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Ch’épter 1
Introduction and Survey of Results

Our original motivation for undertzking the work presented in this book® has been to
clarify the connections between the braid (group) statistics discovered in low-dimensional
quantum field theories and the associated unitary representations of the braid groups with
representations of the braid groups obtained from the representation theory of quantum
groups - such 2 U,(g), with deformation parameter ¢ = gy := exp(in/N), for some N =
3,4,... ' Among quantum field theories with braid statistics there zre two-dimensionel,
chiral conformal field theories and three-dimersional gauge theories with a Chern-Simons
term in their action functional. These field theories pley an important role in string
theory, in the theory of critical phenomena in statistical mechaxics, and in a variety of

systems of condensed matter physics, such as quantum Hall systems.

An example of a field theory with braid statistics is a chiral sector of the two-
dimensional Wess-Zumino-Novikov-Witten model with group SU(2) 2t level k which is
closely related to the re.presentation\ theory of 5U(2)i-Kac-Moody 2lgebra, with k =
1,2,83,.... The braid statistics of chiral vertex operztors in this th&ary can be understood
by analyzing the solutions of the Kuizhnik-Zzamolodchikov equations. Work of Drinfel'd
[4] has shown that, in the example of the SU(2)-WZNW model, there is a close connection

between solutions of the Knizhaik-Zamolodchikov equations 2ad the representation theory

°This book is based on the Ph.D. thesis of T.K. and on resulis in [, 11, 24, 28, 42, 61)
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of Uy(sl;) if the level k is related to the deformation parameter ¢ by the equation «

" exp(ix /(k +2)), and k is pot a rational number. For an extension of these results to
. negative ratiopals see [62]. Unfortunately, the SU(2)-WZNW model is a unitary quant

field theory only for the values k = 1,2,3,: -+, oot covered by the results of Drinfel’d. (
goal was to understand the connections between the field theory and the quantum gr¢
for the physically interesting case of positive integer levels. (This motivates much of «

analysis in Chapters 2 through 7.)

The notion of symmetry adequate to describe the structure of superselection sect
in quantum field theories with braid statistics turns out to be quite radically differs
from the notion of symmetry that is used to describe the structure of superselect!
sectors in higher dimersional quantum field theories with permutation (group) statisti
(i.e., Fermi-Dirac or Bose-Einstein statistics). While in the latter case compact grov
and their representation theory provide the correct notion of symmetry, the situati
is less clear for quantum field theories with braid statistics. iOnc conjecture has be
that quantum groups, i.e., quesi-triangular {quasi-)Hopf algebr:as, might provide a usei

notion of symmetry (or of “quantized symmetry”) describing the main structural featus

of quantum field theories with braid statistics. It became clear, fairly soon, that t
quantum groups which might appear in unitary quantum field theories bave a deformati
parameter ¢ equal to a root of unity and are therefore pot semi-simple. This circumstan
is the source of a variety of mathematical difficulties which bad to be overcome. We
on these aspects started in 1989, and useful results, eventually Jeading to the z_:jtatcrial
Chapters 4, 5 and 6, devoted to the representation theory of Uy(g), g 2 root of unity, 2
to the sq»ca.lled vertex-SOS transformation, were obtained in the diploma thesis of T.]
see [6). Our idea was to combine such resilts with the general theory of braiz"i‘ statist
in low-dimensional quantum field theories, in order to develc;p an zdeguate fconéept.

“qumtizcé symmetries” in such theories; see Chapter 7, Sects: 7.1 and 7.2.

In the course of our work, we encountered a variety of mathematical subtleties 2
diffculties which led us to study certain -abstract algebraic structures — a class of (

necessarily Tennekian) tensor categories — which we call quantum categories. Work
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Doplicher and Roberts [29] and of Deligne [56] and lectures at the 1991 Borel seminar in

Bern played an important role in guiding us towards the right concepts.

These concepts and the results on quantum categories presented in this volume,
see also [61), are of some intrinsic mathematical interest, independent of their origin in
problems of quantum field theory. Althoﬁgh problems in theoretical physics triggered our
investigations, and in spite of the fact that in Chapters 2, 3 and 7, Sects. 7.1 through 7.4
we often use a Iug'uagev coming from local quantum theory (in the algebraic formulation
of Hazg and collaborators [17, 18, 19, 20]), all results and proofs in this volume (after
Chapter 2) can be understood in a sease of pure mathematics: They can be read without
knowledge of I;cal quantum theory going beyond some expressions introduced in Chapters

2 and 3, and they are mathematically rigorous.

Ia order to dispel possible hesitations and worries among readers, who are pure
mathematicians, we now sketch some of the physical background underlying our work,
-thereby intféducing some elements of the languege of algebraic quantum theory in a

non-technical way. For additional details the reader may glance through Chapter 2.

For quantum field theories on a space-time of dimension four (or higher) the con-

cept of a global gauge group, or symmetry G is, roughly spezking, the following one: The

Hilbert space H of physical states of such a theory carries a (highly reducible) unitary
representation of the group G. Among the densely defined operators on H there are the
so-called local field operators which transform co%'ariaptly under the adjoint action of the
group G. The fixed point algebra, with respect to this group action in the total field zlge-
bra, is the algebra of observables. This algebra, denoted by A, is a C*-2lgebra obtained

2s 20 inductive limit of a net of von Neumann algebras 4(O) of observebles locelized in
bounded open regions O of space-time. The von Neumenn algebras A(O) are isomorphic
to the unique hyperfinite factor of type II1;, in 2ll examples of algebraic field theories that
one understands reasonably well. The Hilbert space 'deecomposes into a direct sum of

orthogonal subspaces, called superselection sectors, carrying inequivalent representations

of the observable algebra A. All these representations of .4 can be generated by corﬁposing

a standard representation, the so-called vacuum representation, with *endomorphisms of

A. Each superselection sector also carries a representation of the global gauge group G _

which is equivalent to a mulitple of a distinct irreducible represent‘ation of G. As shown
by Doplicher, Haag and Roberts (DHR) [19), one can introduce a notion of tensor prod-
uct, or “composition”, of superselection sectors with properties m;logoui to those of the
tensor product of representations of a compact group. The composition of superselection

sectors can be defined even if one does pot know the global gauge group G of the theory,

'yet. From the properties of the composition of superselection sectors, in particular from

the fusion rules of this composition and from the gtatistics of superselection sectors, i.e.,
from certain representations of the permutation groups canonicelly associated with su-
perseleétion sectors, one can reconstruct important data of the global gauge group G. In
particular, one can find its character table and its 6-5 symbols. As proven by Doplicher
and Roberts [29], those data are sufficient to reconstruct G. The representation category
of G turns out to reproduce 2ll properties of the cqmpositionl_ of superselection sectors,
and one is able to reconstruct the algebra of local field 6pcra't:<3rl from these data. One
says that the group G is dual] to the quantum theory describea by A and H.

The results of Doplicher and Roberts can be viewed as the answer to a purely mathe-
matical duality problem (see also [56]): The fusion rules and the 6-j symbols obtained

from the composition of superselection sectors are nothing but the structure constants of
a symmetric tensor category with C* structure. The problem is how to recopstruct from
such an abstract category a compact group whose representation category is isomorphic
to the given tensor category. It is an old result of Tannaka gﬁd Krein that it is always
possible to reconstruct a compact group from a symmetric tensor category if the category
is Tannakian, i.e., if vt;e know the 'dimensiogs of the repreéentatipn spaces and the Clebsch-
Gordan matrices, or 3-5 symbols, which form the besic morpﬁésm spaces. The resulis of
Doplicl;er and Roberts represeat a vest generalization of the T-‘;nnz.ka-}(re'z'n results, since

the dimensions and Clebsch-Gordan metrices zre not known aﬁpriori_.

Anotber duality theorem related to the one of Doplicher and Roberts ‘is due to

Deligne [56] which requires integrality of certain dimensions but no C*® structure on the

symmeiric tensor category. (It enables one to recomstruct algebrzic groups from certain

\Y



symmetric tensor categories.) Disregarding some subtleties in the hypothesesvof these
duality theorems, they teach us that it is equivalent to talk about compact groups or

certain ‘:)'thmettic tensor categories.

Quantum field theories in two and three space-time dimensions can also be formu-
lated within the formalism of algebraic quantum theory of DHR, involving an algebra A
of observables and superselection sectors carrying representations of A which 2re compo-
sitions of a standard representation with *endomorphisms of A. This structure cnable; us
to extract an abstract tensor category described in terms of an algebra of fusion rules and
6-5 symbols. Contrery to the categories obtained from quantum field theories in four or
more space-time dimensions, the tensor categories associated with quantum field theories
in twq and thrée space-time dimensions are, in generg.l, pot symmetric but only braided.
Therefore, they cannot be representation categories of cocommutative algebres, like group

algebras. In many physicelly interesting examples of field theories, these categories ace

- not even Tagnekian and, therefore, cannot be identified, naively, with the representation

category of a Hopf algebra or a Qumtum group; see [61]. The complications coming from

these features motivate many of our results in Chapters 6 through 8.

The following models of two- and three.dimensional quantum field theories yield

non-Tannekian categories:

(1) Minimal conformal models [7] and Wess-Zumino-Novikov-Witien models (8]

in two space-time dimensions .

The basic feature of these models is that they exhibit infinite-dimensional symme-
tries. The example of the SU(n)-WZW model can be understood as a Legrangian
field theory with action functional given by

509) = 56 Jotr ((97'0.9)(970g)) &=
+ 5k fon tr (57 d5)),
where, classically, a field configuration g is a meap from the two-sphere 57 to the
group G = SU(n), and § is an arbitrary extension of g from S? = 8B° to the ball

B3 (such an extension always exists, since 7, of a group is trivial). The second term

5

inI S(g) is :the so-called Wess-Zumino term which is defined only mod kZ. Classi
cally, the theory exhibits a symmetry which is the product of two loop groups, fo
right- and l;ft movers, respectively. For k =1,2,3,..., the quantum theory 2ssoci
ated with S(g) bas conserved currents generating two commuting 5u(n)-Kac-Mood,
algebras atrlevél k, whose universal enveloping algebras contain Virasoro algebras
'(Sugawua construction). From the representation theory of the infinite-dimensiona
Lie algebras of symmetry generators in thc;e models, i.e., the representation the
ory of Virasoro- or Kac-Moody algebras, one can construct algebras of so-calle

chiral vertex operators which play the role of Clebsch-Gordan operators of (a semi

simple quotient of) the represestation category of the Viresoro- or Kac-Moody al
gebra. Local conformally covariant field operators are then constructed by takin
linear combinations of products of two such chiral vertex operators, a holomorphi

one (left movers) and an anti-bolomorphic one (right movers). - ‘

of inferest in relation to the main subject of our work is that the algebras of chir:
vertex operators, the holomorphic ones, sey, appcuing: in these models provid
us with categorial data corresponding to non-Tannzkian braided tensor categorie:
(This can be understood by studying the multi-valuedness properties and operatc
product expansions of chiral vertex operators. A very thorough analysis of ‘.5
SU(2)-WZW model can be found in the papers of Tsuchiya and Kanie 2nd «
Kohno quoted in [9]; see 2lso 8, 61).)

Zamolodchikov and others have studied “non-critical perturbations” of minimal cor
formal models which are integrable field theories [10]. Their results suggest the
there are plenty of massive quantum field theories in two space-time dimensior
with fields exhibiting non-zbelian braid statistics, as ofiginally described in [11

(A perturbation of minimal conformal models giving rise;t‘o massive integrable fie!

theories is obtained from the dpafield; a field with braid statistics is the fie

obtzained from a chiral factor of the é@_,)-ﬁdd, after the perturbation has be
turned on [12].) To such non-conformal field theories one can also associate certz
braided tensor categories. However, the general theory of superselection sectors

two-dimensional, massive quantum field theories leads to 2lgebraic structures mo

6



general than braided tensor categories, including ones with pop-abelian fusion rule
algebras. A general understanding of these structures has not been accomplished,

yet.

(2) Three-dimensional Chern-Simons gauge theory, [13, 14, 15] .

Consider a gauge theory in three space-time dimensions with a simply connected,
compact gauge group G £ su (n). Let A denote the gauge field (vector potential)
with values in g = Lie(G), the Lie algebra of the gauge group G, and let ¢ be a
matter field, e.g. a two-component spinor ﬁeﬂld in the fundamental representation of
G. There may be further matter fields, such 2s Higgs fields. The action functional
of the theory is given by

S[A,¥,¥] & g7 [tr (F*)d vol.
—Lltr (ANdA+3ANANA) (1.1)
+ 2 P(Pa+m)Ydvol. +-+-,

where g, A and m are positive constants, and ! is an integer.

This cless of gauge theories has been studied in [13, 14, 15].' Although the results in
these papers are not mathematically rigorous, the main properties of these theories

are believed to be es follows:

The gluon is massive, and there is no confinement of colour. Interactions persist-
ing over arbitrarily large distances are purely topblogica.l and are, asymptotically,
described by a pure Chern-Simons theory. Thus the statistics of coloureci'partic]es
~ in Chern-Simons gauge theory is believed to be the same as the statistics of static
colour sources in a pure Chern-Simozs theory w}iich is known explicitly [16).  The
statistics of coloured asymptotic particles can be studied by znalyzing the statis-
tics of fields creating coloured states from the vacuum sector. Such fields are the

Mandelstam siring operators, Ya(7.), which are defined, heuristically, by

valn) = * T NPl | AOKaaT (12)

where ‘a and 8 are group indices; v, is a path contained in a space-like surface,

. starting at z and reaching out to infinity, N is some normal ordering prescription,

7

and P denotes path ordering. (Similarly, conjugate Mandelstam strings ¥a(7.) are
defined.)

For the field theories described in (1) and (2), one observes that when the grouﬁ Gis
SU(2) the combinatorial data of a braided tensor category, an algebra of fusion rules and
6-j symbols (braid- and fusion matrices), can be reconstructed from these field theories
which is isomorphic to a braided tensor category that is obtained from the representation

theory of the quantum group Uy(sl;), where
g =9, k=123:",

(with k =l + const.). These categories are manifestly non-Tannakian. This is the reason
why it is not possible to reconstruct field operators transforming cox'&fiantly under some
representation of Uy(sl;) on the Hilbert space of pbysical states of those theories. However,
passing to a quotient of the representation category of Uy(sl;), ¢ = cxp(iw/(’: +2)),
described in Chapters 6 and 7, we can construct a s‘erni-simpl;, non-Tannakian, braided
tensox'category describing the composrivtion and braid st;tistici of superselection sectors
in these quantum field theories. In this sense, Uy(sl;) is tlhe “quantized symmetry” dual

to the quantum field theories described above. (For precise details see Chapter 7.)

The strategy used to prove this duality is to compare the fusion rules 2nd the Gi'j
symbols of Uy(sl;) with the corresponding data of the field theories found, e.g., in [9], and
to show that they coincide. More precisely, ’it is quite easy to show that the representations
of the braid groups essociated with tensor products of the fundamental representation of
U,(sly) coincide with those associated with arbitrary compositions of the “fundamental
superselection sector” of the corresponding field theories. One implication of our work
is thet, in fact, the entire braided tensor categories coincide. ?Thil result follows from a
much more general uniqueness theorem stating that wheneveriz braided tensor ;ateéorjr

with C® structure is generated by arbitrary tensor products of & selfconjugate object, p,

whose tensor square decomposes into two irreducible objects, i.e.,

pOp =169, (1.3)

8
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(wbere ‘1 is the neutral object, corresponding to the trivial representation of Uy(sh), to
the vacuum sector of the field theory, respectively),and a certain invariant associated with
p, the so-called monodromy of p with itself, is non-scalar, then the category is isomorphic

to the semi-simple subquotient of the representation category of U,(sl;), for ¢ = + e*ﬁ"‘,

k=1,23,....

The abstract nature of eq. (1.3) suggests that this result applies to a class of local
quantum field theories more general than the models described above. This observation
and the fact that those models are not rigorously understood in every respect led us to
work within the general framework of algebraic field theory. In this framework, p and
can be interpreted as irreducible *endomorphisms of the observable algebra 4, with 1 the

identity endomorphisms of A, and eq. (2.3) for a selfconjugate object p of a braided tensor

category with C* structure is equivalent to some bounds on a scalar invariant essociated
with p, its gtatistical dimension, d(p); namely (1.3) is equivalent to
1 <dp) <2. o (14)

The main result of this book is a complete classification of braided tensor categories

with C*-structure that are generated by a not necessarily selfconjugate, irreducible object

p whose statistical dimension, d(p), satisfies (1.4). This is the solution to a very limited

generalization of the duality problem for groups. Our method of clessification is unlikely to
be efficient for much larger values of d(p) than those specified in eq. (1.4) - except, perheps,
for certain families of examples connected with more general qur.ntu;;n groups. However,
our solution to the problem corresponding to the bounds on d(p) in eq. (1.4) might serve
as a guide for more general attemptis. In particular, our notions of product category and
induced category might be useful in a general context.

The constructive part of our classification consists in the description of two families
.of categories: First, we x;eed to understand the representation theory and tensor-product
decorhpositiom of Uy(sly), with g a root of unity; (Chapters 4 and 5, and [6]). This will
permit us to construct a non-Tannekizn, braided tensor category by pessing to the semi-

simple quotient of the representation category of U,(sl,); (vertex-SOS transformation; see

9
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Chapter 6 and [61]). The generating object p, of this category can always be multiplied
with the generator of a category whose fusion rules are described by the group algebra of
a cyclic group Z,,a=23,..., without c.ha.nging the statistical dimension. The second
task is thus to classify categories whose fusion rules are given ‘by the group aigebras of

abelian groups.

It turns out that, besides the operation of taking products of categories just alluded
to, we also need the notion of induced categories which are, in-general, not quotients of

representation categories; (Chapter 8, Sect. 8.1).

For a selfconjugate, generating object p, with 1 < d(p) < 2, our proof of uniqueness

relies on an inductive procedure reminiscent of what is known 2s cabeling. In order tc

extend our proof of uniqueness to categorieskgenerated by a non-selfconjugate, irreducible
object, we have to study the interplay between the group of “invertible objects” in 2
category and gradings. This will permit us to separate the subcategories corresponding
to invertible objects from the entire category and to thereby reduce the classificatior
problem to that of categories with a selfconjugate generator whose statistical dimensior
satisfies (1.4); (Chapter 8).

As a prerequisite to the classification of braided tensor categories with C* structure
satisfying (1.4), we present a classification of fusion rule algebras which have the same
properties 2s the object algebras of a tensor category; (Chzpter 3 and Sect. 7.3). Ou
classification s limited to fusion rule algebras generated by an irreducible object p o

statistical dimension d(p) satisfying

1<dp) <2, | (s

We find that there are many more fusion rule algebras thed there are object .aigeb:a

of braided tensor categories. Our classification relies on results of T.K. in [42).

When d(p) = 2 we essentially reproduce the fusion rules of the finite s_ubgroﬁ;
of SU(2) which have been classified and described in terms of certain Coxeter grépl
by Mac Kay. In the sense that-symmetric tensor categori_ei are dual to g;'oup_s ar

10



braided tensor categories are a natural generalization of symmetric tensor categories, our
main result might be viewed as a natural generalization and completion of the Mac Kay

correspondence for d(p) = 2 to the entire range 1 < d(p) < 2.

~ Ogne application of our classification theorems to conformal field theory, in partic-
ular to minimal conformal models and SU(2)-WZIW theories, is that we can reproduce
the fusion rules, the braid- 2nd the fusion matrices of these models from an algebraically
simpler object, & quantum group. This is one way of making “the quantum group struc-
ture” of conformal field theories precise. Our uniqueness theorems permit us, moreover, to
establish a precise connection between SU(2)-WZW theories at level k and SU(k)-WZW
theories at level 2 which is useful to understand the details of the conformal imbedding
of (5%(2)a x 5u(k);)-Kac-Moody algebra into 3?4(2k)1;1(ac-1_\{oody algebra. For example,
we find that the braided tensor categories constructed from the representation theory of

5u(k);-Kac-Moody algebra, with k even, are non-trivially induced by those constructed

from §3(2),-Kac-Moody algebra. This result is useful in the context of certain systems in

condensed matter physics.

We conclude this introdﬁction with some additional comments on the contents of
the verious chapters of this book and 2 summary of our mein results, Theorem 3.4.11 and
Theorem 8.2.11.

Survey of Contents

In Chapter 2 we explain the appearance of certain braided tensor categories, called C*-
quantum categories, in Jocal quantum theories in two and three space-time dimexnsions.
To this end, we use the formelism of algebraic field theory, which - following the arguments
of Section 2.1 and the introduction - is expected to describe two dimensional conformal
field theories and three dimensional topological field theories. In Section 2.2 we review the
C*-algebra approach to local quantum theories with braid statistics, in a form developed
in [15, 24] geperalizing the algebraic field theory of [19] for quantum theories with (para-)

permutation statistics. In this framework the objects of the considered C*-quantum cat-

11

egory are a subset of the endomorphisms of the observable algebra A and the arrows
(or morphisms) are operators in U intertwining these endomorphisms. The quaantitative
description of the structure of these categories in terms of R- and F- matrices is derived
in Sectiop 2.3. In Sectiop 2.4 we show how to extract unitary representations of the braid
groups equipped with Markov traces from a C*-quantum category. '

The objects of a quantum category together with the o?cra.tions of taking dire&
sums and tensor products form a balf algebra over the positive integers which we skall
call a fusion rule algebra. An axiomatic definition of fusion rule algebr# which forgets
about their origin from quantum categories is given in Section 3.1. In Section 3.2 we
show tht notions familiar in C*-categories czn already be defined from the fusion rule

algebra itself, namely a unique positive dimeasion (the statistical or Perron-Frobenius

dimension) for rational fusionrules and a universal group-of gradings. These concepts’

are eventually combined in the construction of quotients of fusion rule algebras, so called
Perron-f‘robcx;iﬁs algebras. In Sectiop 3.3 we demonstrate how non trivially graded invert-
ible objects may be used in order to derive simplified descripﬁons of fusion rule &]gébru.
_In particular, we derive for cyclic grading goupl a general present'&ﬁon of a fusion rule
2lgebra in terms of an accordingly smaller fusion rule dgei:ra, whose invertible objects are
all trivially graded. We give several criteria implying that this fusion rule algebra js either
Z,-graded or ungraded. Among the categories that ere constructed from Z;- or ungraded
algebres we find those which are generated by a single object p of dimension d(p) not
greater than two ( with the exception of two algebras at d(p) = 2). They are classified
in Section 3.4, using the methods developed in the previous section. More precisely, we

first determine the fusion rule algebras with a selfconjugate generator of dimension less

than or equal to two and we analyze the action of the resp;:ctive groups of invertible .

objects. Composing them with Z, -algebras and twisticg them we obtain the complete

list of fusionrules given in Theorem 3410

In the following three chapters we construct the C°-quantum categories with A,-

fusionrules from the quantum group Uy(sé;).

i

. - 1
For this purpose, we review in Chapier 4 the geaeral defintion of a quesitrian-

12
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gular Hopf algebra, [3, 5), and the quantum groups Uy(s&), [2]. We introduce anti-
cohomomorphic »-operations on quasitriangular Hopf algebras arid define the finite di-

mensional examples U;*4(s4,) for ¢ a root of unity.

