -Ncox. mod 4. We find 

~,  j odd
4Ncox. 

P -1 (--1 - Ncox.) = (N . _ J).2_ (7.165)
± Of; = '. 4 Ne... cox4Ne... 1 

j·even1
 
using that Ncox. is odd. 

... r 
, 

Comparing (7.165) to the explicit formula {or the inclusion • • 
, i ('Pj) Pj-l, j odd, 

i (rpj) PH-j-l, j even, 

we can summarize (7.165) in the formula 

± 9., = 9:(~) , Vrp E:4...	 (7.166) 

This proves the assertion of Proposition 7.4.11, ii) a): ~  =An,. z,.. 
I 

For the cases ~  = A2n- 1 * z,. and t =To (A2n- 1 *z,.), the path we have to consider 

is. clearly {; = (P;-I, 0). Here the relevant formula to find the possible values of spins is 

given by (7.150). If ~  =A2n- 1 .Zr we have that (11 = I, so 8er1o(j =9(;, which is the same 

as requiring t to be even. With t = 2T and a = 2r we obtain 

l T 2.± 8(p;.1) =8~: + -4 (grad (p;; k» mod 1 , (7.167) 
~ r	 ' 

and this expression is now well defined for grad (p;, k) E Z2r' The second term in (7.167) 

has precisely the form (7.159) for the spins of t = Z2r, the contraint (2r)T == 0 mod 2 

being automatically fulfilled. 

Finally we consider (7.150) for t = TQ (A2n- 1 • z,,). Since 9erloPJ = 8P2ft_20P; = 
_ _ we obtain additional contraints on t, r and N, which are given by: 9PN i 2 

_ 1 mod 2 (7.168) 

and n == r +1 mod 2 (7.169) 

To show this we use (7.155) and we replace a =2r and t =2r +1 to find (7.161). Propo­

sition 7.4.11 is thereby proven.	 ; 

Let us add a few remarks concerning the reality of selfconjugate objects, P, wi:th pop = 
1 +,p. From Lemma 7.4.5, (7.132), we see that the value of 8p already determines whether 

p is a real or a pseudoreal object. For instance, for p E Ant it follows from 5 == -N mod 4 

and N == 1 mod 2 that p is real. This is what we expect, since the reality property provides 

a Z2-gradingt Grad (An) =1. Howevert if P E AH - 1 has the standard spin, 8~',  as for the 
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fundamental representation of U, (..l2), it is pseudoreal. The remaining possible values of It is not hard to show that the list of fusion rule algebras in Proposition 7.4.11 is
" 
• spin for a selfconjugate p can be derived from Proposition 7.4.11 as follows: 

The possible spins of A2n- 1 are found from the inclusion i : A2n- 1 ...... A2n- 1 X Z2' 

For a given T E Z.., as in (7.159), this yields the general expression of' Lemma 3.4.10 for 

the selfconjugate case with 

6 =T' mod 4. (7.170) 

The remaining fusion rule algebra with selfconjugate generator is A2n , n ~ 1. It appears 

in the classification as An x ~,  where the isomorphism is given by 

CPj @ 0- -+ { Pj ~  ¢. t mod 2 (7.171) 
PN-j J =t mod 2 

where 0 is the generator of~,  t E {O, I}, j =1, ... , n. Following Proposition 7.4.11, ii) 

we can for An x Z2, we can determine the spins for some choice of T E Z•. This.induces 

spins on A2n , reproducing the formula in Lemma. 7.4.5 with 

6= N +T mod4. (7.172) 

The observation made in this discussion is that a selfconjugate sector P, with pop = . 

1 + tP, can be changed from real to pseudoreal and vice versa by tensoring it with a semion, 

wherea.s its reality properties are unchanged if it is tensored with a boson or a fermion. 

We note that all the fusion rule algebras with selfconjugate-generator are contained 

in part a) of Proposition 7.4.11 ii), i.e., they do not involve any To-operation. We also 

notice that the only enclosing algebras AN-l x z,. listed in part a) are those with r even. 

However, for odd r, i.e., r =2r' + I, we have, by virtue of Lemma 3.3.3, an isomorphism 

~:  AN-l x z,. -+AN-l * Zr 

{@o -+ ({, l+r'.grad({». 

The canonical generator of gradation is therefore p = P2 ~ o1+r 
' and the parameter t from 

Lemma 7.4.9, (7.147) is related to T in (7.159) by 

t =4T(r' + 1)2 mod 8r. (; 1;3) 
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redundant, i.e., no two fusion rule algebras are isomorphic to each other. The tran'sfol 

mation of spins under fusion rule algebraautomorphisms are given by automorphisms 

Z2r, changing the constant T. The sign ambiguity in the determination of the spins refiec1 

the fact that we can obtain from any braided category a second, in general inequivalen 

one by replacing the statistics operator t by c 1 everywhere. 

.. 
'. 
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We use the notation B.(G,1):= imB.+1 = imB n AA:(G,1), for the boundaries, for the· •7.5 Theta - Categories 

In this section we present a complete analysis of categories for which all irreducible objects 

are invertible. In reference to what is known 4$ (} - (or abelian) statistics in quantum field 

th.eory we call these categories (J - categories. The fusion rule algebra, ~, associated to a 

e-category is th1l.S entirely described by an abelian group, G, namely ~  = NG , where the 

composition law on ~ is induced by that on G. The classification of (} - categories can be 

reduced entirely to a problem in group cohomology. The relevant classifying constructions 

are obtained from are the Eilenberg - MacLane spaces, H( G, n), which are the homology 

groups of complexes denoted by A(G, n) . 

In the following discussion we shall not con~ider  the most general aspects of this 

construction, but rather exemplify it for the complex A(G, 2) which is obtained by start­

ing from the ordinary inhomogeneous chain complex over G, here denoted by A(G,1). We 

provide the basic tools, e.g., a chain equivalence for cyclic groups, the Kiinneth formula 

and the universal coefficient theorem, allowing us to compute the homology- and coho­

mology groups of ACG,l) and A(G,2) in low dimensions. (For details, generalizations and 

proofs we refer the reader to the textbooks [59]). To begin with, we review the definition 

of the complex A(G,I): 

This complex has a grading, A(G,l) == e An(G,l), where each An(G,l) is afree 
,,>0 

Z-module, and a c;anonical Z-boasis is given by, cells, en == 191 I ... 19,,], 9, E G, g, ;;fe, 

where eis the unit element in G. We use the convention that Cn = 0 if 9, = e, for some 

i = 1, .. . ,n. The boundary, {j E End(A(G,l», is a map of degree -1, with {j2 = 0, and 

has the form 

o [g1 I · .. 19ft] = 

1921· .. 19,,] +Li=f(-I); 191 I .. ·1 9j' 9;+1 1· .. 19,,] +(-1)" 191 I· .. 19,,-1] . 
(7.174) 

The resulting sequence of maps of the chain complex is commonly summarized in a dia­

gram 

8t=0 SaO--Z +-- A1(G, 1) ~ I[G]/!. I ~  A:z(G,l) +-- ... (70175) 
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C}'de. we write Z.(G,1) ;= kerB n AA:(G,1), and the homology groups are denoted by 

JI. (G. 1) :: Z. (G. 1) / B. (G,l). For small k and abelian G, the homologies can be readily 

computed. Of coune, we have 

Ho(G,1)=Z. (7.176) 

Since Zl(G,1) =A 1(G, 1), and o[g Ih] =[g] + [h] - (gh], H1(G,1) is the abelian group 

with generators [g] and relations [g] + [h] = [gh], so 

i 1 : G --+ H1(G,I) 
(7.17t) 

9 --+ I9T 

is an epimorphisms, and, for abelian groups G, an isomorphism. For finite cyclic groups, 

G:::: ZQ' all homology groups a.re known, 

H2m (ZQ,l) ~ 0, 
and (7.178) 

H2m+1 (Z.,1) ~  Z•. 

This result is oi)tained from a simpler chain complex, M(a, 1), which is homologically iso­

morphic to A (Za, 1). It is a free Z-module with grading, M(a,1) == e M,,(a, 1), and 
n>O 

each M,,(a,l) is one-dimensional. Hence ·there are generatori Vm and W m such that 

M.2m(a,l) =Zvm, m = 1,2, ..., and M2m+1(a, 1) = Zwm, m == 0, 1, .... The boundary, 0, 

is given by 

OVm = aWm -l, and OWm = 0'. (7.179) 

Clearly this is the simplest chain complex producing the homology groups (7.178). in 

order to define a chain equivalence, we introduce, for some fixed generator 1; E Za, the 

cochain {i E Hom (AI (Z., 1), Z),given by 

(i(i) = i, for O~i<a, (7.180) 

and the cocycle..., E Hom (A2 (Z., 1), Z), (with e5h) =..., 0 0 == 0) by 

a 5 i + j < 2a, 0 ~  i, j < a 
{"(i,;) = { ~ (7.181) 

O~i+j<a. 
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..
 We note that 

E{3 = a-y • (7.182) 

The two complexes are related by chain transformations I: M(a, 1) -+ A (Za, 1) and 

P : A (Za, 1) -+ M(a, 1), i.e., I and P have degree zero and intertwine the boundary by 

paA = aMP and IBM = 8Al. (7.183) 

The explicit ~ormulae  for P and I read . 

P2m ([it! il I.. · lim 1im]) = (g-y (i"i,») 11m 
(7.184) 

P2m+t CIA: I i 1 Iil I··· I i m lim]) = ((3(A:) g'Y (i"i,») Wm 

12m (11m ) = E [i1 11 I .. · lim 11J 
it,...,i",EZa 

(7.185) 
12m+dwm) = E [1 Ii1 I .. · lim 11J 

it ....,i"'EZe. 

from which (7.183) can be verified easily. Here 1 isa fixed generator of Za. The situation 

is summarized in the diagram (the maps t are defined below): 

o +-- Z -!- AdZa,l) ~  A2 (Za, 1) ~ A3 (Za, 1) "-- ­

... (7.186)PillII pi112 P1113'II 
'4 0 '4O+--Z~ Zwo +-- ZVl +-- ZWI +-­

for which (7.183) expresses the fact that each square involving either.P or I commutes. 

Equation (7.183) also implies that P and I map boundaries and cycles onto one an­

other. Hence they induce maps of the homology groups H(P) : H (Za) -+ H(M(a, 1», 

and H(I) : H(M(a, 1» -+ H (Za, 1). It is shown in [57] that there exists a homotopy 

t : A(Za, 1) -+ A(Za, 1) for IP::::: 1, which proves I and P to be the injection and the 

projection of a contraction, respectively, i.e., we have that 

'. 
PI = 1, 8t+t8 1-1P, 

(7.187) 
tI = 0, Pt O. 
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From this one sees that H(P) and H(I) are isomorphisms' of the homologygrou~  

with H(P) = H(I)-I. A popular strategy to compute the h?mologies for an arbitra 

abelian group consists of the repeated application of the Kiinneth formula which express 

H Ic (G1 ED G2,1) in terms of Hr (G1 ) and H, (G2), r," ~ A:, starting from the results ( 

cyclic groups. We carry out this exercise for the group H2(G, 1). We consider the cycl 

[x IyJ - [y I xJ E Z2(G,I) and their classes in H2(G,I), 

{g Ih} = [g Ih] - [h Ig]. (7.18 

, Using the relations in H2(G, 1) given by the boundaries, 

8[g I h I A:] = [h I A:] - [gh Ik] + [g I hA:J - [g Ih] , (7.18' 

we show that {g Ih} is bilinear which means that we have a homomorphism 

i 2 : A2G -+ H2(G,1) 
(7.19

9 1\ h -+ {g Ih} . 

The Kiinneth theorem for H2(G, 1) asserts that the map 

, : H2(GlJ 1) eH2(G2,1) $ G1 ® G2 -+ H2 (G1 ED G2,1) (7.19 

is an isomorphism, since Tor (Z, Gi) = 0 and by(7.177), where' is induced on H2 (Gl , 

simply by the inclusion of cycles and, on Gl ® G2, we define' by 

, (gl ® g2) = {g1 Ig2} . (7,19: 

Having a natural decomposition of A2 (Gl $ G2 ) with mixed term G1 ® G2 , we obtain t1 

commuting diagram: 

A2G1 ED A2G2 e G1 ® G2 
~ 

A2(Gl ffiG2)' . 

1i2,Gl ED i2,~ ED idGI ~G2 1i 2.(GdP.G2) (7.19: 

H2 (Gl , 1) ED H2 (G2 , 1) ED G1 ® G2 H2 (G l EDG2,1) .. 

It demonstrates that if i2•G, and i2,G2 are isomorphisms then the same is true for i 2,G $G , 

Since, by (7.178), we have that A2Za = H2 (lOt~) = 0, we conclude that (7.190) yields c 

isomorphism for an arbitrary abelian group G. 

248 



Similarly, A3G appears as a subgroup of H3(G I 1), with inclusion 

gl 1\ g, 1\ g3 ~ E sgn ('K) [g.(l) Ig.(,) I9"'(3)] I (7.194) 
• eSa 

but, due to non-trivial torsion, Tor (Gil G,), present in the Kiinneth formula I and because 

H3 (ZcIl1) :f 0, this is obviously not an isomorphism. 

As originally intended, we shall now proceed with the construction of the complex 

A(G,2), for an abelian group G. To begin with, it is essential to remark that A(G,2) can 

be equipped with the structure of a differential, graded I augmented (DCA-)algebra. This 

structure manifests itself in the existence of an associative, graded product, ., defined on 

pairs of cells, which obeys the Leibnitz-rule, i.e., 

deg (e1 * c,) deg (el) +deg (c,) 
(7.195) 

and 8(e1 *C2) (8el) *c, +(_l)deg(cd Cl * (8e2) . 

On A(G,l), * is given by 

[g1 I··· Ig,,] * [gp+l I ... I gP+9] = E sgn (11') [g.(l) I ... I9.(1'+9») (7.~96)  

.ESp,.
 

where _Sp,9 C Sp+tl is the subgroup of all permutations I called (P, q)-shuffies , with
 

'Il"(i) < 'Il"(j), for 1 $ i< j $ p 
(7.197) 

and for p +1 ~ i < j ~  p +q. 

For cells of dimension less than two (7.196) yields 

[g] * [h] = [g I h] - [h Ig] = -[h] * [g], (7.198) 

and 

[g] * [h I Ie] [g Ih I Ie] - [h I9 I Ie] + [h I Ie Ig] 
(7.199) 

[h I Ie] * [g], 

for any g, h, Ie E G. 

The first step in the construction of A(G,2) is the definition of a doubly graded, 

free Z-module, A(G,2) = E9 A(n,m)(G, 2).
n,m 

249 

A Z-basis of A(n,m)(G,2) is given by elements [C1 1 ••• 1 ~], where Ck E A(G, 1) are" .. 
m . 

cells with E deg (c,,) =n. The total degree of a cell in A(G, 2~ is then 
1;:1 r 

deg ([C1 1••• 1em]) =m +f: deg ('e"J~  . (7.200) 
"=1 . 

Since A(G, 2) haa a differential and a multiplicative structure, there are two possible 

boundary operators: One is defined similarly to the boundary (7.174) on A(G,l), namely 

8': A(n,m)(G,2) -+ A(n,m-1)(G, 2) 

",-1 I (7.201) 
8'([C1 1... 1em]) = E(_l)dcc([c:d... IC:i » [C1 1···1 C; *e;'+1I···1 em] . 

~1 . 

The other one is obtained by extending 8 on A(G,2) to a derivation, 

8" : A(n,m){G, 2) -+ A(n-:1,m)(G, 2) I 

i (7.202) 
8" ([ell··· I em]) E(-1 )dcg([C:II•.•IC:i-d) [ell· .. I 8c~  I ... I em] . 

;=1 I 

Besides the conditions (8')' = (0")2 =0, one can also prove from (7.195) and (7.201) that
 

8'8" +8"8' =O. (7.203)
 

Thus (A(GI 2), 8', 8") is a double eomplez, and we can define A(G, 2) to be the corre­


sponding condensed complex, where the grading, A(G,2) = E9 A,,(G,2), is given by 
n~D  

n 

An(G,2) = EB A(n_;,;){G, 2) , 
j=O 

and the boundary, 8: An(G,2) -+ An_ 1(G,2), by 

8=8'+8". ·F·204) 

(In the generalized form of this construction, one can also obtain A(G,I) systematically 

from the complex A(G,O): 0 - Z[G] f!. 0 - 0 ... , and define complexes A(G,n) induc­

tively, for arbitrary n.) 

We remark that 

S:A(G,I) -+. A(G,2) 
(7.205) 

c -+ [c] 
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." . 
for any cell c, i. a chain transformation, i.e., 8S = S8, of degree one. The induced homo­

• •	 
morphism S. : H(G, 1) -+ H(G, 2) ofthe homology groups of degree one is called the sus­

pension. In order to describe the cells of A(G, 2), we adopt the convention to replace dou­

ble brackets by double bars, e.g. [[91192193] I [ge] I [gsI9s]] == [g119219311gel/9s19s} E A,(G,2). 

A Z-basi. of A(G,2) i. given, up to dimension five, by 

Ao(G,2) 

A1(G,2) 

A2(G,2) 

A3(G,2) 

Ae(G,2) 

As(G, 2) 

= Z, 

= 0, 

Z[Gl = S(A1(G, 1» , 
(7.206)S(A2(G, 1» 

= S(A3(G,I»E9 EB Z[gII h] , 
,,hEO 

S(Ae(G, 1» e EB Z[glhllk] ffi EB Z[9I1hlk] 
"h,lcEG g,h,lcEG 

where G:= G\{e}. 

Obviously the homology groups of dimension not greater than two remain unchang­

ed, i.e., we have 

Ho(G,2) = Z, HI (G,2) = 0, (7.207) 

and 

S. 0 i l : G-+ H2(G, 2) (7.208) 

is an isomorphism, \where it is as in (7.177) and S. is the suspension. Also the cycles 

Z3(G,2) = S (Z2(G, 1» are the same, so S. is onto, but we have to add the boundaries 

8[gllh] = [glh]- [hlg] (7.209) 

to S(B (G,I», in order to obtain B3(G,2). From (7.209) it follows that {glh} E kerS.,2

and,by (7.190), S. 0 i 2 == O. Since the latter rna? is surjective, we conclude 

H3(G,2) = O. (7.210) 

The equations (7.189) and 

8 [gllg2Ig3Ige] = 1921931ge] - [glg2Ig3Ig4} + I9dg2g3lg4] - [g1192Ig3ge] + [g1Ig2Ig3] (7.211) 
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hold also for cells in A(G,2), because S is a chain transformation. The remainin 
i 

generators of Be(G,2) are given by 

8[glhllkJ -[[glh] * kJ + [8[glh] I [k]] 
I (7.21~ 

-[glhlk] + [glklh] - [klglhJ +[hllle}- [g. ~lkJ + [gllk] 

and 

8[911hlk]	 = [fg) * [hlle]] - [[g] I8[hllen 
(7.2U 

= [glhjk] - [hlg]k} + [hlklg] + [gllh] - [gllh· k] + [gllk]. 
i 

From (7.209) we see that {gllg] and [gllh] + [hllg] are cycles. Using the relations (7.21~  

and (7.213), we find t,hat they arenot independent in H4 (G, 2): 

{gllh} := 19lThJ +Ihii9J 
(7.2V 

[9' hllg· hJ - [gllg] - [hllh]. 
I 

Further manipulations with (7.212) and (7.213) prove that {gllh} is bilinear which, l 
I 

(7.214), is the same as saying that [gllgJ is quadratic. To be more precise, we introdul 

the abelian group r 4 (G), with generators {g}, 9 eG, and relations 

{9 . h . k} - {9 . k} - {h . k} - {g . k} +{g} + {h} + {lc} =0 
(7.21l 

and {g} = {g- l } . 

Then the previous observations imply that there exists a hom~rilorphism  

I 
1',,: r,,(G) -+ H4(G, 2) 1 

{7.21 
with 1'4({g}) = [gllg]· 

For cyclic groups G = Za, the chain contra.ction (7.187) to the complex M(a, 1) can' 
.! . 

used to prove that 1'4 is an isomorphism. This depends crJcia.Hy on the existence 
. . I 

.a multiplication on M( a, 1) for which P and I are homomorphisms. Then the rna 
I 

p# ([CI I· .. I em)) := [P (Cl) I· .. IP (em)] and I# (lcd··· I~n  := [I(Cl) I· .. I I (~  

define a contraction of A(G,2) to the complex M(a,2) which is constructed similaI 

The homology groups in M( a, 2) can be computed easily, and ~e  find that 

I 
r 4 (Za) ~ H4 (Za, 2) ~ Z(2,a)a I (7.2J 
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where [1111] = I* ([10011.110]) is a generator if 1 E Zo is a generator. The proof that "Y.. 

in (7.216) is an isomorphism, for general, abelian groups G, now follows the same lines 

as the one for i 2 in (7.190). Using that H2(G,2) ~ G and H1(G,2) = H3 (G,2) = 0, the 

Kiinneth formula yields an isomorphism 

(: H.. (Gl ,2) $ H.. (G2 ,2) $ Gd~ G2 -t H.. (Gl $ G2 ,2) (7.218) 

which, on H4 (Ga,2), is given by the inclusion of cycles and, on Gl @ G21 is given by 

( (gl ®g2) =[g111g2] + [g2l1gd = {g1I!g2} . (7.219) 

Notice that, besides r .. (GA,) with inclusion ii: r .. (Gk ) '--+ r 4 (Gl E9 G2 ), Ie = 1,2 , 

_f .. (G1 Ell G2 ) also contains a crossed term given by the image of 

,.,. : Gl ®G2 '--+ r .. (Gl Ell G2) : 91 ® g2 -+ {g1 . 92} - {g1} - {g2} . (7.220) 

If we compare formulae (7.214), (7.219) and (7.220) we obtain the following commutative 

diagram 

r .. (G l ) E9 r .. (G2 ) $ Gl ® G2 
!!! 

f .. (Gl E9 G2 ) 
ifeai'E&'" 

1"Y",Gl Ell ")''',G2 E9 idG10Ga 1"Y"(G1E&G2) (7.221) 

H.. (G1I 2) $ H.. (G2,2) Ell Gl ® G2 
!!:! 

H.. (G1 E9 G2 ,2) . , 
Thus, with (7.217), this implies, that "Y",G is an isomorphism, for arbitrary G. We note 

here that the suspension 

S. : H3 (G,l) -+ H..(G, 2) (7.222) 

vanishes on A3G C H3(G,I), generated by the expressions in (7.194), by the symmetry 

of (7.212) in 9 and h. Moreover, r .. (G) is closely related to the symmetric part of G ® G 

by homomorphisms 

D: f ..(G) -+ G®G: {g} -+ 9 ®9 and 
(7.223) 

Q:G®G -+ r.. (G) : 9 ® h -+ {g . h} - {g} - {h} . 

The maps D and Q satisfy QD = 2, and 2 - DQ = 1 - T, with T(g ® h) = h ® g. From 

im(D) =ker(l- T) and D(imQ) = im(l +T) we obtain a map 

15: r .. (G)jimQ - ker(I-T)/im(1 +T) ~  Gj2G, (7.224) 
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.. ~ 

where the isomorphism on the right hand side'is induced by G ..... G ~ G jim(l +T) ':. 

9 -t g@g. The group on the left hand side is given in terms of generators {g},.g E G, 
~ 

... 
and relations, {g. h} = {g} +{h} and 2{g} = 0, and hence is equal to Gj2G. Since 11 

is onto this yields ker DC imQ, and, by DQ =1 + T, we have ker D =Q(ker(l + T». 

Also, we ~ave kerQ = im(1 - T) C ker(l +T), so that 

"Q: 2G ~ ker(l + T) lim (1 - T) ..... ker D (7.225) 

is an isomorphism. 

In particular, we find that 

D 0 "Yi
l 

0 S. == 0, (7.226) 

where we use that D o"Yi l istherestrictionof1}: AkIBi: ..... G ® G, with1} ([9I1hl) =g@h 

and 1}([gllelh]) = 0, to Hi:. 
, 

Let M be any abelian coefficient group. The cothains (A·(G, nj M),6'), n = 1,2, 

with Ai:(G,njM) = Hom(Ai:(G,n),M) and 6' = 8·, define cohomology groups which we 

denote by H*(G,n;M). We write 

Bi:(G,njM)c ZI:(G,njM) C Ai:(G,n;M), 

for coboundaries and cocycles. The main link between the homology groups determined . 

above and cohomology groups is provided by the universal coefficient theorem which 

asserts that, for n = 1,2, 

0-+ Ext(Hi:_l(G,n),M) ~  Hi:(G,njM) ~  Hom(Hi:(G,n),M) -+ 0 (7.227) 
r 

is exact and splits. Here the epimorphism, 0, is naturally induced by zi:(ci, n'j M) E::! 

Hom(Ai:(G,n)IBk(G,n)jM).!.:. Hom(Hi:(G,n)jM). The left term in (7.227) arises 

from the identity 

Ext (Hi:(G,n),M) ~  Hom (Bi:(G, n), M) jHom(Zi:(G,n), M) , . 

; .. 
and 6' is induced by 8·: Hom(Bi:_1(G,n),M) -+ Zk(G,njM)~  If G is torsion~free, or if 

M is a lQ-module, e.g., M =R,lQ,R/Z ..., then'Ext(G,n) = O~  and 0 is an isomorphism. 

! 
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·1 .. 

Note that the map from (7.205) also induces a suspension 
• .. 

S·: H Ic(G,l;M) -. Hlr+l(G,2;ML 

for cohomology. Among the immediate consequences of (7.227) are 

HO(G,l;M) IfO(G,2jM) = Hom(Z,M) ~  M
 

Hl(G, 1; M) = 0 (7.228)
 

H2 (G,2;M) ~ Hl(G,I;M) ~  Hom(G,M).
 
s· 'ioa 

With the homologies (7.177), (7.190) and (7.210) at our disposal, we can readily compute 

the cohomology groups for the next higher dimensions: 

H2(G,I;M) 
~ 

(60ii) -1 ei ; OQ 

Ext(G, M) ffi Hom (A2G, M) , (7.229) 

and 
~  

H3 (G,2;M) 
(6·060iir' 

Ext(G,M). (7.230) 

Thus S· : H3(G,2; M) '-t H2(G, 1; M) is just the inclusion of Ext(G, M). 

The cocycle condition, p. E Z'(G, 1; M) for some p : G x G -. M : (g, h) ~ p.([glh)), 

can be derived explicitly from (7.189) as 

o= (6p)(g, h, Ie) = p.(h, Ie) - p(gh, Ie) + p.(g, hie) -Jl(g, h), (7.231) 

and the additional condition for p. to be in S·(Z3(G,2;M» C Z2(G,1;M) takes the 

form 

1l'(9, h) := p(h,g) = p(g, h)" (7.232) 

by (7.209). Here we denote fIo(9, h) == p.([g I h]). 

The cobounda.ries are given, for any ,\ : G -. M, by 

(6).)(g, h) ~ >.(g)+ >'(h) - '\(g . h). (7.233) 

Thus, in a fashion more accessible to calculations, the formal identities (7.229) and (7.230) 

can be restated as follows: The map & which assigns to each IJ : G x G -. M, with (7.231), 

a skew-bilinea.r form in Hom(A2G, M), by 

&(p) = Jl - p.' , (7.234) 
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is surjective and vanishes on boundaries. For any symmetric ~ocyc1e,  p., there exists all 

'abelian group E :::> M, with ElM ~  G, and a section t/J : G -. E, with 11' o1/J = ida, sud 

that p.(g, h) = ..p(g. h) - ,peg) - .,p(h) E M. If Ext(G,M) =I 
0, then we have ..p(g) = 

9 + '\(g) E GeM =. E; hence p. = 6'\, for any p. E ker &. In the last considerations we 
"­

made use of the well-known one·to-one correspondence between Ext(G, M) and the in· 

equivalent, abelian extensions of Mover G. 

There is another interpretation for H2 (G, 1i M) in terms of central extensions of M 

over G. The aim of our discussion is DOW to find interpretations for H3(G, 1; M) anc 
I 

H 4 (G, 2; M), at least when M =RjZ, and investigate how they are related by the sus· 

pension. Contrary to the previous example, S· is going to be very different from a mere 

injection. From (7.227), (7.216), (7.210) and (7.190) we~find 

H3 (G, 1; M) 
~  

I Ext (A2G, M) e Hom (H3(G, 1); M) (7.235
ii06- 1€la 

and 

I .H 4 (G,2; M) 
~  

Hom (r4(G), M) (7.236'
.,:00 

For later applications, we give a more detailed description of the relations (7.235) an< 

(7.236) and the associated complexes. The elements of A3(G, 1; M) can be given ~  

functions, I: Gx Gx G-. M: [glhlle] -+ F(g,h,k), (G =G\{e}), and the cocyc1e con 

dition, IE Z3(G, 1; M), becomes, with (7.211), 

o = (6l)(gl' g2, g3, gl,) 
I . .'

I (g2,g3,g4) - 1(9192,g3,g4) + /(91,g293,94) - f (gl,g2,g3g4) +I (91192,g3) , 
(7.23; 

and the coboundaries are as in (7.231). Denote by [A] the generators of A3(G,2;M 

where ,\ : 0 x G-+ M and S·([A)) = >. E A2(G,1; M). The elements of A4( G, 2; M). Ci 

then be given as pairs [f,r], with I: Gx Gx G-. M and r :0 x G-+ M, so th 

II, r]([glhlk]) =1(9, h, Ie) and [f,r]([gllh]) =reg, h). The suspension is induced by t' 

omission 

S·([I, r]) = I, (7.2~  

and we find from (7.209) that 

15[>.] = (c>., >. ~ >.c] , (7.2: 
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for the coboundaries in B2(G, 2j M). 

Since, by (7.238) and S e 6 = 5S-, we have that 

(6[f,r])([g1Ig2Ig3Ig.]) = (5!)(gltg2,g3,94) , 

the cocyc1e condition, If, r] E Z4(G, 2j M), is given by f E Z3(G,lj M) and we obtain the 

. two equations 

o (olf. r])(IglhllkJ) 
(7.240) 

- f(g, h, k) + f(9, k, h) - f(k,g, h) + r(h, k) - reg· h, k) +reg, k) 

and 

o (eIf, r])([911 hlk)) 
(7.241) 

j(g,h, k) - f(h,g, k) + j(h,k,g) +reg, h) - reg, h· k) +reg, k). 

The defini.tion of f.(G) in terms of the relations (7.215) allows us to identify the space 

Hom(f.(G),M) in (7.236) with the set of M-valued quadratic functions, 8, i.e., with aU' 

functions 8 ; f,,(G) -t M, with 

8(ghk) - 8(9h) - 9(gk)- (J(hk) + 8(g) + 6(h) + D(k) = 0 
(7.242) 

and 8(g)=8(g-1). 

The isomorphism of (7.236) is then given by 

8(g) :=i; oa([jjr]) =r(g,g). (7.243) 

In particular, (7.236) implies that a cocyc1e [lj r] is a coboundary iff the diagonal of r 

is zero, and, conversely, to any quadratic function 8, there corresponds a cocycle with 

(7.243). We now claim that 

. ".. D. S·o(oy.l)"o-t Hom (A2G, M) ~  Hom(G ® G, M) -+ Hom (r.(G), M)' -t H3(G, Ij M) 

(7.244) 

is exact, where 1r is the projection onto A2G, and D is given in (7.223). The definition of D 

implies exactness at Hom(G ® G, M), and the composition of maps at Hom (r4( G), M) is 

zero by (7.226). Suppose now that eE ker (se 0 (ii 1 f), for some quadratic function 9. 

Then there is a representing cocycle [lj r] with (7.243), and se([f, r]) =E>. E B3(G,ljM), 
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so f = 6>'. The functiC?n 9 is then also represented by the c~cycle  [f, r]- 6[>.] = [0, pl, .. 

P = r - p. - A'). The cocycle conditions (7.240) and (7.241) show that p is bilinear and '" 
I 

therefore extends to G 0 G. For 9 E ker (se 0(:y;l)e), we find: 

9(g) = peg @g) = De(p)(g) , {or some p E Hom(G ~ G, M), (7.245) 

which proves exactness of (7.244). 

; 
In order to extend results on the cohomology of cyclic groups to arbitrary abelian 

, 1 

groups, we consider the dual version of (7.221); 

~ 'I 

H" (G1 ffi G2 , 2; M) m~=l  H4 (Gi ,2j M) $ Hom (G1 ® G2, M) -- I 

= i ••(Gl~G3) ~1i:.01 ffi i:,03 $ id-1­
S!! 

Hom(r. (G1 ffi G2 ) ,M) e~=IHom(r4(Gi),M)  $Hom(G1 0G2,M). 
. I (7.246) 

.1 

The horizontal arrows in (7.246) that project onto the direci summands of the spaces 

H" (01 $ GJ , 2j M) and. Hom (r«(01 ffi 02) ,M) are obtained from the inclusions in 

(7.221). Thus, to every quadratic function 9 on G1 ffi Ga ,we associate unique ele­

ments 8. E Hom(r. (Gi ) j M) defined by the restrictions of 9, and some q= 7 e (8) EJ 

Hom (G1 0 G2 , M), where 7 is given in (7.220), such that 

8«g1l92» = 61 (gl) +92(92) +q(gl @ g2) . (7.247) 

If we set KG ;= ker (se 0 (i;lf) = im(De) C Hom(f,,(G),M) the compositi~n  

KeGI ~G3)  = KGl e K G3 e Hom (G1 0 G2, M) (7.248) 

holds in the sense th~t KG, are subspaces of Hom(r.(G.) ,M) in (7.246). To see this, 

we definep E Hom «G1 EEl G2 ) ® (01 $ G2 ), M) to be equal to q on G1 ® G2 ar'ld zer~ 

on all other Gi ® G;. Then P«91,g2) 0 (91,g2» = q(gl ~92), and (7.247) implies that 

Hom(Gl ® G2, M) C K(G1EllG3)' So, if 8 E K(GIEllGa) then (8 - De(p» =E8i E K(Gl~G3)' 

and therefore there is some pwith ))((91,92) ® (91192» = 91(91) +82(92)' Setting '92 = 0 

yields (Jl = De(p) t G10 GIE KGlI and (7.248). follows. 
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The image of S· in H3 (G] ® G2,l; M) is thus described by 
",AI'. 

S· 0 (1;lr (Hom(r. (G1 $ G2), M» 
(7.249)e S· 0 (1;1r (Hom (r4 (Gi ) , M» e! e Hom (r4 (Gil, M) IKG, . 

i=1,2 i=1,2 

. The complete image of S· can now be easily determined by starting from (7.217) and 

iterating (7.249). Note that D·Q· = 2, found from (7.223), implies 

2Hom (r4(G), M) C KG, (7.250) 

so that all elements in imS· are of order two. 

This observation leads us to consider cohomology with Z2-coefficients. Since reduc­

tions of coefficients strongly depend on the original group M, we shall avoid complications 

by restricting our attention to the case M = R/Z (in which we are actually interested). 

First, we remark that there i.s an involution, F, on A4(G,2j R/'L) with 

t.1'([fj rJ) = [- fj r ] • (7.251) 

One immediately verifies that it maps cocycles to cocycles, that .1'6[~]  = -6[~]  and that 

the induced map ~  is the identity on H4(G,2; M). It follows that 1-.1' maps any cocycle 

[/j r] to a coboundary. Since we have coefficients R./Z we can choose this as 

(1 - .1')([/j r)) = 26[JL] , 

where JL E A2(G,l; R/Z). Another representative of the cohomology class of [/; r) is then 

given by .[j; f] := [/, r] - 61JJ], which, by the last formula, is fixed by.1='. This means that, 

in every c()homology class, we have a representative with 

2j =0 mod 1 and r = r'. (7.252) 

We denote the space of cocrdes obeying (7.252) by Z~(G,2;  R/Z). The restricted 

projection Z:rmm(G,2; R/Z) - H4(G,2j R/Z) is still onto, and its kernel is given by 

B:rmm := Z~  n B4. Since.1' acts as -Ion the boundaries, the .1'-invariant set is 

given by 2(B4(G,2; RjZ», where we use the notation pG = {g E G : gfl = I}. But for [~),  

with 6[~]  E B~(G,2j  R/Z), this implies 2[~]  E Z3(G, 2; R/Z). Since by (7.230) we have 
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that H3(G,2jR.JZ) = 0, we can find some JJ E A2(G,2jIR/Z), kuch that 2[~]  = 20",. Fo! 

[~I] = [~]  - 6JJ, we then have 6[~1  = 6I~J and ~'(g,h)  E iZ/Z.Yve conclude that 

= B4 I
B~(G,2jR/Z)  = 2(B4(G,2;R/Z») (G,,2j ~ZJZ) . (7.253 

I 
i 

Similar to S· in (7.238), we have a well defined suspension of iocycles 

S:ymm: Z~(G,2jR/Z) -.. ZS/(G,l; lZ/Z) 
(7.254 

[fjr) -.. I· ! 

By (7.253), it has the property ! 

I 
S:ymm (B~(G,2jR/l») = B3 (G,I;lZ/Z) . 

Together with Z~  / B: ~ H 4
( G, 2j R/l) this induces ahomomorphismrmm 

! 

s:~  :H 4 (G,2j R/l) -+ H 3 (G,lj lZ/~)  . (7.255 

i 

The connection of S:ymm and S· is obtained ~y  considering the short exact sequence c 
coefficients 

o....... lZ/Z ~ R/Z ~ R./l -+ 0 (7.256 

and the associated long exact sequence 

...... H2(G,RJZ).!.. H3 (G,lZ/Z) ~  H3(G,R/Z) ~  H~(G,IR/Z),  (1.25 
I 

- - - !
where 6 is the connecting homomorphism, and i and 2 the maps induced from (7.256 

We find the following commuting diagram 

S· 
H4(G,2; lIt/Z) ----+ H3(G,l; R/Z) 

(7.25'\,S:ymm i/ 

H3 (G,l, !Z/Z) 

For general abelian groups, working with this substitution of the coefficients tends to 

rather awkward. However, for cyclic groups, the decomposition of S· according ~o  (7.2 

turns out to be pertinent. First, we observe that, for G = Za, H2(G,lR/Z) ,.;, 0 imp 
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6= 0 in the exact sequence (7.257), and " is injective. From (7.217) and (7.236) we find 

that 

H4 (Zcu2j R/Z) ~  Z(2,o)0 (7.259) 

and the generating quadratic function ,90 , is given by 

'2 

90(;) = (;a)o. mod 1, V; e Zo. (7.260) 

Moreover, since Zo ® Zo = Zo, the bilinear functions are generated from 

.) ij
p(~ 

. 
® J = - mod I, Vi,; e Zo. (7.261) 

a 

By (7.244), the kernel of S- (which is, with injective ~,  also the kernel of S:ynuD) is given 

by Z" and has generator (2,0.)80 = D-(p). Hence 

im S- ~  im S:ymm ~ Z(2,o) . (7.262) 

Comparing this to 

H3 (Zeu1j ~Z/Z) ~ Hom (Zeu ~Z/Z) ~ Z(2.0), (7.263) 

which follows from H2 (Zo,l) = n, (7.178) and (7.227), we infer that S:ymm is surjective, 

and hence 

imS- =im\ =ker2 =2(H3 (Zo, 1j R/Z») . (7.264) 

For odd orders a, the groups (7.263) and (7.264) are trivial and 80 = D-(p), so that the 

representing cocycle in Z~  of the class of 80 is 

r( i, j) = p(i ® j) , Vi,iezo , 
(7.265) 

I =o. 
For even order a =: 2al 

, the groups (7.263) and (7.264) are Z2 and the generator eo is 

- ma.pped to the non-trivial element in H 3 (Zo,lj lZ/Z). 

We shall use the special dependence given in (7.258), with l mapping into and S';ymm 

onto, in the way, that, for any representative f e Z3 (Zollj lZ/Z) of the non-trivial 

cohomology class, we can adjoin some (unique) l' : G x G --t R./Z, such that 

[I: r] EZ~ (Zo,2j R/Z) and r(j,j) =eo(j). 
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In order to detennine a. cocycle I of this kind, we employ a. chai~ contraction of the cochain" .'" 

complex A· (Zo, 1; M) onto the cochain complex M·(a,lj M) ,where Ml:(a, Ii M) = 
. I 

Hom(M.(a,I),M), M_(a, l) as in (7.179) and 5= a-. The projection and injection are 

r and P-, from (7.184) and (7.185), and the homotopy is ()-, and we obtain a diagram 

as in (7.186) with all a.rrows reversed. 

The cohomology groups of Zo can be computed directly ~om  M-(a,lj M) as follows: 

Since ais zero on M2m+1(a, 1), 6 vanishes on M2m(a, Ii M), and we have 
I 

B2tn+1(a, Ii M) = 0, (7.266) 

Z2m(a,ljM) = Hom(M2m(0.,1)jM)~M.  (7.267) 

Furthermore, it follows from (7.179) that 

B2m(a, Ij M) = a' Hom (M2m (a, l)i M) ~ aM, (7.268) 
and I 

I 
Z2m+1(a, Ii M) = 0(Hom(M2m+1(a, l)jM»=:!oM. (7.269) 

Finally 

H2m(a,ljM) =:! M/aM, (7.270) 
and 

H2m+l (a, Ii M)' ~  oM. (7.271) 

In particular, for odd dimensions, two cocycles are cohomologous only if they are equal. 
I 
I 

Equation (7.271) confirms that H3 (a,1j!Z/Z) ~0(ZO).=Z2  for even a, and the 

non-trivial cocycIe is 

q:M3(a,1) --t ~Z/Z,  

(7.272) 
with q (WI) = ~ mod 1. 

Thus, a non-trivial cocycle I e Z3 (ZOI Ii lZ/Z) is given by 

1= P;(q) I (7.273) 

where P has been defined in (7.184). The explicit expression is then found from (7.184) 

as 

I(i,;, k) = q (P3([ililkJ» 
; (7.274) 

= l.8(i)...,(;, k) mod I, 
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",' for all i,j,1c E Z., and with fJ,'Y as in (7.180) and (7.181). To find the cocycle [fir] E 
,,;'-> 

Z~  (Z., 2; R/Z) representing the class of the generator 6", E r 4(Z",). we have to solve• 
the following set of equations for r : Z", x Z", -+ R/Z: 

'2 

r(i,j) = ~4mod 1. 

reid) = r(i. i). (7.275) 

and 

r(i,,) +rei, 1c) - rei"~  +k) = l ,8(i)'Y(i, k) mod 1. 

Here we used that J is sYmmetric in the last two arguments and f = -f. One easily 

verifies tha.t 

,8(i) {3(j) mod 1
r(i,i) = 24 (7.276) 

is a. solution, by viewing the left hand side of (7.276) as a 2-coboundary for fixed i 

and using (7.182). In a. more systematic approach, this particular cocycle can also be 

obtained from the chain compl~x  M.(4,2) that we mentioned previously as b~ing ho­

mologically equivalent to A. (ZO, 2). Starting from qE Z4(4,2i R/Z) C M4(4,2), with 

q([wo IwoD = !; mod 1 and q([W1]) = l mod 1, [fjr] is the same as (p#f (q). More 

precisely we ha.ve 

rei,;) q(p#([illi])) = q([P([i)) IP«(j])]) 
(7.277) 

l(i", k) q(P·«(i\j lle))) q([P«(ilil 1c])]) , 

which reproduces (7.274) and (7.276). We interrupt our line of arguIllents with a summary 

on cohomology of cyclic groups. 

Lemma 7.5.1 ForClny a E N, 'We have 

H 4 (Z., 2; R/Z) ~  Z(2,.)•. 

(Here (2, a) = 1 il4 U odd and (2, a) = 2 i a u even.) A symmetric cocycle [f; r] E 

~~ ~Z., 2; R/Z) with the property that If; r] generates H4 (Z., 2j R/Z), is given by 

r(i,j) (2, a
1 

)a {3(i) {3(j) mod 1 
(1 278) 

1 
l(i,;, k) (2, a) {3(i)-yU, Ie) mod 1 

for all i,i, k E Z",. For the nspeMion 

! 

S· : H4 (Z., 2; R/Z) -+ H3 (Zo, Ii R/l) ~  Z. 

we have 
imS· 2(H3 (la, 1j R/Z) .... Z(2,o) 

and (7.2 

ker S· = 2H4 (Z., 1; R/Z) ~  Z. ~  II 

, I 

I I 

In particular, for even 4, the cocycle / E Z3 (la, 1; R/Z) from (7.278) represents a n~ 

I 

trivial cohomology clQ.S6 in. H3 (Z.,l; R/Z). II 

I 

I 

I 

The technology presented so far allows us to generalize Lemma 7.5.1 to arbitrary fi~  

• I

abehan groups I 

I 

G =ZOl ffi ... ffi Zll" . (7.2~ 

First, the quadratic forms of G are decomposed by itera.ting the lower horizontal map 

(7.246): 

n 

Hom(r4(G),R/Z)~EBHom(r.(l.JtIR/Z)ffi  ffi Hom(Z.i@Zo;,lR/Z). (7.28 
,=1 1~,<j~n  

For any 9 E Hom (r.. (G), R/Z) and any 9 E G, given by 9 =gl ... gft, g,E Z.i' we can u 

(7.247) to write the components of 8 in (7.281) in the form 

8(g) =t 8, (9i) +~::>i; (g; @g;) , I (7.28 
;'=1 i<i ! 

where Oi E Hom (r. (ZGi), R/Z) is given by 8i ~ 8 r ZOi and Pij E Hom (ZOi @ ZOj' R/: 

by Pi; (9i @ 9i) = 0 (gi gj) - e(g,) - 8 (gj). More explicitly, we have 

Hom (r4(G), R/Z) ~  $ Z(2,.,)ai E9 ffi Z(Oi,Oj) (7.28 
i=1 l~i<j~n  

in the sense that, for some given generators ei of Z.i c G, i = 1, ... , n, we have 

n 7: To' o(e~  ... e:--) =L --~-. v! + L -(.".) Vi V; mod 1 , (7.?E 
;'=1 (2, a.) a.. l$i<i$n a., c, 

where Ti E Z(2,Oi)Oi and T;,j E'1.(Oi,4;)' The deco~position  (7.248) together with the spec 

result (7.279) put us in the position to determine which of the functions 8 from (7.284) h~  
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bilinear extensions to G ~  G, i.e., 9 e imD·, and are thus annihilated by the suspension 

map in (7.244). The condition is 

Be Ko iff (2,Oi) f 'Ti, Vi = 1, ... ,no (7.285) 

From the two short exact sequences 

o -+ imD· ..... Hom(r4(G),R/Z) ~  Hom(ker D, IR/Z) --+ 0 

5!!11': ~r1':	 ~r1'4 

S' o --+ kerS· ..... H4(G,2i IR/Z) -+ imS· C H3(G,ljlRjZ) -'-+ 0 
(7.286) 

we can derive the unique isomorphism 1'4, which, together with (7.225), yields 

imS· ~  k;-n ~ 20.	 (7.287) 

For G as in (7.280) this group is Z(01.2) E9 ... EEl Z(0".2)1 and the map i· can be explicitly 

given, once we pick Cti = ai (ei) as the generators of ker D, which are of order two, for 

even ail and zero, for odd ai' We have 

i·(8)(Qi) = (2~~i)  mod 1.	 (7.288) 

For the computation of representing cocycles for the associated cohomology classes we no­

tice that by the commutativity of (7.246), the following short exact sequence is a canonical 

presentation of H4( G,2; R/Z) in terms of cocycles and coboundaries, compatible with the 

decomposition (7.281): 

n 

o~	 E9 B" (Zllil 2j R/Z) <-t $Z4 (Zlli,2; IR/Z) ED E9 Hom(Zlli®Zlli,IR/Z) 
i=1 i=1 \~l<i~n 

n	 n 
B4(G, aj R/Z) Z4( G, aj R/l) 

H 4(G,a;R./Z) -----...10 

(7.289) 

Here the surjection onto H4( G, aj R/il) is given for the crossed terms by the identification 

Hom(Zoi®Zllj,R/Z) -+ Z4(G,2jlR/Z) 

Pi;	 1--+ [OJ p] , 
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.f 

where p e Hom(G ~ G, R/Z) = e Hom (Zo. ® Zo., R/Z) is eq~al  to fi; on the summand ... 
,..	 I "" ~  

with r = i a.nd , = j a.nd zero for all other r and I. j 

I 
Furlh~rm"re, the inclulion Z" (Z/li' 2; R/Z) C Z4(G, 2; R/Z) is na.turally given by 

(_,-) : A4 (Z..,2j R/Z) -+ A4(G,2jRjZ), where 1rf: A.(G,2)-+ A. (Zllil2) is the chain 

map obtained from the projection 1ri : G -+ Z/li, with 

1rf ([g1 I ... Igft]) = [Wi (gi) I ... IWi (gn)] , 

9i E G. Explicitly, [fi, Ti] e Z4 (Z•., 2; R/Z) is identified with [fi r} e Z4(G, 2j R/Z) by 

reg, k) = Ti (7I"i(9), 7I"i(k» 
and (7.290) 

f(g,h, k) = fi (7I"i(g), 'lri(h), 'iriCk» . 
Exactness of (7.289) also implies that two cocycles with a. decomposition of this form 

are cohomologous iff their contributions in each Hom (ZOj ~ Zllj' R/Z), 1 ~ i. < j :S n, 

are equal and the respective components in Z4 (Zllj ,2; R/l.) have the same class 

in the space H4 (ZO" 2; R/Z), for all i = I, ... ,n. Suppose now we have a quadratic 

function, 8, given by (7.284), with coefficients 'Ti E Z(2,Gi)lli and 'Tij E Z(Oi,Oj); Then we can 

use the compatibility of (7.289) with (7.281), the canonical representatives for the mixed 

terms and the explicit formulae for the cocycles (7.290), given in Lemma 7.5.1, to obtain 

a representing cocycle for the class associated to 8. It is given by [fi r], where 

r (e~ ... e~, (fl ... e:--) = t (2 'T~) . 13 (IIi) f3 (J.Li)
i=1	 ,a, a, 

+ E --..3.LISi<,;Sn (ai, 0;) Vii},; mod 1, (7.291)
 

and
 
" 1:'

f (e~ ... t:-, er1 = ' .) 13 (Vi) l' (J.Li, '1i) mod 1....:- ,e~l  ...e:") ~ -(2
.::1 ,a, 

The advantage of this norma.lization is that [Ii rJ E ker S· if f == 0 (instead of just 

f=cU). 

Alternatively, we can find from these expressions representatives in Z~(G, 2; R/Z), 

defined in (7.252). They are obtained from [jif) = [fjr) - 5[A], with 

.x({~·  .. e:-,erl .. ;~)= E' 2('T~;  .,I3(vi)P(J.L;) , 
ISi<i$n all aJ 
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so that , .. 
~. 

f (er ... e::", ef' ~,' .:--) 

and 

n Ti 
~ (2 a')'" P(I/i) P(Pi) 
1=1 ,.-. 

To" ' 

+ E 2( ~'.)  (P (Vi) P (1l.1) + P (V;) P (Pi» 
'l$i<i$n a" 0, 

" 7'ij (er ...{:",{f' ...:" ,{~  ... {:" ) = E -(2.)' P(Vi) "Y (Ili, '1i)
i=1 ,a. 
+	 E 2 (7'i~O;  .) P(Vi) "Y(Il;. '7j) (7.292) 

l~i<;~n a., 0, 

- E 2 (Ti~Oi  .) "Y (ViI Ili) P('7j) . 
l$i<i$n a" a, 

G,iven these normal forms, we end here our discussion of the algebraic properties of the 

cohomology groups H 4(G, 2; JR.jZ) and turn to their interpretation. in the context of 9­

categories. 

In general, if a cohomology group, HIt(G, nj M), with Ie> n ~  1, admits an inter­

pretation (e.g., in terms of a classification of certain algebraic objects), we expect that 

there exists a similar interpretation of the group HIt+t(G,n + l;M), which is related to 

HIc(G,nj M) by the suspension S· : Hl:+l(G,n +Ij M) -+ HA:(G,nj M), and, further"that 

there is a connection between these interpretations which is parallel to S·. We already 

encountered the example S· : H3 (G, 2; M) -+ H2(G, 1; M), where the suspension could be 

interpreted as the inclusion of the group of abelian extensions of Mover G into the group 

ofcentrtJ extensions of Mover G. A similar relation can be found for H3(G, 1; RjZ) and 

H4(G, 2j R./Z). 

The group H 3 ( G, 1; R/'l) can be naturally interpreted as the classifying object of in­

equivalent, relaxed, monoidal O·-categories with fusion rule algebra ~ = NG 
• Analogous 

results have been obtained in slightly different contexts, with possibly nonabelian 0, like 

in the classification of WZW-acti~ns with gauge group G [60], or in the guise of quasitrian­

gular quasi-Hopf algebras, A =e[G] M O(G), with certain restrictions [33]. Nevertheless 

we shall recall the derivation in a purely categoriallanguage. For a category of the type 
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specified above, the composition of two irreducible objects is again irreducible, hence 

associativity isomorphism, i 
I 

a,,h•• E Mor(g 0 (h 0 k), (g 0 h) 0 k) i (7.2 
I 
I 

for irreducible g, h and Ie, is irreducible, too, and, as the arrow space in (7.293) is 0 

~imensional,  we can consider it to be a scalar. A realization as a linear m8:p is obtail 

if we choose a. basis, r,oh...h E Mor(g . h,g ok), and let a act on these arrows by 

multiplication, i.e.	 I 
I 

a,,h•• (1, x fhoA:."":) f,o(h.I:) ...h.A: = ,:p(g,h,le,g· h· k>r~(r'Oh".~  xII:) f,.holt.,.,..", (7.2: 

the ep-matrices are numbers. We shall use the simpler notation 

,:peg, h, k,g' h· kK~  =: e2fl!("h.A:).	 (7.2! 

i 
Clearly the numerical data from (7.295) and a choice of basis determines a uniquely. 

order for a to determine a monoidal category, it has to satisfy the pentagonal equati< 

meaning that the following diagram has to commute 

a'l", ...og. ( ) ( ) a'1012 ...".
91 0(g2 0 (g3 0 g.» I gl 0 g2 0 93 0 g" I «91 0 g2) og3) 09 

11,1 X a fJ •I ••I •	 a'l,I2.g, xl,.1 
a'lt12 0ll••,. 

gl 0«92 0 93) 0 g.) (91 0 (g2 093» 0 9. 
(7.2! 

In terms of J : G x G x G -+ R/'l, this is equivalent to 

J (gl' g2, 93' g4) + I (gl . g2, g3,g4) = I (92, g3, g4) +J (91, 92 ~ 93,94) +f (91, 92,93) . 

If we consider I as an element of A3(G,l; Rj'l) and compare; this to (7.237), (7.296: 
ireexpressed as 

IE Z3(G,l; RJ'l). (7.2 

We may now ask when two categories C and C' with identical objects, i) =NG
, and defiJ 

by cocycles J and I' are isOmorphic. An isomorphism maps the spaces Mor(g 0 h,9 

268 



onto each other. Thus if {r~o",g,,} is the image in C of the basis chosen in C' then there 

obviously has to exist ..x : C x C -. R./Z with 

~o",g" = e-2,n>.(,.h) r,oh,gh , (7.298) 

and J' is the cocyc1e determined in the basis (7.298) instead of {r,o"",,}. From (7.294) 

we see that they are related by 

f(g, 11., Ie) ,- f'(g, 11., Ie) = -..x(g, h) - ..x(gh, k) +..x(h,le) + ),(g, h· Ie) 
(7.299) 

= (6),)(g, 11., Ie). 

Thus f and f' define isomorphic categories iff 

f - f' E B3(G,l; R/Z). (7.300) 

Hence the possible associativity arrows and thereby the possible inequivalent monoidal 

categories with ~ :; NG are identified with elements in H3(C, Ii lR/Z). 

An analogous interpretation can be found for H4(G,2iR/Z) if we require that the 

(relaxed) rnonoidal C-.categories, with ~ :; NG, in addition admit a braided structure. 

We call a braided category of this type a 8-category. The statistics operators of a 8­

category 

,(g, h) E Mor(g 0 '11., 11. 0 g) (7.301) 

are determined, for irreducible objects g, hE G, and a fixed basis {rgoh.h.g} , by some 

T : G x G -+ 'R/Z, so that 

- '211"'(',11.) r , (g, h) .r 'OQ,"" - e go","·g • (7.302) 

For general objects X a.nd Y, e(X, Y) has to satisfy the isotropy and the hexagonal 

equation, which can be summarized in the polynomial equations. 

We shall use them here in the form of Theorem 2.3.4, where the R-matrices are 

defined by 

ag ,A:,h(lg Xe(h,k» a;,h./t(r,oh".1t. x lAo) r"lt.ol.g.It../t 
(7.303) 

= R(g, h, It, g . h . k)::~ (rgoh,g.h xl,,) r ,.ho/t,g.h-1t • 
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.Combining (7.294), (7.295) and (7.302) we find "::0. 

I 
I 

R(g, 11., k,g· h· Ie)::~  =e2,n(~(".l:)+/(',1.")-/(~,,,,l:». (7.304) 

From this, together with the tP-matricea 

VJ(g, 11., Ie, 9 • h. • Ie)::~ = e-2,n/("h,") , : (7.305) 

we can reduce the first polynomial equation 

R+(l· g, 11., Ie,l· 9 . h· k)t::~  R+(l,g, k,l· 9 . Ie)t: ,pel· Ie,g, ic,l. 9 . h· Ie)~t'  

(7.306) 

=,p(itg, h,l· g' h)~'~  R+{l,g' 11., k,l· g. h· Ie)t:.h 

to the condition 

f(g, 11., Ie) - f(g, 11:, h) + f(1I:,9, h) - r(h,'k) + r(g· 11., k) - r(9, 11:) 
(7.307) 

=(61)(l,9, 11., k) - (6/)(l,g, It, h) + (61){t, k,D, h) 

on the functions f and -r. Since the pentagonal equation also holds for 8-categories, 

the right hand side of (7.307) vanishes by (7.297). We recognize the resulting equation 

asthe cocyc1e condition (7.240). Similarly, we obtain (7.241) from the second polynomial 

equation. Thus, a pair of functions 1 and r defines via (7.295) and (7.302) a e-category 

if and only if 

[fir] E Z4(G,2i R/ Z). (7.308) 

Again [fi r] and [f'j r'l define the same category iff they differ by a resc~ling  of the basis 

as in (7.298). Besides (7.299), we obtain from (7.302) 

reg, h) - r'(g, h) = ..xCg, h) - ..x(h,g). (7.309) 

Comparison with (7.239) then shows that the e-categories constructed from [Ii rJ and 
( 

[f'i r/l are isomorphic if and only if 

Ifi r] -If'i r'l E B4(C,2; lR/Z). (7.310) 

This establishes the interpretation of H4(G, 2i R/Z) as the class of 8-categories with 

~=NG.  
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lii<~  

or Notice that we have by (7.302) 

"" 
£(9.9) = e2ftf'(."') 1.0 • (7.311) 

. showing thatr(g.g) is a basis-independent quantity. For a. 9-category the dimensions of 

irreducible objects are all one. 80 that the statistical phase. 9(g). of an irreducible object 9 

is equal to its statistical parameter. Hence, we obtain £rom (7.311) the identification 

9(g) =r(g.g) mod 1. (7.312) 

Let us also introduce the (basis-dependent) function "'( : G -. R./Z by 

"'(g) =r(g,g) +T (g,g-l) = f (9-1,9,9-1) mod 1. (7.313) 

We easily find that 

"'(g) = _"'(g-l) mod 1 
(7.314) 

and "'(g) -")"(g) = ~ (g, g-1) ~ (g-I,g) mod 1. 

Hence, for elements 9 E 2G of order two. "'(g) is an invariant and "'(g) E !Z/Z. In other 

words:")' distinguishes among the selfconjugate elements 2G the real beg) = 0) and the 

pseudoreaJ ("'(g) = i) ones. Furthermore")' : 2G -. iZ/Z is a homomorphism~  
For the following considera.tions let us denote by Cat (G) the class of 9-categories 

with ~  = NO. So far. we have achieved an identification of Cat (G) and H4(G. 2; R/Z) only 

as sets. Apparently Cat (G) also carries a group structure induced by this correspondence 

which we want to describe more directly. 

To this end we define. a composition of 9-categories associated with two abelian 

groups G and H. 

Cat (G) x Cat (H) -. Cat (G E9 H). 
(7.315) 

(CG.CH) -. CGE9 CH • 

The objects in Co E9 CH are given by NG ® NH = N(GtilH) with composition 

(gl' h1)0 (g2, h2) = (g1 0 g2. hi 0 h2) 
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and the arrows are given by i 

i 
Mor «gtt hI)' (g2. h2»=Mor (gttg2) @ Mor (:hh h2) • 

with correspondingly factorized arrows a and £ • 

In the cohomologica.1 translation. this corresponds to the embedding of the : 

terms in (7.246). H4(G,2j M) EEl H4(H.2;M) ..... H4(G E9 H,2j',M). If G contains a: 

group G. with inclusion i : GC4 G, then we ha.ve the natural map 

i· : Cat (G) -. Cat (G) , 

which restricts all arrows to the objects in N~ and obviously corresponds to 

,,,. : H4 (G, 2; IR/Z) -. H4(G,2jIR/Z). 

Let us choose this injection to be diag : G '-+ G EEl G : 9 -. (g,g) and consider the com: 

sition 

Ca.t (G) x Cat (G) -. Cat(G EEl G) -+ Cat (G) 
(7.31 

(Cb,C;;) -. Cb EEl C~ -+ Cb· C;; = diag· (Cb 67 Cb) . 

This ,is by construction precisely the multiplication induced by H4(G, 2; RIlE). Theref( 

the correspondence between 9-categories and group-cohomology is in fact a group hon 

morphism, once Cat (G) is endowed with the group structure given in (7.316). The u: 

element in Cat (G) is the ordinary representation category of G, where the statistics op 

ator is just the flip, and thanks to the special properties of H4(GJ 2; IR/Z), especially il 

im S· C 2( H3
( G, 1; RIlE», the inverse, C', of a category C E Cat (G) can be obtained 

setting e'(g , h) = e(h, g). and a' =a.(For general, monoidal C·-categories with ~ = ~  

the definition of an inverse requires a choice of basis.) As the key observation of 

discussion on 9-categories, let us record their correspondence with cohomology groups 

the following proposition: 

Proposition 7.5.2 For C E Cat (G) and a given arrow-basis, let the R- and c1'-matri 

be defined as in {1.29./} and {1.909}. Then the assignment 

(c1',R) -+ [fir], 
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specified in (7.f95) a.nd (7.30~, yields em identification olC and its basis with a cocycle 

in Z4(O,2jlR/Z). The categoryC is trivial iff [fjr) is a coboundary. The induced map 

Cat (0) -+ H 4(G,2j lR/Z) 

is an isomorphism of abelian groups, where the multiplication in Cat (0) is given. by 

(7.916). 

The isomorphismexplained in Proposition 7.5.2 serves a.s a tool to translate the results on 

the properties H4(G, 2; 'R/Z) into the context of the group Cat (0). They are gathered 

in the next proposition: 

Proposition 7.5.3 

i) For a 9-category CE Cat (G), the function 8e : G -+ R/Zi9 -+ 8e(g), defined by the 

statistical phases 8e(9), is quadratic (see {7.!.j!}} ani yields an invariant for each C 

which is separating in Cat (G). Oonversely, to every quadratic function 0 E r.(G), 

there exists a unique category C E Cat (0) such that (J = Dc. Hence 

Cat (0) -... rc(O) : C -+ 8e	 (7.311) 

is a group-isomorphism. 

ii) Let G and H be finite abelian groups, CGE Ca.t (G) and CH E Cat (H) two cor­

responding 8-categories, with statistical phase functions OG and eH , and q E 

Hom(H @ G, IR/Z) a bilinear function. Then there is a unique (J-category 

C =Co ffi q CH E Cat (G EB H)	 (7.318) 

called the sum of CG and CH with "statistical interactionn q, such that the objects 

'and arrows ofC' are as in the sum (7.315), and 

a(91.hl).{nlh2),(9~lh,)  := a 91 ,9lI,91 @ah"h"h, 

but 

,«gl' h1), (g2' h2» := e21fiq(hl.9,) {; (91,92) ® {; (11.1, 11.2) • (7.319) 
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The statistical phcues ofC are given by	 • "''-' 

O,«g, h» = 80(9) + OH(h) +q(h,g). (7.320) 

Every 8-category C' E Cat (G e H) is isomorphic to a category given in the form
 

. (7.318), where q E Hom(G 0 G,R/Z) is unique, and the categories Cc and CH are
 

unique up to isomorphisms. If two O-categories C' E Cat (0 e H), i = 1,2, have
 

a presentation of the form (7.918), in terms of Ch E Cat (G), cil E Cat (H), a.nd
 

q. E Hom{H @ 0, R/Z), the product in .oat (0 $ H) can ,be ezpressed as 
i 

1 2C • C = (Cb .C~) $(91 +92) (Ch .Cl) . (7.321) 

Also we have that 

CG $, CH ::! Cn $,' Co·	 (7.322) _ 

Suppose C E Cat (G1 $ G2 $ 0 3 ) is decomposed in two uiays 
I 

(COl $'12 CO,) $(921+911) Ce, ~ C:':l $(q:,+q~l) (C:':l $9~, C:':,) (1.323) 

where (q23 + I]l3) EHom(G3 @(G1 ( 0 2) IlR/Z) is written as the .sum of Q'3 E 

Hom(G3 ®Gi,lR/Z), i =1,2, and similarly (q~2  + q~3)' then we have 

9ii q~j 

(7.324) . 

CCh ~ Ca.' I 

H.n••, f.r any C E enl (~G,),  there ;. a vniqu., 'uj d.fin.d p.....nt4ti.n .fC 

as a sum of 8-categories, C, E Cat (Gi ) , with ~tatistical  interactions given by I]~j E 

Rom(G; ® Gil R/Z), i < j, denoted by	 I
 
1
 

" IC =E9 (q'i,i<;) Ci ,	 (7.325) 
i=1 I
 

such that the statistical phQ.3es are given b1l
 

8dgl' .. g,,) =tOe. (gi) + L qijt9j,9i) I (7.326) 
i=1 l:Si<j:S" I 

where gi E Gi • I 
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'"' fII" 

... 

iii} Let Cat O(C) be the set 01 monoido.l C·-categories with ~ =NO und 

" : Cat (C) .... Cat O(C) (7.327) 

the identificAtion olB-co.tegory u a category in Cat O(C) by omission 01 the bro.ided 

structure, i.e., e. II Cat O(C) u equipped with the same multiplicAtion {7.316}, so 

that" it a homomorphum, we have Cat O(C) ~ H 3(C, Ii R/Z), and the unit ele­

ment, Co E Cat O(G), u charo.cterized by the lact that there u an orthonormal 'ba.sis 

01 AfTOWS such thAt 

a,,h..k =(r,oh"." x 11;) r,.hok".h-A: r;o(h.A:)".h.k (1, x rhok,h.kr , (7.328) 

and ifu realized by the ordinary representation category 01 G. 

For a B-category C E Cat (G) the corresponding category in Cat O(G) is trivial, i.e., 

0'(C) =Co, iff Be eztentls to a bilinear lorm p E Hom(G ® G, IR/Z), meaning that 

Be(g) = peg ® g), or equiVAlently, iff Be vAnishes on ker D ~ ,G, where D is given 

in (7.ff3). 

Further, we hAve thAt 

20 ~ imO' C Cat O(G) (7.329) 

And cleo.rly 

O'(Co $,CH) = O'(Co) ffi O'(CH) . (7.330) 

iv) II we define, lor a B-cAtegory C E Cat (G) the function on ,G given by 

'1e = 2Be r2C (7.331) 

this is a cho.ro.cter'1e E 20 with 

'1e(g) = f(g,g,g) E lZ/Z, (7.332) 

for any 9 E ,G A sellconjugAte object 9 E 2C is real if '1c(g) = 0 And pseudoreo.l if 

'1o(g) = ~. 

In part i) of Proposition 7.5.3 we merely put the isomorphism (7.236) into the languag 

of 8-categories, using the identification of the statistical phases (7.312) with the qua.drati 

functions in (7.243). 
! 

Part ii) is an application of the Kiinneth formula (7.246), where the spin formul 

(7.320) is a repetition of (7.247). In the construction of (7.319) we use that the reI 

resenting cocycle of the mixed term can be chosen in the fo~  {OJ pl. The direct SU! 

decomposition of the cohomology groups entails, as elementary consequences, equatioI 

(7.321)-(7.324) which by iteration yield (7.325) and (7.326). 

The map 0', which is investigated in part iii), is, in cohomological terms, just tl 

suspension S· from (7.238). The kernel of 0', (7-1 ({Co}), is found from the exact sequeIH 

(7.244) or (7.245), whereas the formula for the image (7.328) follows from (7.287). Tl: 

obvious relation (7.330) corresponds to (7.248). In part iv), the properties of '1 frol 

(7.313), evaluated on elements of order two, are summarized~  Finally, we combine n 
correspondence of Proposition 7.5.2 and formula (7.291) to provide a normal form 

8-categories, for a fixed choice of generators of the underlying group C. 

Proposition 7.5.4 Let G be a finite abelia.n group with genero.tors {i, i = 1, ... ,n, SU( 

tha.t 

G = ZCll({t) ffi··· ffi Zo,,({n)' (7.33: 

Then 

i) the group of 8-categories over G is given by 

Cat (G) ~ E9 Z(2,o,)o, ffi E9 Z(Cli,ClJ)' (7.33' 
i=l l~i<j~n  

and, for a given category 

C = (7'i' 1 ~ i ~  n, 7'ij, 1 ~ i < j ~ n) (7.33, 

with 7'i E Z(2.Cl')Cli and 7'ij EZ(Cl'.OJ)J the statistical pha.se J:unction is given by 
; 

n : 
v..) '" 7'i '" 7'ij8e ({Ill ... { = L..J -(2. IIi + < L..J -(-.-.) Villj mod 1 . .) (7.33 

i=l ,at at l~i<j~n  at, aJ : 
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The set kero- of categories which are trivial as monoidal C--categories is character­

ized by the condition 

(2,ai) l7"i I i = I"",n. (7.337) 

The image of u, i.e., the set of monoidal C--categories that can be equipped with 

a braided structure, is given by 

u(Cat (G» ~  Z(2,GI) $ ... $ Z(2,a,,). (7.338) 

More explicitly, there are categories Vi E Cat O( G), i = I, ... ,n, such that 

{1'i}ai=eVeD are independent generators of order two, and 

O'(C) =7"11'1 $ ... $ 7""1',, (7.339) 

where C is as defined in (7.994) and the sum is as in {7.916}. 

ii) There exists a choice of arrows such that the R- and F-matrices are given as follows 

<pc(V,J1.,'7,V+II.+'7)(v+,.) _ ( l)t~tI(lIih(I'i"Ii),.. ("+'1) - - ...1 p.GO (7.340) 

and 

(11+'1 211'i 
( 

ft (2.:!)-, t'(I'i)t'('1i)+ E . ,,' I'i'li )+ ~ 

RC(v,J1.,'7,v+J1.+'7)(II+,.I = e ...1 • lSi<jS,,(G"~i)  (7.341) 

Here we abbreviated v == e~ ... e:n and used the functions (3 and'Y defined in (7.180) 

and (7.181). The remaining matrices are given by 

• )(v+j.I)cP( v, J1., '7, II + J1. + '7 )~~::~ <p(v, J1., '7, II + J1. + '7 (,.+'1) 

and. (7.342) 

- ( )(v+'1) . R ( )(11+,.)R v, J1., 11, v + J1. + 11 (v+,.) = + v, J1., 11, v + J1. +7] (11+'1) • 

For this normalization, rj;c is in {±1} and Rl in (7.941) is independent ofv. Fur­

ther, <Pc == 1 holds if and only if C E ker 0' • The normalization (7.9-10) provides 

a homomorphism 

O'(C) -+ rj;c (7.343) 

into the group of possible associativity structures of a category with a fixed basis, 

which is a right inverse to the map assigning to each set of ifJ-matrices the equiva­

lence class in Cat (G) of categories they define. 
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iii) The composition of arrows depicted in (!.56), which appears in the aziom of conju- • 
< .......
 

gate elements, is given, in the normalization (7.9-10), by: 
,I, 

2wi(r,-lo,.1 x It Q,-I",,-I (1 x r,o,-',d =e ,.C<I) £ (g-1, 1) (7.344) 

where 
n 7"i 

'Yc(v) =E -(2,) Vi mod 1.: (7.345) 
i=1 ,a, 

'Ye only depends on u(C) and 

I
u(C) -+ 'Ye E Hom(G,lZ/Z)! (7.346)

! 

is a homomorphism. 