The representation theory of Uy(st;) is treated in Chapter § following the remarks on
inyirimt fbnm, commutativity constrainis and contragradient representations for general
quantum groups made in Sectiog 5.1. In Sectiop 5.2 we give a8 summary of the irreducible
and the unitary representations of U:“'(sl,), ma in Sectiop 5.3 we study their tensor
product decompositions. The formula given in Theorem 5.3.1 involves projective repre-
sentations with vanishing q-dimensions, which naturally form a tensor ideal in the category

of representations of U,{sf;). The subquotient of the abstract representation ring by this

ideal is a fusion rule algebra in the sense of Chapter 3, as described in Section 5.4.

In order to obtain a semisimple category we need not only divide oﬁt the radical
of the objects, i.e., the representation ring, but perform a similar quotient for the entire
category including the moq:»hisms; i.e., the intertwiners of represgntuﬁons. This procedure
is described in Section 6.1. We give the explicit definition of the structure matrices and
verify the polynomial equations for the quotient category in Section 6.2. In S&LOA_G_Q
we prove that this category is a C*-quantum category if ¢ = ezp(+ ). The connection
between balancing (or statistical) phases of a quanium category and the special element
of a ribbon-graph Hopf algebra and the relation between Markov traces and quantum
traces are explained in Section 6.4.

The first two sections of Cﬁagte} 7 ere devoted to the mathematical interpretation

of the structure matrices fognd in Ckapter 2 and the connection of duality theory for -

abstract tensor categories and the notion of duality in terms of global gauge symmetries
for local quantum theories. We start with a summary of the ingredients entericg the
definition of an abstract quantum category and show its equivelence to the systems of
R- and F- matrices we bave used so far. Furthermore, we draw the connection to the
theory of inclusions and towers of algebras, see [41, 23], if the category is obtained from
a sef_.’ of quasi-commuting endomorphisms on a h)'perﬁniie von-Neu;na.nn elgebras, e.g.,

a local subalgebra of the observable algebra of a local quantum theory. We review the
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known duality results, [29, 56), for abstract, symmetric categories and the existence of
field operators with global gauge group symmetry entailed by them. For braided, non-
Tannakian categories the notion of duality needs to be modified, involving semisimple
quotients of Tma.ba.n categories arising from non-semisimple quantum groups. In thi
setting, however, the a-.na.!ogous construction of fields which are gauge symmetric witk
respect to the dual Hopf algebra does not yield an operator algebra with local braic
relations and a closing operatorproduct expasion. This is explained in Sectiog 7.2.

The goal of S_c_gt_;gn_s_'{_& and 1.4 is to select from the list of fusion rule zlgebra:
given in Theorem 3.4.11 those which are actually realized as the object algebras of :
C*-quantum category and, furthermore, characterize them by the decomposition of th
tensor producis p o pand p o "ﬁ of the generator. VThe precise correspondence betwee:
the dimension restriction I < d(p) < 2 and the structure of these fundamental product
is given in Proposition 7.3.1. Tbis result is refined in Pxoposi§ion 7.3.5, where we shov
that the restriction 1 < d(p) < 2 is equivalent to a two channel decomposition of p ©
with one object being invertible so that the projections on the invertible object define .
Temperley-Lieb algebra in End( p®" ). In particular, the exclusion of the D,-type fusio:
rule algebras is inferred from the genefa.l result in Proposition 7.3.4 asserting that if po
decomposes completely into M invertible objects, then M = 2" for some n € N. v I
Section 7.4 we exploit the fact that the natural braid gfoup representation in End( p&"
factors through a Temperley-Lieb a]gébra in order to compute the statistical phases for th
C'-qua.ntum; categories with fusionrules given in Theorem 3.4.il.i). We ﬂﬁd consistenc
requirements in this computation that allow us to discard the D and E-type algebras an
certain twisied A-type algebras from the list of admissible objeqt algebras. The remainir
algebras, listed in Proposition 7.4.11 together with their possibls statistical phbases, can a
be obtained from a direct product of an A,- algebra and the fusion rule algebra given't
the group Z,, for some r € N, either by inclusion or by quotieniing with some irreducibl

graded fusion rule algebra epimorphism.

The resulis of Section 7.4 suggest that all relevant qﬁantum categories cen |

. 4 ‘
obtained from a product of a category with A,-fusionrules ‘and a category with Z

Y
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fusionhﬂés. Havinyg constructed categories with A,-fusionrules in Chapters 4,5 and 6

we are left with the characterization of the quantum categories for the Z,-case. More gen-
erally, we classify in Sectiop 7.5 the quantum categories for which all objects are invertible
so that the fusionrules are given by a finitely generated, abelian group G. The set of in-
equivalent quanturn categories for a fixed group G carries a natural group structure and
we show this group to be canonically isomorphic to the cohomology group H4(G, 2; U(1)),
associated to Eilenberg-MacLane spaces. We discuss in some detail the Z,-obstruction
of these categories to be strict , i.e., their non trivial structure if viewed 2s monoidal
categories. In the concluding Proposition 7.5.4 we also give the structure matrices for a

convenient choice of morphisms.

It turns out that any fusion rule algebra and any choice of statistical phases for

the untwisted cases of Proposition 7.4.11 is realized by a subcategory of a C°quantum
category with A,-fusionrules and a Z,-category.

The aim of Clﬁagter 8 is to prove the uniqueness of these categories and to con-
struct the categories with twisted fusionrules. The main tool in this is the notion of
induced categoriesvdeveloped in Proposition 8.1.4. We also define 2a action of the group

‘ H4(Grad(O%5), 2; U(I)) on the set of quantum categories with fusion rule algebra Obj,
where Grad(Ob;) is the corresponding universal grading group. In the second part of
Section 8.1 we find conditions that the orbit of a category with respect to this action
conta.in; a category, which is induced by a smaller one. The obstructions bere are found

~ to be elements of H*(Grad(Obj), 2; Z;), see Lemma 8.1.13.

In Lemma 8.2.4 of Section 8.2 we show that this obstruction is trivial in the case
of A-type algebras. Using the uniquenss of induced categories and the uniqueness of 4;-
categories given in Proposition 8.2.6 v.ve icfer the uniqueness and thereby the clessification
of the untwisted A-type (not necessarily C* ) quantum categories in Theorems 8.2.8 and
8.2.9. The respective categories with twisted fusionrules are presented in Theorem 8.2.10
in'terms of the untwisted categories they induce. Combining these results with Proposition
7.4.11 we arrive at the classification in Theorem 8.2.11 of 'C'-quantumv categories with a

generator of dimension less than two.
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Chapter 2

Loéal Quantum Theory with Braid
Group Statistics

2.1 Some Aspects of Low-Dimensional, Local Quan-

tum Field Theory

'As described in the introduction, it is the purpose of this work to elucidate properties of
superselection sectors of local quantum theories with braid (group) statistics. In partic-

ular, we are interested in understanding the laws by which two superselection sectors of

a local quantum theory with braid statistics can be composed. In more conventional field

theoretic jargon, we are interested in understanding the operator algebra and the operator

product expansions of analogues of charged fields in theories with braid statistics. This

involves, in particular, introducing appropriate algebras of fusion rules and attempting
to classify them. It ix;vol\(rcs, furthermore, to characterize and classify the statistics of su-
perselection sectors, or, in other words, the statistics of “charged fields”. More precisely,
we wish to dcscnbe, as completely as possible, those umtary representations of the braid
group, B, that describe the stntlstncs of superselection sectors in local quantum theories
with braid statistics. It is well known [19, 20] that in quantum field theory in four- or

higher-dimensional sfmce-time the statistics of superselection bsectorAs, or, equivalently, of
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charged ﬁeld;:, is described by unitary representations of the permutation group, Se. It

is quite a recent result, due to Doplicher and Roberts [29], that the iepresentation: of

the permutation group S, and the composition laws of the su;ﬁerselection sectors (fusion
rules) of a local quantum field theory in four or more dxmens:om can be denved from
the: representatxon theory of some compact group which, in fact, ha.s the mterpretat:on of

a global symmetry of the quantum field theory.

It is then vnavtural to ask whether the fusion rules and the reﬁresenta.tions of B,

encountered in local quantum field theories with braid statistics can be derived from the

" representation theory of a natural algebra which, moreover, can be interpreted as a gener-

alized global symmetry (“quantized symmetry”) of the quantum field theory? A conjecture

proposed frequently, but not really well understood (see, however, [30] for an example that

.is understood in detail) is that quasi-triangular (quasi-) Hopf algebras, in p&rticular quan-

tum groups, could play the role of algebras whose representation theory yields the fusior
rules and the braid group representations of local quantum the§ﬁa with braid statistics

and that they can be interpréted as “global syrmﬁetri‘es” of such theories [31, 28, 32].

~ One of our main goals in this book is to describe some classes of local quantun
theories for which the conjecture just described can actually be proveﬁ completely. The
quantum groups appearing in our ‘escamples are Uy(sé,), and we shall pro§e that the defbr
mation parameter ¢ must have one of the values exp(nr /N), N a positive integer (> n + 1)
Our results are complete for U,(s,). (For some sunpler examples, involving quasx Hop
algebras, see also [33]. )

Next, we wish to recall some basic facts about braid statistics. In the context 6
qﬁantum mechanics of point particles in two-dimensional spac%, btaid. statistics w#s dis
covered in [34, 35, 36]. However, a more precise analysis of braid; statistics and a classiﬁt:la
tion of all possible braid statistics requires the principles of locé.l quantum (ﬁeld) theory
Examples of local qua.nfum field theories, more precisely Chern-Simons gaug; theories
in three space-time dimensions with braid statistics were described in [36, 37, 38] an
numerous further articles; see also [13, 14, 15]. It has been recognized in [15]) that, apar

from permutation statistics, braid statistics is the most general statistics of superselectio
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sectors and charged fields that can appear in local éumtum theories in three space-time
dimensions; (see also [22] for related, partial results). Historically, braid statistics of fields
actually first appeared in quantum field models in two space-time dimensions with topo-

logical solitons; (see [11] and refs. given there). It should be efnpha.sized, bowever, that the

theory of statistics of superselection sectors in general local quantum field theories in two -

space-time dimensions is considerably more gcﬁerd than the theory of braid statistics.
But, for the chiral sectors of two-dimensional conformal field theories, the statistics of su-
perselection sectors and of the corresponding chiral vertex operaior: is always described
by representations of the braid gfoup B, generated by certain Yang-Baxter matrices;
see [21, 9, 11, 26, 27, 28, 22]

Inspired by results in [16], it bas been argued in [24] that the theory of the statistics
of sectors in general threé-dimensional, local quantufn theory is equivalent to the theory of
the statistics of chiral vertex operators in two-dimcnsioﬁal conformal field theory; (i.e., the
same braid statistics appear in both classes of theories). We may therefore focus our

jzd;’umtion on the analysis of statistics in three-dimensional local quantum theory.

Next, we review some characteristic features of local quantum theory in three space-

" time dimensions.

(a) Spin in three space-time dimensions.
According to Wigner, a relativistic particle is described by a unitary, irreducible
representation of the quantum mechanical Poincaré group, P}, which is the universal

covering group of the Poincaré group, ’Pl. In three space-time dimensions, '
Pl =50(2,1) » R®.

The three-dimensional Lorentz group, SO(2,1), is homeomorphic to R? x §1, its
covering group is therefore homeomorphic to R3. If one imposes the relativistic
spectrum condition one concludes that those representations of the quantum me-
chanical Poincaré group associated with three-dimensional Minkowski space that
are relevant for the de.scription of a relativistic particle are characterized by two real

parameters, the mass M > 0, and the “spin” s € R. In particular, spin need not be
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a..:': integer or half-integer number.

. (b) Localization properties of one-particle states.

Let us now consider a local, relativistic quantum theory in three space-time dimen-

sions describing a particle of mass M > 0 and spin s. As shown by Buchholz and
Fredenbagen [20], one can then in general construct a “string-like field”, ¢, with
' non—vamshmg matrix elements between the physxca.l vacuum, £, of the theory and
otne-pamcle states of mass M and spin s. This result follows from very general
;;i-inciples of local quantum theory; (locality, relativistic spectrum condition, exis-
tence of massive, isolated (finitely degenerate) one-particle states). The field + is,
in general, neither observable nor local. However, as shown in‘ [20], it can always be
léxcalized in a space-like cone, C, of arbitrarily small opening angle; (see Sect. 2.2 for
p'recise definitions and results). Physically, C can be interpreted as the location of
a fluctuating string of flux attached to a “charged particle”. Particles of this kind are
epmuntcféd in three-dimensional Chern-Simons gauge théoriet, (13, 14,.37, 38, 15).
It can ha.ppen‘ that the field ¢ is actually localizable in bounded regions of space-time.
(This would be the case in field theories without local gauge invariance.) Then a general
result, due to Doplicﬂer, Haag and Roberts [19), proves that the spin of particles created
by applying ¥ to the vacuum () is necessarily integer or half-integer, the statistics of ¢

is permutation statistics, and the usual spin-statistics connectxon bolds. It follows that if

the spin of a particle created by applying some field 1 to the vacuum Q2 is ncnther integer.

nor half-integer then the field ¢ cannot be localizable in bounded regions of space-tlme
- but ¥ is still localizable in space-like cones. It has also been proven in [15] that if the
spin of the particle created by 9 is neither integer nor half-inte?er then 3 has necessarily

non-trivial braid statistics, and a fairly non-trivial spin-statisfics connection holds. We

thus expect that particles with spin s ¢ 3Z can only be encountered in quantum ﬁ;:ld,

theories with a manifest or hidden local gauge invariance.

Another general result of [15] is that, under a certain minima.lity assumption on the

structure of superselection sectors, non-trivial braid statistics can only appear in theories

in which the discrete symmetries of space reflections in lines l.nd time reversal are broken '
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Thus the only realistic candidates of relativistic qﬁantum field theories in three
space-time dimensions describing particles with spih s ¢ 1Z and with braid statistics,
called anyons [36), are Chern-Simons gauge theories described in [13, 14, 37, 38, 15}, with
an action S given e.g. by (1.1), or non-linear 0(3)—-&-modeln with Hopf terms equivalent to

ebelian Chern-Simons theories. See also [14, 15] for a beuristic discussion of the properties

of these theories.

» Since 2 mathematically rigorous analysis of the quantum field theories just referred
to would be difficult and has, in fact, not been carried out, so far, we shall, in this book,

follow an ariomatic approach. The formalism most convenient for our purposes turns out

" to be algebraic quantum field theory, as originally proposed by Haag and Kastler [17].

Since algebraic quantum field theory does not appear to be terribly well known among
theoretical physicists or mathematicians, we shall now give heuristic motivations of some

of its main concepts which will then be reviewed more precisely in Sect. 2.2.

The local, gauge-invariant observables of a gauge theory are constructed
from real currents, J%(z), z € M®, a =1,2,3,..., which commute among each other at

space-like separated arguments, from Wilson loop operators, W([.),V and Mandelstam

string operators, M(7), where L is an arbitrary smooth, bounded, space-like loop without '

double points, and + is an arbitrary smooth, bounded, space-like curve; etc.. In order
{0 obtain densely defined operators on the vacuum sector, Hy, of the theory, one has to
smear out these currents, Wilson loops and Mandelstam strings: Let f be a real-valued

test function. We define

Jo(f) = ]l dz J°(z) f(z).
Md

One may éxpe(:t that J'( f) defines a selfadjoint operator on the vacuum sector H;.
Moreover, all bounded functions, A, of J°(f) are localized on the support of f, (in the
sense that [A, J’(y)] = 0 whenever y is space-like separated from the support of f, for

all ).

" Let ¥ be a finite-dimensional parameter space equipped with a smooth measure, do,
and let {£(c): 0 € suppdo C T} be a family of smooth, Epace-like loops, free of selfin-

tersections, smoothly dependingon ¢ € ¥ and contained in a space-time region © C M¢.
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. Heuristically, we define an operator

Wo = fdaW(L(a))

(where the integral is interpreted in the weak sense). One can imagine that Wy defines
a closed operator on Hj all of whose bounded functions are localized in O. (Similar ideas

apply to the Mandelstam strings M().)

We now define local observable algebras 2A(O), for O some bounded space-time re
gion, as the von Neumann (weakly closed*) algebras [17] generated by all bounded function.

of the operators

{J‘(f)rsuppfco) a=112131"'; WO;MO}-

As explained above, one expects that if O; and O, are two space-like separated space-time

regions then locality of the theory implies that _
[4,B]=0 forall A€2(0)), BeA(0,).

It is also clear that if O; C O, then A(0;) C A(0;). The general properties required o
the net {A(O)}ocms of local algebras are discussed in [17, 19] and will be briefly sketche:
in Sect. 2.2 ' ’

Let U; denote the unitary representation of 151 describing the dynimics of th
gauge theory on its vacuum sector H;. Let A be an element of P} projecting onto a
element (A,a) € P, (where A is a Lorentz transformation and a € R? is a space-tim

translation). Then one expects that, for every observable 4 € A(0), U;(2) AU, (A)* onl

" depends on (A, ) and is contained in the algebra 2 (O(A,.)), where

One) = {z eM?: _A"(z —a)€ O} .
Hence we have a representation, e, of P}, on the-algebra of observables of the theory give
; . | .
by .
aa)(4) = Dh(X) AT (A)*,
with .

a,0)(A(0)) = A(On) -
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We now suppose the theory has some non-trivial conserved charges giving rise to superse-

lection rules. Let H; be a Hilbert space of states of “charge 5" orthogonal to the vacuum °

sector H,; (the charge is here viewed as being “multiplicative”). It is customary to assume

that there exist a field ¥’ (v,) carrying “charge ;" ‘with non-vanishing matrix elements

between vectors in H; and vectors in H;. Here 7, is either a point z € M (charged -

local fields) or a space-like string starting at a point = € me and extending to space-like
infinity (Mandelstam operators in gauge field theories without colour confinement, such
as three-dimensional Chern-Simons gauge theories). Let {y(o): vE Y} be a smooth,
finite-dimensional family of space-like strings contained in a “space-like cone” C C M¢,

and let do be ; smooth measure on 3. Heuristically, one defines
$(0) 1= [ dogi(a(0)).
z

One may imagine that $7(C) defines a closed operator on the entire physical Hilbert space
of the theory. Then 47(C) has a polar decomposition

vi(e) = Ui | ()|,

* where [(C)| is a positive, selfadjoint eﬁerator of charge 0, hence leaving all super-
‘'selection sectors invariant, and Ug 'is an operator carrying “charge ;" and mapping the
‘otthogona.l complement of the null space of [7(C)| isometrically to (a subspace of) the
physical Hilbert space. Heuristically, the operators U and [$#(C)| commute with all
observables localized in regions space-like separated from C. One can now extend Ui
to an isometrie operatot Vi, defined on the entire physical Hilbert space, which carries
the same charge as Ué and commutes with all observables localized in regiens space-like

- separated from €, for some cone C containing C.
For every bounded observable A of the theory, the operator
A= () 4%

is then expected to be again a bounded observable, and xf A is localized in a space-time
region space-like separated from C then p"_,(A) A. The map /’Z' is therefore called an
~ endomorphism of the observable algebra localized in ¢

23

In the next section, we recall rigorous results, due to Buchholz and Fredenhagen [20],
asser.ting the existence of endomorphisms with the properties of pirunder very general,
physically plausible bypotheses on the theory. The Buchholz-Fredenhagen construction

of endomorphisms does not involve first constructing operators analogous to V’ Rather -

the existence of such operators - wlnch are bounded versxon: of charged field operators -
is derived from the existence of loca.hzed endomorplnsms It is-one of the major goals of
our work to construct operators analogous to the operators Vj and discuss their algebraic
properties, in particular their statistics, for some class of field theories in three space-
time dimensions characterized in tem:u of nets of local observable algebras and families

of localized endomorphisms.

ﬁom now on, we shall work within the formalism of algebraic field theory [17, 18,

19, 20, motivated by the heuristic considerations sketched above, and our analysis will

be mathematically rigorous. We expect that the hypotheses on which our analysis is

based can be verified for some two-dxmennona.l conformal field theones (30, 25] and some

three-dxmensxonal Chern-Simons gauge theories [38]

It should be mentioned that, in Sects. 2.2-2.4 and in Chapter 6, the reader is expected

. to be vaguely familiar with one of the references [11 15, 22].