If K.i := ei~  denote the generators of the subgroup 2G =Z(2,a;) EB ... EB Z(2,G..)' we 

~~~ ! 

E~i.iP(Gi\  

'Yc (K.~I ... K.~")  =(~ 1) i I (7.347) 
I 

wherep(a) = 1, for a == 2 mod 4, and p(a) = 0 otherwise, that, for arbitrary C all 

elements in 2G n 2G are real he is zero}, and, with H := 2G /2G n 20, the map 

Cat (G) --+ H 
(7.348) 

C --+ ;Ye. 

is surjective. 

In the first part of Proposition 7.5.4, the isomorphism (7.317) Lm Proposition 7.5.3 and 

the formula for quadratic functions, (7.283) and (7.284), are combined, so that the con­

dition (7.337) corresponds to (7.285). In (7.340) and (7.341), we inserted the expressions 
I 

from (7.291) into (7.295) and (7.304), using that 2f == 0 mod 1and that f is symmetric 
. I 

in its last two arguments. In part iii), the function 'Yc from (1.313) has been evaluated, 
. I 

yielding a basis-independent statement on the reality of selfco~jugate  elements. 

Given the classification of and the normal forms for 9-categories, we anticipate to 

find some conceptual insights by addressing the question of d~ality. In fact, the duality 

problem, as posed in Chapter 7.1, can be solyed for 8-categ~ries in a straightfonvard 
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manner. However, since we also included categories in our discussion that are not equiv­

alent to any ,triet monoidal category, it il necessary to extend the range of dual objects 

from coassociative to quasi-cousociative Hopf algebru, first introduced by Drinfel'd. We 

recall how the properties described in Chapter 4.1 have to be altered, in order to yield 

the definition in [4]. In the first place, cousociativity (4.2) is abandoned and replaced by 

the weaker condition (4.5), for lome invertible element; E K;~3. The latter is subject to 

the pentagon equation 

(id ® id@ 6)(;)(6 ® id ® id)(;) = (1 ® ;)(id ® 6 @ id)(;)(; @ 1). (7.349) 

The Hopf-algebra axioms (4.6) and (4.7) remain valid. Also the commutation relation 

(4.1) is assumed to hold, but the condition (4.9) becomes 

(6 ® id)('R.) = ;312 'R.13 ;'t;2 'R.23 ; 
(7.350) 

(id @ 6)('R.) = ;'2;1 'R.13 ; 213 'R.12 ;-1. 

For quasi-coassociative Hopf algebras, the notion of equivalence is given by so-called twist­

transformations: For any invertible element F E K;~2,  another quasitriangular quasi Hopf 

algebra is defined by the coproduct 

6 F (a) = F6(a)F-1 ,	 (7.351) 

the n-matrix is then given by 

'R.F =O'(F) . 'R.. F-1	 (7.352) 

and the coassociativity isomorphism by 

;F =(1 @ F) . (id @ 6)(F) . ; . (6 @ id) (F-1) . (F-1 ~ 1) . (7.353) 

On the dual space, JC-, we still have a product induced by 6 for which, by lack of 

associativity, basic properties, like the uniqueness of inverses, may fail to hold. However, 

if we ~sume that two-sided inverses in JC ® (JC-)~n are unique then the antipode on JC 

is unique and antihomomorphic, although it is in general not anticobomomorphic. With 

this assumption on JC aIld JCF, the twist transformations are not entirely arbitrary. The 
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algebra can be equipped with a proper couDit, EF, and an antipode, SF, only if t: 

elements 

1 @ E(F) and E@l(F) (7.35 

are central, and if 

qF = m(l ® S)(F) and PF =m(S ® 1) (F-1
) (7.35 

are invertible and 

PF 'qF 

is central. In this case we have 

EF=E 

and 

SF(a) = qF 5(0.) q;l . (7.35 

If a quantum category has integer dimensions we can always realize it, in the naive sens 

as the representation category of some semisimple quasi-Hopf algebra, /C. The unitari' 

. constraints on the category then make it possible to choose JC to be a quasitriangula 

quasicoassociative *-Hopf algebra. 

The *-prefix signifies that K; admits an antilinear antiinvolution, *, such that 

6*	 *®*6 

n- 1 (7.35* ® *'R. 
f/J-1.* ® * ® *f/J 

The twists are therefore restricted to those with 

F- = F-1 • 

If the unitary representations of an algebra K; of this kind obey the selection rules 

cl> = NG then we have 
JC ~ qG] = G(G), 

6(0' ) = (7 ® (7 , (7 E G (7.35
and 

(7- = (7-1.' 

280 



The elements n E ~@2 and 4> E ~@3  can be considered to be fu~ctions n E C(G x G) 

and 4> E C(G x G x G) on the discrete commuta.tive space defined by the fusion rules. 

Using (7.357) we can set 

4>(g ~ h ~ k) = e-2wi!Cg,h,l:) (7.359) 

e2rir(g,h)neg ~h) (7.360) 

with functions j : G x G x G -+ R./Z and r : G x G -+ R/Z. Conversely, given func­

tions j and r we can express the elements of ~ by 

1 ~2nr(gllQ2)  -(-)--)n IG/2 LJ e 0'1 gl 0'2 (g2 0'1 ® 0'2 (7.361) 
giEG,lfiEO 

and 

tP = 1~13 E e­ 2n
!(glo12093) 0'1 (gl) (72 (92) (73 (93) 0"1 00"2 @ (73· (7.362) 

giEG,lfiEG. 

Thus all the conditions on 'R and 4> to define a quasitriangular quasi-Hopf algebra can be 

translated into conditions on rand j. 

Since K, is commutative and accidenta.lly cocommutative and coassociative, the com- , 

.mutation relations (4.1) and (4.5) are automatically true. Not surprisingly, the pentagon 

equation (7.349) ,reduces to the cocycle condition (7.237) on j- and the axioms (7.350) 

turn out to be equivalent to equations (7.240) and (7.241). If we choose as a twist­

transformation 

F(g ® h) = e2ri.\(g,h) (7.363) 

we find, for the functions )' and r' that determine ¢F and nF , that 

[j'jr']- [fjr] =6[A] E B4(G,2;R/Z). 

The coproduct remains the same, since ~ is commutative 

From this we infer a statement analogous to that of Proposition 7.5.2, namely 

that (7.359) and (7.360) induce an isomorphism of H4(G,2j IR/Z) onto the group of 

twistinequivalent , quasitriangular, quasiassociative .-Hopf algebras, whose unitary repre­

sentations obey the fusion rules ~ =NG. 
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A quadratic function 9 on G can be identified, setting """,, 

V(g) = e-2wi1(g) , (7.364) 

with'some element V E K-, which satisfies 

~2(V) V 0 V ® V = (~(V»13 (A(V) 01) (I ® ~(V» 

and (7~365)
i 

S(V) = V, I
I 

i 

and, conversely, if (7.365) holds for some V the function egiJen in (7.364) is quadratic. 

For the abelian algebra ~ we notice that men), given by 

e2nrCg",) , men) = (7.366) 

is a twist-invariant.The assertion for Hopf-algebr~ corresponding to Proposition 7.5.3 

now reads as. follows: If K, is the *-Hopf algebra from (7.358) then, to· every unitary 

element V E K- which obeys equations ('7.365), there exists ~ ( up to twist-equivalence 

unique ) quasitriangular quasi Hopf algebra structure ('R,4» such that 

V-I = me'R). (7.367) 

We observe that V is precisely the central element of a ribbon-graph-Hopf algebra as 

defined in (6.94) and (6.95). The element U =m(S ~ 1)0'('R) ~s then 

i 
U(g) == e2nr(g",-1) (7.368) 

and
 
e2n'l(g)
G(g) = (UV- I

) = , (7.369) 

with "( d~fined in (7.313). Note that Gis grouplike (Le., "( is a homomorphism) if we are 

in the coassociative case, 4> == I, or if we have chosen the normalization yielding (7.345). 
, " 

The case where [Ii rJ E ker S· occurs iff K, is twist equivalent to a properly coassociative, 

quasitriangular Hopf algebra. The corresponding condition 8 E imD· simply means that, 

for V E K" there exist some n. E K,182 such that the equations (4.9) hold for fl:, and V is 

4given in terms of nby (7.367). The group struct;ure induced by H( G, 2; R/l.) is just given 

by the multiplication (4)11 'Rt )(4)2, 'R2) = (4)ltP2' 'R1'R2), and th~  direct sums from (7.246) 
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correspond to the direct· sums of the Hopf algebras, with ~  and n. defined analogous to 

(7.319). 

The description of the isomorphisms (7.236) in this language suggests that quasitri­

angular quasi Hopf algebras are the appropriate object for which a nonabelian general­

ization of (7.236) should exist. Thus, given some associative algebra 1:., with a list of rep­

resentations C, a fusion rule algebra ~  =NC, and some "quadratic" element V E K:. n K:.', 

one may hope to find conditions such that V determines, up to twist equivalence, a unique 

structure (a, 'R., ,) such that V is the twist-invariant ribbon-graph element of K:.. We shall 

leave this as an open problem. 

I 
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Chapter 8 

The Quantum Categories: with a 

Generator of Dimension less than 

Two 

8.1 Product Categories and Induced Categories 

In the jirstpart of this section we introduce the notion of product categories. We d 

fine an action of the group, H 4(Grad(Obj), 2j U(l» , of 9-categories on the set of qua 

tum categories with object (fusion rule) algebra Obj. It is denoted C ....... C'l, for q 

H 4 (GradObj, 2j U(l», and cq is a diagonal subcategory in the product of C with t 

respective 9-category. 

Next, we define the class of fusion rule algebra homomorphisms to which the sub~  

quent definition of induced categories applies, namely the irreducible, coherent or grad 

homomorphisms, r : Objl - Obja. They are equivalently described by a subgroup 

invertible objecb, ker' = ,-1(1), whose action on the irreducible objects, J1 COb; 

by multiplication is free and Objz is given by the orbits of ker f. For a given cohen 

homomorphism, f : Objl - Obja I and a quantum category Cz, with )object algebra 06. 

we show that there exists a unique quantum category CII with objects Obj1, such that 

e:r:tends to a compatible tensorfu.netor. We say that Cl is induced by Cz and f. 
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We prove tho.t for a coherent homomorphi"m f : Obi! -+ Obh and 4 quantum 

Icategory Cl with object" Obil there ezi"t.l a quantum category C2 with object" Obh .luch 

Ithat CI i" induced by C2 and f if o.nd only if the "ubca.tegory Q.""ociated 'W ker f i" trivial 

and the monodromie" of element.s in ker f with all other object.s vani"h. 

The remainder of thi" "ection i" devoted to the q1Le"tion for which categorie" Cl it 

i" pOJ"iblt to find a 8-category, q E H4(Grad(Obil, 2; U(l)), "uch that C~ i" .an in­

duced category with re"peet to "ome graded homomorphi"m f defined on Obi!. We find 

the relevant ob"truetionto lie in H5( Grad(Obj)j(ker f), 2; iZ2)' We derive explicit 

expreuion" for the ca"e where Grad(Obj) i" a cyclic group. 

In the previous chapters various results on fusion rule algebras have been obtained by 

using the special properties of invertible elements of a category. More specifically, we 

showed in section 3.3 that nontrivially graded, invertible elements allow us to describe 

fusion rule algebras in terms of smaller ones. In section 7.3, we learne~ that this leads, 

for the case of fusion rule algebras with generators of small dimensions, to the situation 

where the generator is selfconjugate. Finally the categories that contain only invertible 

objects have been characterized in section 7.4. The purpose of this chapter is to combine 

and extend these techniques, in order to describe categories with nontrivially graded, 

invertible elements in terms of simpler ones. This requires the definition of a number of 

relations between categories, namely "subcategory", "products of categories" and, most 

important, "induced categories". We start by explaining what we mean by a product 

category. For two categories Cl and C2 with objects in ObiI and Obh, we introduce a 

category, Cl ®C2, whose object set is nObilxObh, i.e., a general element has the form 

Ex; E Obi; nX1Xa (Xl, X2), and its sets of morphisms are given by 

EB
 
Mor(I: nX1X:a(XllX2), I:mY1Ya(Yl, Y2») :=
 

Home (CnxIXa,CnYIYa) ® Morl (Xl,Yd ® Mor2(X2,Y2)
 
(8.1.1) 

equipped with the obvious composition law. The tensor product for the objects is the 

linear extension of (X1,X2) 0 (YI , Y2) = (Xl 0 Yl,X2 °Y2), and the tensor product of 

Xi,l'iEObj; 

morphisms is the one naturally induced from V ecc, Cl and C2. The special isomorphisms 

i and Q are obtained from'i and Qi in Ci, i = 1,2. One easily verifies from (8.1.1) that 

there are isomorphisms among the objects, A + B ~ A e B, (X, Yl) + (X, Y2) ::::: 

(X, Y1 EB Y2) and (XI, Y) +(X2, Y) ::::: (Xl EB X2, V). It is possible to define a quantum­
~.  

category, Cl ® C2, whose objects are the equivalence classes of C1@C2, given by Obi! ® 

Obi2 = fj(J1 xJa) of Obji =NJ·, and for which there exists an injective tensor f~nctor  

C1 ® C2 ...... C10 C2. In the language of structuraldata which we have used in previous 

sections, the underlying fusion rule algebra (or N(J1 xJa) is given by the constants 

(8.1.2)N(i1ia)(hia),(k1A:a) = Ni~h,lcl N~h,lca' 

accounting for the dimensions of 

Mor(k1k2),(i1i2)O(jlh») = Morl(klJi1o-iI)® Mor2(k2,i2oh)· (8.i.3) 

The fusion matrices can be expressed as 

F(il, i2), (ii, h), (kll k2), (11,12» = T23 (F(ilJ il, klJ 'I) ® F(i2,h, k2,I2)T23 

EeMor(B1JB2),(illh) 0 (k 1,k2» ® Mor((lI,12),(iIJ i2) 0 (81,B2») 
"1"a 

-+ EB Mor(B1I 82),(il,i2) 0 (il,h») ® Mor(1J, 12), (Sl, 82) °(kl' k2» 
"1 ":a ' (8.1.4) 

where we used the identification (8.1.3) a.nd the transposition, T23, of the s~cond  and 

third factor of the resulting fourfold tensorproduct. Furthermore, the fundamental braid 

matrices, with r(i,i,k) := R+(l,i,i,k), take the following form 

r(il' i2 ), (ii, h), (kJ, k2»= r(ibil, k1) ® r(i2,h, k2) : 
, 

Hom(kll k2), (iJ, i2) 0 (iI,h» -+ Hom(klJ k2), (iI,h) 0 (ilJ i2)-;' 
(8.1.5) 

The intrinsic invariants of the product category, the sta.tistical phases and the st,atistical \, 

dimensions, are given by 

d(i1 ,ia) ~1 dia " 

8(i1,ia) 8i1 + 8ia mod 1 . (8.1.6) 

... f 

',... 
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Clearly the gradation of Cl ® C2 is given by 

.'" 
grad: Jl x J2 ~ Grad(CI ®C2) = Grad(CI) ED Grad(C2) 

(it" i2) ~ (gradl(il), grad2(i2» . (8.1.7) 

For categories with invertible elements, we already used this structure: If 8" E 

Hom(f4(Ji),U(1» are the statistical phases of Cl and C2, 81 + 82 E Hom(r4(Jl ED 

J2), U(1» is the statistical phase of Cl ® C2. The procedure of taking products of 

categories is, of course, associative, i.e., (Cl ® C2) ® C3' ~ Cl ® (C2 ® C3). 

The notion of a subcategory has already been used on various occasions in the previous 

chapters. If J' C J is a subset of irreducible objects closed under tensor products, so 

that Obi' = NJ' c Obj = NJ is a fusion rule subalgebra, then we find a subcategory, 

C', by restriction of the objects to Obj' and the morphisms to those between elements 

in Obj'. The braid- and fusion matrices are obtained by restricting their arguments to 

Obi'. 

Suppose C is a category with gradation Grad(C). Then we have a fusion rule algebra 

monomorphism 

, : J ~ J x Grad(C) : j -+ (;, grad(i», 

identifying J as a fuison rule subalgebra of Jx Grad(C). Let q E Hom (r4( Grad(C», 

IF./Z) , defining a 8-category, CGracl(C), 9' with object set NGracl(C), and braid- and fusion' 

matrices given by [/9,r9] E H4 (Grad(C),2; lR/Z), as in section 7.4. We then consider 

the product category C ® CGracl(C),9 with fusion rule algebra Jx Grad(C) which, by 

the above inclusion " contains a category Cll with fusion rule. algebra NJ . For two 

quadratic forms ql and ~ on Grad(C), the category (C91)92 is the subcategory of (C ® 

CGrad(C),91) ® CGrad(C) ,92 , whose irreducible elements are (j, grad(j), grad(i», j E J. 

By associativity of the category product and the fact that g ~ 9 ® 9 defines the 

inclusion of the subcategory, we have'that 

CGracl(C),(91+92) ~ CCrad(C),91 ® CGrad(C),92 ' 
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as in (7.369). This yields immediately the canonical isomorphism (Cq1 )92 ~ C91+92. 

For the group of quadratic forms on the universal grading 'group of a fusion rule 

algebra, this procedure defines, therefore, a free action, C --. Cq,on the set of categories 

realizing this fusion rule algebra. The braid- and fusion matrices, r q and F9, of Cq can 

be given in terms of the original data as follows: 

e-21rs/,(grad(i),gro4(j),9ro4(l:» F(i,i, le, I),F9(i,j, le,l) 

rq(i,i, le) e21ri r, (grad(i),9ro4(;» r(i, j, k) , (8.1.8) 

and the statistical phases and dimensions of C9 are found from' 

dj,a1 
8~ 8j + q(grad(j» mod 1, (8.1.9)

J 

for all j E J. In this formula, .one application of our manipulations becomes apparent: 

Suppose He' J is a subgroup of the set of invertible elements, Out(NJ ), a.nd grad:H <-+ 

Grad(C) is injective. The restriction of the category to NH yields a 8-category and 

hence determines an element q E Hom (r4(H), lR/Z), where, by assumption, r 4(H) is 

a subgroup of r 4(Grad(C». For coefficients R/Z, the character q caD be extended to 

r4( Grad(C», i.e., to a quadratic form, q, on Grad(C). If we started from c-q the 

subcategory on H would be trivial, and, conversely, using that (C-Q)9 = C, we can 

think of C as being included in the product of a category with the same fusion rules but 

trivial statistical phases for the objects in H, with a 8-category in which H is contained, 
" 

too, but which carries the statistical phases given for C. If H is a direct summand of 
t 

Grad(C) this 8-category can be assumed to consist of H only. 

Next, we explain an important tool for the analysis of the gradation reduction of cat­

egories analogous to that for fusion rule algebras, namely induced categorialst~uetures.  

To be more specific, we consider a fusion rule algebra epimorphism' : Obit - Ob12 

and a category C2 with object set Obh. A category Cl with object set Obit is then 

called induced by , and C2 if' extends to a tensor functor from C1 to C2. 
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In the following discussion we shall find conditions on ( such that a unique, induced 

category C1 exists for every category C2, and we shall also determine those categories 

C1 which are induced by some C2, given (. The first simplification we make is to confine 

our attention to "irreducible" fusion rule algebra homomorphisms, meaning that ( sha.ll 

map irreducible objects to irreducible objects. In this case, ( : f\l J l _ f\lJa, is already 

given by ( : J1 - J2. The structure of irreducible fusion rule algebra epimorphisms can 

be conveniently described as in the next lemma. 

LEMMA 8.1.1 

Suppose' : J1 --+ J2 extends to an iN'educibl~  fusion rule algebra homomorphism, and 

let 

ker' := {O' E J1 ,(0') I} . (S.1.10) 

Then 

(i) ker( is a subgroup oj invertible objects. 

(ii)	 The action of ker' onJI by multiplication is free, and different orbits of ker' are 

mapped to different objects in J2. 

(iii)	 If R is a .subgroup oj invertible elements in a fusion rule algebra f\lJ which acts 

freely (by multiplication) on J, then the Perron-Probenius algebra, f\lJ/f\lR, (see 

section 9.t) is afu.sion rule algebra, f\l(J/R), where the irreducible objets, J/R, are 

the orbits of R. The projection TTR : J --+ J / R extends to an irreducible fusion 

rule algebra epimorphism. 

(iv)	 For' as above, there exists an injection i : Jdker' ........ J2, extending to a fusion 

rule algebra monomorphism, such that 

( =	 i 0 7TlIer(. (S.1.11) 

Proof: We remark that, for fusion rule algebra homomorphisms (, with (1) = 1 and 

(XV) = (X)V - in particular, for irreducible ones and ones that extend to tensor 

functors of categories - we have that (X) is invertible (irreducible) only if X is already 
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invertible (irreducibl~).  To see this, we may write XV 0 X = Y + IIX1I21, so that ""'i', 

(X)V 0 (X) = (Y) + IIXII21. If (X) is invertible we ha~e that (y), = 0 and 

IIXII = 1. Hence Y = 0, and X is invertible. Thisimmediately implies the assertion in 

i). Also, lf (i) is irreducible and (i) = (i) then 

1 = 11(;)112 = (((i), '(i» = e('(i 0 iV»
 
L N;iV,u = L NilT,; = I {O' E ker' : i = 0' 0 i} I '.
 

uElIer' uElIer' . (S.1.12) 

where' (the evaluation) is defined as in section 3.1. 

This equation shows that two irreducible elements which ar~  mapped by ( to the 

same object differ by multiplication by an object in ker 0', (the converse being trivi~y  

true). Furthermore, the invertible object is unique, which implies statement ii). 

In order to show iii), we use the definitions in Lemma 3.2.2,'denoting by [j] E J / R 

(or cUI c J) the orbit of i E J under the action of R. For t'he dimension~ we find, 

with 0' E R, i E J, that 

d(uo;) = du dj = d; =: dU]'	 (S.1.13) 

i.e., they depend only on orbits. Thus, the component of the dimension vector corre­

sponding to an orbit [j] is given by 

d1:i] = L dj¢j = d[j] L ¢j, (8.1.14) 
jEC[;) jEC[;] 

which has the norm lldl.i]II =dU]v1RT, since ICU] 1=1 R I· 

For the constants in (3.24), we thus obtain 

II:U]	 = d[j]' (8.1.14a) 

Using (8.1.13) and (8.1.14a) we see that the dimensions in (3.25) cancel and, by (3.29), 

we obtain for the fusion rules of NJ /NR 

( 

N[iJU],[1:] L Nij,le	 . (8.1.14b) 

Ie E Crt) 
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,

for arbirtary representatives i E Cll1' j E ClJl Since these are integers, w1 /w R = w(1/R) 
...­

is a fusion rule algebra.
 

With (3.26) and (3.27), we also find the corresponding vectors in (IR+)1
 

6111 = _1_ L ~;  = ~;  0 611], j E C[;]. (8.1.14c)
IR I;ec )u

Clearly the projection 'lrR : J -+ J/ R : j -+ [j] extends to an irreducible fusion rule 

algebra epimorphism and lcef''lrR = R. The cl~m  in iv) is a direct consequence of the 

previous statements. 

o 

Given an exact sequence of irreducible homomorphisms, 

. 'lrR 

o -+ R ~  J ~ J -+ 0, (8.1.15) 

7 

where R consists only of invertible objects, we can describe J, in analogy to groups, as 

an extension of J over R. For this purpose, we choose a map 7 : J -+ J, with 'lrR 07 = id 

and 7([1]) = 1. Then 

r : J X R -+ J, defined by ([j], g) l--t 7([;]) 0 g, (8.1.16) 

is one to one, since R acts freely on J. The Ilcocyele" of the extension is given by a map 

A : J3 -+ wR : ([i], [i], [Ic)) l--t A[i][j],[k]' (8.1.17) 

determined by 

7([i)) 0 7([j]) = ~ A[i)[;],[i] 0 7([k]), (8.1.18) 

[k]el 

using the isomorphism r of (8.1.16). 

For the objects in (8.1.17) we infer the relations 

(8.1.18a) . A[i][j],[k] = A[j]['l,[k], 

A[;][j]V,[l] E R, A[i][;]V,[l] = 0, for [i] 1= fiJ, (8.1.18b) 
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A['1[;][kJ,[ij := L A['1[;],[.J 0 A[.][kMij = L A[i][tj,[ij 0 A[;][kJ,[t], (8.l.I8c 
[.] [t] 

and, furthermore, 

'lrR (A[i][;),[k) = N[allJ1,[k] . 1 . (8.l.I8d 

The data needed for the extension of J over R can thus be viewed as wR.valued (instea 

of N-valued) fusion rules. Due to the ambiguity in our choice of 7,we have a natur 

notion of equivalence: 

A ~  A' if and only if there exists a map CT: J -+ R, 

with 

Ai'1[;],[k] = er([i]) 0 er(l:iJ) 0 er([kJ)-l A['1[i];[kj' (8.1.I8e 

For example, the sequence (8.l.15) splits. In other words, J ~  J X R, as fusion ru1 

algebras, and i,'lrR are the canonical maps, iff A ~ 1. 

Conversely, given J and R, a IlcocyclelJ A as in (8.1.17), obeying the relations (8.1.I8a)" 

(8.1.18b) and (8.l.18c), defines a fusion ru1e algebra, J = J xA R, which yields a se·, 

quence of homomorphisms as in (8.1.15), and the sequences for A and A' are isomorphic 

iff A ~ A'. 

For an adequate definition of induced categories, it is necessary to impose an additional 
I 

requirement on the fusion rule algebra homomorphisms that shall be considered. In 

order to arrive at such a definition, the following notion is useful: The free action of the 

subgroup of invertible elements Ron J is called coherent iff the objects A[i)[j],[kj E NR 

as well as the objects A['1[;][k],[ij E wR in (8.l.18c), are of the form N CT, where N E ~ 

and CT E R. 

By (8.1.18d), this implies the existence of invertible objects CT[I1[i],[k} E R, with 

A[i] [;],[k] = N [i][;],[k] CT[i][j],[k]' (8.1.19J 

and the constraints (8.1.18a)-(8.1.I8c) reduce to; 

U[iJ[j],[k] = CT[j][i],[k] (8.1.20; 
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and 

(8.1.21)U[ilU],[,} 0 U[,][k],[l] = U[ll [tl ,[I} 0 u[j1[k),[t) 

where the right hand side (the left hand side) of (8.1.21) is independent of [t] ([,], resp.), 

as long as the fusion rules are obeyed. We say that an irreducible fusion rule algebra 

homomorphism, , : Jl -+ J2' is coherent if kef" has a free, coherent action on Jl' We 

wish to express this property in a second, different way: 

For a given 'Y : J -+ J, we introduce a function 

,p[1:] : J x J -+ e[l:] 

with (Cr1:1 = 7I'i l {[k)), as in section 3.2) by setting 

,p[1:] ('Y([i]), 'Y([il)) = U[iJ[jJ,[k] 0 'Y([kJ), (8.1.22) 

and requiring t,he covariance condition 

1/;[l:}{U oi,Jloj) = UOJlo..p[l:}(i,j), 'Iu,Jl E R. (8.1.23) 

These functions relate the fusion rules of J and J through the equation 

(8.1.24)Nii,l: ::: 6k,tPllJ(i,i) N['lli},[1:]' 

It follows that the restriction 

, : supp{i oj) <--+ supp([i] 0 [jD (8.1.25) 

is injective. The fusion rule relations accompanying these functions are as follows: 

," ,p[l:](i,i) ,p[1:J(j, i), (8.1.26) 

and 

1/;[1] (,pr6J(i,j), k) = ,p[~  (i, ,p[tJ(j, k» =: 1P[lj(i,i, k), (8.1.27) 

where the objects in (8.1.27) are independent of [8] and [t]. 
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4i,f 

In our applications we shall encounter only a special case of irreducible, coherent ....... 
homomorphisms, , : Jl -+ J2, namely graded ones. They a~e  characterized by the 

1 

property that 1 

9radl : kef" ~ Gf'ad{~Jl) (8.1.28) 

is an injection, or, equivalently, that, is a. fusion rule algebra mo~omorphismif restricted 

to the trivially graded subalgebra, (~Jl  )0' It easily follows fro~ (8.1.28) that graded, 

irreducible fusion rule algebra homomorphisms are coherent, 8.1l;d 

grad1(U[ilfi],[1:1) = gradl(-y([iJ)) gradl(-Y([iJ) grad1(-y{[1cJ)-l . (8.1.29) 

We note that, for any irreducible graded homomorphism', there exists a unique group 

homomorphism, (#, such that the diagram 

J1 ' I J2 

gradl ! 19rad2 (8.1.30) 

Grad(NJ1) 7 Gf'ad{NJ2) 

commutes. Moreover, if' maps onto the trivially graded component (NJ2)0 then we 

have that 

kef' ,# ::: 9f'adl(ker(). (8.1.31) 

Hence, for a graded 7I'R, we have the exact sequence 

71'# 
o-----t R - Grad(NJ) ----.l!..- Grad(r/) ----t 0 (8.1.32) . 

With (8.1.15), it follows immediately that two graded extensions (8.1.15) are equiv­

alent if and only if the corresponding sequences (8.1.32) are equivalent. (In particular, 

(8.1.15) splits iff (8.1.32) splits). 

For irreducible, coherent fusion rule algebra h6momorphism, the existence of corre­

sponding induced categories is guaranteed by the following proposition. 
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PROPOSITION 8.1.!... '" Endl(X) on the space Eaj: Mor(Ie, X) by multiplication on X is faithful, we find from 

Supp08e that' : Obi1 - Obh iJ an irreducible, coherent Ju"ion rule algebra homomor­ injections (8.1.34) and (8.1.35) that 

phi8m, and that C2 iJ a quantum category with object "et Ob12. 

.1" : E9 kecl.) Endl(X>J: -+ End2«((X»[k] (8.1.36)
(i) ,Then there eziJtJ a category ClI unique up to natural uomorphiJm, whoJe object 

"et iJ Obil and for which' can be e:z:tended to a tenJor ju.nctor from Cl to C2.	 is an inclusion of algebras. For im.1" C Mor2«((X), [Ie]), we also have that .1"(0.)1 = 0 

(ii) The 8.8ubcategory of Ci, given by the ju.8ion rule 8uba.lgebra Nkere C Obi}, i"	 if a E Endl(X) and 1 E (im.1")J. C Mor2 ([Ie], (X». But since we require that 

trivial.	 .1"(Ux) = U((X)' it follows that (im 1'').1 = O. Hence the maps.1" in (8.1.34) and (8.1.35) 

are, in fact, isomorphisms. The induced direct sum decomposition of Mor2 ([Ie], (X»
Proof.
 

is given by a refinement of the partition of unity,
 
We first comment on some properties of a general tensor functor, «(,.1", C), extending
 

an irreducible fusion rule algebra homomorphism (. By.1": Morl(X, Y) - Mor2«((X),
 1r[k]«((X» = L: 1fk(X), (8.1.37) 

((Y», we denote the map between morphisms with the properties that .1"(1[x) = k ECr-) 

U((X) E End2«((X» and that, for the isomorphismsC(X,Y) E Mor2«((X) ° (Y), where we define 1fk(X) = F(1rk(X») E End2«((X»[k]' Counting ranks and dimensions 

(X 0 Y», we recover the equation 

:F(Io J) C(X, Y) C(X', Y') (F(I) °F(J») , (8.1.33) N((X), [1:] = L: NX,1c· (8.1.38) 
kECI_) 

for arbitrary I E Morl (X, X') and J E Morl (Y, Y'). For the restrictions 
Similar to the "End-spaces", the "Mor-spaces" can be decomposed according to chan-

F : €a kecl.) Morl(Ie,X) -+ Mor2([Ie],(X»), (8.1.34) 

and 

F : E9 I: eCI.) Morl(X, Ie) -+ Mor2 «((X), [Ie]), (8.1.35) 

we note that the spaces on the left hand sides (right hand sides) of (8.1.34) and (8.1.35) 

are dual to each other by multiplication on X (on (X». From the funetoriality of 

F and the fact that F(1[I:) = U[.I:] it follows that the maps ·in(8.1.34) and (8.1.35) 

preserve the contraction and are thus injective. To the decomposition of the semisimple 

algebras Endl(X) = Eal:eOb;l End(X)lc and End2«((X» = EB[lcJeObh End2«((X»[lc] 

into sums of simple algebras (e~.  MatNx,.(C» , according to the channels k, we 

can associate a partition of 1[x and U,(X) into minimal central projections, 1rA:(X) E 

Endl(X)	 and 1r[kj«((X» E End2«((X», Using the fact that the representation of 
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nels given by Ie E J, and we have an injection 

F : E9 I: ECI.) Morl(X, Yh: '-+ Mor2«(X),((Y))[1c] ; (8.1.39) 

for all X, Y E Obit. As a consequence of semisimplicity, the image of the map in 

(8.1.39) is given by 

im F = {I E Mor2«(X),((Y» : *.t:(Y)I = I*.t:(X), V k E e[k]}'-' (8.1.40) 

The compatibility of these decompositions with the tensor product is expressed by th 

formula 

1fk(X 0 Y) L 11"[1:] «((X.o Y» C(X, Y)(1fi(X) 01fj(Y» C(X; Yr: 1, 

i,j :,plll(i,j)=1c . . 
, (8.1.41 
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where the functions ?/I[k] : J X J -+ C[k] ,are defined in (8.1.22)t (8.1.23)t for coher­

ent homomorphisms. The image of the (i,j)-th projection in the sum (8.1.41) in its 

representation on M or2 ([k], (X 0 Y» is given by the image of 

Morl (i, X) ® M orl (it Y) ® Mor2([k], Ii] 0 [jD ~ M or2 ([k], (X 0 V»~  

1 ® J 0 K -+ :F(lo J)K (8.1.42) 

and has dimension NX,iNY,jN[i][jj,[k) = NX,iNY,jNij,tPllcj(i';)' Summa.tion over iand j 

yields NXoY,k = Eij NX,iNY,jNij,k = Eij NX,iNY,jN[~[j],[k)e5k ,tPllcj(ij) as the total rank 

of 1rk(X 0 V). As for general tensor functors, the braid· and associativity isomorphisms 

are related by 

02 «((X), (Y), (Z» 

(C(X, y)-l 0 n)C(X 0 Yt Z)-l:F(al(X, Y, Z»C(X, Yo Z)(ll 0 C(YtZ» 
, (8.1.43) 

and 

t2«(X)t((Y» = C(Y,X)-l:F(tl(X,Y»C(X,Y), (8.1.44) 

For the proof of existence and uniqueness of induced categories it is useful to introduce, 

for a (not necessarily irreducible) fusion rule algebra homomorphism ( : Obi! -+ Obh, 

the natural notion of a pulled back category, cf, where C2 is an' arbitrary braided tensor 

category with object set Obh: The object set of 4is given by Obi!, with the same 

tensor product. The morphism spaces of 4 are defined in such a way that there are 

isomorphisms: 

V : Mor~(X,  Y) ~  Mor2«((X), (Y», 'v' X, Y E Ooi!. (8.1.45) 

The composition- and tensor-products of morphisms are defined to be the ones in­

duced by V, and the braid- and monoidal isomorphisms are given by 4(X, Y) . ­

'2«((X), (Y» and o~(X,  Y, Z) := 02«((X), (Y), «Z». 

Note that, in contrast to the categories Cl and C2, there exist, inCi, pairs of different 

objects which are equivalent. More precisely, X ::::: Y, in ci, iff (X) = (Y) in Obh, 
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since for such objects Mor~(X,X)  ~  End«((X» contains the is~morphismtr1(1l,(X»' t.~."  

The equivalence classes of objects in q are identified with im d~ Obh.
I . 

The two categories are related br a tensor functor 

, ' 

«(, V,ll) : C2 -+ C2. 

This allows us to factor any tensor functor, «(,:F,G) : Cl -+ C2 
1

, by the unique functor 

(idt j tC) : Cl -+ C&, such that the diagram 

(id,j,C) C'C1 2I 

(8.1.46)«(,:Ft~ ~Vtll) 

C2 

commutes. 

To prove uniquenesst we show thatt to every pair of categories, Cl and C~  t with functors 

«(,:F, C) and «(,.1", G') to C2t one Can associate isomorphisms (id, g1l A) : Cl-+ C~  and 

(id, g2t B) : C~  -+ ci such that the following diagram c~mmutes:  

(idtj,C) C'C1 I 2 

(id,gll A)[ -"1 1(idt g2,B) , (8.1.47) 

' (id, :t' ,C) C'C1 2I 

For the endomorphism algebras in ci we have the decomposition into si~ple  subal­

gebras, Enc4(X) = E9 Enc4(X)[k); induced by V, with minimal, central projec­

~E~'  ' 
tionS'1l"[k)(X) := V-I (1l'[k) «((X»). The refinement of the partition of unitYt analogous 

to (8.1.37), is given by the projections lr1:(X) := j(7l'1:(X» = V-I (i'I:(X» E 
I 

Enc4(X)[kj' The equation (8.1.41) for products ~so  holds true in Enc4(X 0 Y)[1:)' 

We now first determine the functor (id, g2, B) of C~ onto itself. A large class of such 

functors, exhaustive for 8-categories and most other examples in this work, is given by 
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the lIcoboundaries" of a set of isomorphisms, U(X) E En4(X), X E Obi! :
.,.l'·!· 

to 
Q2(I) := U(Y) 1 U(X)-l, I E Mor~(X,  Y), 

and 

B(X, Y) := U(X 0 Y) U(X)-1 0 U(y)-1. (8.1.48) 

One easily verifies (8.1.33), (8.1.43) and (8.1.44), with r = Q2, C = B, , = id, '2 = 

'1 = t~, Q2 = Q1 = Q~. As in (8.1.40), we have that 

l(Morl(X,Y» = {I E Mor~(X,y) : ik(Y)I = Iilc(X), Vk E C[k]} 

(8.1.49) 

and similarly for F(Morl(X, Y». Since, for a given X E Obi! and [k] E im', ilc and 

i~,  k E C[Ic], form partitions of unity in En4(X)[k] of equal rank, there exist invertible 

maps U(X) such that 

U(X)ilc(X)U(X)'-l = i~(X), "'Ike J1. (8.1.50) 

For a functor (id, Q2, B) defined, as in (8.1.48), for a collection of isomorphisms U(X) 

satisfying (8.1.50), we immediately find from (8.1.49) that 

Q2 : J(Morl(X, Y») ...::.. j'(Mor~(X, Y», 

i.e., that Q2 provides an isomorphism between the images of j and 1', for any given 
.	 0­

pair X, Y E Obit. This shows that the map Ql : Morl(X, Y) --=-'MorHX, Y) is well 

defined and unique if (8.1.47) is required to commute, in the sense of abelian categories. 

In order to examine the tensor product structure, we consider the endomorphisms 

a(X, Y) := U(X oY) C(X, Y) U(X)-1 0 U(y)-l C'(X, y)-l (8.1.51) 

in En4(X oY). Using the decomposition (8.1.41) for 1r1:(X 0 Y) and i~(X  0 Y), it is 

a straightforward computation to show that 

c(X, Y) i~(X  0 Y) = 1r~(X 0 Y) a(X, 1'). (8.1.52) 
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Hence, by (8.1.49), there exists a unique isomorphism A(X, Y) E EndHX 0 Y) such 

that 

F (A(X, Y» = a(X, Y).	 (8.1.53) 

For the functor (id, Qll A) : C1 -+ C~,  properties (8.1.33), (8.1.43) and (8.1.44) are then 

verified by a computation, without difficulty. This proves the: uniqueness of induced 

categories. For the proof of existence, we again consider the pull back, C~,  of C2 with 

respect to , : Obi! -+ Ob12. In our previous discussion, we remarked that, for the 

minimal, central projections of En4(X) = EB[l:]En4(X)[k.]' we can express the rank in 

terms of the multiplicities of X E Obi1 by 

rk('1l"[k](X» = L NX,k' (8.1.54) 
. l:ECrl) 

An induced category Cl can now be defined, for any partition of unity in En4(X)[k] 

as in (8.1.37), provided the projections, '1l"l:(X), k E Jl' satisfy the condition 

rk('1l"k(X» = NX,k'	 (8.1.55) 

By (8.1.54), we can always find such a partition. 

The morphism spaces of Cl are then defined by 

Morl(X, Y) := {I E Mor~(X, Y)	 : I'1l"Ic(X) = '1l"k(Y)I, Vic E C[k]}" (8.1.56) 

(' 

They obviously close under the composition induced by C~.  The projections ll'kyield a 

direct sum decomposition, 

Mor~(k,X)  Mor2(lkJ,(X» ~ 	 EB Morl(k, X), 
kECrl) I 

which must be preserved by any morphism. Hence X::::: Y in C1 iff dim(Morl(k, X» 
= dim(Mort (k, Y» which holds iff NX,lc = NY,k, Vk E 1t, Le., iff X = Y. 
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For tensor products, the- decomposition of M or~(k,  X 0 Y) can be writ~en  as follows, 

using a natural isomorphism, as in (8.1.42): 

Mor~(k,X  0 Y) = Mor2 ([kj, (X 0 Y)) 

=:! ED M or2 ([i], (X») ® M or2 ([i], (Y)) ® M or2 ([k], [i] 0 [in 
['1,[;] E im( 

~  EBMorl(i,X) ® Morl(i, Y} ®Morl (tP[1:](i,i},i oj) 
i,;EJ1 

~.  EB E9 Morl(i,X}®Morl(i,Y} ®Morl(k',i °i), 
J:' Ectl) i,;:tPIl)(i,i)=I:' (8.1.57) 

and the projection on the k'·th summand in (8.1.57) is given by 

7l'~,(X,  Y) = 7l'[J:](X 0 Y) L 1I'i(X) 01l'j(Y)' (8.1.58) 

i,i:,plt) (i,j)=J:' 

Its rank is given by Ei; NX.iNY,;Ni;,J:' = NXoY,J:" It is thus equal to the rank of 

'1I'k' (X 0 Y). Hence there exist isomorphisms C(X, Y)[k] E Enc4(X 0 Yl[k] , and therefore 

isomorphisms C(X, Y) = E£l[k]C(X, Y)[J:] E En4(Xo Y), such that 

C(X, Y)1I"~(X,  Y)C(X, y)-l = 1I'J:(X oY), 'V k E Jli (8.1.59) 

compare to (8.1.41). Now we may define the tensor product of morphisms 

IE Morl(X,X'), J E Morl(Y,Y') : 

101 J := C(X', Y')(I 0 J)C(X, y)-l. (8.1.60) 

By (8.1.58) and (8.1.59), 101 J lies in M orl (X 0 Y, X' 0 Y'), as defined in (8.1.56). 

Furthermore, we define br~ding and associativity isomorphisms in M or~ (X 0 Y, Yo X) 

and in Mor~ (X 0 (Y 0 Z), (X oY) 0 Z) by setting 

'1 (X, Y) := C(Y, X) '~(X,  Y) C(X, y)-l, (8.1.61) 

and 

Ql(X, Y, Z) := C(X 0 Y, Z)(C(X, Y} 0 n)Q~(X, Y, Z)(n 0 C(Y,Z)-l)C(X, Y 0 Zrl . 

(8.1.62) 
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From (8.1.59) we immediately find that 
~~  

cdX,r)w,(XoY) = wl(YoX)'l(X,Y), i.e., 'l(X,Y)EMorl(XoY,YoX), 

u.ing (8 J.26). Condition (8.1.27) is needed to prove an analogous property for Ql. Using 

(8.1.27) and applying (8.1.59) repeatedly, we find that the projections 7l'1: (X 0 Y) 0 Z) 

and 1I'J: (X 0 (Y 0 Z)) are given by 

11'1: (XoY)oZ) =C(XoY,Z)(C(X,Y)on)1I'2(X,Y IZ)(C(X,y)-lon) C(XoY,Z)-l, 

(8.1.63) 

with 

1I'~(X,Y I Z) = 7l'[1:] (X 0 Y) 0 Z) 7l'r(X) O'1l',(Y) 01l';(Z),L 
r",i:

1Pil)(r,.,;)=1: 

and 

1I"1:(Xo(YoZ» = O(X, Yo Z)(][oC(Y, Z)) 1I"2(X IY, Z)(noC(Y, Z)-l) C(X, YoZ)-l, 

(8.1.64) 

with 

1I'f(X IY,Z} = '11"[1:] (X 0 (Y 0 Z») 1I"r(X} 0 7l'.(Y) 0 '1I";(Z).L 
r,.,;: 

,plll(r",;)=k 

Clearly we have that Q~(X,  Y, Z)1I'2(X I Y, Z) = 1I"f(X, Y I Z)Q~(X, Y, Z),. SQ that 

Ql(X, Y, Z)1I"1: (X 0 (Y 0 Z» = 11"1: (X 0 Y) 0 Z) Ql(X, Y, Z), and hence it follows that 

Ql(X, Y, Z} E Morl (X 0 (Y 0 Z), (X 0 Y) 0 Z). 

On the category Cl constructed from these data, we have a tensor functor to C2 : 

(" 'V, C) : Cl ----+ C2 , : (8.1.65) 

where 'V is the restriction ofthe morphism map in (8.1.45) to the subspaces Morl(X, Y) 

C Mor~(X,  Y). This completes the proof of assertion i} of Proposition 8.1.2. 
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In order to prove part ii) of Proposition 8.1.2t i.e., triviality of the 8-category associ­,,"" ..	 ated with ker( C Jll we establish an explicit relation among the braid-matrices of the 

two categories. Recall that t fot k :f:. "[J:)(i,j), we have that Morl(k,i 0 j) = O. Hence, 

by (8.1.34)t there i. an isomorphism 

Htl) : Morl("[J:)(itj),ioj) ~  Mor2{Ik]t[i]o[j])t 

I ~ C(i,j)-l :F(I) . (8.1.66) 

For the braid matrices r t given by 

rl(itj,k): Morl(ktioj) -+ Morl(k,joi): I -. tl(i,j)It (8.1.67) 

and similarly for r2 ([i], [j], [k])t the following diagram commutes: 

Morl(1c,ioj) rl(i,j,k) .Morl(k,joi) 

(8.1.68)IHtt]	 Ht:d 
Mor2([k], [i] 0 [jD r2([i], [j], [kD I Mor2([k], [j] 0 Ii]) 

Since r2(1,l t l) = r2([U]t [u], [u2]) =1, it follows that rl(u,utU2) = e2Ti9(cr) = It for 

all U E ker'. Here 8 is the quadratic form which, by Proposition 7.4.3 t determines the 

category of ker( uniquely. Thus 8 = 0 mod 1, and this implies part ii) of Proposition 

8.1.2. 

o 
As a supplement to our discussion of braid matrices presented in the proof of Propo­

sition 8.1.2t we wish to give the explicit relations between the fusion matrices FI and 

F2, for the case that C1 is induced by C2' Since the fusion rule algebra homomorphism 

( : Obi! -. Obh is assumed to be coherent, we have that M orl (It i 0 j 0 k) = Ot for 

i,j;"'k, I e it, unless I = "[ij(i,j, k). In this case, we infer from (8.1.34) that there are 

two natural isomorphisms 

p~jJ:),p[~j)1c  : Morl(tP[I](i,j,k),iojok) ~  Mor2{I1],[i]0[j]o[k]), 
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defined by 

p~jlc)(I)  := (ll 0 C(j, kt1 ) C(i,; 0 k)-l :F(1)t (8.1.69) 

and 

pMj)J:(I) := (C(i,j)-loll) C(io;,k)-l:F(I). (8.1. 70) 

'We introduce the following notation for the usual isomorphisms; decomposing the space 

Mor(l,i oj 0 k) into the basic spaces Mor(k,i oj): 

I 

p~(jlc): Ee.Morl("jok)®:Morl(ltios) -. M~l(l,iojok)  

1 ® J ...... (ll 0 I)J, (8.1.71) 

and 

p\ij)1c : Ee , Morl("ioj)®Morl(l,sok) -. Morl(l,iojok) 

1 ® J	 ...... (10 lI)J. (8.1.72) 

The isomorphisms p~1([j][J:])  and p~[s1[j])[J:]  are defined similarly. The decomposed spaces 

on the left hand sides of (8.1.71) and (8.1.72) associated with the two categories CI and 

C2 can be related to each other directly by using the isomorphisms given in (8.1.66). By 

. (8.1.27)t we can writet for 1= VJ[~](i,j,  k) : 

H®2:	 EB Morl(S,j 0 k) ® J.{orl(lti 0 s) , 
= ED M orl (VJ[,l(1, k),j 0 k) ® M orl (VJ[IJ (i, "&[,](1, k», i 0 VJ[,,] (1 0 k») 

["]Eim( . 

~ H;J: H'l1'[,j(;J:) 
W[,] [,j~  [I) ffi 

w Mor2([S}, [j} 0 [k]) ® Mor2{[l], [i) 0 [a}) 
[")Eim( (8.1.73) 

which provides an isomorphism that factors. O~  the decomposition given in (8.1.72) 

H®2 is defined in the same way. We consider the following diagram of isomorphisms, 

assuming that I = tP[l] (it j, k) : 
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..." 

and 

EBMor1("j ok) 

, ®Mor1(I,io,) 

j i(j£:)
PI 

F1(i,j,k,l) ,EBMor 1("ioj) 

, ®Mor1(I"ok)I(ij)£:
PI 

Mor1(I,io(jok») Q1(i,i,k) IMort{I,(ioj)ok) 

H(62 !pi(il) . lp(ij)l H~2 

M or2 ([I], [i] 0 ([i] 0 [k])) 

I[i]([j][k]) 
JL2 

Ef:) Mor2([I], [j] 0 [k]) 

Q2([i], [jl, [k]) 

F2([i], [jl, [k], [I]) 

1Mor2 ([I]' ([i] 0 [j]) 0 [k])I([i] [j])[1:] 
JL2 

, EBMor2([I], [i] 0 [i]) 

[I] ®Mor2([l], [i] 0 [I]) [,l ®Mor2([l], [8] 0 [kJ) 

(8.1.74) 

Here the squares on top and at the bottom ofthe diagram commute as a consequence 

of the definition of F-matrices. From (8.1.43) we find that the square in the center 

commutes, where Ql and Q2 act on i 0 (i 0 k) and til 0 ([j] 0 [kJ), respectively. Commuta­

Jivity of the squares on the left and on the right of (8.1.74) can be verified by a direct 

computation. We summarize the resulting relations between the fusion matrices Fl and 

F2 in the formula 

F1(i,j,k,l) = (H~2)-1  F2([il,[j],[k],[ll)H®2. (8.1.75) 

This formula is consistent with the relation following from (8.1.68), Le., 

rl(i,j, k) = H-1r2([ij, (j], [k])H. (8.1.76) 

If we use bases in the spaces M orl (k, i 0 j) obtained from some choice of bases in 

Mor2([k], [i] 0 [jD by application of H, we infer from (8.1.75) and (8.1.76) that 

. . r_ I)IJOllotF1(CTOf.,JLO),1I01\;,CTOP.OIlO CTOIJO$ F1(i,j, k, I)~, (8.1.77) 
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obey F(O'(X») = O'(,(X») - then all of the results above still hold. The condition 

analogous to (8.1.77) and (8.1.78) is then given by 

rl(CToi,poi, CTopok) = rI(i,i,k), : (8.1.78)
I 
I 

where O',p,lI E ker' (so that, by (8.1.23), to' 0 i] ~ [i]). In our a;nalysis we have not, so 
i 

far, considered the special balancing elements O'(X) E End(X); with t(Y, X)t:(XY) = 

O'(X 0 Y)O'(X)-l 0 O'(y)-l, which, in our context, are given b~ O'(X) I MorI(k,X) = 

e2'Ki8" , k E lI, for statistical phases (or spins) B.. If we c6nsider balanced tensor 

categories and tensor-functors between balanced tensor categories - which, in addition 

~ 

<f-

Baoj = Bj, 'VO' E R, 'Vi E J1' (8.1.78a) 

The next question we wish to address is 'whether the triviality of the B-category of 

ker' is also sufficient for a category Cl to be induced by a category C2, for a given 

, : Obi! -+ Ob12. As a first step, we show tha~ in this case the equations (8.1.75) and 

(8.1.76) can be solved on the level of structural data. 

Suppose Cl is a quantum category, R c Obil a subgroup of invertible elements with 

a free and coherent action on Jb and the B·subcategory a88oci~ted with R is trivial up 
I 

to isomorphism. A..S8ume further that the balancing elements, Bj, 0/ C1 are R-invariant, 

i.e., equation (8.1;78a) holds. Then there exist matrices F2 and r2 defined on vec· 

tor spaces modelled on basic spaces Mor2([i], [j] 0 [kJ) ~ CNIi),I"),la1} as in (8.1.68) and 

LEMMA 8.1.3 

(8.1.74), bottom lines, and corresponding isomorphisms 

HUl : Morl (tP£:(i,j),i o~) -+ cNI'I,Ii),I"), (8.1.79) 

such that equations {8.1.75} and {8.1.76} hold. 
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.... 

Proof."/1,_""" 

We first make a choice, corresponding to a map 'Y : J 1 = Jl/R ~  J1 : [k] ~ 

-y([k]), with 'lrR 0'Y = id11' of representatives in the classes of 11. We further intrcr 

duce N [i},[;),[k)-dimensional spaces M or2([k], [il 0 [jl) with "canonical" ~lements  i[k} E 

End2([k]). 

The fact that the 8-category associated to R is trivial implies, for the structural data, 

that there exist numbers ).u,p E C (of modulus one, for C*-categories) such that 

).u,p).uop,v:Il
Fl (U. 11,11, U 0 P. 0 II)lIuop 0 lIuopoJl =.\.\ :Ilpov 0 uopov, 

p,v 'CT,IJOJl 

).u,p lIJJou
r1 (U,p., (1 0 Il )1Iuop = ~ , 

p,u 

).l,u = ).u,l = 1 . (8.1.80) 

Hence, for i,i and kin R, we can solve eqs. (8.1.75) and (8.1.76) by setting 

UIJ ­
H[l) (lIuolJ) = .\u,p n[l]' 'Vu, p. E R, (8.1.81) 

and 

Fl([I], [1], [1], [1]) := id, r2([I], [I), [1]) := id. (8.1.82) 

Next, we attempt to find a convenient normalization of the maps 

H~l([j]),p,  H~tcry([j])  : Endl (u 0 Il 0 'Y([j])) ~ End2([j)), [j] '# [1] . (8.1.83) 

For a given choice of these maps, we define numbers 

'P[j]«(1,P.,V), ~b]«(1,Il,V) : End2([j]) -+ End2([j)) (8.1.84) 

by setting 

(H~)([j]),p  @ HUJIJO'Y([;]),V)Fl «(10 -y([j)),ft, lI, (10 IJ. 0 v 0 -y([j))) 

p,v Htro7(!.iD,pov)= ~[j](u,ft,v) (H[l] ® [j] , )
(8.1.85 

307· 

and 

(H~r  ® Hb1
v,ucry([j)))Fl (p., v, u 0 -y([j}), U0 II 0 v 0 -y(~])) 

_ '( )(HV,ucry([;)) I:>. H'p,vou07([jD) . 
- 'PU] U,II,V [j] ~ [j] . 

(8.1.85a) 

For arbitrary assignments flb1t b[j] : R ~  C, U(l), resp., wit~  a[j)(I) = 6[j](1) = 11 

[j] '# I, we define the maps Hb.j([j]),p and Hu,pcry([i)) of (8.1.83) as follows: 

If we set 

H[j~(1),p  (1I1J01'([j]) = 4[j](P.) U[j]'
 

H~r([j])  (lIp07([j]) = b[j](Il) U[j], (8.1.86)
 

all other maps are uniquely determined by (8.1.85), with U = I, provided we assume 

that 

~[j](I,Il,V)  = 't'b](l,Il,V) = 1. (8.1.87) 

Note that (8.1.87) is consistent with (8.1.86) for Il = I, or v = I, bec~use  Fl(i, l,i, k) ~ 

F1(i,i,l,k) = id. With this normalization, we <;onsider the pentagon equation 

(F1 (,([j]),u,p., u 0 Il 0 -y([j]») ® n) (n ® Fl (,([jn, (10 p" v, (10 J.' 0 v 0 -y([jD)) 

(Fl (U'Il'v, U 0 P, 0 v) ® 1I), 

= (n @ Fl «(1 0 -y([j)), Il, v, U 0 Il 0 v 0 ')'([j]») )T12 

(n ® Fl (-y([j]),(1,1l 0 v, (1,0 Il 0 v 0 'Y([j)))), ' 

(8.1.88) 

and conjugate it by H®3. Combining this identity with (8.1.82) and (8.1.87), we find 

the resulting equation on End2([j]) to be 

~(j](U,ft,v)  = I, (8.1.89) 

and 

~~]«(T,~,II)  = I, 
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by a similar argument. Thus, if we put 

F2([j], [1), [I}, [j]) = F2([1], [1], [j], [;j)) == id (8.1.90) 

° . 
we have a solution for (8.1.75), provided either i,i E R or j,k E R. Denoting by Htl 

o . 
and Hfjl the isomorphisms defined by setting a[)1 == b[j] == 1, we find that, in the general 

case, 

H~o-y([j]),v a[j}(1" 0 v) 0 po-y([j]),v 
[j] == Ha[j](~) !J1 

and 

H~I~O"Y([j])  = b(j](11 0 #J)HP,~o"Y([j]) / 
(8.1.91)Ii} b[j] (v) [j] 

In order to determine the coefficients a[j)(p) and b[j](I") in such a way that eq. (8.1.90) 

can be extended to F2([I], [j},[1], [j]), we define numbers tP[jl(u 11",1"), P[j](u,l") and 

P[jl(u,l") in End2([;j)) by setting 

(HU(o"Y([j])@ HU1CTcyy«(jJ),V) FI (1", 0' 0 -y([i]), v, I" 0 II 0 0' 0 -y([;j]) 

• 1. (I .) (HCTO"Y([j)),v 101 H~'VOCTo-y«(j])?: = ¥'fj] 0' 1", v [j] 101 [j] 
8.1.92) 

and 

HU1'Y(li]),u rl (0',1" 0 -y([j]) ,0' 0 I" 0 -y([j])) == P(j](u, 1") Hut°"Y([jj) J 

Hut°"Y([j])r1(l"o-y([j)),U,I"Ouo..y([j])) = P[j](u, 1") HU1'Y([jj),CT. 
(8.1.93) 

In order to derive relations for the constants ,p(jJ introduced in (8.1.92), we consider the 

following two special cases of the pentagonal equation: 

(F1(o-,-y(fj]),I-', 0- 0 I-' 0 -y(li])) ® n) (1£ ®FI (0-, I" 0 -y([j1),v,0' 0 I" 0 110 -y([j]))) 

(FI (-y([j]), I",V, #J 0 v 0 -y( liD) ® n) 
(n ® FI (u 0 -y([j]), 1-',1', 0- 0 P. 0 v 0 -y([j)))) TI2 

(n ® FI(U,-y([jj), v 0 v,u 0 I-' 0 v 0 -y([j)))), 
(8.1.94) 
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• til 

and 
'...... 

(PI (U,~,-y([j]),U  0 I" 0 -y([j))) @ n) (n 0 Fl (0', ~ 0 -y([j]), 1',;0' 0 ~  0 v 0 -YOj])))
 

(FI (I", -y([j]) ,V,P 0 v 0 -y([jD) ~ n)
 
= (n @ Fl (0' 0 P,1(!i)), 11,0' 0 pOl' 0 -y([j]) )T12 ~
 

(I~ FI (u,~, 1'0 -y(!i}), 0' 0 I" Oll~ -y([j])) .
 

Conjugating these equations by H(l)3 we find, using (8.1.90): : 
i 
I 

tP[j](II u,p) tP[j](p I 0', v) = tP[jJ(I I u,~ 0 ~), 
 

tP[jJ(~ I 0',11) tP[j](1 Ip, v) = "'[;}(11 0' 0 P, v) . (8.1.95)
 

In particular, since the two equations defining ,p[j](1" I 0', v) hav~  to be compatible with 

each other, we conclude that . 

,p(jl(l/.,.) E Z2(R,U(1», (8.1.96) 

and,. moreover, that every ,pW(1" I ".) is a 2-boundary. 

Next, we study the implications of the hexagonal equation 

(rl (JI., 0' 0 -y([j]), 0' 0 I" 0 'l([j))) ~  n) FI (p, 0' 0 -y([;]), v, 0' 0 P0 ~ 0 -y(!iJ) 
I

(rl (II, 0' 0 -y(!i]),11 00' 0 -y([i))) '® n)! . 
== FI (0' 0 -y([j]), I", v, 0' 0 I" 0 II 0 -y(li]» (n ® r(1I 0 v,u 0 -y(!i]) ,~ 0 II 0 0' 0 'l([j))) 

FI (p, v, 0' 0 -y([;)) , 0' 0 P 0 v 0 -y([jD) : (8.1.97) 
I 
i 

which, upon conjugation with H(l)2 J takes the form i 
i 

P[j](p,0') ,p[j](o- II",v) P[jj(v,u) = P[j](1" 0 ,),0'). (8.1.98) 

From (8.1.98) we see immediately that ,pUl(11 .,.) is a symmetric 2-cocycle and, there­

fore, lies in the kernel of the isomorphism 

: 
I 

a : Z2(R,U(1» -+ Hom(A2R,U(1» (8.1.99) 
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.t~ 
as defined in (7.190). Hence, since Ezt(R,U(l») = O,we have that "'[j)(1 I·,,) Er" 
B2 (R, U(l»), i.e., there exists a function P[j) : R -+ U(1) : tT 1-+ P[j](tT), such that 

"'U](ll tT,p) = PU1(tT),BUJ(p) (8.1.100)
P[j](tTOp) . 

Denoting by ,p~)  and pO the constants defined in (8.1.92) for the choice of isomorphisms 
o 
H as given in (8.1.91), we deduce from (8.1.92) the relation 

,pU)(l Ip, II) = 4U](p 0 II) 6[j](1I) bli](p) . 0 (8.1.101)
4171(p)4171(1I) b[j](p 0 II' "'[j)(1 Ip,lI) . 

Thus if we require the normalization to be of the form 

4[jl(p) = e[j](p)T[j](p), b[j)(p) = p~)(p)eU](p), (8.1.102) 

for some maps eU] : R -+ U(l) and T[j) E Hom(R,U(1» == R, we obtain that ,p[j)(11 

p, II) = 1, and, by (8.1.95), "'[j](p I tT, II) = 1. Therefore, setting 

F2([1], [j], [1], [j)) = id, (8.1.103) 

this choice of H-isomorphisms provides a solution of (8.1.75), whenever i,k E R. Sup­

pose ptl(tT,P) is the constant determined in (8.1.93) {or the.case e = r == 1. Then the 

general form of 'P[j] is described by 

P[j](tT,p) = r(u) pii](tT,p), (8.1.104) 

independent of e. Another special case of the hexagonal equation is given by 

(r (tT 0 'Y([j)), tT 0 'Y([j))) ® n) F(p,' tT, 'Y([j]), D,' 0 p 0 'Y([i))) -1 (r( tT, p, tT 0 p) ® n) 

= F(J', 'Y([jJ) , 0', tT 0 P 0 'Y([jJ))-1 (n ~ r(u, po 'Y([j]), U 0 p 0 1'([j)))) 

F(u, p, 'Y([j)), 0' 0 p 0 'Y([j))) -1. 
(8.1.105) 

After conjugation with Hf&2, this equation becomes 

p[j](O',l)	 = P[j](O',p), (8.1.106) 
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i.e., P[j]	 is independent of p.Furthermore, we see that, since 1/1[j](tT I p,lI) = 1, 

(8.1.98) implies that tT -+ p[j](tT,l) is a homomorphism. W~  can therefore choose 

7(tT) =Pj(tT,l)-l E R, and hence PU](tT,p) =1. The fact that the balancing elements, 

j 1-+ 9j, are invariant under the action of R yields the equation 

P[j](U,p) = P[j](u,p)-l = 1. 

If we set 

r2([i}, [1], [iD = r2([l], [jJ, [iD = 1 (8.1.108) 

the H-isomorphisms determined so far also yield a solution to eq. (8.1.76), for i E R or 

i ER. 

For a given choice of H[k{, consistent with our normalizations {or i E R or j E R, we 

introduce invertible linear maps 

F ([i][jJ, [k]), FR ([i][j], [k]) E Endc(MDr2([kL [i} 0 [j)))
L pll, tT pll, tT	 ; 

as the transforms of the F-matrices, i.e., 

(jj~t°'Y([m  ~  jj~]~O'Y([t1»)Fl  (tT,p 0 ;([i]), II o;([i)),u 0 pOll 0 tT[\1[j],[k] 0 ;([k])) 

""'; ([i][j], [k]) (H-~O'Y([t1),vo'Y([j]) to. HD',~OVOD'[ill.il.(llO'Y([kJ))  . (8.1.109)
= FL [1:] '¢I [k) , ;1£11, U . 

and 

(jj~O'Y([m,&10'Y([j])  ® H~OVOD'lil[;],I1100y([1:]),D') 

[1:] [1:] 

Fl (p 0 1'([i)),11 0 1(~)),  0', 0' 0 pOll 0 O'[i][j],[1:] o 10k])) 

= FR ei~~,!k]) (H[J)'Y([jD,u ~ H~l'Y([m,D'O&1o'Y(Ii])). (8.1.110) 
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Here we are using the invertible objects U[~[jl,[A:)  e R, defined, for a coherent action of 

R, in eq. (8.1.19). Moreover, we ~e identifying Home (Mor2([k], Ii] 0 [jD ® End2([k]), 

End2([i]) ® Mor2([k], Ii] 0 [jD) and Home (End2([j]) ® Mor2([k], Ii] 0 [jD, Mor2([k], Ii] 0 

[j]) ® End2{[k]») with Endc(Mor2([kl, til 0 [jD) by using the canonical elements iiI: E 

End2([k]). The pentagonal equation for Ie := v 0 U['1[j),[I:] 0 -y{[leD, 

(Fl (Il, u, "Y( Ii]), Il 0 U 0 "Y([i]») ® U) (U ® Fl (Il, U0 -y([i]), v 0 -y([j]), U 0 Il 0 Ie) ) 

(Fl'(U, "Y([i]) ,v 0 "Y{[j]), U 0 Ie) ® 11) 

(11 ® Fl (Il 0 u,"Y([i]), v 0 -y{[j]), U0 Il 0 Ie) )T12(U ® Fl{Il, u, v 0 1e,Il 0 U 0 Ie»), 
(8.1.111) 

yields a factorization of PL of the form 

PL(li][j],[Ie]) = PL(li][j],[Ie]) PL(li][j],[Ie])-I. (8.1.112)
U~1l  l~lloU  l~u  

Similarly, we find that 

PR ([i][j],llel) :;:: PR (Iil[j], [leI) -1 PR (li][j], (k]). (8.1.113)
Ilv, U Il I, II Il I, U 0 v 

Finally, from the equation 

(Fl (J.', "Y([i]), "Y({j]) , Il 0 Ie') ® U) (11 ® FI (Il, Ie', v,ll 0 v 0 k'» 
(Fr ("Y([i]), "Y([j]), v, v 0 k'} ® U) 

= (11 ® F1 (Il 0 "Y([i]), "Y{[,i]), v, Il 0 v 0 Ie') ) TI2 (11 ® F1 (Il, "Y([i]) ,v 0 -y([j]), Il 0 v 0 Ie') ) 
(8.1.1141 

where Ie' =U[iJ[i],[k] 0 "Y([Ie]) , we obtain the relation 

A ([i][j], [Ie]) := PL ([il[j],[Ie]) PR ([i][j], llel) -I = PR (Ii] Ii], [Ie]) -1 PL (li]Ii], [Ic]), 
IL,v Iv,ll 11,v Ill,v 11,Il 

(8.1.115) 

so thateqs. (8.1.112) and (8.1.113) can be rewritten as 

PL ([i] [j], [kl) = A ([i][j],[Ie]) A ([illj], [kl) -I, 
UV, Il Il 0 u, V u,v
 

FR ([illi]' [lcl) = A ([illj], [Ie]) A ([i] Ii], [lcl) -I.
 (8.1.116)
ILV,u. Il, V IL, U 0 v 
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-,
Replacing the isomorphisms, H[k{' by the maps 

I 
H(7cry([i]),~cry([.m _ A (lil[j], [leI) -1 H(7cry(['1),~o'Y([j])  (8.1.117)[1:] - (T,II. [1:] , 

corresponds to replacing the "structure constants" PL and FR by FL ([i~},ik~ = 
[~[j] [1:'1\ ;FR( '~lIt'u OJ = I, as follows from eqs. (8.1.116), (8.1.117) and (e.1.109), (8.1.110). 

Note that PL = FR' = U, and hence A = ][, when Ii] = lor [j] = I, so that the 

isomorphisms determined previously remain unchanged in this 'case. ThuI, setting 

F2{[i], [j], I, [Ie]) = F2{l, (i], li], (Ie]) = id, (8.1.118) 

we have found a solution to (8.1.75) when either i or Ic are restricted ~o  R. A complete 

solution to (8.1.75) can be found by using the hexagonal equat~on  

(rl (u 0 -y{(i]) , Il, p 0 U 0 "Y([i])) ® 11) FI (u 0 "Y([i]), p, v 0 "Y(li]) ,p 0 k"} 

(rl (v 0 "Y( li]), Il, po v 0 "Y{ liD) ® U) 
= FI (Il, (T 0 "Y([i]), v 0 -y{[j]) , Il 0 k"} (U ® rl(k", Il, Il 0 k")} 

F1(u 0 -y{(i]), v 0 -y([j]), Il, Il 0 k"},
i (8.1.119) 

withk" = UOVOU['1[j],[I:]o-y((k]). With (8.1.108) and (8.1.118),~e  derive from (8.1.119) . . 
the equation 

(HioJ°7([>J),P ® H~io7(['1).v",(~1») F, (.. 0 ,([il).1'. v 0 '\lill.1' 0 kill 
H~tllcry([j])  ~ H(7~'Y(['1)t~Ollo'Y([j]) 

. 
_ 
- [j] 'CI [1:\ . 

, 
Setting 

F2«(i], 1,~], [k]) = id (8.1.120) 

I 
we thus find a solution to eq. (8.1.75) if only j is restricted to R. 

I 

In the remainder of the proof we show that, for the choice of H's satis{ying (8.1.108), 

(8.1.118) and (8.1.120), we can find F2'S that provide a complete solution of (8.1.75). 
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,	 411 For this purpose, we define maps 

F2(i,;, k, [I)) : EI1 Mor2([']' [;] 0 [kJ)@Mor2([~, Ii] 0 [aJ) 
[.]	 . 

-+	 EB Mor2(["]' Ii] 0 [;]) ® M2([l], [.] 0 [k]) 
[.] 

through the equation 

Hi'i 10.HV1{·](i,i),l) F (', . k .1. (. • 1e»)tP[tj(j,I:)( [.] '0' [ij 1 1,', '1Y[ij 1,3, tP[.)(i,i) 

- P. (.. Ie [I])[t] (Hi,1: .0. Hi,tP1tj(j,I:}) (8.1.121)-	 2 1,'" [.] [t] '0' m ' 

with F2(i,;, Ie, [I]) = id if i,i or k belongs to R. 

For 0' E R, i,i, k E Jl and 1= tP[fj(i,i, Ie), we may consider the following special case 

of the pentagonal equation: 

((BFl (0', i,i, 0' 0 tP[.]) ® n) (E9 II ® Fl (0', tP[,](i,;), Ie, 0' 0 I)) (Fl(i,i, k,l) ® n) 
[,]	 [.] 

= (EB:II ® Fl(O' 0 i,i,k,O' 0 I»T12(EB n® F(O',i,tP[.](;,k),O' 0 I)).
[.] [.] (8.1.122) 

The transformed equation for the F2'S simply reads 

F2(i,i,1c, II]) = F2(0' 0 i,i, Ie, [l}). (8.1.123) 

By considering the equations obtained by replacing (0', i,i, k) by (i, O',i, Ie) and (i,i, 0', k), 

we also find that 

F'2(i,O' oi,Ie, [I)) F:t(i,;,O' 0 Ie, [I]) = F2(i,i,1c, [I]), 

for all 0' E R. Hence, one can assign, in a well defined manner, linear maps F2 to every 

quadruple of objects in hiR such that 

F2(i,i, 1c, 11]) = F2([i], [;], [k], [1]). (8.1.124) 

These maps provide us with a general solution to (8.1.75). Similarly, we introduce 

functions r2 by setting 

H", (0 ••1. (. 0») a (0 . IL])Hi ,;[kJrl ,&,J,IfI[l:j '&,) = r2 '&,), ~  [kt. (8.1.125) 
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The hexagonal equation 

(rl (0', k, 0' 0 k) ® ll)Fl (0', k, i, 0' 0 tPm(k, i)) (r1(i, Ie, 1P[n(Ie,i)) ® l[)
 
= Fl (k, 0', i, 0' 0 tPm(k,;») (ll ® rl (0' 0 i, Ie, 0' 0 1Pm(le,i)))Fl (0',;, Ie, 0' 0 1P[n(k,i))
 

yields the equation 

r2(i, k, [m = R2(0' 0 i, k, [I)), (8.1.126) 

and an analogous equ~tion,  with Ie and i exchanged, proves iD\~ance under the action 

by 0' E R on the second argument. Hence we can write 

r2(i,;, [Ie]) =: r2([i], [i},IIe)),	 (8.1.127) 

and r2 is a solution to (8.1.76). 

Finally, the assumed invariance of the "balancing phases" under' 0' E R allows us to 

define such phases on JllR by setting 

9;	 =: 8[;] modI. (8.1.128) 

•	 Clearly, for the structural data r2, F2 and 8 just constructed, the pentagonal-, 

hexagonal-and balancing equations can be derived directly from the corresponding 

equations in ClJ via (8.1.75) and (8.1.76). This completes the proof of Lemma 8.1.3. 

o 

This result leads us. to a formulation of the basic criterion for the existence of induced 

categories. 

PROPOSITION 8.1 ..4 

Suppose that Cl iJ 4 qU4ntum category with object set Obit, and let R C Obit be a 

group of invertible objectJ with free and coherent action on Jl, so that we have a fusion 
, r 

rule algebra. epimorphiJm 1rR : Obit - Obit = NPl/R). Then t~ere  exists a category C2 
-	 I 

with objeetJet Obi 1 Juch that Cl is the category induced by C2, and 1rR if a.ndonly if the 

following two conditions are met in C1: 
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(i) The O·"ubcategory auociated to R i" trivial. 

(ii) The balancing element" r"tati"tical pha"e,,) are R-invariant, i.e., 

OJ= Ouoj, \!(J E R. 

Proof: 

As a first step in constructing C2 we' build a certain category C1, related to C1by a 

tensor functor­

(id, F, lI) : C1 -C1• (8.1.129) 

The object set of C1 is the same as that of C1. However, two objects X and Y in Cl are 

equivalent (X ::::: Y) iff lI"R(X) = lI"R(Y), i.e., module> equivalence, the object set of CI 

is Obi!. 

From the building blocks 

M([k],X) :=	 EB Morl(k,X) (8.1.130) 
kEC[t) 

we define the spaces of morphisms 

Morl(X, Y) := EB Homc(M([k],X), M([k], Y», (8.1.131 ) 
[k] 

equipped with the obvious composition ofmorphisms. 

For I E Morl(X, Y), we define the action ofF(l) on Af([k]X) into M([k]Y) by left 

multiplication on X, i.e., {or v = EkEC[t) Vk E M([k],X), with VA: E Morl(k,X), we set 

F(I)(v) = L I Vk, I Vk E Morl(k, Y). (8.1.132) 
,A: EC[t) 

In order to find the (unique) tensor product on C1 such that a functor (8.1.129) exists, 

we use the collection of isomorphisms 

r~~y:  EB M([i],X) ® M([j],Y) ® Mor2([k], til 0 [j]) 
[i],[j]EJ11R 

~ M([k],X 0 Y), 
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which, for Vi E Morl(i,X) C M([i],X), Vj E Morl(i, Y), c M([i]Y) and wE .... 

Mor2([k], [i] 0 [i]), are given by 

[1:]	 ( i·)-lrXoy(Vi ® Vj ® til)	 = (Vi 0 Vj) H[~]  (w) 

E Mor1(1f1l1:](i,i),X 0 Y) c M([k),X 0 Y). 
(8.1.133) 

The tensor product of two morphism. I E Mor1(X,X') and J, E Mor1(Y, Y') is then 

given by 

[A:] [1:]
(IOJ)rX,y = rXI,y,(I ® J ® lI). (8.1.134) 

It is immediately clear from (8.1.133) that 

F(Io J) = F(I)oF(J),	 (8.1.135) 

for arbitrary I E Mor1(X, X') and J E Mor1(Y, Y'). If the isomorphisms in (8.1.133) 

are chosen as proposed in Lemma 8.1.3 we conclude that Ct, equipped with the following 

braiding and associativity isomorphisms 

£l(X, Y) := F(E1(X, Y»), 

a1(X, Y, Z) := F(Q1(X, Y, Z)), (8.1.136) 

is a quantum-category, and (id, F, lI) is a trensor functor. Since the pentagonal and 

hexagonal equations follow easily from (8.1.136), we are left with proving th~  ,isotropy 

equations 

'l(X', Y')(IoJ) =	 (JoI)el(X, Y), . (8.1:137) 

and 

a1(X', Y', Z')(Io(JoK)) = ((IoJ)oK) a1(X, Y, Z), (8.1.138) 

for IE Afor1(X,X'), J E Mor1(Y,Y') and K E Mor1(Z,Z'). 

From the corresponding isotropy equations in Cl and from relations (8.1.67) and 

(8.1.68) we obtain that 

f1(X, Y)(Vi 0 Vj) (Hl~)  -1 (w) = (Vj 0 Vi) (HtkD -1 (r2([i), [i], [k])w) , 
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for l1i E Morl(i,X),"j e Morl(i, Y) and w E Mor2([k]. [i] 0 [jD. Hence 
r·· 

•	 ll(X,Y)r~~y = r~~(E9T12~r2([iJ,[jJ,[k])),  (8.1.139) 

[·1b1 

where Tl2 : M([i] ,X) 0 M([j), Y) -+ MOil, Y) 0 M([i], X) is the flip of factors. From 

(8.1.139) and the definition (8.1.134) of the tensor product 0, we deduce (8.1.137). 

Similarly, (8.1.75) and the commutativity of the top of the total square in (8.1.74) 

imply that 

Ql(X, Y, Z}(l1i 0 (Vj 011A:))",i(;):) (He2)-1(%) = 

( Vi 0 l1j) 0 11A:) ",(i;»): (He2)-1 (F2([il, [il, [k], [1])(z»), 
(8.1.140) 

for z Eel'] M or2(["]' [i] 0 [kD @ M2((l] , [il 0 ["n. In terms of the isomorphisms r 
introduced in (8.1.132)j this relation reads as follows: 

- (X Y: Z)rX,YoZ (~'H  to. rY'z ~  ll)
al " [I] W 10' I.]
 

[.]
 

= r~oy,Z(E9r~(  o 'He2 )T34 ( E9 1I83~F2([i],[iJ,[k],[l])). 
[.] (i) [;][1:] (8.1.141) 

From (8.1.141) we derive (8.1.138) in the same way as we found (8.1.137) from (8.1.139). 

This establishes existence of a category C1 and of a functor (8.1.129), with the property 

that X ~ Y iff 'lrR(X) = ll'R(Y). 

For some choice of a map l' : Obit ---+ Obil, with 'lrR 0 ,= id, we then define C2, as 

an abelian category, to be the siibcategory of Cl with 

Mor2(X, Y) = Morl(-Y(X),-y(Y)).	 (8.1.141a) 

Furthermore, ior each X with 'lrR(X) = X, we select a particular isomorphism Q(X) E 

Morl (-y(X), X), with Q(,(X») = 1. We define a functor between abelian categories, 

(7l'R. g) : Cl -+ C2, by setting 

9(1) := Q(y)-lIQ(X), (81.J41b) 
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for [ e Morl(X, Y). The tensor product of two morphisms I E Mor2(X,X') a 

J e Mor2(Y,Y') is defined by 

102 J := Q(-Y(X) 0 7(y,»-1(IoJ)Q(-Y(X) 0 'Y(Y». (8.1.141 

Defining C(X, Y) E End2(X 0 Y) by 

C(X, Y) := Q(X 0 yr l (Q(X)oQ(Y»)Q(,.(X) 0 7Cr», (8.1.141( 

then, for the functor 

('lrR,g,C): Cl--+C2, (8.1.141c 

the compatibility condition (8.1.33) is readily verified. For the braiding- and associa 

tivity isomorphisms defined by 

t2(X,Y) := Q(,.(Y)o-y(X»-lll(,.(X),-y(Y»)Q('Y(X)07(Y», . 

and 

Q2(X,Y,Z) :=
 

Q(,(X 0 Y) 0 I(Z)}-l (Q(-Y(X) 0 -y(Y») -Ion)al(,'(X), I(Y), -y(z»
 

('HOQ(,(Y), -y(Z») )Q(-y(X) ~ I'(Y 0 Z»)
 
(8.1.141£) 

we also find relatio~  (8.1.43) and (8.1.44). Thus (8.1.141e) is, in fact, a tensodunctor 0: 

quantum categories. Proposition 8.1.4 follows by considering the composition of tenso: 

functors 

('lrR' go:F, C) : C1 --+ C2. 

[ 

Application oi Proposition 8.1.4 requires that the subgroup, R = ker(, of invertiM 

elements has trivial categorial properties, in t~e  very strict sense that the braided 

monoidal category associated to it is trivial, and all monodromies with other objects 0 

the total categories vanish. (This can be expressed here by the invariance of statistica 
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ases.) In many situations, however, this information is not available, but only the 

viality of the monoidal category associated to R is known. The following discussion 

devoted to the question to what extent this suffices to conclude that, to a category C 

lith objects Obj, one can associate a category Cwith objects Obj = ObjjR such that 

is induced by Cand 'lrR'
 

We first recall some notation and some simple facts that have been used earlier.
 

We assume that R C Obi is a subgroup of invertible objects with a free, coherent
 

ction on the irreducible objects, J C Obi, of a.rigid, braided, monoidal category, C. 

e denote by 

'lrR : Obi -+ Obi = rl, j ...... lil, (8.1.142) 

ith J := J/ R, the fusion rule algebra homomorphism onto the Perron-Frobenius fusion 

rule algebra Obj, whose irreducible objects, J, are the orbits of R in J. There is a uni­

versal gradation, grad, assigning to each irreducible element an element of Grad{Obj), 

see end of Chapter 3.3. Defining 

Ro := {p E R : grad(Jl) I}, (8.1.143) 

we have the following commutative diagram: 

O~R' .Obj 1rR 1I0bj .0 

grad grad (8.1.144) 

ad • 'Ir# ~--
0--Ro "----+ R .i!....-.. Grad(Obj) -lL..Grad( Obi) ---+ 0 

in which the rows Are exact sequences. We define 

R := R/Ro ~  gradeR) C Grad(Obj). (8.1.145) 

For any choice of 'Y, as in (8.1.15), the algebra Obj can be described by the fusion rules 

of.Obj and, with (8.1.18) and (8.1.19), by elements U[i][j],[k] E R satisfying (8.1.20) and 
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." 

(8.1.21). To any map 'Y: J -+ J, we associate a unique map '1: J -+ R characterized by -" 

j = '1{i) 0 ;(liD, for i e J, (8.1.146) 

such that 

71(1-' 0 j) I-' 0 '1(j), '1 ('Y(liJ)) 1, for I-' e R, 

and, furthermore, 

'1(k) 
whenever k E i 0 i . (8.1.147)0'[.1 Ii], [Al] = '1(i)'1(j) , 

Our first result on induced monoidal categories is a simple modification of Proposition 

8.1.2. The fusion rule algebra ofa category without braided structure can be non­

abelian. For the notion of a coherent action of R on J to be meaningful, we sh~ ~hen 

have to assume that 

poj i 0 JI., for pER, je J . (8.1.148) 

As a consequence, the Perron-Frobenius algebra Obj and the elements A[i]Ii],f1:] are well 

defined, and we impose conditions (8.1.19) and (8.1.21), but omit (8.1.20). 

PROPOSITION 8.1.5 

SuppOJe that,": Obi! -+ Ob12 iJ a coherent fu,Jion rule algebra homomorphi.smj (Obii iJ 

pouibly non-abelian). AJJ'Ume that there iJ a !emi!imple, monoidal category, C2, with 

object.s Obh. 

(i) Then there iJ II monoidal category, CI , unique up to natural iJomorphi!mJ, ,uch
 

tha.t there ezi.stJ a tenJor functor, .
 

«(,.r,C) : C1 -t C2	 (8.1.149) 

compatible with the aJJociativity con.straint and e:z:tending (. 

(ii)	 The monoitla.l .subcategory auociated with R i.s trivial.
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Proof: We can adapt the proof of Proposition 8.1.2 word by word) discarding the.,.,'" 
... definition of £ for the pull back category and omitting the definition in (8.1.61). This 

will work) since these constraints were only used for the verification of the compatibility 

condition (8.1.44) which can be ignored for a monoidal functor) as in (8.1.149). 

Moreover) commutativity of the fusion rules) with the exception of condition (8.1.148») 

has nowhere been used in the construction of the functor (8.1.149) and of the associativ­

ity constraint in the proof of Proposition 8.1.2. Part ii) of Proposition 8.1.5 is obvious. 

o 

Next) we wish to formulate a result analogous to that of Lemma 8.1.3, concerning 

the dependence of the structure matrices on the action of R. Although the monoidal 

subcategory corresponding to R is assumed to be trivial, it is, in general) not possible to 

eliminate the R-dependence of the associativity constraint by an appropriate definition 

o Hi,;f tsomorp · hisms) [1:)' 

Yet, if we assume that the category is equipped with a braided structure, a convenient 

general form of the r2- and F2-matrices can be derived, following the lines of reasoning 

in the proof of. Lemma 8.1.3. But first we study an invariant for braided categories 

which was already used extensively in Section 7.4. 

LEMMA 8.1.6 

SuppOJe R C J iJ any .subgroup of invertible object.s of a quantum co.tegory, C. 

(i) Then there exi"tJ an invariant of C, given by a charo.cter 

mE Hom(ll.@Grad(Obj),U(l», (8.1.150) 

(ll. = Grad(R» luch th.at 

£«(1,j)£(;,(1) = in(grad«(1), grad(j» 1/70;, 

for (f E R, j E J. Th.e re.striction of m to R ® R i.s Iymmetric. 

(ii) Let E:= i*(Hom (Grad(Obj) ®. Grad(Obj), U(1)}) be the .subgroup of charo.eter.s 

defined in (B.l.150) 'With .symmetric reJtrietion to ll.@R, extending "ymmetrico.lly 
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to bilineo.r formJ on Gra.d(Obj). Here i* iJ the pull ba.ck oli : R® Grad(Obj) _ 

Grad(Obj)@. Gro.d(06j). We denote by 

[m] E Hom{R@ Grad(Obj), U(l)}/E (8.1.151) 

the cIaJ" of m in the quotient. 

Then [m] iJ unchanged ifC i" replaced by Cf, defined in (8.1.7) and (B.l.B), with 

q E Hom (r4 (Grad(Obj)} , U(1»). For any in' E [m] there exi"tJ "ome q "uch 

that m' iJ the invariant (B.l.150) ofCf. If Grad(Obj) i" cyclic then the r.h:". of 

(B.l.lSt) i" trivial, and in = 0, for "ome cq. 

Proof: 

For each pER and X E Obj, we define the endomorphism m(p, X) E End(X) by 

£(X,p,)£(p)X) =: lIl!0m(p)X). (8.1.152) 

Clearly m is isotropic, i.e., m(p, Y)I = Im(p)X), for any I E M01'(X, Y). Using the 

hexagonal equations, 

o:(p, X, Y)£(X 0 Y) p)±o:(X, Y, p) = (e(X, p)± 0 ll)o:(X, p, Y)(ll 0 e(Y, p)±), 

with e(X) Y)- = (e(Y, X)+) -1, we easily find that 

m(p, X 0 Y) = m(p, X) 0 m(p, Y), 