2.2 Generalities Concerning Algebraic Field Theory

- The starting point of the algebraic formulation of local, relativistic quantum theory is

a net, .{Q((O)}, of von Neumann algebras of local observables indexed by bounded, open
regions, O, in Minkowski space M4, If S is an unbounded space-time region in M? one
defines an algebra of observables localized in S by setting
%A(8)= U %0, ' (21)
ocs .
© bounded

where the closure is taken in the operator norm. We define the a?lgebra. A of all quasi-local

observables as

%A= 2A(S = M), | (2.2)
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The algebras %(S) and A are C';a]gebrn. The relative commutant, A%(S), of A(S) in A
is defined by »

A(S)={A€A:[A4,B)=0, forall BeAS)}. (2.3)
The causal complement, &', of a region S C M¢ is defined as
S'={zeM:(z - ¥)<0, forall yeS}). (2.4)
Let Co be a wedge in (d — 1)-dimensional space. The causal completion, C, of C, is defined
by .
¢ =(C) - (28)

and is called a simple domain. If the opening angle of Cp is less than 7 C is called

a space-like cone.

Locality and relativistic covariance qf the theory are expressed in the following two
postulates on the structure of the net {%(O)}.
(1) Locality:
‘ A(S’) € A%(S), _ (26)
for any open region S C M. k

(2) Poincaré covariance: There is a representation, a, of the Poincaré group, ‘Pl,

as a group of *automorphisms of % with the property that

ana)(2A(S)) = ASney), @7)

where .

Swe = {z €M : A"z —a) e S}. | (2.8)
The properties of a physical systém described by {2, a} can be inferred from the repre-
sentation theory of {A,a}. We focus our attention on the analysis of physical systems
at zero temperature and den;ity. Then it suffices to consider a restricted class of rep-
resentations of {2, a} which has been described in work of Borchers [18] and Buchholz
and Fredenhagen [20]. Buchholz and Fredenhagen start from the assumption that all
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representations describing a local, relativistic system at zero temperature and density car
be reconstructed from what they call massive, single-particle representations [20]. They
then prove that there exists at least one vacuum representation, 1, of A on a separable
Hilbert space, 'thcont‘aining a unit ray, Q, the physical vacuum, which is cyclic for 2
and is space-time translation invariant, i.e.,

(2,1(aa(A)0) = (,2(4)), - 29

i

for all A € 2 and all ¢ € MY here {a. = a(,,,)} is a representation of spacc-tirﬁe
translations of M4, [In the analysis of [20] full Poincaré covariance is not assumed; if
is 'suiﬁ;ient to require locality and space-time translation covariance. In our analysis
space-rotation covariance will be used at some point, but full Poincaré covariance is nof
needed.] It follows from (2.9) that space-time translations are unitarily implemented or
H, by a group of operators U, (a) = expi(a®H, —3. B), a = (a°,&) € M¥, and it follows

from the starting point chosen in [20] that the relativistic spectrum condition,
i L

spec (Hl, ﬁ1) c V+ . ' . (2.10:

" holds.

In the following, we shall assume for simplicity that there is a unique vacuum rep

resentation, (i.e., there is no vacuum degeneracy). This assumption must be given up i

' the study of two-dimensional theories with topological solitons [11]. Our analysis can b

extended to certain theories with vacuum degeneracy without much diﬁicuity, in pa}ticu

lar to a class of two-dimensional theories with solitons. It can also be applied t6 studyin

.the chiral seciors of two-dimensional conformal field theories; see e.g. [23, 22, 25]. W

shall, however, focus our attention on three-dimensional theories, following (15, "24], sinc

these have been studied less intensely.

If the vacuum is unique, and under suitable physically plausible hypotheses‘;i'escribe;
in [20],:all representations, p, of % encountered in the analysis of relativistic, local system
at zerbl temperaturev and density have the property that, for an arbitrary space-like con
cc M‘, the restriction of p to A°(C) is unitarily equivalent to the restriction of th

l v
!
!
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vacuum representation, 1, to A5(C), i.e.,

P lQl‘(C) = llﬂ‘(C) . - (211)

A representation of 2 with this property is said to be localizable in spacc-lii:c cones
relative to the vacuum representation. In the framework of [20], only representations,
p, of 2 satisfying (2.11) are considel;ed which -are translation-covariant, i.e., for which
there exists a continﬁous, unitary representation, Uy, of Mi on the representation space

(superselection seétor) ‘H,, corresponding to the representation p such that

P(aa(4)) = Up(a) p(4) Up(—a), (212)
where .
Uy(a) = expi (a°H, - &- B,) , (2.13)
and i
spec (H,, }3,) cv,. B (2.14)

A fundamental assumption on the choice of the net {%(O)} of local algebras is duality, [19,
20): One assumes that the algebras 2(Q) are chosen so large that

1((S)) = TG, (215)

where B' denotes the commufing algebra of a subalgebra, 9B, of the algebra, B(H,), of all
bounded operators on H;, and B" = (B')' denotes its weak closure. [Duality (2.15) can
be derived from a suitable set of postulates for local, relativistic quantum field theory, [39],

and expresses the property that states in H; do not carry a non-abelian charge.]

Remark. The analysis presented in this chapter can be apf’lied to the chiral sectors
of two-dimensional conformal field theory if Minkowski space is replaced by the circle S?,
a compactified “light-ray”, with a distinguished point P, the point at infinity, (correspond-
ing to the auxiliary cone, C,, introduced below), space-like cones, C, in M? are replaced
by intervals I C s , and Poincaré covariance is replaced by covariance under PSL(2,R).
In this case, the spectrum condition becomes the requirement that the generator, Ly, of

rotations of S? is a positive operator with discrete spectrum.
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" Next, we construct an extension of the algebra 2 which will be more convenient for

our analysis. First, we note that the vacuum representation 1 of A is faithful. In the
following, we shall identify 2 with the subalgebra 1(21) of B(H,). I Bisa subalgébra
of % we denote by B the weak closure of 1(B) in B(H,;). Let C, be some aux:lxuy

space»hke cone in M¢ of arbitrarily small opening angle, and set

i ) ,C.+z={yEM‘:y-zEC.}.
We define an enlarged algebra, B°*, containing 2:
—_————n
B = |J (. +3z) . (2.16)
: . zEMP . .
A fundamental result of Buchholz and Fredenhagen [20] is that every representation p of A
localizable in space-like cones relative to 1 has a continuous extension to BC*. Moreover,

given a space-like cone C in the causal complement of C, + z, for some z € M‘,. there

exists 3 *endomorphism, g%, of B° such that
PA(A)=4A, forall Ae%(C), (2.17)

and the representation 1(2()) of B is unitarily equivalent to the representation p of

‘Bc‘, i.e., there exists a unitary operator V¢ from H, to H,; such that

| - A=AV 0

Next, l)et pc be a *endomorphism of B localized in a space-like cone C, in'the sense.

of equétion (2.17), and let 5¢ be a *endomorphism of 8% Jocalized in a cone C, with
the property that ¢ is unitarily equivalent to some subrepresentation of pc. Let S be
a simple domain in the causal complement of C, + z, for some z € M9, with the property

that C UC is contained in the interior of S. Then there exists a partial isometry s

PC lc’
on 'H,,!called a “charge-transport operator”, such that
i .
E pC(A)Pfc.Ig = P.:c.ﬁcﬁl(A) ) it (219)
i ! '
for all?A € BC. It follows from (2.17) and duality, see (2.15) and [19, 20], that
IS 4, € A(S)" c B%. : 7 (220)
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Let p and g be two representations localizable in space-like cones relative to 1, and let p?
and p* be two *endomorphisms of B localized in space-like cones, C, and Cq, with the
properties that C, C C'g,C, UC, C (Cq + z)', for some z € M?, and p and g are unitarily
equivalént to p® and f', respectively. We define p o g to be the unique equivalence class

. of representations of B°* unitarily equivalent to the representation p° o g% of B on H;. -

It is easy to check that p o g is again localizable in space-like cones relative to 1, that it
is translation-covariant (see (2.12)) and satisfies the relativistic spectrum condition (see
(2.14)), provided p and g are translation-covariant and satisfy the relativistic spectrum
condition. It is not hard to see [20] that if Cp and Cy are space-like separated (Cp C C',)
then p? o p" = p%0 p®. Hence ) )
pog=gop. (2.21)
Clearly
' lop=pol=p. . (2.22)

Fredenhagen [40] has isolated natﬁra.l physical conditions which imply the following prop-

erties of reﬁresentations of 2 localizable in space-like cones relative to 1.; see also [20, 19).

Property P

(P1) Every representation p of 2 which is localizable in space-like cones relati\{e {0 1, and
which is space-time translation-covariant and satisfies the relativistic spectrum condition
can be d;composed into a direct sum of irreducible, translation-covariant represent.ationx
of A which satisfy the relativistic spectrum condition and are localizable in space-like
cones relative to 1.

(P2) Let p be an equivalence class of irreducible representations of % which are translation-

covariant, satisfy the relativistic spectrum condition and are localizable in space-like cones.

relative to 1. Then there exists 2 unique equivalence class, §, of conjugate representa-
tions of 2 with the same properties as p such that po § = $ o p contains the vacuum

representatibn, 1, precisely once.

From now on, Property P is always assumed to hold; see also t23, 24).

29

- of 1 such that

s
!
i
i
'

Deﬁnifibn 2.2.1 We denote by L = Lot 0 the complete list of all inegquivalent, irre-

duciblei, translation-covariant representations of A which satisfy the relativistic spectrum

condition and are localizable in space-like cones relative 16 1.

It follows from Property P that, for ¢ and j in L, the product representation, i o 3,
can be decomposed as follows: '

= ioj =P P+, with KWk, - (2.23)

! ’ kel p=1 :
for all 4 = 1,...,Nijx. The multiplicity, Ni;a = Njis, of kin {0 is 2 non-negative
integer; and, by Property (P2), can also be defined as the multiplicity of 1 in ko0 3.
The int@gers (Ni;2) are the fusion rules of the theory. By the definition of i 0 j, Nijx can be
interpreted as the multiplicity of the reprcsentatioh k of 2 in the representation i (p":())
of 2, where g} is a *endomorphism of B localized in a spagc-like cone C C (C, + 2)'
for some z, with the property that j is unitarily equivalent to 1(p{.()) It is not hgrd' tc
derive i’r_om this that, given k, i and j in L, there exists a compl;ex Hilbeﬁ space Vi (p’,’:),

of operators, V, from the representation space, Hy, of k to the representation space, H;

i((A)V=Vk4), forall Aeg; (224
the diménsion of Vi (pg)i is given by Ni;x, and the s;:alat product, (V, W), between tw
elements V and W of V (p}) is defined by a

VW= (VWi (2.25

By (2.24), V*W intertwines the representation k of 2 with itself and hence, by Schur’
lemma, must be a multiple of 1]y, , because k is irreducible. Intertwiner spaces

Vi (p™ 0--- 0 p’); are defined similarly, for arbitrary i,7,... ,jnand kin L.

Remark.
One pt:u'pose of Chapters 2 and 7-is to use the intertwiners in Vi(pi)i, 4,3,k in L, t
construct certain (bounded) operators on the total physical Hilbert space of the theor:
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called charged fields, which have non-zero matrix elements between different superselectién
sectors, are localized in space-like cones and hence can be used to, for example, construct
Haag-Ruelle collision states [20]. Quantum groups will appéax in the construction of such
fields in space-times of dimension d = 3 and for some class of theories, including conformal

field theories, in two space-time dimensions.

The first step in our construction of charged fields is to construct (“horizontal”) local
sections of orthonormal frames of intertwiners of a bundle, T;;, of intertwiners satisfying
(2.24), whose base space is a “manifold” of *endomorphisms, p?, of B localized in space-
like cones contained in (C, + z)', for some z, with the property that 1(p?(-)) is unitarily
equivalent to j, and whose fibres Vi(p’); are isomorphic to CNik. Such local sections
of frames are constructed as follows: We choose a reference ﬁorphism, p";, localized in
a space-like cone Co C (Cs + 2, for some z, and an orthoriormal basis {V;"‘ (pﬁ) }:'::
for the Hilbert space V; (pé).' consisting of partial isometries from H; to H; satisfying
(2.24). Given an arbitrary *endomorphism, p?, of B localized in a space-like cone
C C (Cq + ), for some z, and unitarily.equivalent to pl, we choose a unitary charge
transport operator I‘f,' 5 8¢ (2.19), which belongs to an algebra B(S)" C BC* associated
with a simple domain § C (C, + z)', containing C; and C. A basis for Vi(p”); is then given
by {V;"( ' )}:’:, where .

Vi) =i (T5,) V(). (226)

Note that, since I'S, ; € A(S)" C B, and i is a representation of B, i (I, ;) is
) AN

a wéll-defmed unitary operator on M.

Bundles I 5, » and local sections of frames of intertwiners in Z;; j, & are con-
structed similarly; see [24}=
Remark.

Since, for j € L, ¢ is an irreducible *endomorphism of B, the choice of I“:, i is unique
Yo
up to a phase factor. This phase factor cannot be chosen continuously, even in "small

neighbourhoods” of P These technicalities are of no concern in this book, except in
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Theorem 2.3.1, below.

2.3 Statistics and Fusion of Intertwiners; Statistical

Dimensions
Let C be a space-like cone which is the causal completion of a wedgé Co in (d — 1)-
dimens;iona.l space. With C we associate a unit vector & € §9? which specifies the
asymptotic direction of the central axis of Co; (for d =3, & is the unit vector in R?
specifying the asymptotic direction of the half-line bisectiﬁg Co). Using polar coordinates,
¢ can be described by d — 2 angles; in particular, for d = 3, € is described by one angle
fe (—;r,r]. Our coordinates are chosen such that the unit vector € associated with C,
is given by (-1,0,.. . 0). If p is a *endomorphism of 8% localized in a cone C, the unit
vector € associated with C is called the ;zsymptotic direction, as ;(p), of p. We ﬁxay choose
the ref;rence morphisms g}, j € L, such that as (pf,) =(1,0,.. ;!, 0). In d = 3 dimensions,
the asymptotic directions of the morphisms p’ inherit the ordering of the angles in (-, ).

We say that two *endomorphisms, p; and pa, of B are causally independent, de-
noted p,ng, if they are localized in cones C; and C; such that C; C 5.

We now recall a basic result proven in [24].

|
Theorlem 2.3.1 Forpand q in L, let p* and p" be two *endomorphisms of ‘Bc" localized
in spaée—like cones contained in C, and unitarily equivalent to p and g, respectively. Let
the inticrtwiners {V;" (p’)}::: and {V,"‘ (p')}::: be defined as in (2.26). Then there are
matrices, called statistics-(or braid-) matrices, ; '

! (RGip (P s (0 10) 1

such t;;at
.V..""(p’)Vp"‘(P')=§R(J',p,as(p’),q,as(ﬂ')&)ﬁ",."kﬂ‘)%"‘(ﬂ’% L@

|
1
1
!
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provided p'x;)'. The statistics matrices are locally independent of the choice of the
auziliary cone C,. Moreover, the following properties hold.

(a) In d > & space-time dimensions, the matrices
R(3,p, 58 (), 0, 38 (#), k) = R0, p,0,k) (228)
are independent of as (7*) end as (o%). ’
(b) For d =3,
Ri,p s (Phas s (00 = R h), (229)

for as (p?) 2 as (p?). [The matrices R*(j,p,q,k) depend on pP and p? énly through p
and g and the sign of as (p*) — as(p?).]

Remarks.

It is easy to see that
3 RE(5,p. 0, k)ks R¥(4,q,p, k) = 676563 (2:30)
Ly .

and that the matrices R*(j, p,q, k) ;atisfy the Yang-Bazter equations in SOS-form.

We now assume that the represéntatiom p € L are rotation-covariant. Thus if 0

denotes a space rotation then

Plao(4)) = Up(0)p(A)Tp(07"), ) (231)

whiere U, is a unitary representation of the universal covering group of SO(d — 1) on the
representation space H, of p. Since pis irreducible and ag,, is the identity when 0,, is

a rotation through an angle 2r, it follows that

U, (Oz') = "]

H, ?
where the real number s, is called the spin of representation p; (for d = 3, s, can, a prior,

be an arbitrary real number, while, for d > 4, s, € %Z)
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(232)

Theorem 2.3.2
R*(j,p, g, k)i = et s=4=mIR (5, p, g, k)f (2.33)
Remark.
The fact that in d > 4 space-time dimensions R = R~ and Theorem 23.2 imply that
sp€iZ forall pe L. ‘
All the results reviewed above are proven in>[24}.

Next, we recall what is called fusion of intertwiners [24]. For p,q and r, let p?, p?
and p" be three *endomorphisms of B unitarily equivalent to p,q and r, respectively,

and localized in the interior of a simple domain S C C;. Then there exist N, partial

‘isometries, ;
i I‘i’op',p'(l"’) € m(5) C Bc. :‘ : (234)
p= 1, <y Npq.r, such that
7 (p'(4)) Troptor () = Toropa r (1) £ (4). (2.35)
Let o,(r;p, q) be given by
| oulripr0) = (F (S0 () V), VEAVRGD) . (236)

Note that' Ny, =1, so that there is a unique (up to a phase) isometric intertwiner of the
type of VP(p"), for all r € L.

Theorem 2.3.3

(a) There exist matrices (f‘(j, p,q,k)::;) only dcﬁgnding on the representations
7,20, k,i and v, (but not on the specific choice of ¢¥, p% and p'), such that

VIV =

gyﬁ(j,p, 4B 50, P, 0) 7 (THope (1) VI(T). (237

| , 34



The matrices F can be ezpressed in terms .of the matrices R* and R~ as follows

F(j:?: 9 k):u"; = .
Z Ri({» q, E: 1):2‘: R*(j: P, k» q_)::: R:F(jr E: L 1)2‘11 . (238) .
% :

{b) There ezist matrices (F"(j, ?,4, k):;‘;) only depending on the representations
5,2,9,k,i and r, (but not on the specific choice of p®, p% and p*), such that

5 (TS () V() =

Y (5,2, g, Ragoa(rip ) V() ViH(69). (2:39)

The matrices F' can be ezpressed in terms of R* and R~ by a formula analogous to

(2.86); (see Theorem 2.8.4, (1))

(c) The matrices F' and F' are related to each other by the following equations

P, k)ias FGip, 0, k) = 616265, )
v .
and .
PUo)(j,p,q, k)25 := " F(j,p,9, k)% F(i,p, 0, k) (2.41)
v .
are the matriz elements of orthogonal projections, P("-")(j, P, 4, k), with -
3 PU#(5,p,q,k) = Uy, (poopt); 2 (completeness). (2.42)
™ .

: Reniarks.

(2) The consistency of the two equations (2.38) (+ « —) follows easily from Theorem
' 2.3.1. Theorem 2.3.3 is proven in [24].
(b) We recall that V,(¢?); is the Hilbert space of intertwiners V from M, to H; satisfying

J(PP(A)V =VEk(4), forall = Aed,
see (2.20). We define Vi (p° 0 p%); to be the Hilbert space spanned by the intertwiners
(V@) ieL, a=1,.., Ny, B=1,...,Nus}.
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Then ‘the matrices R%(j,p,q,k) define unitary maps from V, (p” o‘p')’. to Vi (p'o i
proviéed p” and p' are causally independent (p’Xp‘), the matrices F and F define
unitary endomorphisms of V, (p” 0 p*),, and the matrices PU#)(5,p, g, k) define orthogonal
projections on Vi (p” 0 p7);. ‘

(c) It is sometimes preferable to use

é i‘(j’Pn an):z =
Y RE(L,5,2, 9050 RE(p, 5,0, K)ig R¥ (1,75, k)il F(1,p, 0,700 (243)
nep

instead of (2.38), in order to compute the F matrices from the R* matrices. It is useful

1o express the matrices R¥, R~, F and F graphically as follows

QL pV

i o R¥(j,p,0,K)% (2.49)
“ R Gkl (2.45)
|

|

, P, q,V !

! i

| - »

j k o F(j,pq, k)2 - (246)
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j K e FGpa k). (247)
p,a q,B
We also introduce the graphical notation
pa p,B
i wE() =tennim, e
i
i
and ,
j : N af .
i N T ST
p.a p,B

Identities between R*, R™, F' and F' can now conveniently be expressed graphically.

It is quite straightforward to prove the following theorem [24].

"Theorem 2.3.4 The matrices R*,f‘ and F* satisfy the equations

(a) r s

g .sp’q‘

s p q
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p q S p q s (2.50
/
) ( =
k /
S r S r
ele.; (polynorxﬂa.l equations)
®) |
$,B P g
> pkqg =g85 X r — (2.51
k... . [
r,a P q

(c) There ezist numbers d, > 1, for all p€ L, and unitafy matrices,
Vi =V (p,q,1), such that

p,a q,8 b,d q,B
) i j i
|
rYy ¢ r,y
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r,y

and

|

p,a q,B ’ p,a an
For the proof of Theorem 2.3.4 see [24].

Rémarks.

(2) Equation (2.38) for P and a similar equation for ' follow from Theorem 2.3.4,(a).
(b) The number d,,p € L, is called the statistical dimension of representation p. If
R* = R~, i.e., if the theory has permutation group statistics then d, € N, [19]. It is
shown in [19, 20, 23], that d, = d;. From Theorem 2.3.4, (b) and (c), it follows that d, is
the largest eigenvalue of the fusion rule matriz N,, defined by

(N’)jk = Njpi .

This can be shown by noticing the ideptitien

dpd, = d,d, (2.54)
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=Y q p rl =X N4 r =%nN.,d. (255

Identity (2.54) follows from Theorem 2.3.4,(b) and (c); [22]. Thus (d,),e is & Perron-
Frobenius eigenvector, correspon&ing to the eigenvalue d,, of the fusion matrix N,. Con-
nected to this result is the interpretation of d} as a Jones indez, [23, 41]. See Chapter 3.
(c) As a special case of Theorem 2.3.4;(c) we note that

P . p :
! :
| - )L
N] [] d’
1 i
‘ P P
P
This identity is important in the construction of invariants of links and of ribbon graphs

from the matrices {R*, P, F}; see [43, 28, 44].