i.e., m(p,,) isa grading. We thus have that, for j E J, m(p,j) =' m(p, grad(j»llj, with 

in(p, .) E Hom (Grad(Obj), U(1». By a similar hexagonal constraint, we obtain that 

m(lt, X) m(v,X) = m(p 0 v,X), 

for X E Obj, and P, v E R. These properties of m, together with the symmetr)' obvious 

from definition (8.1.152), imply the general form (8.1.150). 

From (8.1.8) and (7.267) we have that, for any It E Rand gE Grad(Obj), 

mq(p,g) = m(p,g) 5q(p,g), 
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where Sq(p.,g) := q(p.g)q(g)-1 q(p.)-1, and m9 is the invariant of C9• It is clear from 

(7.295) that 6q E E, so that [m9] = [m]. Conversely, assume that m E E. Then we may 

use a result from Section 7.4, namely that the map 

Q : G0,G ..... r 4(q), 

[g I h] H {gh} - {g} - {h}, (8.1.153) 

'with G ®.s G :=IG 0 G/im(1 ~  T) = G 0 G/([g I h) - [h Ig1), as in (7.276), is injective. 

Hence 

Q*: Hom(r4(G),U(1» - Hom(G®,G,U(I», 

is onto, and thus, given m E E, there exists a q E Hom(r4 (Grad(Obi»,U(1» , with 

meg, h) -= Q*(q)(g, h) = 6q(g, h) = q(gh)q(g)-1q(h)-I. 

We have m=m9 iff 

q(g) = ~i('Ir(g»  e(9), (8.1.154) 

where 1r isthe projection: Grad(Obj) - G := Grad(Obj)/R, q E Hom(r4((J), U(l)), 

and' E H om(G, 1(.2)' The fact that the map 

i' : R®Grad(Obj). ..... Grad(Obj)® Grad(Obj), (8.1.155) 

induced by the inclusion R C Grad(Ob;), is into, for a cyclic Grad(Obj), and that' the 

right hand side is already symmetric implies the last assertion in part ii) of Lemma 

8.1.6. Note that, for general Rand Grad(Obj). the group (8.1.151) is non.trivial, and 

(8.1.155) may have a kernel. 

o 
We are now in a position to prove the following generalization of Lemma 8.1.3. 

LEMMA 8.1.7 

Suppo.se that C i.s a quantum category, with object.s Obj, and R C Obj i.s a .subgroup of 

invertible element.s with a free, coherent action on J C Obj. A,sJume, furthermore, that 
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.the category auociated to R iJ trivi,d cu a monoidal c4tegory. Denote bY"1 and F1 the "'~  

!
u.sual .structure m4trice.s of C and by 

'lrR : Obj ..... Obj 

the.jv.Jion rule GlgeDTG homomorphi.sm defined in {8.1.141}. FinallYI let 7 : J ..... J be 

em arbitrary map with 'lrR 0 "(= id from 'Which 'I: J ..... Rand 0'[J1[;].[i] are defined a.s in 

{8.1.146} and {8.1.147}. Then 

I 

(i) there exi.st vector .space.s M01'2([k], [i] 0 [in ~ eN(;)fj).[~) andi,somorphi,smJ H[i:1,aJ 

in (8.1.79), .such that the matrice.s T2cnd F21 defined b1l {8.1.It1} and (8.1.lt5), 

.s"ati.sfy the "gauge.con.stTGint.s" 

F2(P.,i,j,[kD = F2(i,i,p.,IkD = I, (8.1.156) 

and 

r2 (7([jD, p.) I, (8.1.157) 

lor i,i, k E J. and p. E R. 

(ii) The re.sidual"gauge freedom" pre.serving the con.straintJ (8.1.156) and (8.1.157) 

i.s generated through tran.sformdion,s of the R.category p!e,serving (8.1.156), for 

i,i E R, by natural trcnJformationJ of the M01'2-.space,s. More preci.sely, if H[i:1 

i.s a .set of i.somorphi.sm.s con.si.stent with (8.1.156) and {8.1.157} then .. c~y other 

.such .set i.s given by 
..)' ... .( '" = '" '.' . (8~1.158)H[k] Ali] H[k] ,

\ 

where A(~ E Endc(Mor2([k], [i] 0 liD) haJ the lorm 

. . ..) {(k) [sl[j]
A[~ = w('1( i) 0 0'[11[;].[.1:], '1(.,»w (11(l), O'.[ilfJl.[.l:] {(i) {(n: a[.I:] , (8.1.159) 

( 

with k = 1/I[l:)(i,i), { : J ..... U(l) (or e), a[2P] e Endc(Mor2([k], [i] 0 '[i))), ,mil 

wE Z2(R.liU(I)). 
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l''' (iii) If the "g4uge con.strcints" 4re obeyed the 1'2- 4ntl r2 m4trice.s C4n be expreuetl by 

• m4trice.s 1'2 anti f2, who.se intlice" only tlepentl on the cla.s.se.s in Obj, 4ntl by 

p := r2 tRxR e Hom(R~R,U(l», (8.1.160) 

4" follow,,: 

r2(j,1:, [1]) =
 

p(71(j), 71(1:»p(CT[j](l],[ij' 71(1: )71(j)-1)m (grad (71(j», grade1([jD)) f2 ([j], [1:], [I]),

(8.1.161) 

F2(i,j,1:,[I]) = 

= (EB P(CT[i] [j] ,[6]' 71(j)-1 ) ® ][Nd .,) F2([i], [j], [1:], [I]). . 

(EB ][N;.,. ® p(CT[I1[6],[ij, 71(j»)
• 

= (E9 ][N,;,. ~  p(CT[.][k],W 71(j») F2([i], [j], [1:], [I))
• 

(EBp(CT[j](1c],[.],71(j»)-1 ~ ][N,••,).
• . (8.1.162) 

The m4trice" f2 4nd F2 4re unity if [i] = 1, [j] = 1 or [1:] = l,but, in genercl, 

they tlo not .s4ti"fy the pent4gon- 4ntl hex4gon equation,,~ 

(iv) If F~  4ntlr~  4rethe "tructure m4trice" in 4 new g4uge, (H[~])', 4" in (8.1.158), 

then they 4re given by the .s4me fomru/4e (8.1.161) anti {8.1.16£}, in.serting 

, w(v, p.) ( ) 
p (p.,v) = -(-) P p.,v , (8.1.16280) 

w JI.,V 

f~([j), [1:], [I)) =' a(~Hj]  f2([j), [1:), [1]) (ar,Jlk]) -1, (8.1.162b) 

:: • • ( . Ii] [j] [j][k])F2([,], [i), [1:], [m = E9 W(CT[I1,[j],[6]' CT[6][1:],[I])a[.) ~ a[l] 
[6] 

F2([i), [j), [1:], [I]) 

ffi ( ) [j](k] [11[.])-1
( W W O'[i][6],[ij,O'[j][k],[.] a[8] ® a[ij . ( )

I'] . 8.1.162c 
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Proof: 
i 

(i) The proof of the first part of Lemma 8.1.7 is merely a recapitulation ot those 
! 

arguments of the proof of Lemma 8.1.3 that do not require the triviality but only 
'. 1 

the existence of a braided structure. As in (8.1.80) and (8.1.82), triviality of the 

monoidal category associated to R implies that there exis~s  H~'r,  CT, peR, such 

that 

F2(CT,P,v,[1]) = I, 

for CT,P.,V e R. Imposing (8.1.86), F2(P.,II,1([j]), IiI): = I, and F2(1([j]), 

p., v, [j)) = I, we derive from the pentagonal constraint (8.1.88) the invariance 

corresponding to (8.1.89) and (8.1.90), namely 

F2(P.,v,j,[j)) = F2(j,P.,II,[j)) = I, (8.1.163) 

. for p., II e Rand j e J. We retain the llgauge freedom" e~pressed by (8.1.91). 

From the pentagonal equations (8.1.94) the cocycle condition (8.1.96) for 

,p[j](ll p,lI) = F2(P, 1([j)), II, [j)) 

is derived. Assuming only the existence of a braided structure, we find from 

(8.1.97) the constraint (8.1.98), with P[j](p,O') = r2(p, CT 0 1([j)), [j)). Hence 

1P[j](1 I·,,) is symmetric and therefore a coboundary. Having a solution ,8[;] : O'· -+ 

,8[j](O') to (8.1.100), we can therefore find a gauge such that 'l/J[j](11 .,.) = 1. This 

implies, with (8.1.94) and (8.1.95), that 

F2(P.,j, v, [j]) =1, (8.1.164) 

for p., v e R and j E Jj (compare to (8.1.103». We see from (8.1.102) that 

if we impose (8.1.163) and (8.1.164) and keep the H~r,  for p,v E R, fixed, 

then the remaining freedom in choosing H(jji and Hoi is given by the "gauge 

transformations" 

HP:,i 
[j] 

-+ {(p. 0 j) HlJ,j 
{(j) [j] , 

H j,lJ
[j) 

({(p 0 j) . 
-+ '"[j] It) W) HOi, (8.1.165) 
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where e: J -+ U(l) (or c) is any function, with e I R == I, a~d  7"LiJ E 

Hom(R,U(l)), with 7"[1] = 1. For the r2-matrices with arguments in R the 

transformation law then reads 

r2(;, 1£, [iD --+ -!....-() r2(;, JL, [il),
7"[i] # 

r2(JL';, [i]) --+ 7"[i](JL) r2(JL,i, [in· (8.1.166) 

Considering (8.1.97) and an analogous equation for the inverse r-matrices, we see 

that, in any gauge consistent with (8.1.163) and (8.1.164), 

r2(j,·,[il), r2(',i,[i]) E Hom(R,U(l»), 

for all; E J, i.e., 

r2(j,JLOv,[il) = r2(;,JL,[j])r2(j,v,[i]), (8.1.167) 

and similarly for r2(-, i, [i]).
 

Setting 7"Lil := r2 (r([i]), " [i]), a transformation of the form (8.1.165) produces
 

the desired constraint (8.1.157), as follows from (8.1.166).
 

Imposing the normalization conditions discussed above, we next consider the spe­


cial F2-matrices defined in (8.1.109) and (8.1.110). The pentagonal equations
 

(8.1.111) and (8.1.114) yield the relations (8.1.112), (8.1.113) and (8.1.115). Per­

forming a gauge transformation as in (8.1.117), we finally find a set of isomor­

phisms such that the F2-matrices fulfill (8.1.156). 

(ii) For a general gauge transformation 

H i,; Ai,; Hi,; (8.1.167a)[il]	 -+ [il] [1]' 

with Ai~ E Gl(Mor2([k], Ii] 0 [i])), the conditions (8.1.156) and (8.1.157) yield the 

constraints: 

Ai,; 18' AP,A:
[il) [il] 

- AP,i ® Apoi,; 
- [1] [il] (8.1.168) 

Ai,; 18' Ail,P
[il) [1] 

- A;'P ® Ai,po; 
- [1] [il] (8.1.169) 

AP,'Y([i))
(1) 

- A'Y([;]),P 
- [j] , (8.1.170) 
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.. ,
where k = ,p[l](i,i). The most general solution to these equations can be found 

by first specializing to i E R or i E R and determining the form of AU! and AGi.. 
The result is 

AP,; A;'P « .») e(JL 0 i) (8 1 171) 
Li] = 1.71 = w JL, fJ J e(JL)e(j) ' .. 

where W E Z2(R,1i U(I») (see Section 7.4) and e: J - U(l) (or C). Here we 

may assume that e IR == 1, since we can substitute e'(j) = e(i) (e (fJ(j») -1 and 

wi = w(e5e)-l without ch~ging  Auf Equations (8.1.168), (8,.1.169) and (8.1.171) 

give a complete description of how the transformations Ai~  depend on the obj~cts  

i in an orbit Ii] and i in an orbit [i]. This dependence can be absorbed into the 

prefaetor of a[~]Li]  in (8.1.159), using identities (8.1.147) and6'w =1. 

(iii)	 We assume that equations (8.1.156) and (8.1.157) hold true. The hexagonal equa­

tion (8.1.105) ~d  the inverse version thereof provide uS with the following formula 

for the action o(R: 

r2(JL 0 i, v, [in = r2(p, v, [1]) r2(j, v, [i]), 

r2(v,po;,[i]) = "2(V,p,[I]) r2(v,i,U])· (8.1.172) 

In particular (8.1.172) and (8.1.167) show that the restriction of r2 to R x R is a 

bihomomorphism, justifying our definition (8.1.160) of p. 

We immediately find, with (8.1.157), (8.1.167) and (8.1.172), the general form 

r2(;,II,[i]) = p(,.,(;),v),
 

';2(V,;, [i]) = p(II, ,.,(;)) m(grad(v), grad(r«(j]))).
 
(8.1.173) 

If we insert' (8.1.156) and (8.1.173) into the hexagonal equation (8.1.119) and use 

(8.1.147) we arrive at 

F2(i,p,i, [k]) = p(U[!]li),[k]'P)' (8.1.174) 

The expressions (8.1.173) and (8.1.174) for r2- and F2-matrices with arguments in 

R enable us to find the general transtoqnationproperties ofthe structure matrices 
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• • 

~ -, 
under the action of R: The hexagonal equation preceding (8.1.126) yields	 The general solution to (8.1.177) and (8.1.179) is given by (8.1.162). Note that, 

11" 
r2(po;l k,lm = 

= pep, '1(k»m(grad(p),gr4d(-y([k]) )p(U[j][1:],(ij'Il) -lr2 (;, k, [I]), 
(8.1.175) 

and, similarly, from the inverse hexagonal equation 

r2(;,pok , [m = p('1(j),p)p(u[j][1:J,[~,Il)r2(;,k,[I]). (8.1.176) 

The solution to (8.1.175) and (8.1.176) is given precisely by the expression in 

(8.1.161), where f2 only depends on the classes of the objects i,;,k in Obi. The 

dependence of the F2-matrices on the first and third entry under the action of R 

has already been determined in the proof of Lemma 8.1.3. With the help of the 

pentagonal-equation (8.1.122), the invariance (8.1.123) was inferred, so that by 

using a similar argument for the third index we can write 

F2(i,;, 1:, [1])= F~([i],;,  [Ie], II]) . (8.1.177) 

The pentagonal-equations 

(E9 F2(i,p,;, [,,]) ® ][N,•.,)F2(i,poi, k, [I]) (EB F2(Il,i, 1:, [s]) ® ][N",,) ,	 . 
=F2(P 0 i,i, 1:, [I]) (E9 ][N;." ® F2(i'Il's, II]))

• 
and 

(E9 F2(i,i, P, [..]) ® lINd,,)F2(i'll 0 i, k, [l)) (E9 F2(i,Il,.k, [,,]) ® ][N",.) 

= (EB ][N,;,. ® F2('" p, 1:, [I])) F2(i,;, pole, [Il) (8.1.178) 
. , 

yield the following formwa for the action of R on the second index 

Pf (Ii], po;, [k], [Il) = 

= (EB p(U[~[j).[.],Il) -1 ® ][N...,) ~([i],i,  [1:], [I]) (EB JIN;." ® p(U[q[.],[ij' p) ) 

= (EB JIN,;•• ® p(U[.][~],m,ll) )P~([i],i, [k], [I]) (E9 p(U[j]{1:J,[.)) ® ][N.",).
• • (8.1.179) 
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by (8.1.21), the two expressions given in (8.1.162) and (8.1.179), respectively, are 

.val	 Ieqw ent.	 i 

(iv)	 The gauge dependence given in (8.1.162a) is derived by applying a natural trans­

formation to the defining equation (8.1.160). By the very construction of the A[~l'  

this corresponds to adding a coboundary 6w E B4(R,2jU(1» to the 9-category 
! 

associated with R COb;. Formulae (8.1.162b) and (8.1.162c) are obtained by 

applying a gauge-transformation 

(ffi Ai,; IV>. At/J[,}(i,;),1:) p. (.. Ie [I]) (ffi ..1i,1: IV>. Ai,t/J[.)U,1:))-1F2(i,;, 1:, [I]) W [.) I¢I [~  2 'Id" W [.) I¢I [ij 
~	 ~ 

r2(;, 1:, [I]) = Atij; r2,(j, 1:, [1])(Af~1:) -1	 (8.1.180) 

t~ the identities 

F2 ([i], [j], [1:], [I]) = F2 (/([iD, /([j)), 1([k]), [I]) 

f2 ([j], [k], [I]) = r2 (/([i]) ,1([k]), [I]) . (8.1.181) 

o 

Until now, we have considered the general case of coherent fusion rule algebra homo­

morphisms. This structure has turned out to suffice to conclude the existence of induced 

monoidal categories, in Proposition 8.1.5, and to derive the general dependence of the 

structural data, braid- and fusion matrices, on the group action, (i.e., the action of R 

on J C Obi) in Lemma 8.1.7. In order to give a characterization, analogous to the 

one in Proposition 8.1.4, of those categories that are induced, as monoidal categories, 

by smaller ones, we need to find more convenient expressions for the R-dependence of 

r- and F-matrices from which the structural data of a smaller, braided, monoidal cat­

egory can be extracted. This probleni can be subdivided, in a natural way, into two 

steps: First, we discuss the action of the subgroup, Ro, of elements in R with trivial 

grading (see (8.1.143) for the definition). Subsequently, we determine the dependence 

332 



of the structural data of the reduced category on the action of the graded subgroup 

R = R/ROi (see (8.1.145». The advantage of working with graded fusion rule algebra 

homomorphisms is that formulae (8.1.162) simplify considerably. As a consequence, the 

.fi2- and F2-matrices will then satisfy pentagonal- and hexagonal equations, up to scalar 

multiples. For the first step, we make use of Lemma 8.1.6 which implies that all mon­

odromies wit.h entries in Ro vanish. (Note, however, that, since we have no evidence for 

the existence of coherent, non-graded fusion rule algebras with Ro i= 1,.the following 

discussion could turn out to be superfluous.) 

LEMMA 8.1.8 

Let C be a bTaided ten.sor category and R c Obj a .subgroup of invertible object.s with a 

free, coherent action on J C Obi. 

(i)	 The su.bgrou.p, Ro, ofR defined in (8.1.1~  9) also ha.s a free, coherent action on J C 

Obi. The Perron-Frobeniu..s algebra, Obj' = ObjIRo, contain.s R a.s a. .subgroup 

of invertible object.s with a. free, graded action on J' :::::; J/ Ro. The .situation i.s 

.summarized in the following commutative diagram: 

7I"R 

I	 _171"	 71" 

Obi Ilo II Obi' !l II Obj 

grad 19r." /grad (8.1.182) 

71"#	 71"# 

Grad(Obj) !!;o I Grad(Obj') R II Grad(Obj) 
I =	 J 

1r#
R 

(ii)	 The .subcategory a.s.sotiated with Ro ha.s abelian permutation group .stati.stic.s. It 

i.s trivial a.s a mfJnoidal category. There i.s a "bo.sonic n .subgroup Rt C Ro, and 

either Rt = Ro or RolRt ~  7:2, with the property that the braided ten.sor category 

of Rt is trivial, and C i.s induced, as a braided ten.sor category, by a category on 

Obj" :=ObjIRt. AIo,reover, C i.s induced by a category on Obj' iff Ro :::::; Rt. 
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...	 ' 

(iii)	 Let u.s .suppo.se that C i.s induced, o..s a. monoidal co.tegory, by'Jf'R o.nd a. category C .. "'­

with .Dbject .set Obi. Let u.s o.uume, moreover, that C.and C o.re equipped with a. 
1 

braided .structure. Then there e:r:i.st.s a. braided, monoidal fo.tegory C' with object.s 

Obi', .such tha.t C i" induced, a..s a braided category, by C' and 'KIlo, and C' i.s 

ind~ced, a." a. monoidal categoT'1J,by C and 'Kit' In po.rticul~r,  we o.lway" ho.ve tho.t 

Ro := Rt. Up to 4utomorphi.sm.s of C, the functor frome' to C i.s therefore given 

by the compo.sition 

('KRo,.r<', CO) (7I"R,F,C)
C C' C,' (8.1.183) 

where the fir.st functor i.s compatible with the commuto.tivity con.straint. If C i" 

induced by C, a" a. braided category, then o.z.,o C' i" induced by C, cr." a. bro.ided 

co.tegory, o.nd the functor ('KR' F, C) i.s compatible with the a.s.sociativit~ con.straint. 

Proof: 

(i)	 As a subgroup of a freely acting group, Ro clearly also has a free action on J.
 

Hence Obi' = ObiIRo is a fusion rule algebra, and
 

'KRo	 : Obi - Obi' : j t-+ {j} 

is a fusion rule algebra homomorphism. Clearly, 'KIlo maps invertible objects to 

invertible objects, and the restriction, 71" Ilo : R - 'fl C Obj', is the ordinary 

projection amounting to taking the quotient by Ro. The fact that R acts freely 

on J implies that R also acts freely on J'. Hence 'KIi. is well defined, assigning 

to {j} the class [j] == [{i}l, (whe~e, on the left, we may pick any representative 

; E {j}). The composition of 7I"R with 7I"Ro is just 7I"R, as indicated in the top row 

o{ (8.1.182). 

Let us now suppose that we have chosen a map 1 : J - I, along with; the 

corresponding map 1] : J .- R, and elements 0'['1 fi] ,[A:] E: R. To any section 

..p : fl -+ R, with 'KIlo o..p = idtt, we associate a choice of a map "Yo : J' - i as,' 

follows. It is clear that there is a unique map ii : J' - R such that the diagra.m' 
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~ ~ 

.,fl. 

~~1 "}~q (8.1.184) 

. J' _ IIR 

" 
commutes, and that ii({p} 0 {i}) = {p} 0 ii({;}), for any pER, with {p} the 

corresponding element of R. We define 

-Y0({;}) ':= "'(ii({i}) oi([{i}]) . (8.1.185) 

For i E {j} == 'KRo(J), it then follows from 

'KRo(-Y°({j}) = Ti({i}) 0 1I"Ro(-Y([{;}]) 

= 1rRo(,,(i» 0 1rRo(;([j]) 

= 'KRo(il = {j} 

that ;0 is an admissible selection of representatives in the classes' of J'. Since 

j = "O(i) 0 ;O({j}), and by (8.1.185) we find that the map ,,0 : J --. Ro, with 

,,0(0' 0 j)'= u 0 "1(j), is determined by . 

1](;) = ,,°(j)o,p(Ti({j}». (8.1.186) 

From (8.1.185) or (8.1.186) we see that 

(8.1.187) 

where we use the definitions of (8.1.18) and (8.1.19) with respect toRo and ;0. 

The invertible object 0' in (8.1.187) is given by 

A{i}{j},{J:} = N{i}{j},{1:} O'{i}{j}.{1:}, 

O'{i}{j}.{A:} = "'(Ti({i}» 0 "'(Ti( {i}» 0 ,p(Ti({k}» -1 0 O'[{i}][{j}].[{J:}]· (8.1.188) 

It follows immediately from this expresion that1rRo is coherent whenever 1rR is 

coherent. 
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From (8.1.31), and since grad(Ro) = 1, we infer that 1I"t is an isomorphism. 

Using the properties of 1I"Ro and the commutativity of (8:1.182) this proves that 

!
the restriction
 

J
 
, J - ,
:1 gr04:. R Y Gra.d(Obi ) (8.1.189) 

is an injection. Hence 'KA is a graded and thus coherent fusion rule algebra homo­
. . 

morphism. We remark that ii, as defined in (8.1.184), co~responds to the choice 

of 7: j --. J' given by 

'1([;]) := 1I"Ro(i([i])). (8.1.190) 

The elements in R corresponding to this choice are given by 

c1[ilLi],[k] = 1rRo (0'[~1Li],[kl)' 

They can be uniquely determined from 

1
gra.' (c1[i]Lil.[kl) = 1rt (grad(;([iD) grad(i([iD) grad(;([kDr ) , (8.1.191) 

using that (8.1.189) is .injective. This proves part i) of Lemma 8.1.8. 

(ii) From Lemma 8.1.6, i) we see that 

t(O',X) = e(X,u)-l, for ci E Ro.! (8.1.192) 

For X = p E Ro, this proves that the category determined by Ro has permutation 

group statistics. For the quadratic function q(0' ):0:0"00" := t(0',0'), this implies, 

using that q(~p)  q(O')-l q(J.L)-1 = t(O', JL) t(IlO'): 

q E Hom(Ro,Z2)' (8.1.193) 

Hence we can define a subgroup Rt := ker q for which the associated 8-catego~y  is 

trivial. Let a be the non-trivial element in Hom(7,!,.2 ® 7,!,.2, U(I», and consider the 

function r2(J.L, O')a(q(p), q(O'» -1. The logarithm of this function is skew syminet­

ric and vanishes on the diagonal. Hence r2(JL,0')a(q(Il).q(0'»)-1 can be written ~ 
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e(p, u)e(u, Jl)-l for some function e:Ro x Ro -+ U(I)(C). Gauging the H~r  with 

e, i.e., adding the coboundary 6e e B4 (Ro,2; U(I») to the structure constants of 

the8-category determined by Ro, we can achieve that 

rO(Jl,u) = a(q(p),q(u)). . (8.1.194) 

\Vith (8.1.193), this implies that ~  e H om(Ro ® Ro, U(1». Thus the monoidal 

category determined by Ro is trivial. If we set R = Rt in Lemma 8.1.7, iii) we 

infer from equations (8.1.161) and (8.1.162), using that p = r2 tRoxRo= 1 and 

grad('1(j» = I, for all i eJ, that there is a choice of H's such that r2 = f2 

and F2 = F2 ~re invariant under the action of Ri. As described in the proof of 

Proposition 8.1.4, this implies the existence of a braided category, C", with objects 

Obj" = Obi/.Rt and a functor 

(7rt,.r,C) = C-+C", 

i.e., C is induced by CIt and 1rt. In C" we have that R~  = Ro/Rt, so that, for
 

q =1= I, we conclude that KJ :!!. Z2, where R~ is generated by a fermionic object u,
 

with £"(O',u) = -ll.
 
Since q fRois an invariant, we conclude that e is induced by a category on Obi'
 

only if q == 1 on Ro, Le., Ro = Rt. If this is the case the previous argument shows,
 

in particular, that e is induced by 1rRo and a category on Obi'. This proves part
 

ii) of the lemma.
 

(iii) Suppose that e is induced by C and 7rR and that both, C and C,are equipped 

with a braided structure. We then have a collection of isomorphisms, H[~  : 
Morl(k,i 0 j) -+ Mor2(lk], Ii] 0 li]), such that (8.1.75) holds. We may consider 

the category e', with objects Obi', which is induced by C and 1rk A choice of 

R-invariant structure matrices, F2, can be found for any collection 

.H~l{j}  : 'Mor~({k},  {i} 0 {i}) ~  Mor2([{k}], [{ill 0 l{j}]), 
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.... . 
by use of (8.1.85). Setting .. ~ 

H{t} := (Htrj}) -1H[i:{ :Morl(k,i oj) -+ Mor~({k},{h
j 

0 {i}), (8.1.195) 

we obviously have a solution to eq. (8.1.75), relating the structure matrices F1 

and ~  of C and C'. By the Ro-invariance of the i2-matrices, it follows from 

(8.1.174) that, forr~  defined by (8.1.76) in terms of the ri-Iriatrices, one has that 

r~  (O'{iHi},{J:},Jl) = 1. Hence, in particular, we conclude that 

q(O'{iHi},{k}) = 1. (8.1.196) 

However, (8.1.147), (8.1.193) and (8.1.196) imply that 

i -+ q('10(;» (8.1.197) 

is a Z2-grading on Obi. By definition of Ro, this has to be trivial on Ro. This 

means that q rRo=1, i.e:, the subcategory Rt of Ro is trivial as a braided category, 

as well. Thus, there exists a u.nique braided monoidal category C' with. objects 

Obj' such that C is induced, as a braided category, by C' and 7rRo' This proves 

(8.1.183), with (1r,R':1', 0) a functor compatible with the associativity constraint 

and constructed from ~he  isomorphisms Htri }. ! 

If we assume that Cis induced by C, as a braided category, then we find structure­

matrices for C, C' and Csuch that, for ~uitable isomorphisms H[~,  the data (rl' Fl) 

ofC and the data (r2,F2) ofC are related by (8.1.75) and (8.1.76). Further~ore,  

for suitable isomorphisms H{tp the data (rl' Fl) of C are related to ihe data 

(r~,  F~)  by the 'same equations. It follows immedi~tely that the isomorphisms 

Htri } defined by (8.1.195) provide a solution to eqs. (8.1.75) and (8.1.76) if 

we insert the structure matrices of the categories C' and C. Using the arguments 

of Proposition 8.1.4, this is seen to imply that we can choose (1rA, F, 0) t6 be 

compatible with the commuta.tivity constraint. o 
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, ~ 

1£ we assume that Ro does not contain a fermionic object, i.e, Ro = Rt, then Lemma 
4'~ 

8.1.8 shoWI that it i. sufliici~nt  to study graded fuison-rule algebra homomorphisms 

(Ro =1), in order to get a complete characterization ofinduced categories. In fact, in 

most applications, we will have graded fusion rule algebra homomorphisms right from 

the beginning. 

The advantage gained from I. graded I.ction of R on Jist that, {or a convenient 

·choice of 7, and by use of (8.1.29), the structure constants r2 and F2' as presented 

in (8.1.161) and (8.1.162), will be proportional to f2 and F2' and the corresponding 

factors of proportionality do not depend on the arguments of r2 and. F2 but only on 

their gradings. Let us recall some basic facts on graded fusion rule algebras and present 

simplified versions of eqs. (8.1.161) and (8.1.162). 1£ R has a graded action (8.1.144) 

reduces to a pair of short exact sequences: 

7 

I I 
O__Rc .J 7I'R IIJ ,(j 

(8.1.198)I~ j~d # jgrad 
grad 7I'R--­O--R ,Grad(Obj) II Grad(Obj)--O 

t I 
t/J 

where the squares in the middle commute. Here we also require a section ii : Grad(Obj) 

~  Grad(Obj), with 'Ir: o~ = id. With any such .jfj we can associate a symmetric cocycle 

e E Z2 (Grad (Obj), Ij R), 

by setting 

grad (e(g, h)) = ~(g)  t/J(g . h)-l t/J(h), (8.1.199) 

where we use exactness of the lower row in (8.1.198). The ambiguity in choosing ii, 
corresponding to multiplication by a function,).: Grad(Obj) -+ R, implies that eis 
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only given up to boundaries 6,).. As explained in the analysis following (7.287), the 

possible fs correspond to the classes 

[{] E Ext(Grad(Obj),R) C H2 (Grad (Obj), 1jR) (8.1.200) 

which describe the possible extensions of Rover Grad(Obj), given by Grad(Obj) and. 

the short exact sequence in (8.1.198). 

The circumstance that, from two groups, R and Grad(Obj), and an extension [eJ, one 

finds a new group, Grad(Obj), containing R and Grad(Obj)jR ~ Grad(Obj) motivates 

the following generalization, where the gradation groups are replaced by fusion rule 

algebras. We assume that Obj is a fusion rule algebra, R an abelian group and tel E 

Ext(Grad(Obj),R). Then the algebra Obj @r{l R is defined as follows: The objects are 

of the form 'EI-IER(Xp,P), with (X +Y,p) = (X,p) + (Y,p), for Xp,X, Y E Obj. Thus 

the irreducible objects are given by J = {(j, JL)} iEi,pER' The tensor product is defined 

by 

(i, p) 0 (j, v) = (i 0 j, po v 0 e(grad(i), grad(j») ), (8.1.201) 

where we have chosen some representative eE r!l. 

Up to isomorphism, this fusion rule algebra is independent of the particular choice 

of a representative in the class [el, because (j,p) (j,p 0 >.(grad(j))) provides an 1-+ 

isomorphism from the algebra defined with the help of e· c,). to the algebra defined with 

the help of e. 
. The universal grading is given by the group Grad(Obi) associated to the' extension 

[el of Rover Grad(Obj). An injection R t....+ Grad(Obj) and a choice of some section 

.(fi : Grad(Obj) <-+ Grad(Obj) satisfying 'lrROt/J = id and eq. (8.1.199) determines the 

grading to be given by 

grad«j,p)) = ¢(grad(i») 0 p . (8.1.20~), 

The algebra Obj €l(] R contains R as a subgroup of invertible objects with a free, grade 

action on J. The quotient of Obi @Ie) R by R is precisel;r Obj, with a homomorphis 
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7TR given by 

(8.1.203)1l'R«i,~»  = ; . 

In fact, these properties determine the algebra. Obi ®rel R completely. 

LEMMA 8.1.9 

Assume that R COb; U 4 ~ubgroup  of invertible ob;ect~ with a free, graded action· on 

J.	 Let Obj := Obi / R be the Perron·Frobeni'll.~ quotient by R, and denote by Ie] E 

Ext(Grad(Obj),R) the e:z:ten"ion of gNdation groups induced by {8.l.l8!}. Then the 

following "t4tements hold true: 

(i)	 For any ~ E {Grad(Obj) -+ Grad(Obj)}, with 7T: o.;jj =' id, there is a unique 

choice of 4 map 1 : J -+ J, with TTR °1 =id, such that 

,j;(grad([j]) = grad(i([j]) ,	 (8.1.204) 

i.e., the right, outer square in (8.1.198) commutes. The corresponding map." : 

J -]1., and the group elements, U[i][j],[l] are given by 

grad(.,,(j» = grad(j) (,j; (grad ([jD)) -1 , (8.1.205) 

(8.1.206) _U[i][j],[A:] = e(grad([i]),grad([jD), 

where eE Ie] is the representative obtained from .;jj. 

(ii)	 Furthermore, 

Obi 9;; Obi @[e] R (8.1.201) 

a,s a fu.,sion rule algebra, i.e., Obi,R and Ie] determine Obi completely. If, for 

Jome eE Ie], the tensor product Obi @[{] R i~  given by (8.1.£01) then an explicit 

isomorphism of fu,sion rule algebras is given by 

([j],~)  --+ /Loi([jD, 

with inver~e j ----+ (Ii], .,,(j)) , (8.1.208) 

where 1 and." are the mapJ a.uociated with e and some ,section ~ by (~.1.£O4) 

and (8.1.£05). 
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Proof. i) We first consider the expression on the right hand side of,(8.1.205). Using .. .,., 

that 1l'"~  0;; = id, it follows that the·expression lies in the kernd of 1l'"~.  Hence, by the 
I 

exactness of the lower sequence in (8.1.198), we find a. funetio~ ." : J --+ R such that 
I 

(8.1:205) holds. The covariance condition .,,(u 0 i) = u 0 .,,(i) is obvious from (8.1.205). 

Hence the map i(li» i. well defined by setting i = .,,(;) 0 1(~».  Inserting 1([31) in 

(8.1.205), we arrive at (8.1.204). Equation (8.1.206) is found by combining (8.1.29), 

(8.1.199)	 and (8.1.204). 

Part ii) of the lemma can be verified directly by using the results of part i). 

o 

We remark that the map." Crom J to R can be expressed in terms of the function 

.,,'	 : Gra.d(Obj) --+ R, 9 --+ g(~ 0 7T~(g»-l (8.1.209) 

as 

." = '1' 0 grad . (8.1.210) 

In the next lemma we evaluate the expressions for the structure ma.trices found in 

Lemma. 8.1.7, using the special forms of 1,1'/ and U[i][j],[l] given above. The problem of 

e.xtracting- a braided tensor ca.tegory with object set Obi from a category on Obi can 

then be translated into a problem of group cohomology. 

LEMMA 8.1.10
 

Suppo,se that R C Obi is as above and that C is a braided, monoidal category, with·
 

objects Obi, which i~ trivial on R as /I monoidal category.
 

, Let.;jj : Grad(Obj) --+ Grad(Obj) be an arbitNry ~eetion  and eE Z2(Gra.d(Obj), Ij'R)
 

the associated, symmetric cocycle. Then the following statements hold true:
 

(i)	 There ezist vector speces Mor2([k],[i] 0 lill9;; cRt'lUI,[il, and isomorphiJms Hl~'  

as in {8. I. 79), Juch that the matrices T2 and F2' defined by (8.1.1I.1), cah be ' 

expressed by the phase factors p introduced in (8.1.160) and by ma.trice~ F2 !and 
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.. 
f2, in the following W41/:

<II' ~ Pentagonal equations: 
i 

F2(i,;, 1:, [m =	 (EB P2([i], [i], [k], [s]) ~ nN./,t) (EB lIN;.,. ® P2([i], [..), [I], ~t))) 

[&] . [.] 
=p(e(grad([i]) 0 grad([i»,grad([k») . e(grad([;»,grad([k»)-I, '7(;») 

(EB F2([i], [~], [I], [s]) ® lINil,t) 
F2([i], [;], [k], [I]) [.] 

(8.1.211) 
= WO(9i,9j,91cJ9l)-1 (61 lINi;.• ~ F2([S], [k], [I], [t))) T12 (EB lIN.,.• 

~	 ~ 

r2(;, k, [ID = 
® F2([i], [i], Is], It])) 

(8.1.217)
= p('7(;), '7(1:»p(e(grad([i», grad([1:])) , '7(1:) . '7(;)-1 )m(grad('7(;»; 1$ (grad([i]))) 

Hexagonal. + : 
f2([i], [k], [I]), (8.1;212) 

(EB f2([i], [k], [I)) ® lIN/;.t) F2([i], [k], [;], [t])(EB f2([i], [k], [I)) ® lIN;/) 
00 00·where '7 i8 given in (8.1.l05) 4nd m in (8.1.150). 

= W+(9i,9j Ig1:)-1 F2([k], [i], [i], [t])(EB lINi;,/ ® f2([l], [k], It])) F2([i], [i],[k], It]) 
(ii) We definew E A5(Grad(Ob;),2;M) (with M = C or U(l), 4nd A*(G,n;M) 43	 . [fjj (8.1.218) 

in Ch4pter 7.3} by the foilowing formuI4e:	 Hexagonal, -:1 

(EB f2([k], Ii], [1])-1 ~ lIN/;,t) F2([i], [k], [i], [t])(EB f2([k], [il, [lJ)-1 ® lINi/,.) 
[ij . [fj 

W([91 Ig21 g31 94]) == WO(91192,93,94)	 := = W-(9i,9j I91:)F2([k], Ii], [i], [t])(EB UN;;,/ ® f2([k], [I], [t])-1)F2([i], [i], [k], [t]). 
, [fj (8.1.219) 

= p(e(91· 92 ·93, 94)e(92 . g3, 94)-1, e(92, 93») 
(8.1.213) Here we 4re uJin9 the 4bbreviation8 9i = 9rad( Ii)), etc.. 

(iv) For any.\ E A4(Grad(Obj),2;M), we Jet 
W([91 1921193]) == W+(91l 92 I93) := 

F2([i], fi], [k], [I]) = .\([9i 19j Ig1:])F2([i] , [j], [k], [1]),= P«((91 . 92,93), (911 92»m(e(911 92), ~(93»)-1 

(8.1.214) 
r2([i], [i], [k]) = .\([giIl9j])f2([i], [i], [k]) .j (8.1.220) 

w([931191 192]) == W-(9I,92 I93) :=	 Then the matrice8 F2and r2 8atiJ/y the modified categoJiai relation" (8.1.£17),
I 

= p(e(91 . 92,93), e(91192»)-1 . (8.1.215) {8.1.l18} and {8.1.£19}, where w iJ replaced by	 ! 
! 

.(8.1.221) 

categorial equationJ 

(8.1.222) 

. w' = w(c5.\)-l . 
Then w i8 4 cocycle, i.e., I 

Hence, the ob"truction again.!t finding 4 "oIution to the u~u41 

w E ZS (Grad( Obj), 2; M) . (8.1.216) I 
by re8caling8, 48 in (8.1. £1.0), Iie8 in	 I 

I 
1 
~(iii)	 The reduced ..tructure m4trice8 obey the following modified categorial equation8. H5(Grad(Ob;), 2; A1) . 
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Proof. 

The assertions made in Lemma 8.1.10 are verified by straightforward computations 

which we will not reproduce here. Nevertheless, we shall assist the readers' task with 

the following remarks and formulae. 

i)	 In order to obtain (8.1.211) and (8.1.212) we insert (8.1.206) into the relations (8.1.161) 

and (8.1.162). Since D'[~[j],[I:] only depends on the grading of its indices, and since the 

grading of the summation indices in (8.1.162) is fixed by 9i,9j and 9k, the diagonal 

matrices in (8.1.162) are, in fact, multiples of the identity which combine to the factor 

in (8.1.211). 

ii)	 The cocycle condition (8.1.216) is given by the following five equations: 

wO E Z4(Grad(Obj), 1; M) , (8.1.223) 

and 

WO(9h92,93, 94)w°(92, 9t,93,'94(lwO(92,93, 91 , 94)WO(92,93, 94, 9I}-1 = 

= W-(93,94 I91)-IW-(9293,94 I91)W-(92,9394 I91)-lw-(92,93 191) 
, (8.1.224) 

WO(91, 92, 93, 94)WO(91, 92, 94, 93(lwO(91, 94, 92, 93)WO(94, 91, 92, 93)-1 

=	 W+(91,92 I94)W+(91,9293 I94)-lw+(9192,93 I 94)W+(92,93 194)-1 
(8.1.225) 

W+(91,92 I93)W+(92,91 193)-1 = W-(93,92 I91)W-(92,93 I91)-1 (8.1.226) 

WO(9t, 92, 93, 94)WO(91 , 93,92,94)-lwO(93, 91J 92, 94) . 

. wO(91' 93,94." 92)WO(93, 9t,94, 92)-lwO(93, 94, 9],92) 

= W+(91,92 I93)-lW+(91l92 I94)-1 . 

. W-(93,94 I92)W-(93,94 I9192)-l w -(93,94 191) . 
(8.1.227) 
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For the verification of (8.1.216) it is useful to observe that the special function w, .,~  

given in (8.1.213) - (8.1.215), has the symmetry properties 

W±(91J92 I93) == w±(92,91 193) 

WO(9b 92, 93, 94) = WO(91,93,92,94) = wO(94,92,93,91)' 
(~.1.228)  

Parts iii) and iv) simply follow by inser~ing formulae (8.1.211) and (8.1.212) into the 

usual categorial equations and formulae (8.1.220) into the modified categorial equations 
,	 , 

(8.1.217) - (8.1.219). The expressions for 6>' are given by (7.290), (7.293) and (7.294). 

, 0 

The strategy we are pursuing here for expressing categories with graded subgroups by 

smaller ones involves the concept of induced ,categories, combined with the operation 
I 

C -+ C9, for q E Hom (r4(Grad(Obj)) , U(I»), described at 'the beginning of this chap­

ter. In the examples we are interested in, the categories associated with the subgroups of 

invertible elements can be converted into categories with permutation statistics. Thus, 

the remaining obstruction to trivialize such a category is the extendability of the rel­

evant quadratic forms, i.e., the signatures, to the entire 'Universal grading group. As 

a starting point to a: more detailed analysis of this situation we make the following 

..	 i
defimtlon:	 I 

I 

Consider the map	 ') 

i2	 : R/2R -+ Grad(Obj)/2 Grad(Obj~  (8.1.229) 
I 

defined by requiring commutativity of the diagram 
I 

I 
R I
 

o ----+12R< ,R P IIR/2R .0
 

]i ]i	 Ii,G. ­

o-2 Grad(Obj) ----.Grad(Obj) -f.-Grad(Obj)/2 Grad(Obj)_O 
( I 

! 
; 

(8.1.230) 
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The groups in (8.1.229) contain only elements of prime order two and thus give rise 

.J#' .. 

to vector spaces over the field ~, (with scalar multiplication (£,g) ~  gC,£ E ~).  We 

can therefore find a space complementary .to the kernel, (R n 2Grad(Obj» /2R, of i2 • 

Iti preimage, R, in R is characterized by the properties 

2R eRe R 

R/2R = (R n 2Gro.d(Obj»/2R eR/2R. (8.1.231) 

Definition. 

We shall call a subgroup Rc R satisfying (8.1.231) a maximal, signature-extendable 

subgroup (for reasons that become clear below). 

LEMMA 8.1.11 

Let C be A braided, monoidAI category with objects Obj, R C Obj a .subgroup of invertible 

elements with a free, graded action on Obj, and R eRA mazimal, .signature-eztendable 

.subgroup thereof. 

A.s.sume that m E Hom(R 0 Grad(Obj), U(l») (.see (8.1.150)) ha.s a .symmetric ez­

ten.sion toGrad(Obi)~2, i.e., the cia"" [m), Q.J in (8.1.151), i.s trivial: [m) = O. 

Then we have the following re.sult.s: 

(i) There ezi.sb A quadratic function q E Hom (r4 (Grad( Obj» , U(1») .s·uch that C9 

i.s induced, a.s a braided CAtegory, by .some category C, with. object.s Obj := Obj / R 

and homomorphi.sm, 7ril' 

(ii) The .subgroup R: 7ril(R) ~  R/R, of invertible element! in Obj obey.s 

R c 2( 4 (Grad(Obj») ) . (8.1.232) 

Here, the quadratic form q can be cho.sen .such thAt the .subcategory of Cauociated 

with R i.s triviAl, Q.J II monoidal category, and ha.s permutation .stati.stic.s. Thi.s 

enable.s u.s to find, for .some gauge, an element 

P E Hom(R@ R,h":2) . (8.1.233) 
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MoreOl1er, we hAve th,d 

m = 0, on C. (8.1.234) 

Proof. 

(i) We take it from Lemma 8.1.6 that there exists a quadratic function qO E 

Hom(r4 (Grad(Obj»,U(I») such that 

mf == I, (8.1.235) 

as defined in (8.1.152). In particular, the monodromies on R vanish, and hence 

the quadratic function qO, given by qO(g) := p(g, g), 9 E R, satisfies 

qOE Hom(R,Z2). (8.1.236) 

The quadratic function qO can always be multiplied by ari expression of the form 

(8.1.154) without changing (8.1.235). Hence qO can always be replaced by 

q = qO £-1 (8.1.237) 

with 

e E i* (Hom (Grad(Obj), £:2)) , 

(i.e., e is extendable to Grad(Obj». Next, we show that, for any given subgroup 

Rc R satisfying (8.1.231), we can find an e such that R is in the kernel of the 

I 

i 
quadratic form q. I 

Since the map i2 in (8.1.229) gives rise to a linear map bet:ween vect~r spaces oveI 

the field #;2, we can find a homomorphism 

1/1 : Grad(Obj)/2 Grad(Obi) ---+ R/2~  (8.1.238) 
i 
i 

such that 1/1 0 i2 is the projection onto the summand R/2R in the decomposition 
, I 

(8.1.231), i.e., ! 

1/1 0 i2 tR/2R = id. (8.1.239; 
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Clearly, 90 =qO opR, for some qO E Hom(Rj2R,V(1». 

Setting 

e = qO ow 0 pG, (8.1.240) 

it follows from the equation e 0 i = qO 0 ,p 0 pG 0 i, = qO 0 W0 i2 0 pR and from 

(8.1.239) that to i tk Inserting this choice of t into (8.1.237) we obtain that 

q ta== 1,	 (8.1.241) 

in the category Ct , with q= qOe-1. 

Thus, we Can find a gauge in which 

p := r2 rRxA = 1,	 (8.1.242) 

where the r2-matrices are the ones computed for ct. Together with (8.1.235), this 

shows that the F2- and r2-matrices in (8.1.161) and (8.1.162) are R-invariant, and 

hence ct is induced by some category Cwith objects Obj. 

(ii)	 We remark that the direct sum decomposition in (8.1.231) is equivalent to the 

conditions, 

R n 2 Grad(Obj) = 2R 

and R C R + 2 Grad(Obj) . (8.1.243) 

If we take (8.1.243) modulo R and use the fact that Grad(Obj):: 1rA(Grad(Obj» 

we find that' R C 2Grad(Obj). However, 2R C R also implies that 2R = {1}. 

This, in summary, yields the inclusion (8.1.232). Of course, we still have that 

m= 0 for the category C, so that (8.1.233) follows by the same arguments as in 

pa.rt i). 

o 
The special situation to which the study of braided, monoidalcategories is reduced in 

Lemma 8.1.11 allows us to find particularly simple representatives in the cohomology 
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class of the cocycle introduced in Lemma 8.1.10 ii). To this erid, we' propose to make • "" 
i 

choices '1, as in (8.1.198), such that the associated extension (s~e  (8.1.199» factorizes. 
I 

The relevant group-theoretical lemma in this context is the foll~wing  one. 
I 

LEMMA 8.1.11 

Let G be CI finite, ClbeliCln group, Clnd let R be CI !ubgroup with 

R C 2 (4G) c 2G. (8.1.244) 

Define 1r Clnd G by the !hort eZClct .sequence 

O-R~G~G-O. (8.1.245) 

,	 I 

Then there e:r:i.st.s CI .section ij, : G --+ G and pre!entation.s of the group.sR Clnd G 

R = Z2(Cl) ED ED Z2(C1;) (8.1.246) 

G = Z2"l (hI) ED E9 Z2R i (h1) ED H (8.1.247) 

with. generator.s Cll'" ,CI: E R, 611'" b1: E 0, Clnd H C 0, !uch tha.t the e:r:ten.sion 

eE E:r:t(O, R) C 112(0,1; R) i! given by 

I: 
-.,1 1"" ;-Ul -I-&i) = II C:/(II;.Io';)e( 11.61 ... 01'" gU1 ... b1: (8.1.248)

j=1 J ,I • 

Here 

o :5 Vi + lJi < 2n; i 
'Yj(V,p)	 (8.1.249){~  2n 

Proof. 

iii	 + lJi ~  ;: 

i . 
The first step is to present G as a sum of cyclic groups, 7!.'[I', whose orders are powers 

of primes. It is clear that any element of order two lies entirely in the direct sum of the 
! •. 

~2R-subgroups.  H'ence we can write i 
, I 

1o 0 0G = ~2"'l(bdE9'" $Z2m /(bz}$H
! 

.	 ( 0 2(m1 -l») ( i> 2(m/-l»)
WJth 2G = 71:2 (b1) ED .. · $ 7!.2 (b,)
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" ... 
.. 
.'
 for generators by •... •bf EO. and ml ~  m2 ~  ... ~  mi. The subgroup 2(40) is given We now define a section ;'iJ : G -+ 0, with 'If 0 {J = id, by setting
 

"" by the direct sum of cyclic subgroups with m; ~2. Given the generators b1, we can
 ;'iJ(brl ... b.· h) = b{1(111) •.. b'·(II.)h, I (8.1.252)o 2(m.-l) 6
define characters 0i E Hom( 20. ~)  by setting 0i «bi) , ) = (-1) ,;. Theil' pull 

where Ii : ~"; -+ Z2";+1 is the (unction 'j(lI) = II, for II = 0" ~. ,2"; - 1. In analogy backs are given by i*(oi) E Hom(R.Z2)' Let it.l ~  it ~  I. be the smallest integer 

with eq. (7.235) for the quantities given in (7.233) and (7.234), we have thatsuch that i*(O;I):i I. and let Cl E R be such that i*(Qil)(Ct} = -1. It follows that 

R C Z2«b11)2(m;.-I» e .. ·e Z2«bf)2(ml -l), EI; = 2"; 'ri' (8.1.253) 

and that Hence the extension defined by 

i(Cl) = (b. )2("';1-1) 
)1 ' i(e(a, b» = {J(a) ~(b) ~(a . b)-l (8.1.254) 

where bil is of the form
 
is the one given in (8.1.248)


I 
bil = b~1 IT (bf)Z,.2(.... -"';I) o 

i >;1 • 
In the special situation described in Lemma 8.1.11. ii) it is p~ssible to eliminate the 

for some Zi EN. In particular, bit has order 2"';1, and we can replace b11 by bit as a 
prefaetors wO and w+ in equations (8.1.217) and (8.1.218) by a substitution of the form 

generator of O. Since R can be seen as a vector space over Z2, we can write 
(8.1.220). Moreover, one can find a simple, factorized form of w- in (8.1.219). This, 

R = Z2(Cl) €a ker(i*(Qjl» . however, requires some basic knowledge ofthe group Hs(G, 2) which has been computed 

in [57J. The cycle

The image of H := ker(i*(oil» under i lies entirely in the subgroup of 0 generated by
 

b~1  +I' ... ,bf· Repeating the above argument for the· inclusion of H in this subgroup (g) := 21 
8[g Igllg Ig] 

we obtain generators (:2, bi2. and so forth. If we add the cyclic groups with i*(Qj) = I = - [g Igig Ig) + [gllg Ig) [g Igl1g], (8.1.255) 

to HO and use that mi ~  2 we find that the groups Rand 0 of (8.1.244) have the 

for 9 E 20, i.e., g2 = I, plays a crucial role in this analysis, since the homom;orphism 
following presentations: 

~ = r4(2G) ----t Hs(G,2).: {g} ----t (g) (8.1.256)G :?'"'2("1+1) (bl ) e··· €a Z2(".+1) (bk) €a H. (8.1.250) 

describes the torsion-free part of the homology group. Furthermore, using thatand R has the form (8.1.246), with the property that the inclusion i : R l.....+ G is given
 

by
 H om (Hs(G, 2), M) ~  H 5(G,2; M), for M=. U(l), C. 

iCc;) = b~"; (8.1.251), 
( induces the dual homomorphism 

The presentation (8.1.247) of G follows immediately, and the projection w : G - G is 

givenby setting 'If ( b;) = hi and w(h) = h, for h E H. ~*  : H 5(G,2;M) ----t Hom(r4C2G);M), . (8.1.257) 
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defined, for a cocycle w E Z 5(G, 2j M), by 

~*(w)(g) = wO(g,g,g,g)-l w-(g,g Ig) w+(g,g Ig)-I. (8.1.258) 

We easily check that, for 9 E 2G, the expression (8.1.258) depends, in fact, only 9n the 

cohomology class of w. Since, with the help of Lemma 8.1.12, we can find a decompo­

sition of G into cyclic groups for which the cocycle considered here factorizes, we only 

need to know the groups Hs(Z2",M). It has been shown in [57] that, for these groups 

the map ~  defined in (8.1.256) is onto, and the kernel is generated by {gh} - {g} - {h}. 

This shows that !:J.*, as defined in (8.1.257), is injective, and its image is Hom(2G,M). 

Hence 

H5(Z2'" 2j M) -+ 2::2, 

w f-+ ~*(w)(2n-l),  (8.1.259) 

is an isomorphism. The non-trivial cohomology class can, for example, be represented 

by the cocycle 

wO == 1 , w+ == 1, 

_ . (2~i. )w (),k II) = e:cp 2" l-y(),k) , (8.1.260) 

where i,k,l E 2::2", and -y is as in (8.1.249), with n = nj' For the special cocycle in 

Lemma 8.1.10, ii), the invariant 

~*(w) E Hom(r4(2(Grad(Obi»)), Z2) 

is given by 

!:J.*(w)(g) = p(e(g,g),e(g,g, »)-1 m(e(g,g),~(g», (8.1.261) 

for 9 E 2Grad( Obi). In the case where 2R = 1 (i.e., R = 2R), we easily see that 

2Grad(Obi) -+ R : 9 f-+ {(g,g) is a homomorphism. If we assume, furthermore, that 

m = 0, it follows that 

!:J.*(w) E Hom(2Grad(Obi), 7:2) . (8.1.262) 
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The results on H5(G, 2j M) cited above, together with the normal form for extensions -.. 
given in Lemma 8.1.12, allow us to find a particularly simpl~  representative in the 

cohomology class of the cocycle w in Lemma 8.1.10 ii), assuming that the conditions 

(8.1.232), (8.1.233) and (8.1.234) in Lemma 8.1.11, ii), hold. More precisely, we have 

the following result: 

LEMMA 8.1.19 

Let C be a quantum category end R C Obj a grcded "ubgroup o~ invertibfe object" with 

R C2( 4 (Grad(Obj») ) . (8.1.263) 

A.lI.Sume thet ell monodromie" with object" in R vani"h, i.e., 

m=!. (8.1.264), 

Suppo"e that Rand Grad(Obj) =:! Grad(Obj)/R are pre"ented a" in eq". {8.1.!46} end 

{8.1.!47} o/Lemma 8.1.!!, end let eE E:ct(Grad(Obj),R) be the e:cten"i~n given 

in {8.1.!48}. Let W E ZS(Grad(Obj),2jM) be the cocycle defined in term" of ea" 

in -Lemme 8.1.10, ii}, for e choice of geugeof Hti:i for which F2(0',P,&I, [lJ) = I, for 

0', p, &I E R, "0 thet p E Hom(R ® R, U(l». Let &j E Z2 be the invariant" given by 

* (r 2(ni-l») ) ,&; := ~  (w) (OJ) = p(ej,ej '.! (8.1.2,65) 

Then: 

(i) The cocycle w i" cohomologou" to the cocycle wgiven by 

wO == 1, 

w+ == I, 

w-(a, b I e) = e:cp( 211"i . L 2-ni 1I";(e) -Y;(1I";(a), 1I"j(b») , 
i,e; = -1 (8.1.266) 

where the 1I"j '" are the projection" onto the cyclic factor" in {8.1.!47}, i.e., 

11"; : Grad (Obi)-+ :r~n;  (h;) , 
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and 7; it a" in {8.1.1.-l9}. .,." 
(ii)	 The F2- And r2-matricel defined in {8.1.1.1.0}, where ~ e A4 (Grad(Obj),2jM) i" 

luch that w= w(cU)-l, IAtilfy the u"ual pentagonal equation" and al"o one of the 

he:agonal equAtiofU. The onlycategorial equation thAt i" modified i" the lecond 

he:agonAI equAtion: 

(EB r2([k], [iJ, [m-1 ® 1)F2([iJ, [kJ, [i], [tJ)(EB r2([k], [iJ, [1])-1 ® 11) 
~	 . ~ 

= W(9i,9j I9A:)F2([k], [i], [i], [t])(EB 11 ® r2([k], [I], [t])-1)F2([i], [j],[k], [t]) . 
[ij (8.1.267) 

(iii)	 Let R+ be the "ubgroup generAted by {Cj : tj = I}. Then C iJ induced a.J a 

braided, monoidal category by "ome ca.tegory C, with object "et Obj := Obj / R+, 

a.nd projection 71'R+ . 

Proof. 

If m == 0 it follows that the quadratic function in Hom(r4(R), U(l» characterizing 

the category CR associated to R has values in Z2, so that CR is trivial as a monoidal 

category. Hence there exists a gauge in which F2(O',JL,v,[1l) = 1, for O',p, V e R, and, 

as R ® R has only elements of order two, with p e H om(R ® R, &:2)' Let clJ'" ,cAl be 

the generators of R in the presentation (8.1.246) that are used for the factorized form, 

eq. (8.1.248), of the extension.. We define,8 e Hom(R ® R,Z2) C Z2(R,l;U(1») by 

setting 

for	 i < j ,P(Ci,Cj) = {P(Ci,Cj) (8.1.268)
otherwise.1 '.
 

If we perform a gauge transformation with
 

A[~	 := ,8(l1(i) o {(gl,9j),l1U» ,8 (l1(i), {(9i, 9;», (8.1.269) 

as in eq. (8.1.159), the braid matrix on R, p' := ,8t,8-1p, defined as in eq. (8.1.162a),ia 

diagonal in the generators Cj, i.e., 

6;;
P'(Ci,Cj) £j , (8.1.270) 
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as follows by using that ppt = m = 1. We have that p' rR+ x R+ == 1. By using that 

m == 1, we find from Lemma 8.1.7, iii), that, in this gauge, the F2- and r2-matrices are 
.	 I 

independent of the R+-action. This implies part iii) of Lemnia 8.1.13. The cocyc1e 

w' constructed from p' and ediffers from w, as determined by pand {, by a cobound­

ary. This can be seen from (8.1.162b) and (8.1.162c), where the gauge-transformation 

(8.1.269) corresponds to rescaling the f2- and F2-matrices by some ~ll with 

~l([gllh])  = 1 , 

~1([g I h Ik]) = P({(g, h), {(gh, Ie» . 
,8 ({(g, hie), {(h,k» . : (8.1.271) 

We therefore have that 

W' = W(O~1)-1 . (8.1.272) 

Inserting expression (8.1.248) for einto the formulae for the cocycle w' in Lemma 8.1.10, 

ii), and using the special form (8.1.270) of p', w~ find that 

1: 

WO(91192,93,94)	 = IT wJ(7l'j(91),7l'j(92),7l'j(93),7l'j(94», 
j=1 

with 

O(L I' ) ['Yi(I,m)('Yi(I:+I+m,n)-'Yi(l+m,n))]
Wj	 11:, ,m,n = tj , (8.1.273) 

I: 

w±(g},g21 93) = IT wj(rrj(g1),-1rj(92) 111";(93» , 
;=1 

and 

wJ(Ie, I Im) = t['Yi (1:+1,mh i(1:,I)], . (8.1.274) 

Thus w factorizes completely into cocyc1es over the cyclic subgroups, 7,''2"i, each of which 

is cohomologous to the cocycle given in eqs. (8.1.260) if ej = -1 and to the trivial cocycle 

if tj = 1. Therefore w ..... w' ..... W, as defined in (8.1.266). This proves part i) of Lemma 

8.1.13. The statement in part ii) is a direct -consequence of Le~a  8.1.10, iv). 

o 

We already found that .!l*(w), as defined in eq. (8.1.261), is ~ndependent of the par­

ticular choice of gauge we have made. It is straightforward to check that .6..*(w) is alsc 
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independent of the particular section';; : Grad(Obj) -+ Grad(Obj), with 1r# 0 ,;; = id, 

we use to define the extension {. Thus ~*(w)  is a true invariant of the category C. 

Furthermore, one easily verifies that ~*(w) does not change if C is replaced by C9, for 

some q E Hom(r4(Grad(Obj»,U(1»). In par~icular,  if C is of the form C~ C9, where 

Cis induced by some category on Obj, the obstruction ~*(w) has to vanish. 

Vve conclude this section with a summary of resultS' for a cyclic grading group. 

COROLLARY 8.I.ti 

. Let C be a quantum category with objectJ Obi, and let R C Obi be a graded $ubgroup. 

A$$ume that Grad(Obi) i$ cyclic, $0 that, for "orne number$ n, mEN, Grad(Obi) = 

Znm(g) and R= Zm(d), and grad: R ~ Grad(Obj) : q t-+ gn. 

(i)	 If ~*(w)  i= 1, then m and n are even, i.e., m = 2m' and n = 2n'. In thi.s ca$e, 

we conclude that 

(a)	 there exi$t$ a quadratic form q E Hom(r4(Grad(Obi»),U(I»), and, defin­

ing R' := Zm,(q2) C Zm(q) = R, a quantum-category, C, on the object$ 

Obj = Obi / R' $uch that C ~ C9, whereC i$ the category induced by C a'nd 

1rR', and the monodromy m vani.she$ on C.The .subgroup, R = 1rR,(R) = 

Z2(U), of invertible element" in Obj i" embedded into Grad(Obi) = 22n(g) 

by grad(u) = gil. 

(b)	 There exi.st$ a gauge for the HMLcture con.stant." of C $uch that 

F2(i,i, 1:, [I]) =
 

= (-1)'1' (grad(j) ~"(9i+9;'9")-'Y(9i'9")] F2([i], [i], [1:], [I])
 

r2(i, 1:, [I]) = 
(-1 )'1' (g;;d(j))'l,(g;;,(k)) ( -1)"((g; ,9") ['1' (grad(k)-'1' (g;;d(j) ]f2([i], [1:], [I)). 

(8.1.275) 

Here '1 E Z2(7,1-n, 1; 7:2) i$ a" in eq. (7.£94), and 

, -v I , for n::; v < 2n, 
TJ (g ) = { 0, for 0::; v < n. 
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.... 

(c) 

We denote by [i] E Obj = Obj/R theR-orbit of order two of j E Obj and 

6. 'J =,rad([i]) the grading in Grad(Obj) = Zn(g), ,with 9 := 1rl(g)· 
• i 

TAt t· ane f.matricel 3ati3fy the modified categorial equation3 (8.1.£17) 

". 'lilt 

• (8.lf19), where the cocycle w E Z5(Zn,2;U(I» i" of the form given in 

(8.I.f7J) and (8.1.f7-4), with'1j replaced by '1 and tj = -1. There exi3t" 

a function .\ E A4(Grad(Obj), 2; U(l» 30 that the r2- and F2-matricu 

defined by (8.I.UD) 3ati"fy the ordinary pentagonal equation" for a monoidal 

category on Obj and the hexagonal equation" 

(ffi r2([i], [1:], Ill) @ 1I)F2([i], [1:), !i), [t))(ffi r2(!i], [1:], Ill) ® 11) 
m m 

= F2([k] , Ii], [i], [t])(ffill ® r2([l] , [1:], [t)))F2([i], [j], [1:], [t)) 
m 

(ffi r2([1:], Ii], (1))-1 ® 1I)F2([i], [1:], !i], [t])(ffi r2([1:] , [i], [ll)-1 ® 11) 
m ro 

= ezp(21ri gA:'1(9i ,gj») F2([1:], Ii], !i], [t])(ffill ® r2([1:], [I], [t))-I) 
n [ij 

F2([i], [i], [1:], [t)) . 
(8.1.276) 

(ii) If~*(w)  = I, then C ~ C9, where C i$ induced by .lome category with object$ 

. Obi = Obj / R and projection 1rR' 

Proof. 

We first remark that m always has a symmetric extension, since, for a pair of cyclic 

groups H C G, the induced map H @G -+ G ® G =G ®, G is injective and all exten~ions 

over U(I) are tivial. 1£ the integer m is odd we have that R =2R, and if n is odd we 
, i 

find that i2, as defined in (8.1.229) and (8.1.230), is an isomorphism. In both cases 

it follows that R is a maximal signature-extendable group. By Lemma 8.1.11, ii), the 

category C is of the form described in part ii) of the corollary. In particular, we have 
. . 

that ~*(w)  == 1. 

In the case where both integers, nand m, are even one finds that i2 == 0, and the 

maximal signature-extendable group is R' = 2R. Using Lemma 8.1.11, i), we can 
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describe case ~ Cf,where Cis induced by a category C with objects Obj = Obj / H I andti' .. 

projection 'lrR" If PE Horn(R @ R,Z2) is the basic braid matrix of C, see eq. (8.1.160), 

and p E Hom(Z2(c7) 0 Z2(c7),Z2) the braid matrix of C then, since m == 0 in both 

categories, 

6*(w)C (gR') = d*(W)e (gR') 

rrl )= PCurn' , u


= P(c7,c7) = A*(W)c<gR'). (8.1.277)
 

Hence if A*(w)C;: 1 the same equation holds for A*(w)c' It then follows from Lemma 

8.1.13, iii) that R+ C H, i.e., Cis induced by some category Con Obj = ObjfR= ObjfR 

and 'Irk This implies that Cis induced by C and that 'lrR = 'lril °'lrR" proving part ii) of 

Corollary 8.1.14. 1£ AC(W)(gR') = AE<W)(gR') = -1, then the formulae for the structure 

constants, eqs. (8.1.275) and (8.1.276), immediately follow from Lemma 8.1.10 and the. 

fact that w is cohomologous to the cocyc1e ,(8.1.260), where 2R is replaced by n. The 

section ~  : Grad(Obj) =Zn(g) --+ Gra.d(Obj) = Z2R(g) for which the expressions in 

(8.1.275) have been computed, is defined by 

~(gll) = gil, with v = 0,'" ,n - 1 . (8.1.278) 

This completes the proof of the corollary. 

o 

'" 
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8.2 The An - Categories and Main Results 

In the first part of this section we present a classification of semisimple, monoidal as well 

as quantum categories with An- fu.sionrules. In particular, we show that the monoidal 

categories are uniquely determined by the statistical dimension of the generating object, P, 

and, for braided categories, by the eigenvalues of t(p, p). In both cases they are realized 

by the category'Rep(U'l(slz», as described in Chapter 7.1. 

We show that in the case of Obj2 = An fusionrules the HS(Grad(Obj2), 2; Z2)­

obstruction discussed at the end of the previo'US chapter vanishes. This is used to show 

that the quantum categories with z,. *A2n- 1 - and Zr *An - /usionrules are isomorphic to 

su.bcategories of a produ.ct of a (J- category with group z.. and a 'Rep( U,(s12)) - category. The 

quantum categories with 1"a(Zr*A2n- 1 ) - fu,sionrules are described in terms of the categories 

they induce by the graded homomorphism r :Z2r *A2n- 1 - 1"a(Z!' * AZn- 1 ) • 

Combining these resultes with the restrictions on fusion rule algebras and statistical 

dimensions obtained in Proposition 7.,/.11 we arrive at the classification of C· - quantum 

categories which are generated by an object ofstatistical dimenSion less than two. 

In this section we shall be concerned with proofs of uniqueness of some simple 

categories. Together with the existence guaranteed by the explicit constructions based 

on quantum groups and 8-categories, this allows us to give a classification of quantum 

categories with a generator of dimension less than two. 

We begin with a proof of existence and uniqueness for monoidal categories with 

An-fusion rules, disregarding any braided structure. For this purpose, we need to gather 

some basic facts concerning these categories. 
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Suppose that C is a semi-simple) rigid) monoidal category with Ak+l-fusion rules, for 

k ~ 1. We denote the objects of C by Po = 1)PI)'" )Pk) as in Lemma 7.3.2. i). We 

choose a pair of morphisms ~l  E Mor(I,PI 0 PI) and ~t  E Mor(PI 0 Pb 1) such that 

(~t  0 1)a(PI,PbPI)(1 ~  ~l)  = (1 0 ~1)a(PbPbP1)-I(~1  01) = 1. (8.2.1) 

We define a sequence of numbers d;, j = 0) 1) ... : 

do� = 1) dl ~1171 ) 

and d;+l + d;-l dId; . (8.2:2) 

For a given 171) we introduce two bilinear forms on one-dimensional spaces, as follows: 

P; : Mor(P;-t-I, P; 0 PI) ® Mor(p;, P;+l 0 PI) ~ c 

I ® J ~ (1 0 ~l)a(p;)PbPd-l(I 0 I)J (8.2.3) 

and 

q; : Mor(p;,p;+l 0 PI) ® Mor(PHbP; 0PI) ~  c 

I ® J ~ (1 0 17l)a(PHI,PI,PI)-I(I 0 I)J , (8.2.4) 

where j = 0,1, .. " k-1. 

. We have the following results concerning these quantities. 

LEMMA 8.t.1 

Let C 'be a "emi."imple,' rigid, monoidal category with Al:+l -ju"ion rule". 

(i)� The number d1 (and thu" every d;] i.s an invariant of C independent of the choice 

of 19 1 a1J.d 191. There ezi"t.s "ome IE Q''2(l:+2) with (I) k + 2) = 1 "uch that 

dl� =2cosC: ~  2) = (2)q) (8.2.5) 

i,,' 

with q = e1+2. Furthermore, 

d; (j + l)q :F 0, 
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for j =0) ... )1:, and� 

dl:+l = o.� 

(ii)� For j = 0) 1) ••• )1:-1, the bilinear form" in {8.t.3} 'and {8.t.-I} are non-degenerate 

and related b'V 
". 

d;+l q~
Pj --- J'� (8.2.6)

dj 

(iii) IfC i" a C·-category, then 

I ==� ± 1 mod (1: + 2) . (8.2.7) 

Proof.� 

From the pentagon equation� 

I 
a(pj 0 PI) Pl)PI) a(p;)PI, PI 0PI) = (a(pil PI)PI) 0 1) a(pj) PI 0 PI) Pl)(1 0 a(pI' PI, PI») 

and (8.2.1) we immediately derive the identity 

1 = ((1; 0 11) 0 171) ~(p; 0 PbPbP!l-I(a(Pj,PlJPl) 0 11((10171) 0 1). (8.2.8) 

From the isomorphism p.~P;Pl)P\  as defined in equ. (8.72), we find sequences of mor­

phisms Ij E Mor(Pj+c,PjOPl) and Jj E Mor(p;,Pj+copt}, £ =±i, for j =0, ... ,1:-1 

when £ = I, and j = 1, ... k when £ = -1, such that 

a(Pi,PlJPll(lo191) = ~(Ij 0 1) JJ, (8.2.9) 
c 

where we sum over £ = {±1} whenever the morphisms are defined. Ins~rting  (8.2.8) we 

find that 
r 

" 

1;01 = LIj(lo191)a(Pl+cIPlJPll-1(JjOl) (8.2.10) 
c 

which is just the partition of 1;01 E End(p; 0PI) into the minimal projections associated 

to the channels P;+c' Since Ii is the corresponding injection, we obtain that 

1;+c (1 0 ~1)a(PHc,P1IPtl-1 (Ji 0 1) Ii . 
362 

..., , 

• 'W 



In terDlS of the forms defined in (8.2.3) and (8.2.4) this is expressed as 
ft .. 

1 = q;(Jt,lt) = p;(J1+1,1;+I) (8.2.11) 

for i = 0, ... , k - 1. Thia equation already implies that none of the q1's is degenerate 

and that JI 0 II ¥ 0, whenever defined. For th~  map 

P; : Mor(p;+1,P; 0 PI) -+ Mor(p;,Pj+1 0 PIt = Mor(pj+1 0 PlsPl), 

I ..... Pj(1,·} = (I 0 "l)a{p;,plspI)-I(1 0 I), 

the inverse is explicitly given by 

1 • •pi (I) = (10 l)a(pj+lsPl,PI)(l 0"1)' (8.2.12) 

Similarly, the inverse of 

iij(I) = qj(1,.) = (1 o"h a(pj+l,Pl,Pl)-l(1 0 1) 

is given by 

1 - ­qi (1) = (101) a(pj,Pl,Pl)(1 0191) . (8.2.13) 

If we apply (1 0191) a(Pj, PIs Pl)-1 to (8.2.9) from the left we obtain that 

dl = pj(lt,Jt) f Qj-l(1j,JiL (8.2.14) 

for i = 1, ... ,k -1, and, in addition, that 

d1 = po(1t ,Jt), d1 = ql-dI~, J~) . (8.2.15) 

Since both forms, Pj and q}, are non-zero and lie in the same one~dimensional  space, 

there exist {j e C·, i = 0, ... .I k - 1, such that Pj = {j q}- From (8.2.11), (8.2.14) and 

(8.2.15) we find that 

d1 -- e0 -- e-l:-l' 
1 

and dl = e; +e;!l ' (8.2.16) 
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so that, by (8.2.2), 

d; ~. {j-l ..... eO . 

The existence of a solution to (8.2.16) thus implies that 

dj :/: 0, for i = 0, ... ,k, and d1:+1 0. (8.2.17) 

It is straightforward to verify that (8.2.17) holds if and only if d1 is 'of the form stated in 

(8.2.5). The fact that d1 is an invariant follows from (8.2.1) which ~onstrains  rescalings 

to be of the form J1 = '\"1, "1 = .!."1, so that d1 in (8.2.2) is unchanged. We therefore 
) ! 

have proven that Pj and q} are invariantly related to each other as in (8.2.6), with a 

factor only depending on dl. 

If we are considering a C·-category we can choose '191 and 191 su~ that 

"i = &gn(dt} "1· 
With this normalization, we find that 

qj(r) = &gn(d1) p;l(r) . (8.2.17a) 

For I,E Mor(Pj,Pj+l 0pl), we find from (8.2.17) 

°$ r I = pj(;;;1(1*), I) = {j qj(I';;i1(r») 

= {j &gn(dd qj(I) iij(I)· , 

and hence 

&gn(d ) = &gn(ej) = sgn(di+d (8.2.18)1 sgn(dj) . 
( . 

Using the explicit expressions for dj, i.e., dj = (j +1)1,1, we see that (8.2.18) holds if and 

only if I satisfies the constraint (8.2.7). 

o 
( 

The relations found in Lemma 8.2.1, how serve us as a tool to consistently define 

isomorphisms between the Mor(k,i 0 i)-spaces and the Mor'(k,i 0 i)-spaces, of two 
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lategories C and C' of this type, providing an equivalence of the F-matrices of C and 

'. In our next lemma we derive this equivalence for a certain type of associativity 

onstraint. This will be sufficient to prove the e<Juivalence of the monoidal categories C 

nd C'. 

uppo~e that C and C' are two monoidal categories with A1:+I·fu~ion rule,s and with the 

ame value, dl l for the invariant dimension of the generator. 

(i)� For any ~equence of i$omorphiJmJ 

H::1:1 
: Mor(pi+1>Pi 0 pd -t Mor'(p;+1JPj 0 pd, 

with i = '0, ... ,Ie - II and H;~Pl(ll) ::::;: 111 there ezi.stJ a unique .sequence of 

iJomorphi.sm,s 

H:r1 ,Pl : Mor(Pj,Pj+1 0 Pl) -+ Mor'(p;,Pj+l 0 PI), 

with i =0, ... ,Ie - II .such thatl ~imultaneov..slYI  

P'.(HPj,Pl ® HP;+l.Pl) = p'� (8.2.19)J� PHI Pi , 

and 

q'.(HPi+1,Pl ® HPj,PI) = qj . (8.2.20)J� Pi PHI 

For theJe l we have that Hfl.Pl (171) = t1~. 

(ii)� For any given choice of i.somorphi"m" H;,Pl 1 a" in i), antS witk Hi,l(lj) := 1;1 

tkere ezi,sts Cl unique completion of the choice of i.somorphi"m" 

Hi'; : Mor(k,i oj) -+ Mor'(1c,ioj) 

such tkat the dia.gram 
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'"" 

I '" ~ 

E9 Mor('.i 0 pI> 0 Mor(1c,i 0.) F(i,i,PI,Ie) EB Mor("i oJ> 0 Mor(k,.o Pl) 

•� 
· !I .02· 

H82 H 

$ Mor'(,,; 0 PI) 0 Mor'(l:,i 0') P(i,i,PI,Ie) I EB Mor'(., i 0 ;)0 Mor'(Ie,. 0 PI)� 
,. ':� 

(8.2.21)!� 

commutu, for all i,i,1c e J.� 

Proof. 

. It is clear that, by the non-degeneracy of Pi and pi, there exists ~ unique sequence of 

H:J+lIPl such th'~t  (8.2.19) holds. Since 41 = d'l' and thus dj = dj"iwe immediately find 
,� I 

from (8.2.6) in Lemma 8.2.1 that (8.2.20) is a.utomatically fulfilled. From (8.2.20), 

qo(171J 1) = 1,� (8.2.21a) 

and H;;Pl(l) =1, we obtain that Hr'Pl(~d  = 17~.
 

Fora given choice of H:'Pl we now show part ii) 9f the lemma., The proof will proceed� 

by induction in n~  Assuming that we have defined� 

H;,Pi : M or{l, i 0 Pj) '-+ M or'(I, i 0 Pj),� 

for all j = 0, ... ,n, and that� 

ED Mor(',Pj 0 Pt> ® Mor(l,i 0') F(i,p;,plJ I) EB Mor{" i 0 Pj) 0 Mor(l" 9PI) .� I

" 

H~2	 H(jf;2 

ffi'( ) '(1') F'(i,Pj,PI,l) h... M '(.) '(1 .wMor ',PjOPl @Mor ,'0" l'l:' or "'OPj ~Mor  ,.oPI) ,� . 
(8.2.22) .' 
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.,.~ 	 

commutes, for j = 0, ... ,n - 1, we can find unique isomorphisms, H;'Pn+l. for i, I E J, 

such that (8.2.22) commutes for; =n. 

To this end, we have to show that, independently of the choice of H;'Pn+l , the diagram 

for the restrictions to one summand on the left hand side: 

Mor(Pn-l,Pn °PI) F(i,Pn,P1JPt) I EBi:=:HMor(Pt+,;,i 0 Pn) 

®Mor(Pt, i °Pn-l) @Mor(PH,;, Pt °PI) 

H~2 	 H02 (8.2.23) 

'( ) F'(i,Pn,P1JPt) ffi M'( . )M or� Pn-bPn °PI ' W,;=±l or Pt+,;,1 °Pn 

®Mor'(Pt,i 0 Pn-1) @Mor'(pt-,;,Pt °PI} 

commutes, whenever I = Pt E i °Pn-l.' = 0, ... ,k. We show this by expressing 

the matrix elements of these maps by matrix elements of F(i,Pn-l,P1JPt) and the 

isomorphisms qj and Pi 'from Lemma 8.2.1 (which are mapped, under the action of H, 

into qj and tI;). In order to derive a useful relation, we consider the pentagonal equation 

a(i,Pn,P1 0 pI) (Ii 0 a(Pn,PI,Pll-1) a(i,Pn 0 PlJP1)-t 

= a(i °pn,PlJ pt}-l (a(i,Pn,Pl) 0 11) . (8.2.24) 

Now. choose I E Mor(Pt,i 0 Pn-l), J E Mor(Pn-llPn 0 PI), L' E Mor(Pt+,;,Pt 0 PI), 

and K E Mor(i 0 Pn,Pt+,;). and multiply (8.2.24) with ((Ii 0 J)I) 011 )L' from the 

right and with K 0 "1 from the left. This yields 

K(li 0 [(10 17!>a(Pn,P1JP1)-I(J °11»)) a(i,Pn_1JPl)-l(I °11)L" 

= (l pt+1 °171)a(Pt+,;,Pl,P1)-I([(K 0 Il)a(i,Pn,P1)(1i 0 J)I] o 11)L', 
(8.2.25) 

using only the isotropy (8.1.38). The term in square brackets on the left hand side is 

found to be 9n-I(J) E Mor(Pn 0 PbPn-l), and the right hand side is identified with 

one of the bilinear forms (8.2.3), or (8.2.4) between L' and the term in square brackets, 
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depending on t =±l. With an appropriate substitution of L', and ~sing  identity (8.2.6), . 

we obtain the following explicit formula: For! = 1, 

L(K °11) a(i,Pn,Pl)(1 °J)I = ; 

= ~1 K(l 0 9n-l(J» a(i,Pn_l,Pl)-l(I ~  1)13;l(L) • 
(8.2.26) 

with L E Mor(PHt 0 P1,Pt), identifying, with 1; ..... 1 E C, both ~des  of (8.2.26) with 

C-numbers. In terms of F-matrices, this equation can be rewritterl as 

(K fly L, F(i,Pn,PlJPt) J ® I) = 

= ~l (9n-I(J) ® K, F(i,Pn-1,PI,PHI)-1 I ~ prl(L)} , 
•� (8.2.27) 

where we view K E M or(Pt+I. i 0 Pn)* and L E Mor(PI, PHI 0 PI)*' 

Similarly, we find, for t = -1, 

(K @L. F(i,Pn,PlJPt) J ® I} = 

= ~t (9n-l(J)®K, F(i,Pn_llPI,Pt_I)-1 I®9t_11(L)} , 
. (8.2.28) 

with K E Mor(Pt_lsi °Pn}*_and L E Mor(Pt.Pt-1 0 PI)·' Note that the equations 

(8.2.19) and (8.2.20) can also be expressed as 

(HPj+l,Pl)*p-l. _ p-' (HPj,PI)-1 (8.2.29)P; 1 - J PHI 

and 

(H Pi,PI)* q-l. = q-' (HPHI,Pl)-l (8.2.30)Pj+l J J Pi • 

and that (8.2.22) commutes for; = n - I, by our induction h)'pothesis. This allows 

us to relate the matrix elements of F(i,Pn,Pl,pt) to the ones of F'(i,Pn,Pl,Pt),using 

formulae (8.2.27) and (8.2.28), and to prove commutativity of (~.2.23)  whenever the 

morphism spaces are non-empty. 

Next, we assume that Pt E iOPn+l and derive a second set of relations among F-matrix 

elements. For this purpose we consider the pentagon equation 

( ; 

a(i, Pn-ltPI 0 PI}(li 0 a(Pn-I' Pb pd-l ) a(i, Pn-l 0 PbPtl-1 

a(i 0 Pn..,..lIPbPl)-l (o(i,Pn-bPl) 0 11) (8.2.31)' , 
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We choose 1 E Mor(Pt+cs i 0 Pn), J' E Mor(PnsPn-l 0 Pt), and we multiply (8.2.31) by 

K 0 ~1 from the left, and by (((1;. 0 J')I) OI1)L from the right. 

This yields 

K(liO[(ln-l 0 t71)Q(Pn-bPl,Pl)-1(J' 0 11»)) Q(i,Pn,Pl)-I(l 0 I)L 

= (It 0 t7i)Q(Pt,Pl,pIl- t ([(K 0 11)Q(i,Pn-lJPl)(li 0 J')l] o11)L. 
(8.2.32) 

Substituting J= Pn-l(J') e MO'I'(Pn 0Pl,Pn-l) = MO'I'(Pn-l.Pn OPt)·, we obtain from 

(8.2.32), in F-matrix language, the equation 

(J~K, 	 F(i,Pn,Pl,Pt)-11®L) = 

~l (K ® qt(L), F(i,Pn-I,Pl,Pt+dp;':l (J) ~ I). for e = I, 

~l  (K ®Pt-I(L),F(i,Pn-I,PltPt-I)P;':l(J) ~  I). for £ = -1, 
, (8.2.33) 

for J @ K E MO'I'(Pn-l,Pn 0 pll· ® Mor(pt,i 0Pn-d· and I,L arbitrary. By similar 

arguments as for (8.2.23), we see that (8.2.33) implies the commutativity of 

(F(i,Pn,Pl,Pt)-lf ffi M (. ).M 0'1'(Pn-l,Pn 0 PI ) I W' 0'1' "" 0 Pi 
®Mor(Pt, i 0 Pn-lt @MO'I'(Pt." 0 PIt 

(8.2.34)15'@H'1H' <8> H' 
'( ). (F'(i,Pn,Pl,pt)-lr ffi '( .)*M or Pn-ltPn 0 PI I \I},M0'1' I, '& 0 Pj 

®Mor'(pt,i °Pn-l)* . ~MO'I"(pt",1 °PIt 

Since the spa..ce E9. Mor(", iepj )®Mor(Pt,loPl) is a..t most two-dimensional, the ima..ge 

of Mor(Pn+I,Pn e PI) @Mor(Pt,iopn+l) in it may be expressed as follows 

Qn ;=� F(i,Pn,Pl,Pt)(Mor(Pn+bPn 0Pl) ®Mor(Pt,ioPn+l)) 

= F(i,Pn,pl'Pt)( (Mor(Pn-l ,pn 0 PIt ® Mor(pt, i 0 Pn_l)*)J.) 

[(F(i,Pn,PbPt)-l)*(Mor(Pn_l,Pn 0 Pl)'" ® MO'I'(pt,i °Pn_d*)].1 . 
(8.2.35) 
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From (8.2.35) and (8.2.34) we conclude that H(l;2 maps Qn ont~  Q~.  We may then 

Iconsider the following diagram: 

F(i,Pn,Pl,Pt) QnIMor(Pn+ltPn 0 PI) ~  Mor(Pt,i 0 Pn+l) 

H PR ,Pl ~ H'sPnH� (8.2.36)Pn+l Pt ~ r!H8'
! 

F'(i,Pn,Pl,Pt): Q~Mor'(Pn+l,Pn 0 PI) @ Mor'(Pt,i 0 Pn+l) 
~ ; 

Since, for I ~ n < k a.nd Pt E i 0 Pn+l, all other isomorphisms between one-dimensional 

spaces are already determined, there exists a uniq\le H:t'+1 such that (8.2.36) com­

mutes. Combining the commutativity of (8.2.23)a.nd (8.2.36), w~ obtain the commu­

tativity of (8.2.22), with j = n. Since F(i,l,pltPt) = id, and sinbe the isomorphisms
J 

H:,Pl are already defined, the claim for n = I is clear. For n =k, the commutativity 

of (8.2.22) is identical to that of (8.2.23), since Pl 0 PI =Pl-l, and the induction can 

be terminated without any further definitions -of H's . This completes the proof of the 

lemma. 

I o 
Incidentally, the uniqueness of the isomorphisms in Lemma 8.2.2., ii) allows us to 

,I 

show that all natural transformations that leave the F-matrices bf an Al:+1-category 

invariant ha..ve to be trivial. More precisely, a natural transformation is defined by a set 
••� j 

of isomorphisms, h~",  of the spaces MO'I'(1c,i oj), i,j,k E J, Whic~,  for An-fusion rules 

with Nij,le E {O,l}, can be given by l!:>numbers. A natural transforma..tion leaves the 

F-matrices invariant ~r  

h(l;2F(i,j,Ic,I) = F(i,j,Ic,l) h(l;2, (8.2.37) 
.­

and a family of natural transforma..tions obeying (8.2.37), called trivial, is given by 

h~; = Ai Aj (8.2.38)
AJ: ' 
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I wi 

for some {unction .\ : J -+ C. (We use the. conventions h~,1  = h:" = id, ~l = 1). To 

if' show that (8.2.38) hold. in our example, we first find ~PI  such that hfl'Pl = ~~. We 

then· define 
n .\ 

.\ '= II _PI_ {or n = 2,... ,Ie . (8.2.39)
p" • h""-loPl ' 

i=1 Pra 

This implies equation (8.2.3.8), {or i = Pn, j = PI and Ie = Pn+l' Since the maps 

Pi and qi also represent F-matrix elements, we have to satisfy (8.2.19) and (8.2.20) 

W)'th p'n _~-2pPI n and finJ -- ~-2q v;elding hPra 
Pt.+!,Pl h""+1,PIPn -- ~2 ...... d hence equatl'on - PI n, ,,- Pl-' 