(2.56)

The main result of this section is the insight established in [15, 24, 22] that every
local, relativistic quantum theory, in the sense of Sects. 2.1, 22 in three or more space-
time dimensions [and the chiral sectors of every two dimensiéna] conformal field theory]
provides us, in a canonical \way, with certain combinatorial d&ta, namely the fusion rules
(N,)peL, and the statistics-(or braid) and fusion matrices, Rt, F' and F, respectively. In
d > 4 space-time dimensions, we bave that R* = R-, butind =2,3 dimensions R* and
R~ are, in general, distinct; see Theorem 2.3.2. It is natural to ask, whether these data
might be dual to some simpler algebraic object, such as a group or a quantum group. In

a remarkable series of papers {29], Doplicher and Roberts have shown that if R* = R-,
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i.e., for permutation group statistics, the data {(N,),g,,R, F, f'} are dual to a compact

- group, i.e., L can be viewed as the set of finite-dimensional, irreducible representations

of & compact group, G, Ny ; is the multiplicity of representation j of G in the tensor

product representation p ® k, and R, F",F are standard 6-index symbols associated with -

the representation theory of G.

The point of this work is to show that if R* # R, (frequently the case in d = 2,3), -
then the data {(N,),g,, R, F, F} are often dual to some guantum group, {1, 2, 3]. We

- shall discuss in detail one example (see Sect. 6.3.) of a local relativistic quantum theory,

encountered in the stuay of three-dimensional Chern-Simons gauge theory with gauge
group SU(2),which leads to quantum SU(2), i.e., Uy(s&2), with g a root of unity. The

same example appears in the study of two-dimensional Wess-Zumino-Novikov-Witten

_models based on SU(2) current algebra and of minimal conformal model 19, 31]..

In the next section, we study properties of the representations of the braid groups

determined by the statistics matrices ‘R*.

2.4 Unitary Representations of the Braid Groups
Derived from Local Quantum Theory; Markov

Traces -

We return to the study of a local quantum theory described by an algebra 2 ,a *auto-
morphism group, a, and a set; L, of representations localizabig in space-like cones. We
show héw, ford=2o0r3 ;Lnd assuming that R* # R~, the quantum theory determines
unitary representations of the braid groups, B,, on n sfrands, for arbitrary n, equipped

with a positive Markov trace 7a. These results are discussed in more detail in [22, 24].

For every p € L and every n € N, we define a space Q;,") of paths of length n, as

follows: Every element w € ™ is a sequence of symbols

w=(man, haay,..., ta0a),  with  pi €L, (2.57)

41

and a; = 1,..., Ny, s 1 =1,...,0, with o =1. Two neighbors, p;_, and p;, are

constrained by the requirement that Npwicawss # 0.

We fix a *endomorphism p® of BCe. With each path w € A, we associate an

intertwiner

=TTV (p), (259)

: : =1

intertwining the representation 1((g")*(-)) of A with the representation w, of 2, where
w4 = p, is the endpoint of w. Here, (p7)" = pPo...0p" (n-foid composition of p” with
itself). The space of these intertwiners carries a natural scalar product (-,-), defined as in
(2.21), Sect. 2.1. In this scalar produét, {V,, twE Q;"),uq. = k} is an orthonormal basis
for the space, Vi ((¢*)"),, of intertwiners between representations 1 ((?)"(-)) of 2 and k,
ie., :

(Vu; Vw') = 5:».»‘ . . ; (259)
We define a path algebra 145, 46], A (Q(")) by setting

A(0g) = @‘B(vk(w)"),) . (260

where B () is the algebra of all linear endomorph:sms of a Hilbert space H. It is easy

to see that [24]

| AlOP) 2 1((Pr@)y . (261
Next, we define a unitary representa.tion of the braid group B, on n strands with val.

ues in A (Q(")) Let 0f?,...,02!, be the usual generators of B,. We define a umtary
representation, , of B, on V,. ((p”)")1 by setting o ‘

: (5?‘V)u=§:&*(w,w‘)%q (262

where )
RE(w,w') = B* (pio1, 2,y i Yiaiainn (263
if w=(pe, )y,

L+#1, o) = ay, for L #1i,i+ 1. For all other choices of u', gwen w, we set R (w,w') = 0.

n and 0’ = (pp, ), ., Where By = e for
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Let b =[1%_, of¢ be an arbitrary element of By; €a = %1, ka € {1,...,n—1}, for
a=1,...k. We define

a=1

with Rf as in (2.63). The representation " of B, on Vi((¢*)"), is then completely
determined by setting

V) 1= X Bulw, o WVor - wy =y = k.  (265)

It is not hard to show, see [22, 24], that “:be b is, in fact, a unitary representa-
tion of B, on Vi((p°)*);- This representation admits a unique, positive, normalized
Markov trace, 75, constructed as follows [24]: Given w = (41,01, .+ s iny @n) € Qg‘), we
set @ = (p1,...,4n). We define E

PHi

=1

ﬂww—ﬂrc”lm; | . (266)

for @ = ', and ﬁ‘(w w')=0, otherwise; the matrices F(:[) have been defined in (2.48),
Chaptcr 2.3. The matrix F(w,w') is defined similarly; see (2.49), Chapter 2.3. Then 7§,
is given by

TBi= ¥ T tr () B w)Fese) © (267)

B ger .u-rq-(m ..... bn)
for 4m1,3,3

The quéntity 7h (61) =: X is called statistics parameter (23, 22], and one can show [23,
22, 19] that the statistical dimension, dy, is given by

dy = |rh (&)l : (2.68)
The fusion rules (Np) ¢, and the values of the Markov traces H
{-r,’:,(z) :b€B,,p€ L} )

on B, for all n =2,3,4,..., are intrinsically associated with the quantum theory de-
scribed by {2, a,L}. They do not depend on how the phases and normalizations of the
intertwiners V. (pP) are chosen, in contrast to the data {R%, F, F}.

*Clearly, 7§, can be extended to a state on A (0?"), for every n.
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We know from [43] that a quasi-triangular (quasi-) Hopf algebra K with universal
R-matrix R, and a list, £, of finite-dimensional, irreducible representations of positive

g-dimensions of K also give rise to representations of the braid groups B, equipped with

- Marko_:v tucés_ Th» P € L, for all n = 2,3,4,.... From the results reviewed in this section
we knéw that only those quasi-triangular (quasi-) Hopf algebras, K, and families, £, of

representations of K can appear in local, relativistic quantum theory for which
(1) the associated representations of B, are unitarizable, for all n; and
!
(2) the Markov traces 7jy, p € L, are positive.

For K = U, (s8441), this restricts the values of ¢ to ¢ = exp(ix/N),

- N=d+2,d+3,...,,. What, as ﬁeld theorists, we are longing for is a g;cnefal theo-

rem which completely characterizes those fusion rules and positive Markov traces on B,

n=2,3,4,..., which come fron qua.si-triangulu (quasi-) Hopf algebras. We do not know

a general result of this type, yet. [In d > 4 space-time dimensions, the results of Doplicher

~and Roberts [29] completely settle an analogous problem, with K the group algebra of

a compact group.]
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Chapter 3

Superselection Séctors and the

‘Structure of Fusion Rule Algebras

As proposed. in [23], it is of interest to investigate the structure of the chain of algebru
C-1=p (B")'n (‘Bc‘) Cpop (%C‘)Iﬂ (‘BC‘) Cpopop (‘Bc‘)' N (%c') AN (31)

where p is an irreducible *-enddmorphism an 7 a conjugate endomorphism. The point of
studying algebra chains obtained by alternating compositions of the form (3.1) is that they
admit faithful traces which give rise to conditional expectations and thus to Temperley-
Lieb algebras [41] as suBalgebra.s. This structure has been studied in rather much detail.
For rational local quantum theories, i.e.,. theories with a finite number of supefselec-

tion sectors, one finds that the chain (3.1) eventually leads to a tower in the sense of

- Jones [41). The factors in these algebras are distinguished by the inequivalent, irreducible

representations occuring in the compositions pogopopo..., which makes it natural to
try to connect the inclusions of the algebras defining the tower to the fusion rules {N;;x}
introduced in Sect. 2.2; see also [47, 41]. Assuming that every irreducible representation
of 2 is contained in some p" o p™, we shall explain, in some detail, how \fusion rules can
be recovered from (3.1) and from towers that are in some sense coupled or isomorphic
to (3.1).

Since most of the structural information can be obtained from the fusion rules alone,

-
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“and (a,b) := £(a 0 b) is the usual cuclidian scalar product on NI,

a larger part of this section is devoted to the study of fusion rule algebras, as introduced

in [47]. In view of a classification problem solved in Section 7.3, we give a formal treatment

of the action of the group of automorphisms in a fusion rule algebra.

~ On the level of algebra-chains, similar to (3.1), automorphisms give rise to concur-
rent Temperley-Lieb algebras which, for a special decomposition .rule for p 0 5, lead to
a complete determination of the underlying theory, as we shall see at the end of this

.
section.

3.1 | Definition of and General Relations in Fusion
Rule Algebras, and their Appearance in Local

" Quantum Field Theories

A fusion rule algebra (superselection structure, ...) ®is a pos‘itive lattice (I@l = Nu‘l),

with a distributive and commutative multiplication
’(I>x<I>—-HI>; axb—aob,
an inv‘olutive and additive conjugaﬁion, -
% : -:95%; a—7d
with 'a':o’5=_5-5, a unit 1 € & with
‘ . loa=a and T=1
and an additive evaluation ¢

e : - N such that
e@) = efa), €(1)=1

It follows, that the scalar product (, ) obeys - N
(eoz,y)= (z,%oy), (3.2
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so that we have, for the length |la]} := /(a,a) of a € &,
llall =1liall, llaobll=llaoBl, etc.. (3-3)

Minimal elements, ¢, in @, i.e., vectors that cannot be written s the sum of two other

nonzgero vectors, are characterized by

ligl=1. - (34)

Every vector of & can be written uniquely as a sum of the minimal elements ¢ € &, and
any additive bijection of ¢ onto itself coneéponds {0 a permutation in

L = {¢ € ®|¢ minimal}. In particular, we have that 1 € L, that the conjugation is an
involution, ; = ¢, of L, and that ' '

| e(48;) = 6. : (3.5)

A fusion rule subalgebra (sub-superselection structure) &' is an invariant sublattice of 9,
which contains 1, closes under multiplication and for which (3.4) holds, for all minimal

vectors.

Note that a fusion rule algebra is simple, in the sense-that there do not exist proper

ideals, i.e., if ®, is a sublattice of & spanned by minimal vectors with

B, =9, and $,0dC9,
it follows from (3.5) that 1 € @, and hence & = &,.

The multiplication in & is determined by the products of the minimal elements

¢iodi =) Nijidi, (3.6)
: kel
where the structure constants N;;x € N are, what we previously referred to as fusion

rules.
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In terms of the fusion rules, the definition of the fusion rule algebra is given by: .

i

a) commutativity . Nije = N,-; &
b) associativity ZN;,-,; Niey = E Niy Njrg
k- I3
c) unit Nai = Mj=6&; (3.7
d) involution Nix = Ny '
; e) evaluation : Ny, = §&;.

A rep{'esentation of a fusion rule algebra, , of @ on a lattice A = N* is an assignment,

a— p(a), of elements, @, in & to additive mappings of A to itself (i.e., p(a) is a nonnega-

tive, integer k x k matrix), with
p(1) =1, p(a)p(d) = p(aob) and p(z)= p(a). (3.8)

The representation we are primarily interested in is given by (right) multiplication of ¢
onA%Q,sotﬁat ~ . - 3 ‘
| p(4;) = N}, ! (39)
where (N;),, = Nijx are the matrices of fusion rules. .

y
K

In fact, any lattice A that carries a representation of $ and has an element w with

| @olal)=ele)  (310)

can be written as a sum A = &, © 3}, where &,, P2 are $-invariant, and &, is equivalent

to the right representation. If a representation, p, satisfies ||p(4;)|| = |[Nill, then we call p

dimension preserving. Eqs. (3.8) yield:
, NN =T MM 1)
N=1, Ny=N . ' (3.12)
Using (3.10), for w = 1, and (3.12), (3.7) we see that
Ni=Ni=4;, aswellas Ny= CN,C, (3.13)
where (C);; = &. i \‘ |
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Moreover, commutativity of o implies
[N, N] =o0. ' « (3.14)

Suppose we have a lattice §, and nonnegative integer matrices N; acting on &,, that obey

(3.12), (3.13) and (3.14), for a given involution C, then we find that

a) (L,N;N;1) = &4
b  (LNN;N.1) = Ny; (3.15)
¢) (1,N;N;N;N;1) = z Nijo Ny

(137

By (3.14), these expressions are completely symmetric in the indices 1,7,k and £ and, by

(3:12), are invariant under conjugation (%, 7, k,£) — (i, 7, k, ), so that equations (3.7) are

easily verified. Hence any set of matrices obeying (3.12), (3.13) and (3.14) determines

a fusion rule algebra.

From the results reviewed in Sections 2.1-2.4 it is clear that every local quantum
theory satisfying properties (P1) and (P2) of Section 2.2 defines a fusion rule algebra, 3.
Let '

B= \ AC.+z)
. zeM~
denote the auxiliary C* algebra, introduced in Sect. 2.2, containing the observable al-

gebra 2; (C, is the auxiliary space-like cone). We define & to be the fusion rule algebra
generated, through arbitrary compositions, by the family L of transpoftable, irreducible
*endomorphisms of B localizable in space-like cones. Let C be an arbitrary, non-empty
space-like cone space-like separated from C,. We define the von Neumann algebra M1 to
be the local algebra

m = M(C) :=2A(C) .
By Haag duality in the form considered in [20),
o = FC),

on the vacuum sector, Hj, of the theory. Let U = U(C) denote the group of unitary

elements in 9M, i.e.,

Ui={vem:v:=v-}.
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x\\

-Since every endomorphism in L is transportable, and hence is unitarily equivalent to

endomorphism localized in a space-like cone of ’arbitrarily small 6pening angle contained
the cone C, we can choose a representative which is a *endomorphism of I acting trivia
on M in every equivalence class of‘unitarily equiv.alent ’endomorphis;ns in L. By al
including arbitrary compositions of such endozﬁorphisms we obtain a subset, End(C
of End(ﬁJI(C)) wi:?ch is closed under composition and hence is a (sub-)semigroup. TI
semigréup End.(C) contains the subgroup, Int(C), of inner *automorphisms of M give
by | ‘
Int(C):={ov:3V e U(C) st. ov(A)=VAV' VAeMm}.

The fusion rule algebra & of the local quantum theory under consideration is then give
by ‘

® = End;(C)/ Int(C). v (3.16

The cone C, although chosen arbitrarily, and the von Neummr‘x"a.lgebras D = M(C) an
9’ can and will be kept fixed throughout this chapter. .
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3.2 Structure Theory for Fusion Rule Algebras

We review several results on the structure of fusion rule algcbf;a..s which are based on the
theory of non-negative matrices, in particular on connectedness arguments and Perron
Frobenius theory. We focus our attention on the description of the fusion rule subalgebra,
®,, generated by a distinguished minimal vector ¢, € &, and comment on the gradation
induced by ®, on ® in terms of “Perron Frobenius algebras” defined over R*. The proofs
of the following statements as well as more general aspects of the structure theory will be
given elsewhere [{2].

The first observation about fusion rule matrices is that they have non-negative

entries, and, since N} = N; is a fusion rule matrix, too, if N, is one, fusion rule matrices

are normal, i.e.,

NN} = NiN,. _ (3.17)

Note that (3.17) deﬁnes’a symmetric, non-negafive matrix with strictly positive diagonal
elements. Hence it can be decomposed info irreducible parts, each of which is primitive'.
The following lemma holds for arbitrary non-negative matrices. From the superdiagonal
block form on every N, -invariant domain, &, = @ ®(5.i), we see that the period a; is

l
1dent1cal with the Frobenius imprimitivity mdex

Lemma 3.2.1 Let N be a normaln x ﬁ-matriz, with non-negative (i'ntcgcr) entries and

non-zero rows, or columns, and let
2 (R*)"  (or=N)

be the cone (positive lattice) on which it is defined, with unit vectors ¢y,...,¢n. Then

there is a unique sequence of numbers, ax € N, with A ranging over some indez set A,

and a unigue partition of {1,...,n}:{1,...,n} = AUA lﬁ.{ Ciai) such that the subcones
€A ieZa,

(sublattices) &5y = ({1} i“(l-i)>g+®’ with

=P D 2p,, | ' (3.18)

A€A i€Za,
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obey

N (Q(A,;)) C Pnis), . :
and ' (3.19)
Nt (@(.\ .+1)) C %u.),

and, moreover, N'N is primitive on each $(n), i.c., (N'N)™ | $(s,) has stnctly positive
matnz elements, for some m. Furthermore, lf there ezists an involution, x € S, such

that we hc‘uc

o

CNC =N, ‘ (3.20)
with C'¢.- = @y(s), then there is an involution, A — X, on A, with ¢ = ay, and an enu-
meration of Z,, such that

¢ (‘P(a-‘)) = "(ﬂ—» . (3.21)

or

]

“c(<1>(x,.~)) Bpa-n for A=X . (322)

From the superdiagonal block form of N, on every N,-invariant domain, $, = e Q(;,q,

we see that the penod ay is identical to the Frobenius imprimitivity index . Also we have

that the restriction of the matrix N, to a domain &, is irreducible and by standard Perron
Frobenius theory has an eigenvectorin ®, ( components taken in Rt ) with positive eigen-

value, which is uniquey up to positive scalars. It is called the Perron Frobenius eig' envector’

of the matrix. Any eigenvectox of N, on @ is thus a convex combination of eigenvectors
on components with the same exgenvalue A more general version of th:s observation is

obtamed by induction :

Lemma 3.2.2 i) LetS = {N,, ,N.} be a set of commutmg nxXn- matnccs whtch

closes undcr transposition, i.c., N‘ € S ifN; € S. Define the sct PF (S)
PF(S)={de (R+'°)" :3(a) € (R*)* with Nid = od,Vi}, (3.23)

then there is a partition

{,....ny=U Uc(.,., | (3.24)

acd j
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and Perron Frobenius e:gcrwectors la unth eigenvalues a = (o;) and support in
Cla)s -y (dajy #:) # 0 iff i € Ca 4)» such that there is an orthogonal decomposi-
tion

PF(S) = @ PF(S)a, (3.25)

a€A

vhere PF(S), i3 the convez cone spanned by the set of eztremal directions {cT, ity

ii) Suppose S is the set of fusion rule matrices of a fusionrule algebra with a finite
number of irreducible (or minimal) objects. Then the partition in i) is trividl, i.c.
there is a unique vector d € (R*)", with

(d) = (dd) =1 \(3.26)

and

PF(S) = R*d. | (3.27)

The components are

. = ay =[[Ny]},
and toke values in the set
{2eoa(5) bes,.. U [2,00). (3.29)

Part i) of Lemma 3.2.2 relates to Lemma 3.2.1 as follows: For S = {N,,NL} to any -

A € A labelling a minimal, invariant sublattice, there corresponds an extremal Perron
Frobenius eigenvector labelled by a pair (a,j). This description of smallest common
invariant domains in terms of extremal Perron Frobenius eigenvectors of course écneralizes
to involutive sets, S, of matrices with more than two elements. In the proof of the second
assertion in this lemma we make essential use of cciuation (3.13), which shows immediately
that every irreducible object is in the invariant domain containing 1. Using the numbers
determined in (3.28) we define a positive function on & setting for an arbitrary object

z € &,givenby z = Ty 24dy
d(z) = %j;,,d, (3:30)
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We verify that it satisfies

d :%— Rt ,A )
_ dz+y) =d@=)+dy), (3.31)
i d(zoy) = d(z)d(y).

1
!

We call a function with the properties (3.31) a Perron Frobenius dimension. From ii) of

Lemma 3.2.2 we conclude that for fusion rule algebras with a finite number of irreducible

objectsj this dimension exists and is unique. Also we have d(l) =1 and d(zV) = d(z).

~If we consider fusionrules with an infinite set of irreducible objects this dimension is in

generai not unique as can be seen in the case of ordinary SU(2)-fusionrules. For these the
numbers, d(z) = (dim(z)),, g € R*, provide a one parameter family of Perron Frobenius

dimensions.

In the following we define for a suBset T of 9 its support iin the irreducible objects
by ‘ -
supp(T) := {¢ | ($y,8) # 0, for some s € T} (3.32)

The result 6f Lemma 3.2.2, i), can be applied to define a quotient algebra /8, for :
fusion rule subalgebra $, C ®, where two irreducible objects,; and +,, are equivalent iii
P = é'o-n/;, for some z € ¥,. We obtain a partition of & by setting Cy) := supp (@y 0 &)
and §g := ({¢¢}¢ecp)]§’ sothat & = B?B $pand &,0 P = B, v@rhere B is the set of equiv
alence classes. The fusion rule matrices, Ny, of & have a unique common Perron Frobeniu:
eigenvector d €R*. &; with £(d) = 1, and the components d® € R*®gofd = 2 d? spar

the cone of common Perron Frobenius eigenvectors of representahons inC,

In order to state the next lemma, we define the positive numbers kg and N‘, % ) b*

settmg ';i
H ’ |
s = |@]/]#| (3.33
“and '?}
E k8 vy
— N = N, 3.34
Kpie) 0 q,,%, dy,dy, M" W (
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and the positive vectors

Po= ot P (3.35)
Lemma 3.2.3

i) We have the following equations in R* - §:

1, = 1
— gyof® = — ¥ 3.36
dy ™ K] (83%6)
and
Pob = 5. (3.37)

i) The numbers defined in (8.54) do not depend on 1, and P, ezplicitly, but only on-

the classes [14;] and [3;], so that we may define

Nitwalivsl = Nl - (3.38)

The numbers g then form the common Perron Frobenius eigenvector, &, of the

matrices (W[\h][h].[\b:l) ,'and Ko =1, kg = K3, and

/ Z Wnpnlt, = K.,‘Kp . » : (339)

¥€B

i#i) The numbers Nog, are the structure constants of the multiplication table of the 8s,

i.e.,
5208 =Y Napab?, (3.40)
~1€B
and we have that
N,&p =1.

Remark. In all statements of Lemma 3.2.3 we understand the multiplication, o, defined
on the N-algebra & to be extended to the R+*-algebra Rt - &. We easily verify, that the
structure constants, Nag,,, obey all constraints (3.7), necessary for fusion rule matrices
to define a fusion rule algebra, except that they are not necessarily integer-valued. This

motivates the following definition.
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" Definition 3.2.4 For two fusion rule algebras $, C P, the Perron-Frobenius algebra

of ® over 9, is the cone freely generated by the mdez set B, i.e., all combinations E daa,
with A > 0, equipped with the conjugation, a — &, and the R*- _bilinear multzphcat;on, o,

'defined by the structure constants, i.e., we have that

aofi=) Nagyv.
1

This algebra is denoted by $/®, and is often identified with a subalgebra of R* - & through
the embedding a s 52, (If we set (a,B) := 8,, r this embedding is cven seen io be

isometric.)

The use of Perron Frobenius algebras is motivated by the observation that.
/

Nagy=0
iff there exist Ya € C, and Y5 € Cg such that ;

“Gea0bys L By o (3.41)

which is equivalent to

‘ B,085 1 8,. , (3.42)
Thus the algebra /&, tells us which §,-invariant components, ®,,, occur in the product
of two‘other components, ®, and $g. Deﬁnition 3.2.4 can of course also be applied
to Perron Frobenius algebras $, C @, instead of f\‘xsion' rule algebras. We can therefore
iterate our construction and obtain familiar equations, like ®/®, = ($/%0) / (¥0/Fo),
for &, C &, C &. ' | |

We associate to any pair of sets T, S C {1,...,n}, the cox:nposition
ToS:= U supp(diogs),
i€Tjes
so that T,§ 2 ToS is a commutative and associative operation. Further, we denote
by [T}, T C [T)c {1,...,n}, the set generated by T', more precisely T):= U Tko T
For any set T, the sublatt:ce &7y := N1 C & is a fusion rule subalgebra of ‘I’

56



] In the simplest cases T = {p} and T = {p} 0 {5}, these subalgebras are related to

the presentation of the fusion rile matrix N, of Lemma 3.2.1 by

q’m = *P*, = @.@(x_,'),
i€Zy,

aod (3.43)

Bpon = %o,
where ), and the enumeration of Z,,, are chosen such that 1 € Cy, 0); hence
c (4’(;..-')) = ®(s,,-i)
The Perron Frobenijus algebra &/&,,5 can be described further by using Lemma 3.2.1.
Proposition 3.2.5 Suppose that for a refreséntation p, the fusion rule matriz N, has

imprimitivity indices ay € N, X € A, and define a partition bf {1,...,n} =0, eg. Corsy
. ) ) Y a
according to Lemma 8.2.1, with X, as above, i'e., 1 € [po p] = C(s,0). Then

i) The Perron Frobenius algebra, ®/3pcp, is given by vectors fr) AeA ie z,,
with supp (5‘*"’) =Clq), and 1 := §e0),
i) The subalgebra P,/ P(pop) is generated by an cutomorphism g := i("'"),vwith
A a®* =qgoa=1
and is therefore isamor?hic to R* ([Z,,]). We have that
ao 8 = FA) vreA, ieZ..,

and : (3.44)
ay divides a;,, VA€A.

iti) There are consiants Ng’h_,,, Ai € A, depending on j only modulo the greatest com-

mon divisor of ey, ax, and ax,, i.e., j € Lo, 05,.05,)) Such that

Frukdoftab) = 57 NSGATR) b, (3.45)
A€Mk €Zay,
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iv) The vectors, e A, of the Perron Frobenius clgebra &/®, = (‘P / QW,]) / B

are given by

a1 oy e A, ) _
= T gi‘ Yot o8 (346)

" § arbitrary, and the structure constants are

T 1 (eumge,)

a, (aln DY) ah) Ti=1

; C Naa = N (34D
!

Roughly speaking, Proposition 3.2.5 shows that the action of &) on & is graded and

that the composition law of the invariant domains of ®(p0p) has 2 periodicity specified

in part iii). In the following, we shall denote the fundamental imprimitivity of N,, a,,,

characterized in part ii), by g, for any label p of the fusion rule algebra and by C?, i € Z,,,

the components Cys, ). Finally & := @{c‘,] = 80,

We collect the consequences of Proposition 3.2.5 that are relevant for the later

considerations in the next cord]lary.

‘Corollary 3.2.8 For any label p of o fusion rule algebra, there is an integer, a,, the

imprimitivity of p, and e partition
)= U cf
C el
of the set [p] generated by p into a, subsets, C?, such that

]

lecCs = [pop]; Cf=ct
and 4 . (3.48
Yolf = C;, forall Y €C;.

If p is selfconjugate, it follows immediately that g,=1lora,=2.

* For the simplest nontrivial case of Z,-gradation, we desci;i:be the fusion rule algebr:
more explicitly in terms of fusion rule-matrices. In general the fusion rule matrices o
a Z,-graded algebra defined on &= &, © 3, ($ = N1, §, = N&, i=1,2) and th
conjugation have the blockform

C = (00, (Ci involution on . ;)

(348

Ny = NSON,, for ¥eCo
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.
N, = 0 Gy , for neq. (3.50)
A, O : _

It is possible to give criteria which determine when matrices of this type deﬁpe a fusion

" rule algebra, in the sense of Section 3.1, namely that‘they obey equations (3.12) - (3.14).

Lemma 8.2.7 Let {N3}y be the fusion rule matrices of a fusion rule algebra &, = N°

with conjugation C,. Suppose, further, there is a represeniation, *, of ®, on a lattice

&, = N with conjugation C), so that Cyx($)Cy = n($) = 7(¢). Then the matrices N3,
N} and A,, where N, := 7 (8y), ¥ € Co, and

Ay:®, - &, is determined by A,d5 = Nyd,,

define a ﬂsz’on rule algebra ® = &, © $; with fusion rule matrices given by (9.49) and
(3.50) iff v
ARAL = ALAy. (3.51)
Note that C1A,C, = A4. So we have the equations
CiAMC = AL,
' (3.52)
CoAlACo = ALA,

" where A,, is the block matrix of N, for 1 € ;.
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3.3 | Grading Reduction with Alitombrphisms' and;

' Normality Constraints in Fusion Rule Algebras

In thu Chapter we show how any simply generated fusion rule algebra, with nontrivially
graded 'automorphiafrﬁ, c'an be obtained from a smaller fusion rule algebra with Z,-grading.
We 'sta;te the most general presentatién of a fusion rule algebra, 3|, in terms of an clgebra,
in whi{:h all automorphisms lie in the trivially graded component. For this purpose, we

‘ introduice two constructions that yield new fusion rule algebras, 75 (<I>|,]) and Z, » §y),

from a given one, B|,). We also discuss the crossed product, Z, X ®, for arbitrary fusion
rule algebras, and its use in the classification problem, for & = &,.

The restriciions, A;, of a fusion rule matriz N, to the components C! obey constraints
that are due to the normality of N,. We use them to specify classes of A, such that any

fusion rule algebra, ®(,), compatible with one of these A, has an automorphism in C;

"and can thus be obtained from a fusion rule algebra generated by a selfconjugate element

p="p.
Throughout this section, we assume that the fusion-rule algebra &, witi: iabel set C, is

Z,-graded (e.g., as in Corollary 3.2.6, for C = [¢]). Thus we have a partition C = ‘&. Ci

and a corresponding lattice decomposition, § = Q;‘ 9.
i i€

|
To any fusion rule algebra, ®, we can associate the set of invertible objects-
Out(d):={ged|pod=1}. (3.53)

1t is immediate that Out(®) only consists of minimal vectors, and thus can be regarded
as a subset of C. Moreover, it defines a discrete, abelian group with multiplication o and
inversion ¢~ = ¢. Equivalently, Out(%) is characterized as the gﬁbgroup of permutations,
7 € Sicj of C such that II, given by II;; = &;(;), commutes with all fusion rule matrices
and hence I = N}, Referring to the fusion rule algebras (3.16) that emerge from the
superselection rules generated by transportable *-endomorphisms of a local quantum field
theory, the group Out($) (and, in particular, the notation) has a natural interpretation.

If Aut(C) is the subgroup of Endy(C) consisting of *.automorphisms of M acting trivially
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on M’ then equation (3.16) yields the isomorphism
 Out(#) 2 Aut(C)/Int(C) S (3.54)

Automorphisms (or invertible objects) can be detected fairly ‘ea.sily from the vector, d,

of statistical dimensions or from a common Perron-Frobenius eigenvector, ;',. for finite

‘fusion rule algebras, &, by

out(¢)={ie¢ug=m,;nd;.}={ie¢|d..=’1}. (3.55)

Since d; 2 1, V¢; € 3, the total number of irreducible representations in ¢; o ¢;, ZIN.- ks 18
bounded above by E Nijady = d; - d;. Thusd, =dp = 1 implies that o & is meducxble,
ie. cod=1. Hence oisa "automorph:sm, and N, is a2 permutation. (Note that, in
general, if a matrix, N,, with non-negatwc, integer entries and non-zero rows and columns
admits a positive eigenvector with eigenvalue 1 then N, is automatically a bijection.)

If the components C, and Cy of a fusion rule matrix N, are finite then we find from

- the unique Perron-Frobenius vector d=(d (7’ ‘) €C.OC A A=N,|C,:C, = Cy, (ie.,

Ade =d, d‘ Atdi = d,d°) the automorphisms in C, and C; by (3.55). A similar result holds
for C* = C ®...®Cs. Since, for o € Out(®), p o o is irreducible , the vertices associated
with automorphism in the graph to which N, is the incidence matrix have exactly one
incoming and one outgoing edge, (i.e., one undirected edge for p = p), joining o to sites o'
for which d = d,. For general undirected graphs we only have the “minimum principle h,
i.e., that the edge degree of sites on which the Perron-Frobenius vector admits its absolute
minimum is strictly less than d,,, and is equal to d, only if all vertices have edge degree d,
and the Perron Frobenius vector is constant. Hence we expect thet, for d, > 2, non-trivial
censtraintk on the set of admissible fusion rule matrices can be found b} considering the

position of automorphisms in the fusion rule algebra.

Clearly the restriction of the grading map, & — Z, : ®; ~ i, to Out(®) is a group
homomorphism, and its kernel is given by the subgroup Out (%) C Out(®), where &, C &
is the fusion rule subalgebra with trivial gradmg Hence the grading gives rise to the
embedding )

D(®) := Out(#)/Out (3,) — Z.. (3.56)
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1t follows from (3.56) that there are integers r and a’ with @ = r - @', such that D($) = Z,
and o’ is the smallest integer such that &, N Out(d) #0.

These aspects of grading fit into a general context: Let us consider a general fusion-

rule algebra &. Clearly, & contains a natural fusion rule subalgebra on which all gradxngs

are tnv:a.l namely the subalgebra &¢,, where

= [LeJcsupp (¢.~‘o 3;)] )

Our notations are those introduced in Section 3.2. It is not hard to see that the Perron-

Frobenius algebra over &, i.e.,
Grad () := & /%,

is, in fact, an abelian group, or, in other words, that Naesy = 8y, for arbitrary a and
v in Grad(@) This observation shows that an arbitrary gradxng on & is described by
a character of the group Grad(@) More precisely, if

0:9-G,
with G an abelian group, is a grading of &, i.e., .
0(i)0(j) = O(k) if Nija #0,

and
grad : & — Grad(d)

is the ‘canonical pro_lectlon from ¢ onto the quo’nent space Grad(@) then there exist:
a homomorphxsm of abelian groups, ¥
" ©:Crad(®)— G,
such that the diagram
B e Grad(®)
SR /0

commutes.
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We therefore call the map “grad” and its image, Grad(®), the universal grading
of ®. One sees without difficulty that

grad(y) = grad(¢)™?, forally € ®,

where 3 - 9 is the conjugation on &.

In general, the restriction of the map grad: & — Grad(%) to the group of invertible
elements, Out(®), contained in & is a group homomorphism. Its kernel consists of all

invertible elements of @y, i.e.,
ker (grad | Out(®)) = Out(3y) .
From this remark we conclude that
D(%) := grad (Out(®)) = Out($) /Out ($y) ,
and D(®) is a subgroup of Grad(®).
If Grad (<I>) = Z, the map “grad” gives rise to the embedding (3.56).

For any g€ <I>.: n Out(@), we have the decomposition
r-1
Out(Q) @’ oOut (<I>,) .
j=0

and a bijection

Ci—oCha:¢maod.

Thesé facts imply that tize multiplication law on the set CoUC;...UCy—y, together with
a specific a.utomorphi;m o € Cq, already determine the entire fusion rule algebra. In
fact, it is true that one can construct a’fusion rule algebra 9’ which is Z,:-graded, with
D(%') =1, and from which ¢ can be reconstructed. The two operations on the class of

“fusion rule algebras that are necessary for this description are defined next.

Definition 3.3.1 Let & = N¢ be a fusion rule algebra with multiplication o and conjuga-

tion —. Further, let & be Z,-graded, with $ = 62. ®;.
i€
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i) For any b € N, we define the fusion rule algebra Zy » & ds follows: The uﬁderlyiny
lattice is N(%X€) and is spanned by the minimal vectors (k, é), ke Z;, i€C. The
conjugation is dcnotcd by ¢ — ¢° and is given by

(-E—I:J)’ for ¢e§u i#£0,
(k:¢)‘:= C
(-k,8), - for € <I>. '

i

i=1,...,m, isgiven by : o

L () X (b e) X X (i) = (4 Byt k100 6)

where r € N is given by the condition
ar<n1+ +n,.<a(r+l)

#) For any § € Out (@,) we deﬁne the fusion rule algcbra 1';(‘1’) as follows:
The lattice of 74(®) is the same as for ®. The conjugation, ¢ — ¢ , 18 e:pressed in
terms of the conjugation of & by
) 50d, for ¢ed;, i#0,
"8, for ¢€8,.
The maultiplication is denoted byo' and, for ¢; € & andr €Nasin part i), is defined
$10...0 ¢m :=5’o¢lo...o¢,.;.

It is straightforward to show that the multiplications and conji}gatiom introduced above
define fusion rule algebras, in the sense of Section 3.1. Since !rthe trivially graded auto-

morphisms are not affected by these constructions, we naturally have that
: : :

Out (C,)  Out ((74(3)),) = Out ((Z4 * “_’5-) .

However, the situation for Out(®) is different: Out(Z, * &) contains the subgroup X Z,

generated by (1,1), so.that

Out(Zy» 8)/Z = Out(®), and D(Zy» ) =Z,,.

= o
64 !
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3
The multiplication is denoted by X and, for k; € Z,,, ¢, € ®n;, n, =0,. .,Va -1,
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We can find a grading preserving isomorphism of Out (74(%)) onto Out(®)if § = a*, for
some a € Out ($,). For other choices of § this is in general not possible.

Furtbermore, it follows immediately from Definition 3.3.1 that, for any a € Out($),
the map A

Zooru8) 7 (B0 ) (1) (&P ) (357)
provides a fusion rule algebra isomorphism. Also, we have that
78 (76,(8)) = 75,05(2), | : (3.58)
‘by natural identiﬁcatiog,kand an isomorphism -
| Zyy # (Zu, » q»)-—a Zipay % ® : (ks (k1 6)) = (B + by - K3, 4) (3.59)

where k, is chosen in {0,...,b; — 1}. We are now in a position to state the presentation

of all Z,-graded fusion rule algebras in terms of algebras, &, with D(%) = 1.

Proposition 3.3.2 Suppose & is Z,-graded algebra, with label set C = U C;, multiplica-

tion o and conjugation ~, such that
D(®)=1Z,,
where r > 1 is an integer dividing a, and a" := a/r.

Then there ezists a Z,n‘-graded fusion rule algebra ®", with corresponding coﬁtib
. A
uents ( "= .,'l—Jo C",-,o",‘"), an qutomorphism 6 € Out (®%) and a fusion rule algebra

isomorphism 8,

B:ts(Z,x%") 3 9, (3.60)
such tﬁct ' ‘

i) B maps (0,8Y) bijectively to 8;, for j =0,...,a' — 1, and B(1,1) € Out(2) N &".
In particul&r, B is grading presenn'ng.v

i) D(®") = 1, i.e., we have
Out(3") = Out (&,) = Out (&,) .
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By part i) of Proposition 3.3.2 the lattice isomorphism obeys
B"(¢o" W) = B"(¢)o B"(¥), - (3.61)
for ¢ € C;, ¥ €C;, 4,j > 0, provided the condition
i+j<a ’ (3.62)

holds. This shows that the restriction 8" : % — &, is a fusion rule algebra isomorphism.
Also, for a” > 2, the restriction of the fusion rule matrix of some element p € C; to C,

remains unchanged. More precisely, for A := N, | &, — &,, we have that
(BMAZ8" = A7,
with p" = (8")"1(p) € C{. The probf of Proposition 3.3.2 can be found in [42].

For certain special cases there exist a natural procedure to relate Z,-graded fusion
rule algebras among themselves, with the help of automorphxsms It involves the crossed
product, &, x &, of two fusion rule algebras, ¥;, ¢ = 1,2, with lattice &; ® &, = N(€1x3),
multiplication (¢ ® ¢3) 0 o(1®%2)=(ro¥h)® (420 1/1,), and conjugation (¢, @ ¢,) =
$1®&;. By Z, we denote the fusion rule algebra with C=2, and $io di =iri,
6= ¢

’ Lemm;a 3.3.3

i) guppose @' is a Zi-graded fusion rule algebra and r € N is prime o o', then & =
2 X &' is Z,-graded, with a = a'-r and ¥, l+,,—{¢‘}®§>‘

i) Assume that ® is a Z,-graded algebra, and a =1 - a'. Thcn & = }: $.,C®i
a Z,i-graded fusion rule subalgebra. If, in addition, there cxzsts an automorphtsm c

a€ &N Out(@), with ’a' = f,'
and o is-prime tor, then ‘ | ’
Z xd = Q:#},._@ib—da"otﬁ_i
is a fusion rule algebra isomorphism. '
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Note that if & = $|, is generated by an element p € C;, then also @' = Ppoe,,) is gen-
erated by afop € Ci, where ¢ is determined by the equation ¢- o’ = =1 mod r. We will
be interested mainly in the case where r = 2 and o' is odd for which Lemma 3.3.3 shows
v that it is sufficient to consider even graded fusion rule algebras. This is because any odd
graded &' will appear, as Z; x @', in the list of evenly graded fusion rule algebras which,

in addition, contain an automorphism a ¢ Out(®,), with a® = 1.

Returning to Proposition 3.3.2, we note that if & = &, is ‘geneuted by a single
element p € Cy, then the algebra " in the presentation (3.60) is generated by the corre-

sponding p" = (8")7(p) € C"y, i.e., " = &y, if it is nontrivially graded. In the follow-

ing, we shall characterize a class of fusion rule algebras @, with generating element pk,

with the property that there is a presentation (3.60) where p" is selfconjugate.

Lemma 3.3.4 Suppose that & = &\, is a Z,-graded fusion rule algebra, with a > 2 and

generator p. Then there is a presentation

8"

8 & 1Z.+3", 6cOu(d.), reN,

where the corresponding generator p" = (8")7(p) € C"y is selfconjugate in @", if and
only if there is an element & € &, such that

acp=p. ' (3.63)

If & is ungraded then there ezists some a € $, with (8. 63),‘ if and only if we have a pre-.

sentation .
ﬁ"
Zyxd = Ts(@"),
where the respective element p" = (8")) (¢.1 ® p) generates 3" and is selfconjugate.

In any case a is an aulomorphism and ®" is either Z;-graded or ungraded. Hence

r=%orr=a,anda€C; ora€l,.

If we introduce the restrictions
Ai=N,fei: @i — i, - (3.64)
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1
which ‘iwe regard as |C;] X |C;4;|-matrices with non-negative integer matrix elements, then

condition (3.63) can be reformulated as follows: There exists & ¢ € &3, ||dall = 1, such
that

] ' A ga=A,1=4,. |  (@3e5)

' It follows then that the restrictions T; = N, [¢;: 4’,- — &2 are bijéctions, ie, _

TT=T.aTi, =1y, (3.66)

and |
M T =TiA= A @)

From i.he fact that N, is normal we obtain the following constraints on the matrices A;:
A: A,’ = A,'-;‘ A:-l = M.' . ’ ) (368)

We immediately see that any set of matrices obeying (3.67), with arbitrary bijections T;,
solve the constraint (3.68). Moreover, it follows from (3.68) that '

Al = N1 O (369)

independently of i. The purpose of the next two combinatorial results is to infer equa-
tion (3.65) from the knowledge of A, or M; = A, A} and from condition (3.68), for i =1
(e, My = ASA,).

It is standard to define an undirected graph, G), from a symmetric nonnegative
integer matrix A € Mat,(N) by joining two vertices, labelled i and j, by exactly (A);,-

edges and attaching (A);; loops to every vertex j. Conversely, to any undirected graph g,

there corresponds a unique symmetric matrix A, the m_g_dgg_c_g_m_Ltm, such that § = G,

0 A
A

bicolored, undirected graph. For convenience, we will often use this (equivalent) graph

and, moreover, for an arbitrary n by m-matrix A, A := defines the respective

theoretical language throughout the following statements and, later on, in Section 3.4.

The first result only assumes local constraints on M,, yielding a finite list of possi-
bilities all of which imply (3.65). '
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Lemna 3.3.5 Let A be any n by m nonnegative inleger matriz, and let the n by n

symmelric, nonnegative integer matriz M be defined by
M=AA,

Suppose that ¢, is a unit vector in N® such that the vicinily of the veriez, v, corresponding
to ¢, in O, i.c., the number of its neighbors, the number of edges joining v with each of

its neighbors, and the number of loops at v, is given by on of the following subgrapkhs,

Figure 8.1

then there ezists @ unit vector ¢a € N™ such that

A ¢c=¢p-

Our second result characterizes a class of matrices, A, by global constraints with the

property that, for two matrices A and A in this class,
M:=AA=AA
implies that A and A are equivalent, i.c., the exists a bijection T, with A = TA.