(8.2.39), {or i = Pn+l' j = PI and Ie = Pn. By Lemma 8.2.2, the completion of the 

htlls compatible with (8.2.37) is unique, and hence the expression (8.2.38) is .the only 

one possible. This observation, made on the level of structural data, can be put into 

the formal language of categories as follows: 

C(X, Y) e End(X 0 Y), with 

(C(X, Y) 0 1) C(X 0 Y, Z)a(X, Y,Z) a(X, Y, Z)C(X, Yo Z}(l 0 C(Y, Z»), 

and C(X', Y')Io J 10 J C(X, Y), (8.2.40) 

with I E Mor(X,X') andJ,€ Mor(Y,Y'), can be epxressed by a collection ofiso­

morphisms, A(X)e End(X), which are isotropic, i.e., A(X')I = IA(X), for all I E 

Mor(X,X') : 

C(X, Y) = A(X 0 y)-l (A(X)o A(Y» . (8.2.jl) 

For a monoidal An-category, there exist exactly two solutions to (8.2.41) differing by 

the Z2-grading of the An-fusion rules. We can interpret the expressions in (8.?40) and 

(8.2.41) as non-commutative generalizations of cocycle~  a.nd coboundary conditions, i.e., 

we can interpret (8.2.40) and (8.2.41) as triviality of a generalized second cohomology 

group. 

Lemma 8.2.1 and Lemma 8.2.2 now put us in a position to prove the first result on 

the classification of categories. 
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PROPOSITION 8.!.3� I 
I 

For every 1= 1, ... ,Ie +1, with (1,1e +1) =I, there e:rid,; /I &emi&imple. rigid, monOJ 

category, unique up to natural equi"4lence, with Ak+l·ftuion ru~e$,  .such. th4t 

(8.2Adl = -2cos(IeI:2)' 

It i& given by the &emi&imple quotient of th.e repre.sent4tion cdtegoryof Uq(.,z2). WI 

i ...r
±­

q = e AH • It i.s i&omorphic to /I C· -c4tegory if 4nd only if 

1 E {I,k + I} .� (8.2.4~ 

\ 
I 

Thi" u the complete lid of monoidal categorie& with Ak+l-fution rule&. Categorie 
I 

corre.sponding to different value! of 1 (i.e., different dl) are inequiv41ent. 

Remark: This result is generalized in [63], using the representation theory of Hecke 

algebras. More precisely, it is shown that the monoidal categories with Uq(sln) - fu 

sionrules, with n > 2, are precisely the Uq("ln) • categories and that they are uniquel: 

determined by the statistical dimension of the fundamental representation. 
I 

.\Proof.� 

The nrst step in the proorof Proposition 8.2.3 is to extend the commutativity of (8.2.2J� 

to arbitrary representations and use this to prove uniqueness or an Ak+l-category, f(� 

a given d1• For this purpose, we define 

F"(i,i,lc,l) := (H~2)-1  F'(i,j,k,I)H~2  

: EBMor(I,i ok)@Mor(I,io",) EBMor(I,i i)@Mor(l,,,,ok), 
,� -- , . (8.2.44 

. 
where the F-. and F'-matrices are the structural data of two categories C andie' wi 

the same dlt and Hi'; are the isomorphisms specified in Lemma 8.2.2. To show that 
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..� 
F(i,i, k, I)E9 Mor(.,i 0 k) 0 Mor(l,i ~  ,,) $ Mor(.s,i oj) ®Mor(l,8 ok), 

j
,

jH82 2H 8 

F'(i,j,Ie,I)EB Mor'(',i 0 k) 0 Mar'(l,i 0 I) E9 Mar'(II,i 0 j) 0 Mor'(I,,, 0 k), • 
(8.2.45) 

mmutes is equivalent to showing F = F", by (8.2.44). By assumption, we have tha.t 

oth maps, F and F", satisfy the penta.gon equation, and, by Lemma 8.2.2, that 

F"(i,i,pJ,l) = F(i,i,Pl,I),· (8.2.46) 

or all i,i,l E J. Substituting (8.2.46) into a pentagonal equation for F", we obtain 

EB l[ ® F"(i,i,Pn+c,t) = 
c=±l 

TI2(EB 1l 0 F(',Pn,Pl, t)-lHEe F"{i,i, Pn, ,,) ® 11) , , 
(EB 1l ® F(i,.s,pl.t»)(EeF(i,Pn,pl, 8) 01l) . , , (8.2.47) 

From (8.2.47) and the pentagonal equation for F we see that if 

F"(i,i,Pm,l) = F(i,i,Pm,l) (8.2.48) 

holds, for m = 1, ... ,n, it also holds for m = n +1. Hence (8.2.48) follows by induction 

which proves (8.2.45). 

In order to construct the explicit functor of equivalence, (id,.1", C) : C -+ C', we 

proceed in the same fashion as in similar constructions in section 8.1. We first fix an 

ubitrary set of isomorphisms 

.1' : Mor(i,X) -+ Mor'{i,X). (8.2.49) 

rhis extends by functoriality and, since Mor(X, Y) ~  EBi Hom(Mor(i, X), Mor(i, Y)), 

o a unique functor of abelian categories. Using that Mor(k, X 0 Y) ~  EBij Mor(i, X)@ 
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Mor{j, Y)0Mor(Ie,ioi), as specified in (8.2.42), we C&n define' C(X, Y) E End'(X oY) , J'o. 

uniquely by the formula 

C(X, y)(.r(i) 0 .1'(i») Ht,i(K) = .1'(i 0 i)K) , (8.2.50) 

where i E Mar(i, X), j E Mor(;, Y) and K E Mor(1c,i 0 j). The compatibility with 

tensor products of morphisms in (8.2.33) follows immediately from the form of (8.2.50), 
I 

using the fact that, by liemisimpIicity, it suffices to check (8.2.33) when it is multiplied 

by some (.1'(i) 0 .1'(i»H~J(K) from the right. The verification of (8.2.43) is done 
( 

similarly, multiplying 

(.r(i) 0 ((.1'(i) 0 .1'(K»)Hi,l: (S» )H:"(T) (8.2.51) 

from the right, with i E Mor(i,X),J E Mor(j, Y),K E Mar(k,Z), S E Mor(II,; 0 k), 

and t E Mor(t,i o.s). Here we need to employ isotropy, eq. (~.1.38), of both a and a' 

and, furthermore, commutativity of (8.2.45). 

We may now consider the monoidal representation category of U9(.d2), with q = 
, ...1 

::1:­
e 1:+2, 1= 1, ... ,Ie + I, (I, k +2) = 1. 

We restrict the set of objects to those generated by the two-dimensional fundamental 

representation with highest weight ~ = 1, i.e., to all integral highest weight representa­

tions, V).+1J ~ = 0,1, ... ,Ie, and to the indecomposable projective modules Wi, i E Z, 

as defined in section 5.3. 

We pass from this category to its semi-simple quotient. Hence we have dtactly ~ +1 

irreducible objects left over, and, by Theorem 5.3.1, these satisfy the Al:+l-fusion rules. 

If we use {l/Oll/l}, as a basis for the representation space V2 of highest weight ~ = I, as 

in Proposition 5.2.1, and let {1o, 'I} be its dual basis in V2*, with lil/; = 6ij, the invariant 

tensors 191 and 191 are of the form 

191 = a(l/O~l/I-ql/l®VO) € HomUf("a)(l,V2~V2),  

and 
'I· 

191 = P(ll ® 10 - q-l 10 e I}) E Homu (6Ia)(V2 0 V2,1): 
f. : (8.2.52) 
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~,  

From the equation 

(11 @ 81)(191 ~][)  = (171 @ i)(81 ~  ll) = of311 

we see that (8.2.1) i••atisfied iff a =p-l. 80 that 

ell = "1171 = - (q + q-l) = - (2), . (8.2.53) 

Comparing (8.2.53) to (8.2.5) in Lemma 8.2.1 (with ell -+ -ell, for I -+ k + 2 - I), we 

see that, for alI admissible values of ell, there exists a realization of an AI:+l-category. 

obtained from the r~presentation  category of some Uq("'2)' Having proven uniqueness, 

for each value of dlt this completes the classification of monoidal AI:+l-categories. 

Finally, we wish to prove the result concerning a C·-structure. In Lemma 8.2.1 we 

already found that I = 1 or k + 1 are the only compatible values. In order to see 

that we can implement a C·-structure in both cases, we first show that there exists 

an inner product on the M or(k, i 0 i)-spaces such that the F-matrices define unitary 

maps. We have proven in Lemma 6.3.3 that, for I = 1, there exists an inner product 

such that the braid matrices are unitary. From the hexagonal equations, as expressed 

in Lemma 6.2.1, we see that the F-matrices can be written as products of unitary braid 

matrices and are therefore unitary with repsect to the given inner product, too: This 

system of F-matricescan be multiplied by the trivial 3-cocyc1e I E Z3(Z2, Ii Ji/Z), as 

described in (8.2.8), preserving the pentagonal equation and unitarity. Fo~  the inVariant 

'1 associated with these data, we find 

;1 = e211"iJ(o,Q,o) F(PIPI,PbPl)l = - F(Pl,PbPI,Pl)l = - :1' (8.2.54) 

where Q = grad(pl) is the_non-trivial element in 1!:2, so that cl'l is pr~cisely the invariant 

for 1= k + 1, and the resulting structural data are equivalent to those of Uq(•.z2), with 

:I:~  

q = -e l+2 

Once we have unitary F.matrices, we can implement a C··ltructur~  u fdlo"', Wt 

define a positive definite inner product on each of the basic spaces, AIor(k, X), with 
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k E J and X E Obj, and denote by., with 

• : Mor(k,X) --+ Mor(k,X)· = Mor(X, Te), (8.2.5~ 

the associated involution. This involution extends uniquely to * : Mor(X, Y) ­

Mor(Y,X). by (IJ)· = rr, yielding a C·-structure on C. ;We consider the mal 
1 

P(X, Y) E Enel(X 0 Y) defined by the equation 

P(X,Y)(IoJ)K = (K·(I*or))·, (8.2.56: 

for I E Mor(i,X), J E Mor(j,Y) and K E Mor(k,i oj). It is immediate from 

(8.2.56) that P(i,i) = llio;, for i,i e J. For i E Mor(i',X)! i E Mor(j',Y), and 

i< EMor(lc', i' 0 j'), we obtain the relation 

(io i) 0 KrP(X, Y)(I 0 J)K = 5iiI5jj/6u/(i, I}(i, J)(K, K}, (8.2.57) 

so that P(X, Y) > 0 as an element of the C·-algebra End(X 0 Y). Hence there are 

-isomorphisms C(X, Y) EEnd(X, Y), with P(X, Y) = C(X, Y)*C(X, Y) and C(i,j) = 

llioj, for i,i E J. If we apply the natural transformation (id, 11, C) to this category we 

find that (8.2.56) holds with P = 1, and, by semi-simplicity, we :conclude that 

(A 0 B)* = A* 0 B· , (8.2.58) 

lor any A E Mor(X, X') and B e Mor(Y, Y'). Since C(i,j) =][, the F-m~trices  do 

not change under this change of tensor product. Thus, if the inner product chosen on 

Mor(k, X) coincides, for X = i 0 j, with the one determined previously, the F-matrices 

are also unitary in the new category, based on (8.2.58). With these two ingredients, it 

is now easy to show that o(X, Y, Z) is unitary, too. 

From the explicit formula (5.23) for highest wejght vectors in tensor products we ~ee 

that, for il = h andi = 0, 

TfJi (g-1 ® 1)8). , (8.2.59) 
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rith 9 = (-'q)-h, S2(a) =gag-1,"). e HomU,(.l2)(1, V).+l @ V>.+d and T(v @ w) = 
} @\I. For the element"l e HomU'("2)(V).+1 ~  V>'+l' 1), with 

(1 @ "1)(">. (1) = (171@ 1)(1 0 ">.) = B>., (8.2.60) 

we find from (8.2.59) that 

d).:= "1">. = trVl+1(g-1) = (-1».().+1), = ().+l)_q. (8.2.61) 

Hence these quantities coincide with the ones defined by the recursion (8.2.2). This 

could also be derived from the existence of a blLlanced, braided structure, and thus of 

cyclic traces, compatible with the tensor product. It is of special interest to observe 

tha.t 

dk_ = (_1)'+1:+1 dj •� (8.2.62)j 

....1 
±­

If we denote by CIc,1 the category obtained from Uq(S12)' with q = e 10+2, I = 1, ... , 

le +1, (I, le +2) = 1, the uniqueness assertion shows that there exists an isomorphism 

(id,F,C) : CJc,l -+ Cl:',ll 

only if le = le' and I = I'. However, in order to prove that all Cl:,l are inequivalent, we 

have to consider isomorphisms 

«(,F,C) : Cl:,l -+ C/cl,l'� (8.2.63) 

where ( is an arbitrary fusion rule algebra isomorphism. Clearly, this is only possible 

for le = le', Also we need to have that dj = d((j)' So if (I) = 1 we also have 

tha.t d1 = d~, and hence I = I'. The isomorphism' also has to preserve the Perron­

Frobenius eigenvalue, dr-F., of the fusion rule matrix, i.e., dr-F. = d[<J)" This implies 

that (U) e {j, lc- j}. Moreover,' has to preserve the gradation, i.e., (U) == i mod2. For 

odd le, (j) = j is therefore the only possibility. For even le, we also have (Pj) = p{ 0Pj, 

as fusion rule algebra isomorphism. In the last case, I has to be odd. Bence, by (8.2.62), 

\.,~ 

'1 = 'l:-1 =d(1)' Since the existence of (8.2.63) implies that d(i) = dj, we find that 
'Jloo. 

d'1 = db and thus' = 1'. This proves that all categories C1r.,h for different pairs (le,l), 

an lfI~~ml,  

o 

Next, we supplement the classification of monoidal categories with An-fusion rules by 

a.n� investigation of the possible braided structures for these categories. More precisely, 
! 

we show that if the fusion rule algebra Obi is generated "by an irreducible object, p, with 

pop = 1 + tP, ,p € J, then" the obstruction possibly present in the modified hexagonal 

equations and described by H 5 (Grad(Db;), 2j U(I» vanishes. Furthermore, we show 

that the possible fusion- and braid matrices {or the fundamental object p can all be 
" , 

obtained from Uq{sI2)' A general argument, often referred to as, Clcabellng", then shows 
I 
I 

that the entire braided category is isomorphic to the semisimple'category obtained from 

Uq(SI2)' The fir.st result is obtained by solving a set of simple, Lgebr!Lic equations. 

LEMMA 8.f..l 

SuppOJe C iJ a JemiJimple, monoidal category with objectJ Obj I' and let p e J C Db; be 

an irreducible object with 

pop=l+tP,� (8.2.64)I 
! 

where .,p EJ. Denote by 

; 
I 

F(p,p,p,p) El1 Mor(s,pop)@M01'(p,po,) -+ 61 M01'(',p 0 p)@M01'(p, 8 op) 
~=1~  " ,=1,1/1 I 

" (8.2.65) 
\ 

the fundamental fuJion malm. Con"ider the modified hezagonaJ equationJ: 

l(ED r(p,p,,) @1I)F(p,p,p,p)( EB r{p,p,s) @ ll) 
.=1,'"� .=1,'" 

(" 

= F(p,p,p,p) ( EB 110 r(s,p,p)) F(p,p,p,p) , 
.=1,tP ; (8.2.66) 
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"', (EB r(p,p,,)-l ~][)  F(p,p,p,p) (EB r(p,p,,)-10][) = 
. ,=1,. '=1,. 

= w- F(p,p,p,p)( EB ][ ®r(p",p)-l) F(p,p,p,p). 
'=1,. (8.2.66a) 

TheJe equationJ have a Jolution with r(p,p,,) E End(Mor(",p 0 p)), with r("p,p}, 

r(p,,,, p}-l E Hom(Mor(p" 0 p},Mor(p,p 0 ,}), and r(l,p,p}(l p} = r(p,l,p}(l p} = 1p 

if and only if 

w- = 1. (8~2.67)  

Up to natural gauge tranJformationJ, the Jol-ution iJ uniquely determined by the invariant 

t E c· defined by 

r(p,p,'f/J) =: C l ][Mor(1/I,pop)' (8.2.68) 

A Jolution to the modified hezagonal equationJ, eziJtJ for t E c· iiJt4 # -1. There eziJu 

a gauge and a choice of baJiJ in the morphiJm JpaceJ Juch that the matriz elementJ of 

the r'J and F '" are given by the following formulaJ: rep, p, 'f/J) i" given by (S.!. 68), and 

r(p,p, I} = t3 , 

r('f/J,p,p} = r(p,'f/J,p) = - t4 , 

F(p,p,p,p}l = - F(p,p,p,p)~  

1 
- (2}t2 ' 

F(p,p,p,p)~ = I, 

1/1 (3)t2
and F(p, p, p, ph = -,--2 . (8.2.69) 

, «2)t2 ) 

Proof. 

We begin by recalling some properties of the linear transformation F(p, p, p, p) given 

in (8.2.65). As before, we may use the canonical element I p E End(p} to associate to 

the matrix block (F(p,p,p,p»~  a unique element in End(Mor(l,p 0 p)) and thus a 

c-number. Rigidity, eq. (8.2.1), implies that this number is non-zero. Hence we can 

define an invariant dp E c· of the category C by the equation 

d;I][Mor(l,pop) = (F(p,p,p,p»~  = (F(p,p,p,p)-I)~, (8.2.70) 
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where the second equality in (8.2.70) follows from (8.2.1). Conc~rning the bilinear form 

PI, defined by 

PI : M ore'f/J, pop} ® M or(p, 'f/J 0 p) -+ C 
! 

I®J ~  (1®171)F(p,p,p,p}-I([@J), 
I (8.2.71) 

as in (8.2.3), we know from the proof of lemma 8.2.1 that it is ~on-degenerate, with an 
, , 

explicit inverse given by (8.2.12). This shows that the matrix bl~ck  (F(p, p, p, p)-1) ~  # 
!0, and hence the linear transformation 
i 

- ' i 

F(p,p,p,p)~ : Mor('f/J,pop)0Mor(p,po'f/J) ~  IMor(l,pop)~End(p),  

(8.2.72) 

does not vanish. Furthermore, the isomorphism F(p, p, p, p} is constrained by the pen-

tago~al  equation J, 

(F(p,p,p,p) ®][)( E9 ][ ~ F(p, ",p, 1»)(F(p,p,p,p) @ n) = 
'=1,. 

= (E9 ][ 0F("p,p, 1» T12 ( EB ][ @ F(p,p,,,, 1» , 
..=1,. ,=-1,1/1 (8.2.73) 

which, incidentally, also implies (8.2.70). We define isomorphisms t, : Mor(p, sop) -+ 
i 

M or(p, po,,) by setting 

F(p,,,,p,l) = t, @][Mor(I,pop) , (8.2.74) 

so that tl == ][En.d(p)' Furthermore, we define an isomorphism FE End(E9, Mor(",po 

p) @ M or(p" 0 p)) by 

F := F(p,p,p,pHEB II @ 4>,) . " (8,2.75) 

From the pentagonal equation (8.2.73) we conclude that 

F2 :i:: EB >'.. lI, . (8.2.76) 
.=1,1/1 ( 

is diagonal with respect to the one-dimensional subspaces corr~sponding  to the chan­
! 

nels" = 1,'f/J. Clearly we have that >'1 == I, since F(I,p,p,l) = F(p,l,p,l) = 
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F(p,p,l,l) =:n. Of course, the diagonal matrix (8.2.76) has to commute with the 

F-matrix which by (8.2.72) is non-diagonal. We conclude that (8.2.76) has to be a 

multiple of the identity, i.e., since .\1 =I, we h..ve that F2 = I, or 

F(p,p,p,p)-l = (EB:n ® ~,)  F(p,p,p,p)(EB:n ~  ~,)  . (8.2.77) , , 
Inverting eq. (8.2.66) and inserting (8.2.77) yields: 

(EBr(p,p,8)-1 ~:n)  F(p,p,p,p)(E11r(p,p,8)-1 ~  11) 
" , 

= F(p,p,p,p)(EB 11 ~ (<<P, r(8,p,p)-lcp,))F(p,p,p,p). 

• 
If we compare this to (8.2.66a), we find that 

w- r("p,p) = t, r(p,8,p) ~•. (8.2.78) 

For.. = I, (8.2.78) implies (8.2.67), i.e., triviality of the H5 (Grad(Obj),2j U(I»)­

obstruction if p generates Obi. Conversely, for w- = I, and with eqs. (8.2.77) and 

(8.2.78), any solution to (8.2.66) turns out to also be a solution to (8.2.66a). Besides 

the invariants rep, p, 8) and dp, we introduce a fourth invariant, 'II E C·, by setting 

'II 11Mor(p,,pop) := ~;l  r(tP,p,p) = r(p,.,p,pr~,p  . (8.2.79) 

With the diagonal matrices D, Q E End(EB, Mor(s, pop) g Mor(p,s 0 p» given by 

D := diag(r(p,p,I), r(p,p,1/J» and Q := diag(l,y), we can write the hexagonal 

equation as an equation between endomorphisms: 

DFD = FQF. (8.2.80) 

Using that F2 = I, we infer from this equation that DQ commutes with F, and since 

F is non-diagonal, DQ .is a multiple of the identity, i.e., 

rep, p, 1) = 'II r(p,p, 1/J) . (8.2.81 ) 
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Using that F :F ±:n, we also find that 

det(F) = -1 and tr(F) = O. (8.2.82) 

Hence, from (8.2.80), 

det(D)2 = - det(Q) , 

2 : 2or 11 = - r(p,p, 1) rep, p,,p) . (8.2.83) 

The general solution to (8.2.81) and (8.2.83) can be parametrized by a number t E C· 

with the property that 

r(p,p,l) t3, r(p,p,tP) '= _r l , 

r(,p,p,p) = _t4~,p, r(p,tP,p) = _i4~~1.  (8.2.84) 

From (8.2.70) and (8.2.82) we find that 

1 
Fll = - F,p" = d ' . (8.2.85) 

p 

If we take the trace on both sides of (8.2.80) we obtain, with (8.2.85) and F2 = I, the 

relation 

1 (2 2)d r(p,p,l) - r(p,p,tP) 1 + 'II, (8.2.86) 
p 

which, by (8.2.84), yields the expression ] 

dp = - (2)t2 • (8.2.87) 

Forarbitrary"p E Mor(I,pop) and"" EMor(I,1/Jo1/J), wene~t determine basis vectors 

I E Alor(p,1/J 0 p), J E Mor(p, r:ho 0 1/J) andK E Mor(1/J,p 0 p) such that F{p,p.,p,p) 

has the matrix elements given in eq. (8.2.69), and, in addi~ion, that 

F{1/J,p,p,l)t = F(p,1/J,p,l): F(p, p, ,p,l)~ 1. (8.2.88) 
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, " 

The morphislIl8 I, J and K are unique up to a change of sign, I, J, K -+ -I, -J, -K. 
tlo\' 

We first determine K and I from the equations 

F(tP,p,p, l)(K 0"1/1) = I ~"p  

1
F(K01) - -'- K 0 I + "p 01 p • (8.2.89)

tIp 

These equation. have unique solutions K and I, up to a sign. The last matrix element 

of F in the basis {"p 01p, K 0 I}, 

1 
F,pl = 1 - tIp2 , (8.2.90) 

is obtained from tIet(F) = -1. The condition that F(p,tP,p,l): = 1 means that 

J = ~1/I(I), (8.2.91) 

which, together with (8.2.75), yields the formulas for the matrix elements of F(p,p,p,p) 

given in the lemma. Using (8.2.91) in (8.2.84), we also find the formulas for the r­

matrices. Finally, the equation F(p, p, tP, 1): = 1 follows from (8.2.88). The fact that 

these matrices provide a solution to the hexagonal equation (8.2.66) can be verified by 

direct computation or by the observation that these data are identical to the ones for 

2Uq(,Z2), q = t . 

O· 

The observation, made in Lemma 8.2.4, that the braid- and fusion matrices of the 

fundamental representation p coincide with those of Uq(,12) is, in fact, sufficient to infer 

that the entire category is isomorphic to the one obtained from Uq(,12). This insight is 

based on the following cabeliIlg argument which is an easy consequence of the hexagonal 

equation. 

LEMMA 8.!.5 

Supp08,e C and C' are braided ten"or c4tegorie" for which there e:ci"b an i"omorphi8m 

«(,.1', C) : C -+ C' (8.2.92) 
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between monoidal categorie.. kuume that T C J i" II "et of ifreducible object" which 
I 

generate Obi and for which the equation 

.r(t(I,,» = 0(,,1) t'«((t}, (,») O(t,,)-I, 'V t,' ~  T, (8.2.93) 

hold•. 

Then {8.!.9!} i. al"o an uomorphi.sm betwe~n  braided categorie". 
I 

Proof.� 

11;1 order to prove Lemma 8.2.5, we need to verify that .� 

.r(t(X, Y» = O(Y,X) t'(((X), (Y)) O(X, y)-1 (8.2.94) 

I 
holds for each pair, (X, Y), of objects. Since both isomorphisms~  t and t', are isotropic 

! ' 
it follows that, for subobjects X C X and Y C Y, (8.2.94) holds for (X, Y) whenever it 

:; 

is true for (X, Y).Conversely, if W = Xffi Y and (8.2.94) hold~  for (Z, X) and (Z, Y) 

it also holds for(Z, W). If we apply .r to the hexagonal equation 

t(X 0 Y,Z) = 

= a(Z, X, y)-1 (t(X, Z) 0 1) a(X, Z, Y)(l 0 t(Y, Z)) a(X, Y, Z)-l 
; (8.2.94)
I 

and use the fact that (',.1', 0) is a monoidal functor, so that F' satisfies ~ equation
.! ' 

analogous to (8.2.94), we find that (8.2.94) holds for the pair (X 0 Y, Z) if it holds 

for (X, Z) and (Y, Z). Similarly, the pairs solving (8.2.94) dose under taking tensor 

products in the second arguments. Thus, if by assumption (1,,) is admifsible, for 

1,'- E T, then we can build any objeetX from' E T by a succession of st~ps  which 

preserve the validity of (8.2.94). Hence (t, Y) is admissible, for every t E T an~  Y E Obi. 

Applying the same argument to the first argument, we can prove (8.2.94) for all pairs. 

This completes the proof of the lemma. 
)" 

o .I , 
Combining Proposition 8.2.3, Lemma 8.2.4 and Lemma 8.2.5, we arrive at the follow­

ing result on braided tensor categories with An-fusion rules. 
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PROPOSITION 8.!.6 

For every I E 7l4(A:+2)' with (I, Ie + 2) = I, there ezi.sb a unique quan~um category CIe,' 

with AA:+l-fu.sion 'rule.s (Ie > 1), and uti.sfying 

(8.2.95)r(PbPbP2) = ezp (- ~'II"i  4(1e ~ 2) . 
It i.s i.somorphic to the .semi-.simple category obtained from Uq(SI2), with q,1/2 = 

ezp (2'11" i 4(A:~2))' 

Two categorie.s, Cl,' and Cl,ll, are i,somorphic IU braided categorie.s iff I = I'. They 

aTe i.somorphic a.s monoidal categorie.s iff 

l' == ± I mod 2( k + 2) . (8.2.96) 

The category Cl,' i.s i.somorphic to a C· -category iff 

I == ± 1 mod (Ie +2) . (8.2.97) 

Thi.s i.s the complete li.st of quantum categorie.s with AIe+l -fu.sion rule",. 

The category Cl," ha.s the invariant" 

211" i 1 ),.
r (Pj,Pj, 1) = ezp ( -'-- . J'(,' +2) =' e2",,8j (8.2.98)

4(1e +2) ., 

for j = 0, ... ,Ie. The 9;'" are balancing pha.se.s for CIe," The only further balancing 

.structure i.s given by the pha.se.s 

AI j , 
Uj :: 8j + 2" mod 1 . (8.2.99) 

Proof.� 

From Lemma 8.2.4 (with P = P1 and,p =P2) we know that, for some given r(P1,PbP2)� 

= - t-1, the matrices F(Pb Pb Pb PI) and r(pt. Pt. 1) are uniquely determined up to� 

natural equivalence. In particular, for the invariant d1 of Lemma 8.2.1, we have that� 

d1 = '- (2)t2 • 

385 

• 

The restriction on dl given in eq. (8.2.5) of that lemma is equival~nt to the condition 

'i ' 
(8.2.95) for the value of t. Hence, for any of these values of t, we find, according to 

Proposition 8.2.3, a unique monoidal category. With given eigenvalues, r(Pl', Pl, 1) and 

r(pt.PbP2), of e(PlIPl) E End(p1 0 P1) ~ e1 eel, we see that (8.2.93) holds for 

T = {PI}. Since Pl generates all objects of the category we concl':lde from Lemma 8.2.5 

that, for a given value of t, one can find at most one braided structure on the given 

monoidal category. Thus, for a given r(pt. Pt. P2) as in (8.2.95), there exists at most 

one braided tensor category. Each of these possible categories' does in fact exist and 

can be obtained from the representation category of Uq(SI2)' for the given value of ql/2. 

This is easily verified by applying the transformation T'R, (where 'R is the universal 

R-matrix 0{Uq(SI2» to the highest weight vector e~/2  ® e~/2 E Vl ® VI corresponding 

to the eigenvalue ql/2, Le., t = _ql/2. This proves existence and uniqueness 'of the 

categories Clc,l' In order-to compute the invariants r(Pj,Pj, 1) we simply compute the 

eigenvalue of TR for the invariant vector e~  E "i ® l'J, given by 

, .-, 

fJj':: d = 
;/2
:L (_q)(j/2-m)etn+l~e~~i 

m=-j/2 
(8.2.100) 

(compare to (5.23) for highest weight vectors). Using the equation (a®l)fJ; = 1®S-1(a) 

and eq. (8.2.59) for an element g satisfying (6.94), we see that 

T'RfJj = T(l ® 1I.)'''j = (ug-1 ® ][)fJj , ,,' 

where 11. is as 'in the definition of a ribbon~graph Hopf-algebraj see (6.92) and (6.93). 

It follows that the special central element v = 1I.g-1 acts on l';.like r(Pj,Pj, 1)][. By 

(6.93), this implies that the phases 8j given in (8.2.94) are indeed balancing, i.e., that 
J 

r(Pi,Pj,PIr.) r(Pj,Pi,Pl) = e2"'i(8,+8j -9,)c • 

If the braided category Cl, ' is a C·-category then the corresponding monoidal category 

is a C·-category, too, and hence condition (8.2.43) of Proposition 8.2.3 must hold. If 

386 



- -

, . 
CIc,l is a O·-category, as a monoidal category, then the projections in End(Pl 0 PI) 

,.,'" have to be selfconjugate, and, using that Ir(PltPlt 1) 1=1 r(Pl,PlIP2) 1= I, it follows 

that e(PltPI) is unitary. From the iterative construction of all the other isomorphisms 

t:(X, Y) obtained from the cabeling formula (8.2.94) and orthogonal decompositions of 

objects, we find that all e(X, Y) are automatically unitary. Thus, for the values of I 

given in (8.2.97), which i~  consistent with (8.2.7) of Lemma 8.2.1, the category CIc,l is a 

O·-category &I a braided tensor category. This completes the proof of the proposition. 

o 

The example k = 1 has already been studied in section 7.4 by observin~ that the 

A2-algebra is just a z2-fusion rule algebra and by noting that 8-categories are classified 

by Hom(r4(Z2), U(I» ~  Z4. A z...algebra is also contained in CIc,Z, for a general 

Ie > I, which contains the invertible object Pic. The structural data of the corresponding 

subcategory are given by 

lei 
8 == - modI,

4 

and F(plctplc,plc,plc) = di1 = (_I)lcl. 
(8.2.101) 

The results stated in Proposition 8.2.3 and Proposition 8.2.6 can be used to find all 

the categories with An-fusion rules. To this end, we observe that A2n ~  An X Z2. The 

corresponding graded projection (n : A2n - An, and the injection i : An ~ A2n, with 

(n oi = id, are given in Lemma 7.3.4, ii). We have that leer«(n) = {l,P2n-I}. Suppose 

now that Cis a (braided) monoidal category with An-fusion rules. Then there is a unique 

number I, I = I, ... ,2n (1 E Z4(2n+I)' with (1,2n +1) = 1),respectively, such th~t  C 

and (n induce CIc,1 as a (braided) monoidal category, for Ie =2n -1. The z2-subcategory 

of the induced category has to be trivial. Having the explicit data (8.2.101), and with 

Ie = 2n - I, this property can be expressed in terms of I as follows: 

- 0 mod2, for monoidal categories j 

_ 0 mod4, for braided categories. (8.2.102) 
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Conversely, if, for C2n- l ,l, the Z2-subcategory is trivial as a monoidalcategory, then we 

can use formulae (8.2.11) and (8.2.12) for the dependence of the r- and F-matrices on 

the Z2-action. Since Grad(An) = 1, we also have that {J == I, e== I, and 'Y : An -+ A2n 

is precisely the injection i of fusion rule algebras, and, finally, '1(i) = prad(j). It 

follows immediately from equ. (8.2.11) that C2n- I ,l is induced, as a monoidal category, 

by some category with An-fusion rules and (n. If, in additio~,  the Z2-subcategory of 

C2n~1,1  is trivial as a braided category it follows from equ. (8.2.12) that C2n- I,1 is also 

induced as a braided category by some category C with An-fusion rules. We thus have 
; 

established a one-ta-one correspondence between categories CWith An-fusion rules and 

categories C2n- l ,l with A2n-fusion rules, where I is constrained by (8.2.102). Clearly, 

every category C2n- 1,1 contains a subcategory C with An-fusion rUles, as An C A2n' If 

C2n-l,l is also induced by some C', i.e., if there is a functor «(n,F,O) : C -+ C', then, 

since the restriction of Cn to An C A2n is the identity, the restriction of the functor to 

Cyields an isomorphism C~ C'. Hence the An-category associated to C2n-1,l, where 

I obeys (8.2.102), can be identified with the corresponding subcategory. We denote by 

Cn,f the braided category with An-fusion rules which induces C2n_1,4f,with 1E 2:2n+1I 

(1,2n +1) = 1 and n = 1,2, .... The relation between Cn,f and C2n- 1,4f can be written 

compactly as 

C2n- 1,4f ~ Cn,r @ CZ;2,q=O , (8.2.103). 

where the functor yielding (8.2.103) extends the isomorphism A2n ~  An ><: Z2. Any 

monoidal category C with An-fusion rules induces a monoidal category C2n-1,l'witli 

A2n-fusion rules, where, by eq. (8.2.102), I = 21 mod4(2n + I), with 1 E; 7""2(2n+1)' 

Following eq. (8.2.96) of Proposition 8.2.6, this category (viewed as a monoida.l category) 

is equivalent to the one with I = 2(1+ (2n +1)), so that I may always be chosen to be a 

multiple of four, i.e., 1= 4l. However, the category C2n- 141 is induced by en.f alsp as a , , 

monoidal category. By the uniqueness ,of inducin(; categories, this implies that C ~ Cn,r. 

Hence all monoidaleategories with An-fusion rules can be obtained from a braided 

monoidal category by omission of the braided structure. It is obvious from (8.2.103) 
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that Cn,; ~ Cn,l" as (braided) monoidal categories, if and only if C2n- 1,41 ~ C2n- 1,4ll • 

Proposition 8.2.6 impli~s  that this is the case if and only if I = i', for the braided 

situation, and 1== ±i' mod(2n+1) if we consider only the monoidal structure. Moreover, 

(8.2.103) shows that Cn,I is a C*-category iff C~n-l,41 is one. Finally, we remark 'that, 

by the in'Variance of the Z2-action, the in'Variants of C2n_l,4lsatisfy 

r(Pj,Pj,p,) = r{P2n-l-j,P2n-l-j,p,), for' = 0,2, ... 2min{i,2n -1- j) . 

In particul~,  £(Pll PI) has the same spectrum as t(P2(n-l)' P2(n-l»' where P2(n-l) is 

the generator of An with Perron-Frobenius dimension less than two. We summarize 

these conclusions, derived from Proposition 8.2.6, in the following corollary. 

COROLLARY 8.!. 7� 

Let P be the canonical generator of the An-ju"ion rule", with pop = 1 + '1/1.� 

(i)� For every IE Z2n+l, with (f,2n +1) =IJ there ezi"tJa unique quantum category, 

en,IJ "uch� that 

r(p,p,'I/I) = ezp (- 21ri 2n ~  1) . (8.2.104) 

Thi" give" the complete li"t of quantum categorie" with An-ju.sion rule.s. They are 

C· -categorie.s iff 

I == ± n 2, mod(2n +1). (8.2.105)' 

For each Cn,I, there iJ a unique Jet of balancing pha"eJJ 80., given by 

e2ri9Q = r(a, a,l) j� (8.2.105a) 

2ri9pe.g., e = ezp(61rifj(2n +1»). 

(ii)� Every rigid, monoidal category with An-fu.sion rule.s i.s obtained from a quan­

tum category by omi".sion of the braided .structure. We have that C I ~ Cn,I', a.sn, 

monoidal categorie"l iff 

IE ±P mod(2n+l). (8.2.106) 
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They are C* -cdegorie.s iff (8.1.105) hold.s. 

(iii) The category Cn I u i.somorphic to the .subcategory of the '.semi.simple quotient of 
I , 

the repre.sentdion category of U~{"2),  ql/2 = eZP(21rifj{~n + 1»), generated by 

the (2n ­ l)-dimen.tional repre.sentation P = V2(n-l)' 

, '" 

At this point we have all the technical insights that allow us to classify all possible 

quantum categories with untwisted fusion rule algebras given by' Zr *An and Zr *A2n-l 

as subcategories of products of Uq(,12)-categories and 8-categories of cyclic groups. The 

simplest result is the following theorem. 

THEOREM 8.!.8 

Let z,. * An ~  z,. X AnI with r, n ~ 1, be th~ ju3ion rule algebra "pecified in eq. (7.1!7) 

of Theorem 7.3.11. 

For every i E Z2n+1 with (T,2n +1) = 1 and every q E Hom(r4(Zr),U(1», we can 

define a quantum category 

Cn,r(I, q) := CZr,q ® Cn,I (8.2.107) 

with the juJion rule.s .specified in the hypothe"u. 

(i) The categorie.s £!n,r{f, q) con.ttitute the complete li.st of quantum categorie.s with 

Zr * An-ju"ion rule.s. If there i.s an iJomorphiJm of quantum categorie.s 

«(,.r,C) : £!n,r(T,q)- £!n,r(i',q') I (8.2.108) 

then ( i.s uniquely determined by it.s re.striction, (0 : Zr ~ z", to the .subgroup of 

invertible objectJ.Furthermore, 

and 

I 

q 

= 1', 

(0 (q') . (8.2.10~) 

(ii) There ezi"t" an i.somorphi"m 

categorie.s if and only if 

of the form given in (8.!.108) between monoidal 

and 

f E f i' mod (2n +1) , 

S* 0 (1'4 1)*(q) = S· 0 (1'4 1)*(q') . 
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.. .~ 

where Sand 74 Are 41 in .section 7.4, end the monoidal .structure.s" 
.,1,1('( 

im S· = 2(H3(Zr,lj IR/Z») ~ Z(2,r), 

of the two categorie, are identified by the unique ilomorphi.sm between them. 

(iii) The category Cn,r(f,9) iI O· iff 

r == ±n2 mod (2n +1) . (8.2.111) 

It i.s ,Ilway.s balanced, end the po.s.sible bG.lancing pha.se.s are given by Z2-grading.s, 

t E Hom(Zr, Z2), 0/ the group of invertible element.s. For an irreducible object 

JEAn and a tT EZr, they are given by 

e:cp(2'fi 8(tT,j» = r(j,j, 1) q(tT) e(tT) . (8.2.112) 

Proof. 

For the graded subgroup, R ~ Zr, of invertible objects we have that grad: R -+ 

Grad(Obj) is an isomorphism, Le., Grad(Obj) = 1. In particular, we have that the 

obstruction ~·(w)  from equ. (8.2.61) is always trivial. Thus, if C is a category with 

z,. * An-fusion rules it follows from Corollary 8.1.14, ii) that there exists a quadratic 

function q E Hom(r.(Zr),U(l») such that C ~ CfJ, and Cis induced by a category Cn,l 

with objects Obj = Obj/R = An and a homomorphism 'fR: z,. *An -+ An: (tT,j) -+ j. 

From formulae (8.2.4) and (8.2.5) for the structure constants of a product of categories 

we see that the r- andF-matrices of Cn,r(f, q == 1) are invariant under the z,.-aetion. 

Hence C",r(l,l) is also induced by 'fR and a category on An which, by companson 

of structural data, e.g., of r(p,p,,p), has to be Cn,1' By the uniqueness of induced 

ca.tegories, it follows that C~ Cn,r(l,1). Clearly, we have that 

Cn,r(l, qllfJ:a ~ Cn,r(f, ql . q2) . (8.2.113) 

Bence, in particular, C is of the form (8.2.107). An isomorphism ( : fi'..,. X An -+ 7.'..,. X An 

has to map the ungraded subalgebras An onto each other. Since all objects in An 
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have different Perron-Frobenius dimensions, this map from An ~o An, denoted by I, is 

uniquely determined. Moreover, ( has to map invertible objec~s  to invertible objects. 
I 

Hence its restriction to Zr, (0 : Zr -+ Zr, is a well defined group isomorphism. It follows 

that, for i E An and tT E Zr, ((tT,i» = «(o(u), fU», i.e., , is unique for a given (0. 

For the canonical generator p of the ungraded ,An-subalgebra satisfying pop = 1 +,p, 

the fact that «(,.1",0) is an isomorphism of braided categories ihiplies that rep, p,..p) = 

r'(J(p),I(p),/(,p» (see (8.2.104», and hence that 1= P. Furthermore, theisonrorphism 

(8.2.108) imposes on the quadratic, invariant functions q and q' the equation q(u) = 
q'«(o(u» , for all invertible objects tT, Le., q = (O(q'). Conversely, if (8.2.109) holds we 

have (according to section 7.4) an isomorphism «(0, .ro, Co) : Ctr,q ..... Cz"fJ' which, when 

tensored with the identity on Cn,T' yields the isomorphism (8.2.108) for the product 

categories. 

For the proof of part ii) of the theorem it is sufficient, as in the case ,of braided 