In the application to fusion rule algebras, we will encounter the case where both
matrices, A=A, and A = A! defined in (3.64), belong to this class, so that (3.68) implies
the existence of T : $, — &,, with TA! = A,, hence A, = A!T. Thus ¢, := T'1 is a solu-

" tion of (3.65), and we can choose T = T,. Ti:e situation is surnmarized in the following

commutative diagram:
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s st g
(3,7) (4,8) - (4,8)
Lemma 3.3.6 * N

i) Suppose a bicolorable, connected graph G with incidence matriz A has no cycles
length two (multiple edge), four or siz. Then a component A of G?, with incider

matriz A'A, has the following properties:

" @) Ezcept for loops, A contains only simple edges.

b) If two complete s-ubgrc-tph.t of A have a common edge, they are contained

a common, complete subgraph of A.

¢) If U(v) C A is the subgraph of A consisting of all nezt neighbors v e A, v
self ezcluded, then the number, L,, of loops at v ezceeds the number, E,,

connected components of U(v). We put P, = L, - E,.

i) If A is a graph yn'th properties a) and b) then A can be uniquely written as a unic
A =U;Q: of maximal, complete subgraphs Q; of A such that every edge of A
contained in ezactly one Q;. Moreover, any two Q;’s can intersect in at most o

vertez, and among three distinct Q;’s at least two are di';sjoint.

i1i) For a graph A satisfying a)-c) we define a bicolored graph G4 as follows: The verti
of one coloration are identified with the vertices of A. The verlices, p;, with ea
degree greater than one vand coloration opposite to those in A are ideqtiﬁgc? w
the Q;’s and joined by simple edges, (p;,v), to the vertices v € Q; C A. Additio

vertices, p}, of opposite coloration and ccigc degree one are joined to each v € A
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.ﬁ'mple edges, (p},v) ,3=1,...,P,. It follows that G4 has no cycles of lengths two,

four or siz and that A is a component of G3.

w) Gais umque, i.e., if G is a graph without cycles of lcngths two, four or siz and A~

is a component of G, then 9,4 (.

For proof of these facts we refer to [42]. From iv) we infer the followiﬁg Corollary:

Corollary 3.3.7 If for two bicolored graphs,) G and G', without cycles shorter than eight,
the components of one coloration of G* and ‘g", are isomorphic then G and G’ are isomor-

phic.

Although the assumptions in Lemma 3.3.6 are global and very strong, it turns out to be
the fitting criteria in the classification problem of Section 3.4., where we impose bounds on

the norm of N,, thus by (2.23) also on the norm of A;. In addition we have a prescription

_of how to construct solutions from M which allows for any easy cha.ractenzatxon of a few

exponential cases.
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3.4 Fusionrules with a Generator of Dxmensxon not £

Greater than Two

The purpose of this section is to characterize the formal object (half-) algebras of the
braided tensor categories to be classified in chapter 8. Not assuming any further structure,
this means a classtﬁcatwn of fusion rule algebras, in the sense mtroduccd in Chapter 8.

In fact we will find fusion rules that do not belong to any braided category. We restrict

the classification to fusionrules which are generated by a single, irreducible object, whose

Perron Frobenius dimension does not ezceed two. Detailed proofs will be given in a separate
paper,(42]. '

The first basic ingredient in the classification of fusion rule algebras is the classi-

" fication of bicolorable graphs with norm not éreater than two. The set of vertices of a

bicolorable graph T' can be divided into two subsets, W and B, such that no two vertices
in W and no two vertices in B are joined by an edge. The gfaph is characterized by a
matrix, A : N¥ — NP, whose entries \;; € N are the number of edges joining the vertex

i € W with the vertex j € B. The incidence matrix is then

(o A ,
Nr=| (3.70)
and the norm of the graph is defined by :
Tl = IINc]l- : @mn)
The proof of the following theorem can be found in, e.g., {45] and references therein. The

graphs referred to here are depicted in Appendix A together with their norms and Perron

Frobenius eigenvectors.

Theorem 3.4.1 : S

i) The finite, connecicd, bicolorable graphs with norm less than two are the following :
D

! A(21), Di(I 2 4), E(l=6,7,8) - (3.12)
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ii)' The finite, connected, bicolorable graphs with norm equal to two are the following :

AD>2), P2 4), ENi=6,178. = (313)

Suppose that p is a selfconjugate, medumble object with non-trmal gradmg ina

Z,- graded fusion rule nlgebra. Then by equation (3 12) the fusion rule matrix, N,, has
to be symmetric and if we use that the grading prescribes an off diagonal block form then

- we obtain the presentation (3.70) for N,, so that we can associate to it a bicolored graph

I‘,;. If we assume, further, that the fusion rule algebra is generated by p then this graph

is connected. Since the Perron Frobenius dimension of p is equal to the norm of T', we ’

can use Theorem 3.4.1 to establish an apriori list of possible fusion rule matrices labeled
by the respective Coxeter graphs if we require d, not to be greater than two. The next
lemma is concerned with the question which of these matrices are actually fusion rule

matrices of a fusion rule algebra.

Lemma 3.4.2 Suppose ® = $|,) is a Zy-graded fusion rule algebra, with selfconjugate
generator, p, of dimension

d, <2.
Then the fusion rule matriz, N, of p is the incidence matriz of one of the bicolored graphs
Aun22, Dimyn22, Egorky. (3.74)

Furthermore, there is ezactly one fusion rule clgebra for each of the graphs in (8.74) such
that N, is its incidence matriz. We will thus name these fusion rule algebras by their
respective graphs. They have the following properties:

i) The A,-algebra has trivial conjugation, C =1, and Out(4,) = {1,a} = Z,, where
a is even-gradéd, for odd n, end odd-graded, for even n.

If we denote the basis vectors by pj, i=0,...,n—1, with p,:=1, py:=p and
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PO p; = pj-1 + pj41, then the siructure constants of p; 0 p; = gngp,"an given

1 if Ji-j| <k <min(i+5,2(n 1) - (i +5))

Nijp = and k=i+jmod2 (3.1

; 0, else.

For the statistical dimension we obtain

4, = 2001 (27) = @

with q

e‘-+ .

#i) The D,,-algebra has trivial conjugatioﬁ, for odd n, and, for even n, the represent
‘ ﬁons corresponding to the vertices of edge degree one at the short legs in the Dy,
ph are conjugate to each other, while all other representatmns are selfconjugat

For n > 2, the group. of automorphisms of D, is tmnal and, for n =2, we har
that Qut (Dy) = Z;. The statistical dimension of the generator of Dy, is given by

d, = 2cos (Z;"_—Q) =(2), with g=emZy,

#i) The Ee- and the Eg-algebra have trivial conjugation; Out (Es) = Out ((Es),) 2 2
and Out (Es) = 1. For E, the statistical dimension of the generator is given
d, =2cos (1"—2) = 3 (V3+1)=(2), vithg= ei3, and, for Ey, we have that d, =

cos (35) = 4 [\/5(\/5+ 1)+ v2/5 -)/5! =(2),, with g = eff.

From this result and Lemma 3.3.4 we immediately obtain the list of Z,-graded fusion ru

algebras with non-selfconjugate generator and the list of ungri&ed fusion rule algebras.

Corollary 3.4.3

i) The Z,-graded fusion ﬁde'algebms with noﬂ-.sclfconju_qat:er generator, p # B, of st

tistical dimension d, < 2 are given by

Ta (A2n+l) y N 2 2: and Ta (Eﬁ) » (3-7(
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‘where a is the non-trivial, evenly graded automorphism of Azny1, Ee, resp. The ’

evenly graded represenlations thus remain selfconjugate, and the conjugation, re-
siricled to the oddly graded representations, corresponds to the reflection of the
Dynkin-diagram.

i) An ungraded fusion -ﬁ.de algebra with generator, p, of statistical dimension d, < 2 is
given b.y the fusion rule subalgebra of Az, for somen > 2, consistiﬁg of the evenly
graded representations, so that, in the notation of Lemma _8.4.2,1'), the generator is
given by p = pan—2. In particular, we have that p = p, a;zd the conjugation is trivial
for all of these fusion rulé algebras. The fusion rule matriz, N,, of the generator
is the incidence matriz of the graph, A,. Thus, denoting the fusion rule algebra by
this graph, we have that

A, C An. . (3.77)

The statistical dimension of p is given by d, = 2cos (2"“) = (2), with ¢ = e,

(This also includes the trivial fusion rule algebra A, = {1}, which is obtained from

A7)

The complete list of Z,- or ungraded fusion rule algebras with generator, p, of statistical

dimension d, < 2 is thus given by
-Am‘Dlm EG) El: Zm Ta (A2n+1) 1Ta (EG) . (378)

A cém’parison of (3.75) with (6.43) and [7, 8] shows that the fusion rule algebra A, is
realized as the tensor product decomposition rule of U, (sf2), ¢ = e;':_l, and in the formal

operator product expansion of 5U(2),-1-symmetric WZNW-conformal models.

- An independent way of realizing the structure constants of (3.74) as those of a ring

over Z is given as follows:
Consider the sequence of Chebychev polynomials, Pi(X) € Z[X], defined by

P(X) =1, .
PX) =X (3.79)
and XPu(X) = Pica(X) + Prga(X). “
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Let €, be the ring of dimension n over Z, given by i

Coi=ZX) Pu(X)-2Z(X). | (3.80)
Then the images of the Chebjchev-polynomia.l in this quotiént P = [Pu(X) € €.,
k=0,1,...,n -1, for a Z-basis of C,, and the mult:phcatxon xn C.. is given by

Pi-Pi= ZN.,,;,?,,, , (3.81)

where the Nj; are precisely the structure constants (3.75) of an An-fusion rule algebra.

In order to provide means by which also the D- and E-a]gebr#s can be computed, we
discuss fusion rule algebra homomorphisms between different ﬂgebru, as well as fusion

rule algebra automorphisms.

Lemma 3.4.4 . g
t) Far the Z;- or ungraded fusion rule algebras with a gmemtor, p, of statistical di-
mension d, < 2, all ﬁmon rule algebra automorphisms are involutive, and there is
at most one non-trivial automorphism for every fusion rule algebra. If the fusion
rule algebra has a non-trivial conjugation then the automorphism coincides with the
can_yugatzon ' For the fusion rule algebras with trivial canyu.gatwn the automarphu‘ms
are given as follows: i V
|
| .
a) Aans1,Ee: The involution 4,, vg, resp., is identical to the conjugation of
Ta (A2n+1)! Ta (EG) )

b) Dynya: The involution ~;,,, ezchanges the represeriiatiam that correspond to

the vertices of edge degree one at the short legs of thc graph Dypya.

i) The non-trivial fusion rule algebra homomorphisms ﬁ'arr:x':one of the fusion rule al-
gebras in (8.78) into the algebras A, or A, are given by

i Asin = A, n21 .‘l (3.82)
Z,4, =  Out(A,) = 4., . n>2, (3.83)
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and

A S A SO A, n21 " (3.84)

Here i is the inclusion (8.77), and the homomorphism 7, is defined by its graph,
depicted in (B1) of the Appendiz. The composition T, ot in (8.89) is the identity
on A.. Among the fusion rule algebras with generator of statistical dimension 2, D,
‘(to be defined below) is the only one for which there ezists a homomorphism to an

A-algebra:
ﬁ; — A; . _ (385)

The inclusion is defined by noticing that the subalgebra of 0-graded sectors in Ag is
isomorphic to Dy.

iii) For everyn 2 2, there are ezactly two fusion rule algebra homomorphisms a2, 62,

of one of the algebras listed in (3.78) into Dyn. They are defined on Aqn_s and on
7a (Adn-3), respectively, and given by the graphs in (B2).of the Appendiz. They are

related 2o the automorphisms by the following commutative diagram:

&702n

Ay )
4n 30-\2\ 7" ’ (386)
)’2 n-ZI S D2n
oP
Agns 0

The map (3.84) can thus be eztended to Dy, the image of D, in D, being the evenly
graded subalgebra isomorphic to Z. '

iv) The only homomorphisms of one of the fusion rule algebres in (9.78) into Eg are de-
fined on Ay D Az and Ayy. The only possible one on Ay maps the generator p of sta-

tistical dimension d, = (2),, = V2,a= e'l, to the representation corresponding to
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the endpoint of the shortest leg in the Eq-diagram, with dimension d, = (4),, — (2),,
g2 = 3%, and the non-trivial automorphism of Ay to the non-trivial automorphis
in Eq, thus providing an inclusion of A; into Eg as a fusion rule subalgebra. T}
two possible homomorphisms of A1y to Eg differ from each other by multiplicatio
of the automorphism on Eg, described in part i), and one, o™, is given by the gray
depicted in (BS) of the Appendiz. The following diagram commutes:

o Es
Es((——A”

#2 3 A2 Mg $7’E oE6 T (38

Analogous statements hold for the homomorphisms

&5 '
Ag — A; “d Ta (Eg) “—t Ta (Au) . (3.81

v) On each of the fusion rule algebras A,, A4, Dys and Az there ezists ezactly o

homomorphism into Ey, and there is none for all other fusion rule algebras list
in (8.78). The homomorphism of 4, to Ey maps the representation of statistic
dimension d, = (2),, = %(l +vV8), o= ¥, io the representation corresponding
the endpoint of the leg of length two in the E.-diagram, with statistical dimensi

=(Na—(8)n =30+ \/-) g =e¥, and it therefore provides an inclusion, i,
2', into Ey as a fusion rule subalgebra. The homomorplusm of Ay to Ey is th
given by the composition 10T, G, being defined in (384’) and (B1). In (Bf) t
homomorphism, 0P, of Dy to Ey is given by its graph. ‘The homomorphism of /

. to Ey is the composition 0PF 0 0P, where o0 is defined in (9.86) end (B2).

With the help of the homomorphisms described in Lemma 3.4.4, it is possible to reder;
the explicit fusion rules, e.g., in the form of the structure constants (4.6), of the
and E-fusion rule algebras from those of the A-algebra; see (3.75). Except for the triv

ones, A+ 1< ® and & -, 9, Lemma 3.4.4 describes the entire set of homomorphis
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among the fusion rule algebras in {3.78). The situation described in Lemma 3.4.4v) can

be summarized in the following commutative diagram :

Az <25 Agg
aylo-%y
£y, YV /DEO'Q
Dg <> Dg

A

\g'DE
DE . -
¢ _\\I VM 2‘\0-2

Es <——>A,
io &,

(3.89)

Next we present the complete list of fusion rule algebras with generators of statistical
dimension equal to two. Our presentation is organized in a way similar to the one above,
for d, < 2, except that the detailed discussion of homomorphisms is replaced by a study

of the realizations of these fusion rule algebras by discrete subgroups of SU(2).

Lemma 3.4.5 Suppose & = §|,) is a Z,-graded fusion rule algebra, with selfconjugate
generator, p, of dimension v

d, =2.

Then the fusion rule matriz, N,, of p is the incidence malriz of one of the following
bicolored graphs
Aw) Dy DU, p 22, EQ, ED), EJV. (3.90)

There ezists one fusion rule algebra for each of the graphs in (8.90), such that N, is ils
incidence matriz, ezcept for Dﬁ?:, where we have ezactly two inequivalent such algebras

Jor each p > 2.

They have the following properties:
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i) The Ae-algebra has trivial conjugation, C =1, and only trivial automorphisms, .
Out (Ag) = 1. We enumerate its basis bypi;i=0,1,..., suchthat po:=1, p; := p
and po p; = pj_1 + pjs1. Moreover, d,, = j+1. The structure constants, Ni;a, of
pi©p;.= % N;jxpi are given by the Clebsch-Gordan rule, i.c.

. (3.91)

| 0, else.

o 1 ifli-j|<k<i+jondk=i+jmod?2
' Nija = B
|

The Doo-algebra has trivial conjugation, C = 1, and Out (D) = stab(p) = {1,a} =
Zy. If we set Wei=14a, w = p and define basis vectors w;, j‘z 2, bywow; =

w;,-_, + wjyy then d,; = 2, for all j, and
S wjouwx = wb‘f‘l + Witk - (3.92)’

#) The automorphism group ofD&),-algebra has order 4,i.e., Qut (Df,?,) ={1,q,z,v},
with stab(p) = {1,a} X Z,, for p > 2, and a0z =y. The two possible fusion rule
a"lgebm associated to D,‘:,), are distinguished by their automorphisms, f‘or which we
have either OQut (Dg},) > Zy x 2y, withz*=y* =1 and C = 1; or Qut (D&),) =
Z,, so that oy = 1, the conjugation is %he inversion on Out (D&’,) and all nonauto-
morphic representations are selfconjugate. Defining the basis vectors, wj, j =1,...

-.-sPp =1, as in the case of Do, and withw, :=1+ @, wp = z +y, we have d, =2

and _ :

_ W5 O Wy = Wjk| + Wrnin(2p~(j+k).5+) - (3.93)

The automorphisms z and y are evenly graded for even p, and odd—gfadcd Jor odd p.

Thus, for odd p, we have that Out (7a(®)) = Z,, for Out(®) = 2, x Z,, whereas

Out (7a(®)) = Out($), for even p. ;

iii) For the EM-algebra we have that Out (EP)) ={1,a, a"}f?! Z3, and there are three
representations of dimension two, namely p, a © p and a™} o p, so that the conjuge-
;ian, given by settinga = a™! and p = p, ezchanges the two legs in the Egl) diagram

opposite to 1. For the one remaining &pnscntation, ¥, of dimension three we have

Yop=l+atal+29. - (3.84)
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Furthermore, a cyclic permutation of the set {p,a 6 p,a™? o p} provides the isomor-
phism 7, (Eg”) o Eg'). For the E)-algebra, we see that Out (E;')) ={l,a} =2,
where a is evenly graded and N, is the reflection of the diagram. Moreover, the
conjugation on E.(,‘) is trivial, and all representations have integer dimension.

Finaliy, Egl) has trivial conjugation, Out (E?)) =1, and all representations have

integer dimension.

The fusion rule algebras with non-selfconjugate generator, as well as the ungraded fusion

rule algebras, are obtained in a similar way as in Corollary 3.4.3.
Corollary 3.4.6

i) The Z;-graded fusion rule clgebras with non-selfconjugate generator, p-# p, of di-

mension two are given by
E o (Ef) and r (DY), #22. (3.95)

In the case of Eg’), the generator p is replaced by the representation a ok (or by
a0 p) which is a generator of Egl) with dimension two as well. For 7, (E;')) ,
the conjugation is trivial on the evenly graded representations and reflects the oddly
graded ones. In (8.95), both possibilities for Dg?, are meant to be included, and we
have that 'r,'(Dg:)_,_,) 7, (D.S,BH)..

1) The ungraded fusion rule algebras with generators of dimension two are given by the
evenly graded subalgebras of (Dg"),+3), P2 l,kso that the generator, p', i.;,sclfcon-
jugate and given by p’ = poxz =poy. The fusion rule matriz Ny is the incidence
matriz of the graﬁh Dyiya, see (A22). Thus, denoting the fusion rule algebra by this
graph, we'havc‘ that

Dysa C Dty (3.96)

k Dyr4a has trivial conjugation, and Out (E,q_z) = stab(p’) = {1,a} ¥ Z,.
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The co'mﬁlete list of Z,- or ungraded fusion rule algebras with a generétor of dimension
two is given by - .
Aw, Deo, D (Out ¥ 2y or ZyxZ5),p22, 7 (D)
(3.97)
: Dp’+21 P’ 2 1‘: Eg‘)t E?’) Ta (E;I)) ) Esl)-
In order to study homomorplﬁsms between those algebras in (3.97) which havea selfconju-
gate generator, it is useful'to find their fusion rule algebra monomorphisms, i.e., inclusions
of one éf the algebras in (3.97) into another one, and fusion rule algebra endomorphisms
which im:\p the generator to an irreducible object . The latter requirement will also be
present in our description of general homomorphisms and, furiher, the object to whick
the generator is mapped has to have dimension two. One consequence of the following
lemma is that object s of dimension two which genérate the entire fusion rule algebra car

be mapped to the canonical generator by a fusion rule algebra automorphism.
} %

Lemm;a 3.4.7

i) The fusion rule algebra A, contains no fusion rule subalgebras from (8.97) otitc'.
" than A, and the only fusion rule algebra endomorphism is the identity.

i) I;‘he endomorphisms of the Do -algebra are given by the inclusions Iy : Doy« Doy
ki: 1,2,..., determined by Ii(a) := a and I, (w;) := w.j, in the basis of (8.92) i
Lemma 8.4.5 i). All subalgebras of Do, from (8.97) are isomorphic to Dy, and ar
g‘ivcn by fwi] = im (L), ‘k =1,2,.... We have that oI, = I4.

1) .Tl'here are no fusion rule subalgebras of E{) from (8.97), ezcept Egl) itself, an
the only non-trivial cndbmorphism 47, for which the generator is mapped to a

irreducible object is identical with the conjugation.

iv) T:’hc only fusion rule algebras from (8.97) that canybe in‘tn:rluded into E-(,l) in a nor
t}nmal way are D3 and E;l) itself. The subalgebra Dj is generated by the oni
evenly graded object of dimension two in E;l) and contains, besides the unit an

e generator, only the non-trivial automorphism of E('_)i The fusion rule algeb

generated by the second oddly graded object of dimension two is isomorphic to E?
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The inclusion of VE.S') into itself is given by the fusion rule algebra automorphism,
4°, which ezchanges the two oddly graded object s of statistical dimension 2 and is
the identity on all other object s. The only further E?)-mdomorphism, 9%, can be
described by the unique homomorphism E-?) —- Dgl), which maps the generator to
the generator, (see below); G9' is then oblained by composing this homomorphism

with the inclusion. Thus we have the following commutalive diagram:

0 w gol (n o '
Y <25 ——>E7 o7 (3.8)
Bs Id
The endomorphism G is an idempotent on whose image o acts trivially.

y) The only fusion rule algebra from (8.97) which is contained in EMis Eﬁl) itself. The
only non-trivial endomorphism is the involutive automorphism, 47, which exchanges
the two object s with dimension 2 and the two object s with dimension § and is the

identity on all other object s. .

vi) The fusion rule subalgebras from (8.97) of D,(,:,), are given by

T = o, (3.99)
if ? = 7(a,2), (3.100)
and
[we] = Diss | (3.101)
if 2 = (2t+1)q,2), ©(3.102)

whereg=1,...,p-1.

Here the structure of the group of automorphisms in D(,“ Jrom (3.99) (Out (Dsl,)
either 2 Z; x Z, or L) is the same as the one assumed for £’+)1' The cases (3.100)
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and (.9 102) are distinguished according to whether —-"—’ is even or odd. The subal- "

gebras of Dy,5 are given by

[wi = Deys, ‘ (3.103) -

where  (2t'+1)(q,2t +1)

]

2A+1 (3.104)

There is ezactly one involutive automorphism, 0?, #1, 01; every D‘ +2 mapping the
generator to itself and given by 0B, (z) = y and 0B, (w;) = wj, and there is none for
every Dyya. For every two-dimensional object , w;, in D,(,:), and Dy,3, there ezists
precisely one endomorphism for the cases (.101) and (8.108), and there are two
endomorphisms for the case (3.99), differing from each other by afv, which map the

generator wy to wj. This ezhausts the entire set of endomorphisms.

If a homomorphism, o, defined on one of the algebras, &, fron'i;(3.97) does not map the

generator p to an irreducible object it follows from a compa.risont of statistical dimensions
from (8.55) that o(p) is the sum of two automorphisms. Since automorphisms close under

multiplication, and since o(p) is a generator of the image of o, it follows that
Go = Out(o(#)) = supp(o(#),

i.e., o is a homomorphism ¢ : & — N[G).  For all fusion rule algebras with only inte-
ger dimensions, in particular, for those listed in (3.97), one homomorphism witﬁ these
properties is given by o : & — Ny, ¢ — dg, (i.e., G = {1}), and, furthermore, if a(®) is
a subalgebra of one of those corresponding to (3.97) we have that |G| < 4. In the context
of group-duality, homomorphisms to fusion rule algebras consisting entirely of automor-

phisms correspond to the abelian subgroups of that compact group, whose representation

theory reproduces the fusion rules given by &. Here, however, we wish to focus our at-

tention on non-abelian subgroups, i.e., we restrict our attention to cases, where o(p) is
irreducible and hence has the same dimension as p. For a homomorphish ag:d - &,
with this property, between fusion rule algebras corresponding té (3.97), 0 (®,) is a fusion
rule subalgebra of ®; generated by an endomorphism of dimex;sion two. It is therefore

isomorphic to some &' in (3.97). Thus the homomorphism ¢ is described By a surjective
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homomorphism o’ Q; -» &', with &' = [¢'(p)], and one of the inclusions of fusion rule

subalgebras, i: 3’ < &,, given in Lemma 3.4.7. Hence 0 =ioo'. For a complete dis-

cussion of fusion rule algebra homomorphisms it therefore suffices to consider surjective-

ones, 0 : ® — [o(p)):

In the classification of Lemma 3.4.5 we have always fixed a distinct generator, p,
of statistical dimension two. So we are, in fact, considering paﬁn (p, %), where p is
the canonical generator, with [p] = . From Le'mma. 3.4.5 and Corollary 3.4.3 we see
that non-isomorpbic fusion rule matrices of the selfconjugate generators also lead to non-
isomorphic fusion rule algebras (which is seen, e.g., by comparing the number of objects
for each dimension). Hence [p] = [p] implies that there exists a bijection T, T* = T},
with T1 =1, Tp = ¢, and TN,T* = N}, By the remark in Section 3.1 following (3.15),
the matrices N}, = TN,;T* define a fusion rule algebra, with conjugation ¢’ = TCT* and
lattice [p'], which is isomorﬁhic to [p], and for which N, = N,,. Lemma 3.4.5 shows,
furthermore, that a given N uniéuely determines the composition nﬂes, once the group
of automorphisms is known. (This is, in fact, only needed in the case of D(I) ). In
particular, this can be used in the case [p] = [] to conclude that T' extends to a fusion

rule algebra isomorphism mapping p to p'.
In summary, we have that if

/

p=p, p'=7p, d=dy<2 and [o] =[]

then )
(ps o)) = (¢, [P7D) ; (3.105)

holds. A consequence of (3.105) is that, for two selfconjugate generators p,p', with
d, =dy <2, of the same fusxon rule algebra & = [p] = [¢], there exists a fusion rule
algebra autommphwm 1,

y:8-%, with 4(p)=/. (3.106)

This can also be verified directly from Lemma 3.4.7, where all automorphisms satisfying
(3.106) are listed. '
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I"ior a surjective homomorphism o : &, — &,, between two fusion rule algebras, &,
®,, t}nl means that there always exists an automorphism on $; mapping o (p,) to I
so that & := 4 0 ¢ is a homomorphism & a:(p, ¢I>,) = (p2,®;), with & (p1) = p3. It followz
that all homomorphisms can be obtained from those which map canonical generator tc
canoni{:a.l generator, by composing them‘ with an appropriate automorphism, followed b
an inclusion. The classification of homomorphisms, &, with &{p;) = pa, is given in the

next lemma.
1

Lemn{a 3.4.8 All fusion rule algebra homomorphisms between the al_qébm with self
conjugc.ztc generator of statistical dimension two (as listed in Lemma 8.4.5 and Corol
lary 8.4.6, ii)) which map canonical generators to canonical generators are given by th

following ones:

i) For ever:y algebra & among the ones specified above, tﬁere i;: a unigue homomorphisr
6% : A — 3, with the required properties. For every p>2 and t > 1, there ezis
unigue homomorphisms from Dy, to Dy and to Dm |

ii) There ezists ezactly one homomorphism between the fusion rule algebras

a) Dyyz = Diga, iff t' =t + s + 2ts, for some s > 1;
i b) Dm — Dyya, iff p = m(2t + 1), for some m >1 and Out (D,‘,‘,gz) =Z,xZ,
C) D('+2 i Qf)zr iff p=cp', and

Z,x I,

R

either ¢ is even, and Out (DS_’,,,)

or ¢ is odd, and Out (DS,)”)

R

out (o),

and only in the last case we have to account for a noni-trivial fusion rule algebs

automorphism which is the identity on the canonicai generator.

143) 'The only homomorphisms between the E- a.l_qcbﬁs are one, o o°T from>E(l) to E(l
and one, 0’7 from Em to Em There are no homomorphzsms from D- algebn
to E-algebras, and the only homomorphisms fram E(’) to a D-algebra are gzm
by a unigue homomorphism oj : EM = D?), for eachl structure of D?). Th
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also yields the entire set of homomorphisms from E-algebras to Dﬁu, by setting
00 := 0] 00°T and of := 03°6”T, There exists a homamorphi;sm a?: EM —»_Dy) ,
and a homomorphism o0 : E-?) — Dg'), for each of the two structures of the D-
algebras. If w.e consid?r the case Out (Dg)) = Z; x Z; we obtain, by cofﬁposing
o2 with the homomorphism from D to Dy given in part i#Wh) p=3, m=t = 1),
a homomorphism 7¥ : E?) ~ Dj. Furthermore, there ezist unique homomorphisms
e E‘l) - D.(,') and o : E?) — Dl(;l), for any one of the possible structures of the
D-algebras. Eztensions, oy : E{ - D, and o : EY) — D, are found from o and

o] with Out (D(BI)) 2 Out (Dgl)) = Z; x Z;, in the same way as for 55.

We give a survey of the fusion rule algebra homomorphisms involving the E-algebras in the
commutative diagram on the next page. Here 44 is the automorphism of Dg’) exchanging
the two oddly graded objects of dimension two, (compare to (3.99), (3.100), with ¢ = 3,
‘p=p =4, and (3.105)). The unépeciﬁed arrow, D) -» D, D) —» Dy and DM — DY,
are the homomorphisms given in Lemma 3.4.8 ii), and 'DQ) — Dg‘? is defined by the ad-
joining commutative triangle. In this diagram, we always assume Out (D&_),) =Z;x2Z;

and omit most arrows from A, to the D-algebras.

A large class of fusion rule algebras with generators of dimension two can be obtained
from the tensor-product decomposition rules for a compact group, G, which has a unitary
fundamental (in particular faithful) representation p of dixﬁension two. By identifying G
with p(G) we can assume that '

GCU(). (3.107)

For dimension two, the requirement that p be irreducible is the same as saying that G
is non-abelian. The fusion rule algebras we have classified, so far, .in Lemma 3.4:5 and
Corollary 3.4.6 .ii), are all those algebras that have a selfconjugate generator. Therefore,
‘we restrict our attention to those subgroups G of U (2)-for which the fundamental repre-
sentation is selfconjugate. They.are given by those compact groups, G, with the property

that
either G C 0(2), or GC SU(2). (3.108)
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The E-Algebra Homomorphisms:

88




LA

-~

Since G is assumed to be non-abelian, it cannot be isomorphic to subgroups con-
tained in. O(2) N SU(2). The compact non-abelian subgroups of SU(2) all contain -1.
Thus two different subgroups of SU(2) will yield different subgroups in SOy = SU(2)/ £ 1.
The vcorresponding 50;-subgroups have half the order, and, except for the smallest
dihedral-group, D;, which is obtained from {1, +ig;},_, ,5 C SU(2), they are also non-
abelian. The non-abelian compact subgroups of SU(2) are thus given by the pre-images
of the polyhedral subgroups of SOs. They are also called binary polyhedral groups. k

‘They are: the dihedral-groups,, D, n=3,...,00, (Do D U(1)) of order 4n (of
order 2n as SOj-subgroups), the tetrahedron-group, 7, of order 24 (12 in S0;), the
octahedron-, cube-‘ or hexahedron-group, O, of order 48 (24 in SO;) and the icosahedron-
or dodecahedron-group, J, of order 120 (60 in SOs). The subgroups of 0(2), Ra, n 2 3,
have rotations characterized by R, N S0y = Z,.l, and, for them to be non-aBelian, they
must contain a reflection. As abstract groups, we have that R, = Z; x Z,, where the
adjoint action of Z, on Z, is just the inversion on Z,, @d |Ral = 2n. (Let us stress again
that the R, are not lsomorplnc to any of the binary dihedral groups, since for the latter
we have that z2 = 1 wh1ch implies that z is central. This is clear]y not true for R,. Yet,
the image of D, in SO; is isomorphic tor 'R.,.)

For fusion rule algebras, $, obtained from a compact group, G, there is a nat-
ural way to induce a fusion rule algebra homomorphism, o, from a group homomor-
phism ». If x: G — H is a group hohomomﬁsm of compact groups G.and H, and
p: H — U(n) is an irreducible, unitarj representation of H (seen as a group homomor-
phism with p(H) NU(n) = U(1)1), we can define a pull back 7 * p := pox : G — U(n),
which is a unitary representation, irreducible only if p((G))’ NU(n) = U(1)1. For the
action oy of U(n) on the space of representations of H, given by inner conjugation,
(oup)(9) = Up(g)U*, we have that oy 0 %* =="ooy. Thus, x* is a map on equiva-
lence classes of unitary representations, and we have well-defined multiplicities (o)

19

of an irreducible representation, 7, of G in the representation °p, where p is an irre-

_ ducible representation of H. From 7°(p ® p2) = #*p; ® 7°p; we easily derive that the

matrix o,, consisting of these multiblicities, represents a fusion rule algebra homomor-
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phism, o, : &y - ®¢. Clearly, o, is an inclusion of fusion rule algebras whenever r is
surjective.‘ i G C H, and x is the inclusion then it follows from the existence of in-
duced representations, pH s of H, for unitary, continuous representations p of G, that
Op: Oy dgisa snrjectioh. In this case, the matrix elements of o, are identical with
the branching-rules of H | G. In the following lemma we relate the subgroups of (3.108)
to the fus:on rule algebras from Lemma 3.4.5 and Corollary 3.4.6 n) and we explain the

possxble fusion rule algebra homomorphisms in terms of group bomomorphxsms

Lemma 3.4.9

i) The tensor-product decomposition rules of the non-abelian compact groups with a

self-conjugate fundamental representation of dimension two are given in the follow-

ing equations:

Psu) = Aw (3.109)
8p, ¥ o™ Dy (3.110)

8p, = DU, foroddp>3and Out (Df) = z,,
(3.111)

for even p > 2 and Out (D‘(,L),) = Z,xZ,

®z, = DY), forp>2and Out (Dfh) =2, x 2,
, v (3.112)
FRspss X Dpya, forp21 L
&, = EM a3
%o = EPM : (314
&, = EO ' (3.115

i) The aulomorphisms of the ﬁsz‘an rule algebras in part i) are obtained from th

Jollowing group-eutomorphisms:
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. a) The finite groups, with D-type fusion rule algebras, contain mazimal cyclic
subgroups, Z,, C Dp and Z, C R,, and reflections, Q € D, and S € 72'., with
Q? = -1 and §? = 1, such that D, = 2,,UQ - Zuy, and R, = ZUS - Z,. For
every k # 1, with (k,2p) =1, (k,q) =1, resp., an outer automorphism 7, on
D,, Ry, resp., is defined by taking the k-th power of every element in the
cyclic subgroup and mapping the reﬂéction to itself. The derived fusion r;de
algebra gutomorphism, o,,, obeys the equation oy, (w) = wi. Hence; every
automorphism of a D-fusion rule algebra can be written as a product of oy,
and an automorphism, o', with o'(w;) = wy. Dy and Ry admit an outer
‘automorphism, 1, which is the identity on the cﬁclic subgroup and 1(Q)Q?,
rep. 7(5)S™Y, is a generating element thereof. o, is the only non-trivial quto-
morphism on the D-a.lgebras mapping the canonical generator to itself. (It

ezchanges the one-dimensional representations, z and y).

'b) An outer automorphism on the tetrahedron group, T/{£1} =T C S0, is
given by conjugating its elements with the §-rotation, mapping the standard
tetrahedron to its dual tetrahedron (the azis of rotation runs through the mid-
points of two opposite edges) and so defines (uniq‘ucly, up to inner conjugation)
the outer automorphism, 71 on T. We have that v5 = oy, on Eg).

¢) From a bicoloration of the centered cube, we oblain a signature represenia-
iion, ¢: O — Z,, by assigning ¢ = 1 to every element in Of{£1} = O C 50,
that matches the bicoloration, and ¢ = —1 whenever it matches opposite col-
orations. If we identify ¢ € Z, with an element of the center of SU(2), then
n0(g) := c(g)g defines an outer automorphism on O, where Out(0) = Z,. We

have that o, = 70.

d) The icosahedron-group, I/{£1} = C 5§03, admits an outer automorphism
which is (contrary to the T-case) not given by an 50;-conjugation. It defines
an outer automorphism nz on I C SU(2), where Out(T) = Z;. We have that

Ong = 1.

i) The injections of the fusion rule subalgebr@a, see Lemma 8.4.7, are obtained from
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the following projections onto quotients of the dual groups:

a) Dq, has normal subgroups Z, a U(1) 4 b,,, so that, for ji : Dy —=» Dy [ Z, =

Do, we have that 0, = Iy : Dy = Dey.

i,b) The (binary) octahedron group has normal subgroué D, < O (similarly for the
$0;s-subgroups D, 4 0), with O/ D, = 3/ D, =Ry X Sy. From the projec- '

i
!
i
' tion of O onto R3 we oblain the inclusion Dy — E;l).

.‘ ¢) The normal subgroups of Ry and D, with non-abelian quotients are ZyQqZQ
Ry, for ¢'lq, and Zy 4 2,5 4 Dy, for L|2p. We have the Jollowing correspon-
dences between group epimorphisms and fusion rule algebra inclusions:

Dy —» D,/ Zy = R(E)' with klp, yields
ﬁ("‘n"") c D,(,L), with OQut (D,(,:.),) =2Z,, for ,odd‘ P
or with Out (D&’,) =23 x2Z;, for even p and fbodd,
and DY, c DY), with Out(DY),,) = Out (D)) = 2, x 2,,

2
Jor cvcn; and even E.

Dy~ Dpf Zyiyy = 9(:_&_‘_), with (2]6 +1)|p, yields

Dk s € D, with Out (DE) = Out (DL ) =2, for oddp,

and Qut (D&),) = Out (D(;}.‘,—,'ﬂ) =2ZyxZ,, forevenp.

Ry Re/Zy = 'R(*), with k|g, yields

DP,; C Dy, with Out (DR),,) = Out (DB)) =2, x 2,

e+2

Jor even g and even §,

Dyun C Dy, with Out (DY) =2, x2,

92



Jor even g and odd

Dlﬁi C ﬁ,:_a, for odd g and odd §.

’iv) The surjective fusion rule algebra homomorphishs mapping canonical generator to

canonical generator arise from the following group-inclusions: -

a) The inclusion G C SU(2) yields, for all fusion rule algebras &° of binary poly-
hedral groups, a homomorphism

Ay — 8°.
The inclusions 'R,, C 0(2) and D, C Dy, yield the homomorphisms
D, —» Dg;.’; , Dy —» ﬁtﬂ )

_ for all possible structures. _
b) The non-abelian subgroups of Dp are Dy with p'lp and of Ry, Ry, with n'n.
Dy C D, yields
Df,?g -*‘D,(,f_),, for all p'lp with the respective groups Out.
Ry C Ry yields
D(;-‘lz - D(;:')“ _ for even p and even p',
Dgl, —-» ﬁ,% for even p and odd p',

ﬁ,_;; - BL';_. for odd p and odd p’.

¢) The surjective fusion rule algebra homomorphisms invalﬁing E-alg;ebms which
are collected in the commutative diagram following Lemma 3.4.8, are realized by
inclusions of SU(2)-subgroups. These in turn are oblained from the respective

embeddings of polyhedra.
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From the form of the Perron Frobenius eigenvectors for graphs with norm equa
to four it follows that the statistical dimensions, dy, of elements ¥ € ®|,) of a simply
generated fusion rule algebra, whose generator p has dimension d, = 2, are always integer:
valued, i.e., dy € N. It is therefore possible that a fusion rule algebra from this class car
be derived from some semisimple Hopf-a!gel;:ra, A, with a two-dimensional fundamenta
represe;ntation p: A — Mat,y(C), with the property that i ker(pe".® #™)={0}. Ir
Lemmi 3.4.9, the fusion rule algebras with selfconjugate generator p = 5 of dimensior
d, = 2 have been associated to the non-abelian, compact subgroups, G, of SU(2) anc
0(2) (i.e. A=T[G)), with n > 2 and Out (Dg,)) & Z4, for which there do not exist anj
dual cémpact groups. Moreover, we managed to relate all fusion rule algebra homomor
phisms to group homomorphisms. In particular, all inclusions of one group into anothe

one correspond to fusion rule algebra epimorphisms.

The question remains in which sense this result can be extended to fusion rul
a]gebra;s with a self-conjugate genex;atot p of dimension d, < 2. More specifically, w;
shou]d'.: ask whether there exists a Hopf-subalgebra A of e.g., U; (s,), witﬁ g=¢%, suc
that the branched tensor product decomposition determined by the representation theor:
of A yields Ey-fusion rules? We shall see, ho{never, that such an algebra c$n not b
quasitriangular. We note that the non-abelian, compact subgroups of U(2) reproduce al
those fusion rule algebras that are generated by a single element p, with d, = 2, and ar
dual té some compact group. For all these fusion rule algebras, p ® p contiins a one
dimensional subrepresentation a, namely the one corresponding to the representatio
a(g) = det(p(g)) of the dual group. Hence the element a of the fusion rule algebra ¢
corresponding to‘this one-dimensional representation of the dual group belongs to Out(®
We are therefore in the situation of Lemma 3.3.4 and conclude that any fusion rul
algebra ® = ¢ dual to some compact group G with a two-dimensional fundament.
representation, is of the form

O =1,(Zax®"),

where &’ is one of the Zz-graded or ungraded algebras given in (.3.97), and n is determine
by the cardinality of (G) C U(1). A class of fusion rule algebras for which there is 1

automorphism a € p o p (and which are therefore not dual to a compact group) consists
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the algebras @ for which D(®) = 1 and with grading greater than two. For these algebras,
the restrictions Ag := N, [ Cop — C; of the fusion rule matrices N, are determined in the
proof of Proposition 7.3.1: They correspond to the graphs Dgl) and E{M (see (7.48)) and
to A?), Ag?. A detailed description of the corresponding fusion rule algebras appears in

the next lemma.

‘Lemma 3.4.10 Suppose that ® is a fusion rule algebra with generator p of dimension
d, = 2, that ® is Z,-graded, for some

v
w

and that
- D(®)

i
T e

Then ® is one of the following algebras:

i) For Ag~ D?), the algebra @, denoted by ¢ = D?) (A‘ll))(c-z), has a basis ‘

p {1’61302)03’ T, 721"'17'&—1} 1

with p = 71, and the decomposition of ®, as a lattice,

¢ =>i€eZ. %;,

has the following presentation:
o= (1,01,02,03)y; ®;=Nr;, j#0. o
The elements {1, 01, 03,03} = Out(®) form a group: Out (®o) = Zy, or Out (&) =
Zy x Z,. Thet;r products with other elements of & are given by
fori= 1,2,3,> j=1,...,a—-1.

g;i0T; =Ty,

The multiplication table of the 7 ’s is given by

STom = 2T, JF k-
3
and TioT.; = 1+Za‘-.
. =1
The conjugation on @ is thus given by
m=0", T=r1.

-95

-

'

o

1) For Ag = Eg'), one algebra &, denoted by & = E,(,') (Ag‘))('—”, Kas the following " Py

structure: It has a basis {1,e,a™?, ¥, xj, a0 xj, a”l o Xi}iz1,..a-10 With p=x3,
such that

o,

(Laya™,),

; ®;

i

Jorm the graded sublattices. The elements {1,a,a"'} = Out ($¢) = Out(®) for

(Xil a o Xj, 0"°XJ‘>N. i=l...,a-1,

a group isomorphic to Z3, and = a0y = a~! 03p. These relations together with

Yop=l+a+a+2

determine the subulgebra $o. The multiplication of the elements in ®; with a is k

given in the obvious way; (Out (®,) acts transitively and freely on $;). Moreover,
Yox;=xjtaoxj+a’’ °Xs-
The multiplicatibn table of the x s is given by
| XiOXk = Q°Xj+;k+a-l°Xj+h forj # -k,

1+9.