categories, to show that there exist isomorphisms for the categories associated to the 

trivially graded objects and for the categories associated to the invertible objects. As a 

first condition 1Ve obtain eq. (8.2.106) of Corollary 8.2.7. If (0: Zr ..... Zr is the restriction 

of' to the invertible objects it induces an isomorphism, ,t :im S· 0 'Y41(1'4(Zr)) ..... 

im S· 0 'Y41(r4(Zr»), and the two categories are isomorphic 'iff ,f(s· o ,'Y41(q») = 

S·074 1(ql). Since the group on which ,t is defined, is either {1} Of 2:2, it is independe.nt 

of (0. Hence the requirement in (8.2.110) is also independent of (. 

To prove part (iii) we remark that Cn,r(l,q) is a C·-category if and only if Cn,f aild 

C:.,.,q are O·-categories. Since 8-categories always carry a C·-structure, we are left wit~ 

condition (8.2.111), as in eq. (8.2.105) of Corollary 8.2.7, i). A set of balancrng phases 

of a product category is given by the product of balancing phases of the individual 

categories, e.g., by the phases given in eq. (8.2.105a) of Corollary 8.2.7, i), for theen,r­

factof, and the quadratic function (7.296), for the.Cz",q-factor. Taking into account that 
;: 

distinct sets of balancing phases can ohly differ by Z2-gradings, we arrive at (8.2.112). 

o 
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Notice that the fusion rule algebra isomorphism 

,: 2:2XAn -+ A2n: (t,;) ...... pio; (h=2n:-l) 

extends to an isomorphism of braided categories, 

«(,F,O) : (!n,2(r,Q) -+ C2n- 1,' , 

if and only if 

1 == n2l mod (2n +1) , 

. (2n- 1)1 ,2) .and q(j) = e:z:p 4· J , J e 2:2' 
(8.2.114) 

The basic strategy to describe the categories associated to the z,. *A2n-l-fusion rules 

relies on the fact that 

Zr *A2n-l ~  Z2r(g) x A2n-l 

(k,p) ...... (grad«1c,p»,p), (8.2.115) . 

is an inclusion of fusion rule algebras, see (7.255). Here grad«k, p» 921:~  , where 

E = 1 ifp is graded non-trivially, and E = 0 otherwise. A large class of braided tensor 

categories with z,. * A2n-l - fusion rules is therefore provided by the subcategories of 

the product categories CZ2r ,q ® C2(n-l),1 . For a given q e Horn(r4(Z::2r ). U(l» , and 

I e Zan with (1,2n) = 1 , we denote this subcategory by Cn,r (1, q) . It is obvious from 

the definitions that 

Cn,r (I, qdq~ = Cn,r (I, 91 . 92) , (8.2.116) 

for any pair 91, q2 E Hom(r2(7l.2r) , U(l». The subcategory associated to the 

graded fusion rule subalgebra, :?".,. C ::r..,. * Ani is characterized by the restriction, 

i·(q) e Hom(r4(17..,.) , U(1» , of the qudratic function 9, where i : 17-r ~ Z2r is the 

monomorphism obtained from (8.2.115). 

Notice that, for a quadratic function w E Horn(r4(7l.2) , U(l» , given by 

w(j) = e:z:p (21ri:;2) (h=2n-2), (8.2.117) 
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~I\lIlfor some T e Z4, we have by composition With the invariant (8.2.95) 

(Cl.')t.1 ~  C1:.(l-.,.(1+2» '/ (k =2n - 2) ; (8.2.118) 

i 

This isomorphism can be used to generate an equivalence ofthe higher graded categories. 

To this end, we consider the folloWing commutative diagram of inclusions, where we only 

assign the fusion rule algebra monomorphisms to the arrows: 

id ~  (grad", id) 
CZ:lr,1l ® CZ2 .t.1 ~ C2(n-l).1 C~r,f  ® ~~(n-l)" 

J6®id 

CZ2r ,Il'1r"(t.1) ® C2(n-l).1 CZar ,1l ® C2(~-I).(1-2n.,.)  (8.2.119) 

]. = j.!(grod,P2) = (grod,Po) 

Cn,r(l, q ·1('·(w» . I ~ Cn,r(I-2nT, q)I 

Here, i is as in (8.2.115), with P2«k,p» = p. Furthermore, the projection map, 

1(' : Z2r - Z2 ,. yields· the quotient by 2(i2r) ~ z,. , and we use the notation 

6(g) := 9 ® 1('(g). Using that 1(' 0 grad = grad!' 0 1'2 , we see that this diagram 

commutes for the fusion rule algebra homomorphisms, and all but the bottom line can 
. . .I 

be extended to inclusion functors of braided categories. There~ore,  the two categories 

in the bottom line are isomorphic to1.he same subcategory and thus isomorphic to each 
I 

other. 

1 
Further equivalences of categories can be obtained from the automorphisms of 

I . 
17'1' * A2n-l. The only non-trivial fusion rule algebra alltomorp~sm  of A2n-'1 is given 

by "Yn which, in Lemma 7.3.4,i)a), is defined by 
• j , 

"Yn(Pj) = Pj 0 (P2(n-l))', . (8.2.120) 

.We denote by (Xv : 9 -+ gV , with (v, 2r) = I, the automorpJsms of 7l.2r ' ~he group 

of automorphisms of 17..,. *A2n-l is then generated by in and aJ which can be uniquely 
I

defined by the commutative diagram 
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I 

I 

.. 4 
I 

I 

In the same way we obtain the isomorphisms 
I 

z,. • A2n-l « i Z2,. X A2n-l 
I 

I 

I~"t,  , . ~ . I 
I 

(o&f,F,C) : Cn,r(l,q) ~ Cn.r(I,Q~(q)) . (8.2.12~(8.2.121)- -f I-~ "Yn I-= iQ&f,O "Yn , Q&f X r 
I 

z,. * A2n-l « i ;~"  X A2n-l With the definition of the Cn,,,(I, q) -categories at our disposal, 
• 

we are in a position ~ 

I 

Iwith E = 0,1 and (11,21') = 1 . More explicitly, 011 and '1n are defined by describe the classification of categories which have the second type of untwisted A-tusiol 

11-1 ) rules, namely the z,. * A2n-l fusion rule algebras. 
I 

I 

IQII«k,Pj» = ( k + (-2-)grad«k,Pi», Pi ' 
I 

THEOREM 8.!.9 II;n«k,Pj)) = (k, "Yn(Pi» , (8.2.122) I 

Let z,. * A2n-l" with r ~ 1, n ~ 2, be the fwion rule 4lgebra$ ~pecified in (7.130) ani 
for k E z,., Pi E A2n-l . 

(7.194) of Theorem 7.9.11. Denote by P the canonical generator with pop = (J + 1/111 
I 

Generalizing formulae (8.2.104) we find, for j 1,2, ... ,k - 1, the values for the where (J i" the invertible object of order r. II 

invariants of CI:,' (k = 2(n -1» 
(i) All quantum categorie~  with Zr *A2n-l ·fuJion rule" are isomorphic to Cn,r(l, q) 

I 
r(Pj,Pj,P2) = - eZP(21ri 4(k ~ 2) (;2 +2; - 4») (8.2.123) for ..ome I E lBn, with (1,2n) = 1, and ,some q E Hom(r4 (Z2r}, U(I». For 

I 

given P, I a.nd q a.re determined - up to the equivalence described in (8.£.119) - b 
from explicit computations of the spectrum of R = Tn on Uq(''/2)-representations. In 

the formulae 
particular, {or k = 2(n -1), we have that 

I . 
l r(p,p, ,p) = - ezp(-21ri -) q(grad(p» ,

r(pl:-l,PI:-l,P2) = - ezp(-211'i En ) , (8.2.124) 8n 
8n 

r(CT, (1, (12) q(grad(p» 
4 

. ,(8.2.129) 
where En E ZBn, with ~  = 1, is given by 

The only isomorphisms between these categories are composition" of those giveTlI if n is even 
(8.2.125)En = { 1+4n if n is odd . in (8.!.119), (8.!.1!7) and (8.!.1P.8), and, for n = 2 and r even, one furthe7 

This shows that there exist functors o!braidedcategories extending in between precisely functor. 

the following pairs : (ii) The category i" a C· - category if and only if 

l:lIf 

hn, .1', C) : C2(n-l),1 ---=--. C2(n-l), E".I (8.2.126) I == ±1 mod(2n). (8.2.130] 

From the functors in (8.2.126) we obtain canonical isomorphisms between the categories There 'are two possible set.s of balancing phase.. for en,r(l, q) : 

Cz.r:q ® C2(n-l),1 and CZp,q®C2(n_l)' tnl, for fixed q, and thus, by completing the square 

ezp(211'i9("p;» = ezp(211'i ~;(j +21) q(grad(s, Pi» fi , (8..2.131;in (8.2.121), the isomorphisms 

l:lIf 

('1n,F,C) : Cn,r(l,q) --=-- Cn,r(En ·I,q). (8.2.127) with,_ E 7..,., Pi E A2n- b ; = 0,1, ... ,2(n -1), and E = ±1. 

395 396 



,"" •� 
roof. 

he fusion rule algebra z,.. A2n-l has a graded subgroup, R := z,.(O'), with generator 

== (1,1), which is included in Grad(Obj) = Z2,.(9) (with generator 9 := grad(p) ) 

y the map a6 ........ g26. It defines the graded fusion rule alg~brahomomorphism  

'If'R : Obi = z,. * A2n-l - Obj = Obi!R = A2n-l , 

(" Pi) ~ Pi (8.2.132) 

o that Grad(Obj) e:r z,.. 

We consider a braided tensor category C with z,. * A2n-l· fusion rules and compute 

the invariant (depending on R) A*(w) E Hom(2Grad(Obj), 22) . Corollary 8.1.14,i) 

states that if A*(w) is non·trivial then r = 2r' is even, and we can find a monoidal 

category on A2n-l and braid matrices r(i,;, It) such that the modified hexagonal 

equations (8.2.76) hold. If we identify all representation labels in (8.2.76) with the 

fixed A2n-l· generator PI, i.c.,[i] = [j] = [k] = [tl = Pl, we arrive at the equations 

(8.2.66) and (8.2.6630) given in Lemma 8.2.4. Forn =/2, 9i = ili = 91 = grad(p) = 1 

(in additive writing), and -r(9i,9j) = 1, we obtain for the prefactor in (8.2.6630) the 

equation 

w- = -1 

This contradicts the assertion (8.2.67) of Lemma 8.2.4. It follows that 

·A*(w) == 1 (8.2.133)I 

for all braided tensor categories with T.,. * A2n-l- fusion rules. Hence, by Corollary 

8.1.14, ii), there exists a quadratic function q E Hom(r4(Grad(Obj», U(l» such 

qthat C ~ C , and C is induced by some ca.tegory C2(n-l),1 with A2n_I-fusion rules 

·and by 7rR. For the category, CZ2fo ,q=o ® C2(n-l),I, with #:2r X A2n-l- fusion rules, 

the subgroup G = {(a, l)}O"EZ:lp ~ 22,. of invertible objects fullfiUs the hypotheses 

of Proposition 8.1.4, since the braid matrices of tensor product of categories have no 
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mixed terIDI, i.e., the monodromy, m e Hom(R~  Gro.d(Obj) , U(l»,aB defined in 

Lemma 8.1.6, is trivial: iii == 1. There therefore exists a category, C, with A2n-l· 
('I" 

fusion rules such that CZ2p ,Cl=O @ C2(n-l)" is induced by C and by the graded fusion 

rule algebra homomorphism,.. : Z2r x A2n-1 ........ A2n-1 : 9 ~ Pj 1-+ Pj. By virtue 

of the incl:usion iG, : A2n-l '-+ Z2, x A2n-l : Pj 1-+ 1 ~ Pj, (1 = neutral element) 

of fusion rule algebras, C2(n-l)" is a subcategory of CZ2p,Cl=O~  C2(n-l),I' and since 

1rGoiG = idAan_1 , the composition ofthe corresponding functors yields C~ C2(n-I),,' 

The inclusion i : Z2,. * A2n-l '-+ Z2,. x A2n-I, given in (8.2.115), then extends to an 

inclusion of the braided tensor category Cn,,(', q == 1) into CZap ,9=O ~  C2(n-I),I' Since 

7rR = 'lrG 0 i, we find that, by composition of this inclusion with the functor onto 

C2(n-l)," Cn,,.(1,1) is induced, as a braided tensor category, by C2(n-I),1 and 'lrR' 

From the uniqueness of induced categories we conclude that C~ Cn,,.(', I), and finally, 

with (8.2.116), we find that 

C ~ Cn,,.(', q) , 

proving the first assertion of the theorem. The invariants i_D. (8.2.129) are simply those 

inherited from CZap ,9 ~  C2(n-l),I' If we denote by rq and ro the braid matrices ofthe 

two factors, then (8.2.5) implies that 

r(p,p, ,p) rq (grad(p) ,grad(p) ,grad(""'» ro(1tR(p), 7rR(P), 7rR('I/J» ,� 

and reO', 0', ( 2) rq (grad(a), gradea),'grade0')2) .� 

Hence, setting PI = 'If'R(P), P2 = 'lrR(t/J" grad(a) = grad(,p) = grad(p)2, and with 

the help of formula (8.2.95), we obtain (8.2.129). 

A generator P of the T..,. *A2n-l- algebra, in the sense of Theorem 7.3.11, is character-· 

izedby the facts that grad(p) is invertible in (i.e., a generator of) Grad(Obj) ~  #:2,. 

and that dp = 2coa('!") . If n f: 2 the only automorphism of T.,. *A2n-l which maps 
2n 

such a generator to itself is the identity, since tensor products with P have at·most. two. 
( 

irreducible summands and the equation pop = a+,p implies that, since 'I/J is Jiot invert­

ible, q is mapped to itself. The only exception from this implication occurs for n ~ 2 
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I ., .', 
I 

I 

and r even. In this case, P2 e A3 is invertible, and an automorphism' on z,. ... A2n"";1 

,., ~, can be defined from the equations '«"pll) = (',PI) and ,«"a)) = (',P2 oa), for 

, E z,. and a E {1,P2}. This fusion rule algebra homomorphism extends to a functor 

!ill 

(',F,C) : C2,r(l,q) --=--.. C2,,.(-I,q'), (8.2.134) 

with 

f (grad(p)) = - eZP(21ri~) q(grad(p» , 

for any even r,anyodd I E :lIB and any q E Hom(r4(Grad(Obj» , U(l». 

Thus, a general automorphism' on z,. ... A2n-l is, for n '# 2, uniquely deterxcined 

by the image, C(p), of the generator p. Since the group {all: II E z2n, (II, 2r) =I} of 

automorphisms on z,. ... A2n-l acts transitively on the invertible elements in the ring, 

Grad(Obj) ~ Z2,., and each graded component contains at most two objects with 

dimension 2co.9( ~) which are mapped onto each other by 7n, we see that the group
2n 

of automorphisms, defined in (8.2.121), acts transitively on the set of generators. This 

proves that every automorphism onz,. ... A2n-l is of the form (8.2,.121) and, for n = 2 

and r even, can also be composed with the special automorphism , defined above. 

The categories en,r(', q) are those with a generator p and an invertible object (1, 

with pop = (1 +"". Let us assume that there is an isomorphism 

!ill 

("F,C) : Cn,,.(l,q) ---=-.. Cn,r(l',q') 

between two such categories. We can always write such a functor as a composition of 

the functors given in equations (8.2.127), (8.2.128) and, for n = 2 I (8.2.134) with a 

further functor for which , maps the objects· p and (1 - and thereby all elements of 

1'..,. ... A2n-l generated by p and (1 - onto each other. For the latter, it follows from 

(8.2.129) that (q)4 = (q')4. A quadratic function q on the cyclic group Grad(Obj), 

with q4 = 1, is always of the form q = 1r·(w), where W E Hom(f4(1?2), U(1» is as 

in (8.2.117), and 1r : 1:2,. - P:2 is the quotient by 2(t'~2r). Hence, for { = q·1r·(w) , we 
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find from the first equation in (8.2.129) that I' == 1+ 2nT mod(8n). For any T E 1:41 

we have already costructed the corresponding functors in (8.2.1~9).  This completes th1 

proof of part i) of the theorem. i I 

I 

The proof of the second part of Theorem 8.2.9 uses the facts that an induced categor~1  

is a C·-category if and only if the inducing category is C· and that (i-categories ar~ 

always C'-categories. This shows that it is sufficient to verify 'the existenee of • C·j 
structure on the A2n-l'" category. Condition (8.2.130) is thus the same as (8.2.97). I 

, I 

The balancing phases recorded in (8.2.131) are simply those inherited from the cateJI 

gory C2l2r ,9 @ C2(n-l)", multiplied with a 22- grading, (', Pj) -+ ~,which  accountsl 

for the only ambiguity in choosing the phases 9(2,p;) , for a given rraided tensor category 

o 

The remaining An - categories we wa.nt to determine are those with 

To(iZr * A2n-l) fusion rules, (see Sect. 3 for definition). The group R of invertible 

elements for this algebra is Z2r and the induced grading, grad: R -+/Grad(Obj), has 

2R as a kernel.Thus, contrary to the previous cases, only the ~ubgroups  of R of odd 
I 

order are graded, and hence, for r = 2P•r' , with r' odd, the order of Grad(Obi), where 

Obi is the image of a graded homomorphism on Obj, is always a. multiple of 2(p+l). 

Fortunately, there is a second way to treat this, situation: 

We shall use the fact tha.t there exists a graded homomorphism from an untwisted 

fusion rule algebra with a higher grading onto the twisted algebra under consideration. 

Before constructing this homomorphism, we must briefly recapitulate the definition of 

To (7':.,. * Obi) and the composition laws described in Definition 3.3.1. To tills end we 
{ 

recall some notations used to describe extensions of cyclic groups. We consider the short 

exact sequence 
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tl 

. 1 
1m"a --+ Zm(u) e...-..!.-....+ Zm,.(v) 

{:Jm,,, 

I 
'lrm"

'1I7l,.(ii) --+ 0 
(8.2.135) 

for Ie; E z,. and Zj 

. such that 

E Db;. We choose a generator, j, of Grad(z,. * Obj) = Za,,(j) 

grad(!:,z» = g(aA:+A.~(9rad(z)))  . (8.2.142) 

,,"J it· 

of cylic:: groups with specified generators, homo~orphismsim,,,(u)  = v" and 'lrm,,,(v) 

ii, and where {:Jm,,, is the section given by 

= 
The product, 0"Y,o, for To (z,. • Dbi) is therefore given by 

{:Jm,r : z,. -+ z"m : ii; ...... v j 
, i = 0, I, ... , r ­

with 1l"m,r 0 (3m,r = id. Further, we define the map 

I, (8.2.136) 
(klJ ZI) 0"Y,o (le2, Z2) = 

= (lei + !:2 + 1a(grad(zl ),grad(z2», Q"Y.,. (""ad(l:lJZ1),9,,ad(A:a,za) 

(8.2.143) 

0 ZI 0 Z2) . 

Xm,r : Zmr ----+ Zm 
Using the identity 

When there is no confusion about the choice of generators we use an additive notation 

with generato! Ii e.g., equation (8.2.137) can be written as 

by im,,(Xm,r(g)) = 9 (.Bm,r(1rm,r(g»))-1 
(8.2.137) I 

i . 
= .Boo,,,(k1) + {:Joo,r(k2) + ;a(grad(z1),grad(Z2» 

I 
- .Boo.,,(k1+ k2 +lo(grad(zd,grad(z2») 

r ;a,,(grad(klJ zd, grad(k2, :1:2» = (8.2.144) 

j == {:Jm,,,('Il"m.,,(j» + im,,,(Xm,,(j» mod(mr) , we showed in (3.48) that 

for; = 0,. .. , mr -1. We also define the cocycle ;0 E Z2(Zc(g) , z) by 

.. {I, a 5. i +; < 2a, 
lo(i,i) == lo(g"gJ) =0, 0 5. i +; < a I 

mod(am) ,6{:Jm,o == a;a 

with i, i = 0, I, . .. , a-I. Then 

(8.2.139) 

(8.2.138) 

(8.2.146) 

(8.2.145)z,. • .,0(06i) -­ "o,.(z,. *Obi) :(k, z) 1-+. (Ie, a-tJOOj,.(1:) 0 z) 

is a fusion rule algebra homomorphism. Furthermore, we have the isomorphism 
; 

Zm * (z,. *Obi) --> Zmr *Obi: (k,(l,.)) "-' (rk + J.r(l),.) , 

(compare to (7.234) and (7.235)). For a fusion rule algebra (Obi, 0), the composition, 

00' , of T0'(Obj) is given by 

Z 00' 11 = Q'Y.(g"ad(z),g"ad(Y) o z 011 (8.2.140) 

for ~ E Zm, I. E z,. I Z E Obi, which preserves the generatorslof the grading groups. 

Suppose that Q E mRo, (i.e., a 0 Q v= 1, grad(a) = 0 aIfd am = 1). Then we , 
may consider the composition of homomorphisms I 

where 10 is defined with respect to a given generator, g, of Grad(Obj):::; 1-o(g) , and 

aERo = {C1 : C1 0 C1 V = I, grade(1) = O}. The composition, 0"Y' of the fusion rule 

algebra 1.1'., * Obi is given by 

r : ~-m"  *Obi ) II ~.:n(~.,  *Obi) I 

1----* 7,l-m * ("o(~.,.. Obj») , 

II Tam (~-m  * ~~., *Obi») 
I 
I 

II TO'(7.'.,..* Obi) (8.2.147) 

(k1J z1) 0"Y (k2,Z2) = (kl+k2+/o(grad(:l:l),grad(z2»,Zl ° Z2), (8.2.141) (i,z) 
1 

I (1l'm,r(j), ~Xm,,.(j) 0 z) 
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"".� ltere we use that the inverse of (8.2.146) maps (j,'~)  to (Xm,r(j), (1rm,r(j),z)) and 

that the last epimorphism in (8.2.147) maps (k, I) to z. The fusion rule algebra 

homomorphism r is irreducible and graded, and its kernel is given by 

ke,. r� = {(rl, Q-')},er- ~  Zm· (8.2.148) 

The existe~ce  of a graded homomorphism r allows us to identify a category, C, with 

To (z,. • Obi) - fusion rules with the category C ~ith  Zmr. Obi - fusion rules, that is 

induced by C and r. The family of all balanced, braided tensor categories C which 

are of this form is characterized by conditions i) and ii) of Proposition 8.1.4, where 

R = kerr. 

We specialize this result to the case, where Obi = A2n-l, a = 2, Q = P2(n-l) and 

m = 2, Le., we have 

r : Z2". A2n-l - Ta(z,. * A2n-l) 

- X2r(S) )(� ) ( (8.2.149)" P;� 1---+ " P2(n-l) 0 Pj , 

with i = 71'2,,,(,), and� 

, = 0,1, ... ,r - 1 ,� 
X2,,,(.t) = {O,

I, , = r, r +1, ... ,2r - 1,� 

and the kernel of r is given by� 

ker r� = {I, E} ~ Z2, (8.2.150) 

with E := (r, P2(n-l» , 

and grad(E) = 2r mod(4r). 

The conditions for Cn,2r(l,q) to be induced by some category on TQ(:~''''''''  A2n-l) are, 

according to Proposition 8.1.4 : 

i)� r(E,E,l) = 1 (8.2.151) 

and ii) BEo; == OJ modI, Vj E #:2,,'" A2n-l . 
(8.2.152) 
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To check i), we compute, using (8.2.101), 

r(E, E, 1) = r, (grad(E),grad(E), 1) ro([O'], [E], 1) : 

= q(2r)ro(P2(n_l) ' P2(n-l) ' 1)� 

= (_1)1"." (_I)'(n-l) = I,� 
(8.2.153) 

'2 . 

where� we define To E Zs,. by q(j) = ezp(21riTo L). Usi~g  that Eo (o!, Pi) = 
s" 

(o! + r, P2(n-l)-;) , and applying formula (8.2.131) for the balancing phases, condition 

(8.2.152) becomes: 

q(2r + grad(" p;» q(grad(" p;»-1 (-li(;+l-n) . 

Expressing q in terms of To E 3s", this is equivalent to 

j 

(-1)""·("+;) = (_1)'(;+I-n) , for j = 0,1, ... ,2(n.-l), 

which, for i = 0, is precisely the equation (8.2.153). Hence, with (1,2n) I, i.e., 

1 == 1 mod2, (8.2.151) and (8.2.152) are equvalent'to 

i) TO == 1 mod2 

and ii) r == n. +1 mod2. i (8.2.154) 
,I

It is remarkable that ii) of (8.2.154) is a condition on the fusion rule algebra only. The 

first constraint is equivalent to the requirement that S E Hom (z?"4,. ~ Z4,., U(l» does 

not degenerate on 2 (Ztr) ,i.e., that Sq(2r,l) = -1. In particular, i) is independent of 

the choice of generators and the natural 7:2 - ambiguity of the quadratic form. A form 

with this property shall be called an odd quadratic form on 7'~~.  

In order to describe, the structure matrices, we introduce the choice map, in the sense 

of equ. (8.1.5), !I 

'Y. : Ta(T..,. * A2n-l) --+ :7:2,. *A2n-l 

(i, Pj) (.82,,.(i), p;), (8.2.155)1---+ 
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with r 0 "y. = id. The map fJ from equation (8.1.46) is then given by 

fJ: Z2,,'" A2n-l --+ leer r : (" Pj) t--+ I:X2,.. (2) , (8.2.156) 

which is of the form (8.2.10), i.e., "y. is the choice defined by Lemma 8.1.9 for the section 

tiJ = /322", For an automorphism ( of the fus~on  rule algebra Z2" • A2n-l for which 
, i 

(E) = lJ, (8.2.157) 

we can define a unique automorphism, ( ,on To (z,.. A2n-l) by requiring the following 

diagram to commute : 

Z2, ... A2n-l ( Z2r'" A2n-lI 

(8.2.158)-rl . rl 
To (~ ... A2n-l) , I To (z,. • A2n-l) 

We easily check that (8.2.157) holds for the automorphisms 'Yn and Qn defined in 

(8.2.122). The corresponding maps on To(z,. * A2n-l) are: 

in«"Pj» = (" Pj 0 (P2(n-l»j) ., 

and av«"Pj» = (, +(; 1)7r2,r(grad("pj»,Pj 0 (P2(n_l»h~(grad(.,pj»),  

(8.2.159) 

where 

h ll : Z2, ..... Z2 : 9 ~ X2,2r (v (32,2r(g» , 

with (v, 2r) = (v, 4r) = I, , E z,. and ; = 0,1, ... ,2(n -1}. Since the correspond­

ing automorphisms aff of the grading group, with aff = g&l , for 9 E .Grad(Obi) ~  

(.;2", generate again the entire group Aut(Grad(Obi» , we have that the group of au­

tomorphisms generated by the elements in (8.2.159) acts transitively on the generators 
I 

of TO (17.,. *A2n-l) . From this we conclude, by the same arguments as for the untwisted 

algebras, that the automorphisms in (8.2.159) generate all automorphisms if n > 2. 

For n = 2, categories exist only for odd r, in which case we find, with (3.48), that 

To (1'..,. * A3) ~ 17.,.. To(A3) . However To(A3) ~ A3, since P2 0 PI = PI, so that the 

fusion rule algebras To (7,1.,. *' A3) are, in fact, untwisted algebras. 
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Having a one-to-one correspon~ence  between the automorp~sms  of the fusion rule 

algebras Z2".A2n-l and To (z".A2n-l) ,we can establish an an~ogous  correspondence 

between equivalences of categories associated to these fusion rule algebras. We denote 

by Cn,r(l, q), with I E Zan, (1,2n) = I, q E Hom (r4(Z4,,), U(I» , q = odd and 

n := r + 1 mod 2 , the category induced by Cn ,2,,(I, q) and r: There is a functor 

(r,p,O·) = C",2r(I,q) - Cn,r(l,q). (8.2.160) 

Suppose that ( is an isomorphism. of the Z2,,'" A2n-l - algebra which extends to a 

functor 

((, F,O) : Cn,2,,(I,q) --+ Cn,2,,(l',q') , (8.2.161) 

for so~e ·1' and· q' • The corresponding isomorphism ( defined by (8.2.158), also extends 

to a functor, «(, J:, C), from Cn r(l, q) to some other category, Cn r(l", 9") with fixed 
, I ' A •• • 

generator. It follows from (8.2.158) that Cn,2,,(l', r') is induced by Cn,r(l", q"), and 

hence, by uniqueness of induced categories, we .conclude that I' = I", q' = q", and 

there is a functor (r, F, 0') such that 

«(, F, 0) C (I")
ICn,2r(I),q n,2r , q 

(8.2.162)(r, F, 0) I· 1(r, .rr' 0') 
•• A I 

C (I q) «(, F, 0) C (I' q') I 
~,r  , I n,r, ··1 

In particular, we have the isomorphisms 

(id, J:, C) : Cn,~(I,  q) --+ Cn,r(1 + 2nT, q . '1I"2r,,,(W» , (8.2.163) 

where W is given in (8.2.117) and, as 6('1I"i"r(w»)(2r,i> = 1, Vj E 7!.4r, q·'1I"2·rr(w) is, , 

odd if q is odd. Moreover, from (8.2.127) and (8.2.128), we obtain the isomorphisms 

(in, J:, C) : Cn,,,(l, q) --+ Cn,r(fn I, q) , (8.2.164) 

and, for (1I,2r) ='1, 

(av, J:, C) : Cn,,,(I, q) --+ Cn,r (I, o:~(q» . (8.2.165) 
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".: From the invariants r(i, i,i), with NiiJ = 1, defined for the category Cn,2r(l, q) .we 

obtain the corresponding invariants f(r(i), rei), run = r(i, i,i) on Cn,r(l, q). If 

the ~bject  p,satisfying pop = tT+,p, denotes the fixed generator of 'ro (z.,.*A2n-l) then 

po := ".(p) is the fixed generator of Z2,. • A2n-l , and it satisfies po 0 po = tT0 + .,po., 

where r(tT°) = tT and r(,p°) = ,p. Hence, the invariants defined in equation 

(8.2.129) of Theorem 8.2.9 for 'the objects, po and tT°, yield invariants f(p,p,.,p) = 

r(pO, pO, .,pO) and f( tT, tT, tT2) = r( tT° J tT°, (tT°)2) • From this it follows, by the same 

arguments as for Theorem 8.2.9, that for n > 2, the only isomorphisms among the 

Cn,r(l,q)- categories a.re given by compositions oCthose given in (8.2.163),(8.2.164) and 

(8.2.165). We thus obtain the following classification of categories with 'ro(z,,*A2n-l) ­

fusiOn rules. 

THEOREM 8.!.10 

Let 'To(z". A2n-l) , (r ~  1, n ~ 2), be the ju.lIion rule algebra .specified in (7.191) 

and (7.135) of Theorem 7.9.11~ Denote by p the fized generator with the property that 

pop = tT +,p, where tT i$ the invertible object of order 2r. 

(i) There eziJt quantum clltegorie.s with 'ro (z,. * A2n-l) • ju..sion rule$ if and only if 

r == n - 1 mod(2). (8.2.166) 

For I E Z8n, with. (1,2n) = I, and every odd q E Hom(f4(Z4r), U(l», there 

ezilltJ 4 quantum category, Cn,,.(I, q),.such that 

r(p,p,.,p) = -ezP(-27ri~)q(c) 

8n 

and r(tT,tT,tT2) = q(c)4, (8.2.167) 

where c := P2,2r(grad(p» generate.s 7.?4r, and q ill odd iff 6q(c2", c) = -1. Thi.s 

co.tegory ill induced by the category, Cn,2r(l, q) given in Theorem 8.1.9 and r. 

For n = 2 (r == 1 mod2), we have that To(7.'..,.*A3) ~ 17.,.*A3. For n > 2, the 

only illomorphi$mJ between the.se categorie$ are thOllf given in (8.1.169), (8.-1.164) 

1107 

and (8.!.165). None ofthe$e categorie.s i.s equivalent to a category with z,.*A2n-l· 

ju.$ion rule$. 

(ii) The category Cn,,.(l,q) u uomorphic to a C·· category i~ and only if 

_ ±1 mod2n. (8.2.168) 

There are two pO$$ible $eb of balancing ph4$el for en,r(l, q): 

ezp(27ri8(.,p;» = ~ezp(27ri 8~ iU +2») q(,82,2r(grad(~, Pj))) (8.2.169) 

with. Ez", Pi E A2n-l, i = 0,1, ... ,2(n-1}, and E = ±l. 

If we combine the classification of categories in Theorems 8.2.8, 8.2.9 and. 8.2.10 with 
/, 

the description of possible fusion rule algebras given in Proposition 7.3.25, we finaiIy 

arrive at a characterization of braided, monoidal C· - categories .that are generated 

by a single object of statistical dimension less than 'two. It is remarkable to see that 

the constraints imposed by the monodromies in E Hom(flrliGrad(Obj), U(l)), as in 

(8.2.150), with m(p, p) = t(p, p)2 ,are sufficient to single out precisely those fusion rules 

for which quantum categories exist. Moreover, a comparison of (7.2.58) with (8.2.112) 

and (8.2.131) and of (7.2.59) with (8.2.169), concerning the possible values of I and q, 

shows that all the statistical phases described in Proposition 7.3.25,ii), are realized in 

some quantum category. 

Notice that,-by use of the isomorphisms (8.2.118) and (8.2.163), we may always shift 

the parameter 1 E 7.?8n, with I == ±1 mod2n, labelling C· -categories with 7'..,.*A2n-l­

or 'ro(l7.,. * A2n-l) - fusion rules, such that I == 1 mod8n. According to the result on 

equivalences given i~  Theorems 8.2.9 and 8.2.10, an equivalence between two categories 

with n > 2 and the parameter 1 constrained iJ). this way, mapping the distinguished 

generators onto each other, exists if and only if the quadratic functions are the same, 

and in this case the category is unique (up to isomorphism). 
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We have to formulate the main result of this work for C*· categories only, since where q And .,p Are im:ducible; the projection.s in End(p 0 p) 0 p) given by;{-_ ' 

Proposition 7.3.25 has been proven under the assumption that a C*· structure exists. 

There is, however, little doubt that our clasliification can easily be extended to the 

general, semisimple case. 

el 

e2 

ea(P, p) ~ I p , 

a(p,p,p) (l p 0 ea(P,P)) a(p,p,p)* 

THEOREM 8.!.11 where ea(P, p) E End(p 0 p) i.s the projector corre.sponding to the .subobject, 

SuppOJe C i.s An Abelian, monoidal, rigid, braided, balanced C*· category. A.s.sume, q, .sAti.sfv the Temperley • Lieb • equAtion.s, 

further, that equivalent object.. in the objed .set, Obj, of C are equal and that Obi • 

a.s a ftuionrule algebra. i.s generated by a .single, im:ducible object, p. Let 

d(p) := >.;1 e-2.,;i8, E R 

be the .stati.stical dimenJion of the generator, where >.p i.s the.statiJtical parameter de­

fined by 
(ii) 

II el e2 el el 

(3 e2 el e2 = e2 

with modulu.s, II, different from four (henc,e, II < 4). 

If one of the condition.s in i) i.s jullfilledthen the categ0 1 C (without balancing) 

i.s equiVAlent to one of the following braided categorie.s (defined with re.spect to the 

>'p~;~p I p = (l p 0 ~;)  a(p,p,pv)* (e(p,p) 0 1pv) a(p,p,pv) (l p 0 ~p)  fi%ed generator p): 

with .,Jp E Mor(l,p 0 pV). Let 8p be the b~IAncing pha.se ~f the generator. 
(a) FOT n,T E N, with n ~ 2, T ~ I, And q E Hom(r4(Zr), U(I)) , 

(i) The following are equivalent: 
-Cn,r(±n2), q, 

(a) 

1 < Id(p)1 < 2, 

1 
I 

which i.s defined And de.scribed in ,Theorem 8.!. 8 a.s t~e product CZr ,9 ~Cn,±n2 

. It ha.s juJionrule.s i 

(b) 

d(p) = ± 2cos':~),  N = 4,5, ... 

Zr * An 

... in (S.111) .f Th....m S·4·11. 

, i 

I 
(c) (b) For n,T EN, with n ~ 2, T ~ 1, and q E Hom(f4(7l2r ), U(l)) , 

(d) 

pop = q+'l/J , 

where q and .,p are irreducible,m(p, p) = e(PI p)2 

identity, and u i.s invertible. 

(If C come.s from a local quantum field theory ) 

i.s not a multiple of the 
Cn,r(±l, q) , , 

d.fin.d .... ,ub<.l.g.,., .f Cr..9 0 C2(.~1).±1 by .;~tu • •f ik. inel",i.n in 
~ . 

(8.!.114) And de.scribed in Theorem 8.!.9. It ha.s thti fu.sionrule.s 

pop = u+'l/J , 1'..,. * A2n-l 
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,J'l 41 in (3.110) and (3.H.1) oj Theorem 3../.11. 

(e)� for n,t" E N, with n ~ 3, r ~ I, r == n -1 mod(2), and q E 

Hom(r4(Z4r), U(l», with q odd, 

Cn,r(±l, q) , 

defined e, the c4tegory inducing Cn.,2r(±l,q) by the graded morphi,sm in 

(8.I.l./7) end de,scribed in Theorem 8.1.10. It haJ fu.JionruleJ 

TO (z,. * A2n-l) , 

aJ in (9.Ul) and (9.U5) of Theorem 9../.11. 

In e) o.nd b) we include the pouibility r = 00 for a torJion free gr4ding group, 

with� r 4(Z) ~ Z. For each of theJe categorieJ ba.lancing pha,seJ e~iJt ant!. are 

uniquely determined up to Z2· gradingJ. 

(iii)� The categorieJ in ii), for given ft, r, q and a given Jign in the I-argument, are 

inequivalent aJ braided categorieJwith a du,stinguiJhed generator p, with the Jingle 

ezception of 

, !:lit 

(e, F,C) : C2,r(±1, q) ---=-.::..... C2,r(=F1, q') , 

l±' 
where q'(grad(p» = - ~. q(grad(p». In any of the caJe" a), b) and c), the 

group oj the automorphism" Aut(Obi) of the fu.,sion ruleJ ( modulo the e~cep·  

tiona.l one ) tJ.ct.t freely and tran.titively on the ,set of generatorJ, {j : dfF, = 

ld(p)\, grad(j) generate.s Grad(Obj)}, and can be e~tended to equvalenceJ of cat­

egorie", For caJe a.) we have that Aut(Obj) ~  Aut(Grad(Obj» , and, for ca.,se.t 

b), with n > 2, and c), that Aut(Obj) ~  7:2 $ Aut (Grad(Obj» . 
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Appendix A 

i 

Undirected Graphs with Nbrm not 

Larger than Two 

We give a list of all undirected, connected graph.s with norm not larger than two. We 

distinguish between bicolorable and non-bicoloro.ble graphs and indicate the possible bicol­

orations by white and black vertices. By Kronecker's theorem, the norm of~tJ,ch  a graph is 

2 cos (11), where N = 3,4, ... ,00 is the Couter-number of the graph and is given below 

for graph.s with norm less than two. The graphs with N = 00 for which there eNts a pos­

itive eigenvector with eigen1Ja.lue two are included. For each graph, ,the components of the 

Perron-Frobenius vector, 1, are given by the numbers indica.ted at the vertices which are 

expressed in terms ofq-numbers (n)q := v;:rl" ,with q =ei1Iand Nis the Cozeter num­

ber of the graph. The vector lis normalized such that its smallest component on the graph 

is one, e~cept  when all vertices ha.ve edge degree two in which case' we set J:= (2,2, . ,.), 

The sites where the Perron-Frobenius vector attains its minimum a.re marked by a ". ", and 

the number, g, of such sites is indica.ted, (for each coloration separately, in the bicolora~le  

ca.se). 
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·1 Bicolorable, finite graphs _~  t, 

(4)q =(8)q(2)q ~q2  =(6)q-{4)q N =18,E,
1) N < 00 .---<l • r • 0 (2)q 

(2)q (31q ~q=(7)q-(3)q 90 =1,91 = 0 (A7)

•
(2)q 

A:I'" n ~ 1: ~l  0 • • '.--0 I If~ N = 2n + I, 
(2)q (3)q (2n-1) q ~q=(3)q-1

90 =I, 91 =1 (AI) (2)q 

A:ln-l, n ~ 2: ~ 

(2}q(3)q 
---<>---Ie 
(2n-2)q 

90 = 

N=2n, 

2, "91 :::: () (A2) 

(S)q =(9)q -(3)q (7)q N _ 30 
E. : *---o---+-~-)-..-(-)---<;~---. (-2)q2 =(7) q- (5) q _ - , 

(2)q (3)q (4 q l..q =(8)q -(4)q 90:::: 1,91 =0 
(2)q 

(A8J 

D. : *--K:13 
N=6, 

90 :::: 31 91 :::: 0 (A3) 

(5)q
(2)q 

) 
= (6)q +(4)q -(8 q 

D:ln, n ~  3: *-o--e-­
(2)q {3)q 

... ~~(2n-l)q  

(2~-2~:(2n-ilq 
2 

N=4n-2, 

90 :::: 1, 91 = 0 (A 4) 

b) N = 00 

A(l).
1 • o::=a 

2 2 
A~~_l'  n ~ 2: 

90:::: 0,91 =0 202 
2 •••• 2 

(A9) 

D:ln+lln~2:  

E6 : 

*~  ... 
(2)q {3)q 

~i-(2n)q  

(2n-l)q r(2n)q 

*~*(2)q(3)ql (2}q 

(3)q = (4)q - (2)q 
(2)q 

N::::4n,. 

90 = I, 91 =0 

N =12, 

90 =2, 91 =0 

(A 5) 

(A6) 

D~l) : x D~~, n ~ 3: 

90:::: 4, 91 = 0 )-n- ... ~ (AIO) 

D(l)
:In+1' 

n > 2: "2 .. 2- 2-
-~ ~ 9.=2,9,=2 (All) 
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,," 
.. l ... 

11' • A.3 Non-bicolorable, finite graphs 
E11

) : 
* 

90 = 3, 91 =0 (A12)*~*  

2 

4
E~l)  : 90 = 2, 91 = 0 (A 13)*23 I 32* 

2 

6
E~I) : *~2 3• 40 5• 1 4 2 9. = I, 91 =0 (AI4) 

3 

A.2� Bicolorable, infinite graphs (corresponding to 

N=oo) 

Aoo : *--0 • 0 • • •• 90 = I, 91 = 0 (A15) 
2 :3 4 5 

: *~ ·-~Oo---6.-- 90 = = (A16)Doo 2-......... ... 2, 91 0� 

Aao•oo : ••• ---0 • 0 • • •• 90 = 0, 91 = 0 (A17) 

2 2 2 2� 
' ..� 

a) N < 00 

AI: *0 N == 3, 9 = 1 (A 

A.. , n ~ 2: *- • • • N == 2n + 1, 
(2 )q (3) q <,4) Q •(n-I)q� (n)q0 

9 == 1 (A 

b) N = 00 

2 2 
A~~n	 1 : ~	 ~2 9 =° (A

2\... )2 

AI: ()() An, n ~2:  q 2 2 -+--() 9 =0 (A 
2� 2 2 

15,: 15.:� 9 == 2 (A2)p A--rr ... 2P� 

A.4� Non-bicolorable, infinite graphs (N = 00) 

}foo: o · · ... 9 =: 0 (A23)
2 2� 2 
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·5 The higher graded fusionrule algebras 

"." (1) ( (1»)(0-2)1) The fusIOn graph for algebra D4 Ai : 

-

{ I)(J" I ) (J"Z ) CT3 } 

(A24) 

""). (1) ( (1»)(0-2)11 The fUSIOn graph for algebra E6 As 

.... 
.... 

.. ., .j� 

~,  1 

~\ 

~; .... 

Appendix B 

Fusion Rule Algebra 

Homomorphisms 

B.l Un: A2n -+ An 

~ .. ~ 

1/ ~ 

e--<>- ... ~"'.  D 

(A.25) 

" 
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• ~ 0 

...� 

... 

t/ 

to 
~ 

q 
~ 

~ .... .... 
! 
~ 

,.::.. 
tv 
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, r fl 
B.4 (jDE: D16 --+ E8 
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