~and  xj0x-5

These relations and associativity determine the entire multiplication table, includ-
ing products of the form (a® o x;) o (a" ° x;.), €, e =-1,0,1. It follows that the
conjugation is given by »

afox;=afox_;.

The remaining fusion rule clgebras with Ay =~ Egl) end Z.-gra&ing are then given by
ra (B (4)7) and 7a-a (B (40)77).

'

The direct graphs determining the fusion rule matrix N, for the fusion rule algebras
D?) (AS")('") and Eg‘) (A(,'))(u-z) are depicted in Figures (A24) and (A25)‘of the Ap-
pendix. So far, we have found all fusion rule algebras & with a generator p of dimension
d, < 2 and with the property that

D(@)=1. (3.116)
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With the help of Proposition 3.3.2 and identities (3.57) - (3.59) we shall arrive at the
following general classification theorem for fusion rule algebras not necessarily satisfying

condition (3.116).

(The algebras will be distinguished according to whether the statistical dimension d,
of their generator p satisfies d, < 2 or d, = 2, and according to numbers a, a” and r,
with a = re”, which are defined by: &/%, = Z, (i.e., ® is Z,-graded), Z, = D(®), and
Zyw = 9" [ &y, where $” is defined through the presentation (3.60), and D($") = 1. Fur-
thermore, we make use of Out(®,) to discriminate between different algebras; Out($)

will be determined.)

Theorem 3.4.11 Let & be a fusion rule algebra generated by an element p of dimen-

sion d, not ezceeding two. Then & is one of the algebras described below.

i). For d, < 2, one finds the following list of algebras:
(a) If a” =1 then Out (o) = {1}, and
®=2.+4A,, forsomen>1, and Ou(d)=Z,.
. (5) Let o" = 2. If Out(®g) = {1} then
® = Z,+«Dy,, n23, and Out(d)=2Z,;
or '
® = Z,+»Ey, and Oui(P)=Z,.
If Out(®) = Z, = {1,a} then & is one of the following algebras:

Z,+ Agpey, n 22, with Out(®)=Z,x7Z,;
Ta(Ze s Asncr), n 22, with Out(d) Zy;
Z,» Eg, with Ou£(<l>).‘§Z, xZ,;
7a(Z, % Es), with Out(d)=Z,,.

For r even:

For r odd: Z, s Ajpr, n 22, with Out(®)Z; x Z, = Z,,.
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(3.117)

(3.118)

(3.119)

(3.120)
(3.121)

(3.122)

(3.123)

(3.124)

Z, 2 7o (Azn-1) ¥ Ta(Z, + Agpy) with Out(d) = Z,,; (3.125
Z, * Eg N with Out(Q) = ZQ xZ, = Zz,; (3126
Z, » 7, (Ee) = 14 (Z, » E¢) , with Out(d) = Z,, . (3.127

IfOut (o) = Z3 = {1,a,a7'} then & is one of the follbwing algebras: For (3,r) = 1:
Z,+ D =1,(Z, « D)= Z, 7o (D), with Out(®)=XZ;xZ, X Z,,. (3.128

Forr=3r": Z,* Dy, with Out(®)=7Z3x7Z,; (3.129

Ta (Z, % D) = 741 (Z, % Dy) , with Out(d) = Z,,. (3.130
i1) Ford, =2, ® is one of the algebras described in the following list:

(a) Ifa" =1 then ;
Out ($) = Z, = {1,c}

and one finds the following algebra;:

Forr even:Z,+D,, n>3, withOut\ (20)=2Zyx2Z,; (3.131
7a(Z,*Dy) ,n23, with Out(®o)XZy. (3132
Forr odd:Z, xDp 21, (Z,+D,), n23, with Out(d)=Z,.  (3.133
(b) If a" = 2 then & is one of the following algebras: For Out (&) =1,

Z, + Ay, vith Out(d)22Z,; : (3.134
Z,+E, with Out(d3)22Z,. (3.13¢

For Out (8o) = Z; = {1,a}, then

ifr is even: Z, » Doy, with Out(®) = Z,; x Z, ; (3.13¢

Ta(Ze * Do), with Out(d) = Z,,; (313
Z .« B, with Out(d)22Z,xZ,; (3.13
Ta(Zo x B}, with Oul()=Z,; (313
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With the help of Proposition 3.3.2 and identities (3.57) -(3.59) we shall arrive at the
llowing general classification theorem for fusion rule algebras not necessarily satisfying

>ndition (3.116).

(The algebras will be distinguished according to whether the statistical dimension d,
f their generator p satisfies d, < 2 or d, =2, and according to numbers a, a” and r,
ith a = ra”, which are defined by: &/® = Z, (i.e., ® is Z,-graded), Z, = D($), and
an = &'/, where ®” is defined through the presentation (3.60), and D($”) = 1. Fur-
hermore, we make use of Out (®,) to discriminate between different algebras; Out(®)

rill be determined.)-

"heorem 3.4.11 Let & be a fusion rule algebra generated by an element p of dimen-

ion d, not ezceeding two. Then & is one of the algebras described below.
i) For d, <2, one finds the following list of algebras:
(a) Ifa" =1 then Out (&) = {1}, and
®=2Z,+«4,, forsomen>1, and Out(d)=Z,.
(b) Let " = 2. If Out (®,) = {1} then

3 Z,%Dyn, n2>3, and Oui(®)=Z,;

"

or

] Z xEs, and Out(®)=Z,.

If Out(®) = Z, = {1,a} then & is one of the following algebras:
For r even: Z, % Agay, n 22, with Out(d)=2Z;xZ,;
- Ta(Ze * Azn-1) , 1 2 2, with Out(®) =Z,,;

Z,.x Eg, with Out(®)=7Z,xZ,;
" 74(Z, % Eg), with Out(®)=2Z,.

For r odd: Z,*Asp-r, n 22, with Out(P)=2Z; xZ, =2Z,,.
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(3.117)

(3.118)

(3.119)

(3.120)
(3.121)
(3.122)
(3.123)

(3.124)

Zr * Ta (Ain—l) = Ta (Z, * A?n-l) with Out(Q) = Zg' HE

Z, «Es, with Out(®)=Z,xZ, =Z,,;

Z'. * Ty (Es) = Ta (Z, * Eg) ’ with Out(@) = Zz' .

(3.125)
(3.126)
(3.127)

If Out (%) = Z3 = {1,a,a7} then & is one of the following algebras: For (3,r) =1:

Z, D=1, (Z, D) =Z, s, (D), with Out()=ZyxZ, xZ,,.

Forr=3r": Z, Dy, with Out(P)=Z; x Z,;
Ta(Zy * D) = 7a-2 (Z, # D), with Out(d) = Z,,.
1) Ford, =2, ® is one of the algebras described in the following list:

(a) Ifa" =1 then
Out (&) = Z, = {1,a}

and one finds the following algebras:
Forr even:Z,#D,, n >3, withOut ($)=Z;xZ,;
7a(Z,#Da) ,n23, with Out(do)=Zs,.
Forr odd:Z,tE%r,(Z,*F,,),nZii, ~ with  Out(®o) = 2Z,,.
(b) If a" = 2 then & is one of the following algebras: For Out(®o) =1,

Z, s Aw, with Out(®)=Z,;
Z,+EY, with Out(®)2Z,.
For Out (%) = Z; = {1,a}, then
ifr is even:Z, » D, with Out(®)=Z; x Z,;
Ta(Z, » D), with Out(®) = 2,,;
Z,+EM, with Out(d)=Z,xZ,;
7a(Z s ES), with Out(®)=Z,;
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(3.128)

(3.129)
(3.130)

(3.131)
(3.132)

(3.133)

(3.134)
(3.135)

(3.136)
(3.137)
(3.138)
(3.139)
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ifrisodd: Z, « Do 2 7,(Z, * D) , with Out(d) = 2Z,,;
Z,+EM, with Out(d) =2, xZ, =Z,,;
Ta (Zo v V) 2 Z, w7, (EM) | with Out(d) = Z,,.
For Out (%) = Z3 = {1,2,a7'}, then -
if(r,3)=1:Z, s EN2r, (2,4 E) =z,
with Out(®) =27,

o (EY)
XZV = Z:!r H
ifr=3r: Z,+EM, withOut(d) =Z;xZ,;
Ta (Zo » EQ) 2 700 (2, + E{Y) , withOut(®) =2,
For Out (85) X Z, © Z, = {1, 0, £, 0 £}, a € stab(p), then

ifrisodd: Z,» D)y = 7 (2,5 D{),)) , with Out(®) ™ Z,x Z,,;

7¢(Z, D)) = Taog (Zo x DY) o with Out(@) = Zy, x 2,

ifriseven: Z, D0, , p>2, with Out(3)X 2, xZyxZ;
Ta(Zo*D3)y) s P22, with Out(d)=Z,xZy,;

7¢ (2, # D) 3)) = Tact (Zo x D),)) o with Out(2) = 2, x Z,, .

For Out (&) = Z, = {1,£,£%,£%}, then

ifrisodd: Z, » Dg;?n) =1a (Z, * Dm-z)) ywith Out(®) = Z,;
; 7¢ (2, * DY)y) = 70 (2, « DY),)) s with Out(®) = Zy;

ifr=2mod4: Z,+Dl),, n>2,

o with Out(®)xZ, xZy =Z, xZ,;
7 (2, » D\y)) = Z, w7 (D{,) swith Out(d) =2, xZy;
7¢ (Z, » DY)y)) 70 (2, + DY) ,)) with Out(d) =2 ;

ifr=4r': Z,+D(),, p22,with Out(d) 2Z, xZ;

70 (Z.+ D{)yy) , P2 2,with Ou(d) =Zy xZ;
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(3.140)
(3.141)
(3.142)

(3.143)

(3.144)
(3.145)

(3.146)
(3.147)
(3.148)
(3.149)

(3.150)

(3.151)

(3.152)

(3.153)
(3.154)

(3.155)

(3.156)

(3.157)

7¢ (Z, » D)) =70 (2o * DY)y s with Out(®) =2,
(c) If " > 3 then & is one of the following fusion rule algebras:
For Out ($,) & Z3 = {1, 0, a“f}, then

(a"-2)
H

if(n3)=1: Z, « B (A" with Out(®) = Zs, ;
Z, srass (B8 (A9)7) | with Out(®)=Zs.;

(a"-2)
b

ifr=3r": Z,+ E{) (4 with Out(3) = Zy x Z,;
Toir (z, « EY (A‘;’)"‘""’) , with Out(d)=Z,,.
For Out (80) 2 Z, x Z, = {1,0,£,a 0 ¢}, then '
ifr is odd: Z, DY (AD) ™D | with 0ut(8) 2 Z; x Z,, 5
ifr is even: Z,+ D (AD)* | with Out(8) 22, x 2, x Z,;

. (z, « D ( Agn)(""*”) , o#1, with Out(®)Z; x Zs,.

FOT Olltr(éo) = Z( = {I)E: {2)63}1 the"'
if r is odd: V

z, * Dg:) (Agx))(au_z)

1R

e (2, + DY (A7) |

i=0,1,2,3, with Out (z, + D (A" "”) =Z,

ifr =2 mod 4:
Z * DS‘) (Agl))(“"-?) S, (Zr . DS’) (A(lx))(n“—i)) ,
with Out(®o) = Zy x Zi,;
e D8 (AP) ) 2 (200 (49))
with Out(®o) ¥ Z;
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(3.1

@1

(3.1

(3.1

3.1

(3.1¢

(3.16

(3.16

(3.1¢

(3.1

(3.1



ifr=4r'":

Z,» DY (A1)

, with Out(®)=Z,xZ;
7o (z,*nﬁ‘) (A*) | with Out(80) = 2 x Zar
re (20« D (40)) e (20 + D () —=>) ,

'wzth (@q) zdr .

R

14
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(3.169)

(3.170)

(3.171)

| Chapter 4

Hopf Algebras and Quantum

Groups at Roots of Unity

We review the basic theory of Hopf algebras, including the Drinfel’d [3] definitions of qua-
sitriangularity, and of the double construction and present, as an czqmple; the algebra
U, (slay1) first defined by Jimbo [2]. We use results, due to Rosso [{8], to define a quo-

" tient, lf:‘d(al¢+,), of the topologically free algebra, U, (slayy ) over C([log g]), which is

quasitriangular and specializes g to a root of unity. Besides the known Cartan involution,
we intreduce an antilinear *-involution and determine its relations with the R-matriz and °
the coproduct. For UT™ (sl;), the R-matriz is determined, and the center is presented as

a C*-variety.

Quantum groups, as defined in [2], are special types of Hopf algebras, obtained as one-

parameter deformations of universal enveloping algebras of classical Lie algebras. We

" begin our discussion of their general properties with a brief review of quasi-triangular

Hopf algebras.

Hopf algebras are associative algebras, carrying a comultiplicative structure, which
is given by a homomorphism,
A:K-KQ®K,

called comultiplication. The algebra is said to be cocommutative, if A = oA, where

102



~

L}

-

+ ¢:K®K — K@K is the transposition o{a ®b) = b® a. This is the case for the univer-

sal enveloping algebras of classical Lie algebras. In order to describe braid statistics, we
perturb cocommutativity by an invertible element R € K ® K, called universal R-matrix,
satisfying ’ : : ,
' RA(a) = 0A(a)R (41)
fér all ¢ € K. For Hopf algebras we require coassociativity
(1A A=(A®1)A. (4.2)
Since the second comultiplication :
A'=cA (4.3)
is coassociative too, there is a compatibility condition on R: \ )
RONAB®LR=(1QR)(1QA)R. . (4.4)

In an attempt to describe Knizhnik-Zamolodchikov systems Drinfeld [4] has proposed to
perturb coassociativity by an invertible element ¢ € X ® K & K such that

(19 A)A(a) = (A ®1)A(a)¢™, VaeK (4.‘5)

leading to quasi-Hopf algebras. The element ¢ has to satisfy certain relations that are

due to pentagon cycles.

The unit element of the coalgebra (counit) is a homomorphism, E : K — C, satis-
fying ‘A v ' .
(E®1)A(e)=(1® E)A(a) =a. ' (4.6)
The “inverse” on a Hopf algebra is given by an antihomomorphism, S : K — K, called

the antipode, which is characterized by the property that
mp(1® S)A=m;(S®1)A=1-E, (4.7)
where m;(a @ b) = ab.

This enables us to define adjoint representations

adi(z)

(L ® R)(1® S)A(z)
(4.8)
adi(z)

A

(L®R)(185)As),
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with L and R being the right and left multiplication on K. For quantum groups the

subalgebra on which adf acts trivially coincides with the center of K.

We summarize these notions in the following definition.

Definition 4.1 [3] A gquasitriangular Hopf algebra K is a coassociative Hopf algebra with

comultiplication A, counit E, entipode S and an invertible universal R-matriz, R €

KoK ,l which intertwines A with A’ and satisfies

(1®A)R = R];Rn

(4.9)
(A®R1R = RiRa.*)
From (4.1), (4.7) and (4.9) we can deduce further identities, e.g.
(1®ER = (EQI)R=1 (4.10)
(185R = (S8)R=R"? | (4.11)
and tl;e Yang-Baxter-equation |
RaRisRiz = RiaRisRas ") (4.12)

As an example we consider the quantum groups U, (sla+1). The dependence on the
“deform'ation”.-parameter g = ¢ is expressed by the fact that the algebra is an E-algebra,
where E is the ri'ng of meromorphic .functions, f, for which sinh(2)™f(t) is analytic,
for some m € N. The algebra U (slas1) is a topologically free algebra with genera-
tors 1, e;, fi, ki, =1,...,d, meaning that every element can be expressed as a series

P 1" sinh(t)"™pnm, Where the p,m are ordered polynomials in the generators.

0<m<M, n20 ,
Further, we impose the following relations on the generators:

(hives] = aije;
[hi, fi] = —aif; (413
e fi] = 6,555,

*The subscripts label the positions of R in K@ K @ K, ize. R;; is the image of R in X®" under th

embeddinga@b—~1®-- - 8a®1---@;b1---01.

104



and
eie; =eje, fifi=fifyy forli—j| 2 2,
ey — (g + ¢ eitisiei + eimnel = 0,
and  fifir — (@ + 9 Vfiferrfi+ finfl = 0,
where a;; = 2, @iz = —1,and a;; =0, for [1—j |> 2.

Depending on whether we choose the functions in E to be complex or real, we
thus have defined the associative algebras U, (slasy)p (over Ez) and U, (slas1) (over Eg).
Clearly, U, (s€441) is also an Ez-module, and, since Ez C Ec, we have that U (slas1)p C
U, (s€4+1), as Ez-algebras. Also Uy (s€441) can be seen as a C- or R-module, i.e., a C- or

R-algebra with additional central generators ¢ and m

Other prominent subalgebras are defined as in the classical case: U,(b*) are the
Borel algebras generated by the elements ¢; and h;, resp. f; and h;, and Uy(n*) the sub

algebras generated only by the ¢;’s, resp. f;'s.

The comultiplication is then the Ec-linear homomorphism A : K = K ®= K, given

" on the generators by

A(h‘) = h®L1+18h,,
Ale) = e8¢ F+9¥ e, (4.14)

A N
Alfi) = fi®€94 7 +97 8 fi.
The E--linear counit E : K — Eg is zero on the generators and E(1) = 1. By (4.7), the

Ez-linear antipode must be given by

S(es) = —q7'e
' SU) = —af (419)

S(hy) = =k

Note that its square is an inner automorphism, since
5%a) = ¢ ag”, (4.16)

- so that E*(€) = ({,1), and an antipode by

with § = =Y ha.

Here the A, are defined, for every positive root a, as the same combinations of k; = h,,,

o; primitive, as in the classical sfy;;-case.

The Hopf algebra defined above is quasitriangular only for generic specializations of
g = ¢*, but not for the entire ring E. We will use computations, already performed in [48],

to define a quasitriangular version of a quantum group at a root of unity.

In a quantum double construction of a Hopf algebra A over a ring E, the space, A°,
of E-linear forms A

L:A-E
is considered. It is equipped with a multiplication, by setting
Lok Alz)) = (L k), | o (4.17)
so that (1,.) = E, an (opposite) comultiplication

(A0, 283) = (by-2), ’ (4.18)

(5(), 5(X)) = (& X), (4.19)

for z,y € A and £,k € A°. This obviously defines an associative Hopf algebra over E
which we denote A°. The “double-constructed” algebra, D(A), then consists of the space
A&z A° together with an E-linear map

m: A8z A4 - A8z 4°, (4.20)

such that D(A), with multiplication

(31)-(481) =2y 31,
(12K (188 =18k,
(z81)-(18¢Y :=z8L,

and (13k)(y81) =m(k3y),,
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and the resulting extensions of coproduct and antipode, define a Hopf algebra over E.
A formula for m has been given in [48], with the property that D(A) is quasitriangu-
lar, where R € (A®1) 8 (1 A)C D(A) ® D(A) is precisely the canonical element in
A A

If we extend the ring over which Uq(sls41) is defined to meromorphic functions, f,
such that sinh‘(nlt)"“ -...-sinh (ngt)™ f(t) is analytic, for some nj,m; € N, i.e., for
ger(eric specialization of ¢, it is well known, see e.g. [4, 48], that for A = U, (b*), we
obtain D(A) = Uy(s8ys1) 8 U(f), where U(f) is a second copy of the Cartan subalgebra,
commuting with U, (s{441). For non-generic specializations of ¢, the algebra dual to
U, (b*) will be different from U, (57). However, it is possible to take a quotient of U, (b"')
such that its dual is a similar quotient of U, (b~),

The algebra U, (b*) over E: has been studied thoroughly in [48]. For the statement

of the results, we use the generators E; := e;q%‘, so that

A(E)=E®1+¢"®E; S(E)=-¢™E, (4.21)
and .

[hj, B} = ai;Ej;  ad* (E;)' ™9 (Ej) =0, fori#j. (4.22)
It is then possible to define, for each positive root, a;;, of 844y, with
;= o+ aipn +...+a.,~_1'

for1< < j £d+1, an element, E,, by the recursion

Ea; = ad* (E)(Eay,;), with B, = E;, | 4 (4.23)
and compute ¢-analogue commutation telations.

From these it follows that every element of U, (b*) can be written as a combination

of the expressions
Egty... Eginy b .. A ‘ C (42)
where §(1) < ... < B(n),n = 5(‘%'2, are all positive roots, with total ordering a;; < ayjr

iff i <i'ori=1iandj <j’, and m;,¢; € N. It is shown in [48] that the monomials (4.24)
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. form indeed a basis of U, (%) over E¢. The subalgebra U, (b~) of U, (b*)’ is introduced

as follows : It is generated by elements F;, v, defined by the equations

1 1
(FWE) = =¢’ and (v, ki) = T (4.25)

and =zero on all other monomials. We immediately obtain the coalgebra relations

A (%)

i

%®1+18%, S(%)=-%, and, with k; := — 3 aiv;, (4.26)
N | :

l

A(F) = 19F +F.9d%, S(F)=-Fq~. (4.27)

Furthermore, one finds the algebraic relations
v, Fjl = 6;F;; ad™ (F)"™(F;)=0, fori#j. (4.28)
Defining elements iFa, in m‘—), for every positive root, a, of sf441, by the recursion
Fay=ad (F)(Fuy,;), fori<j—1 and Fa,, =F,  (429)

it is possible to write every element as an' E;-combination of monomials in F, and
~;, similar to (4.24). The contraction (.,.): U (5-) ® U, (b*) — Ec has been computed
in [48] as

(F;(';, o FRmad o, Egy Epe K h;‘> =

) (4.30)
mi-1) ( q—l)l(ﬁ(l))m; :

—H(mmq—(w—lﬁ(m) )H( t—‘)

where Bly<...<B(n),n= ﬂ",ﬁl, are the ordered positive roots, £((3(j)) their lengths,

ie., €(a;) =7 —1,for i < j, and the g-analogue numbers are

¢"— ¢ sinh(nt)
(), = g-q! = sinh(t) ’

and (n)!:=(n)o(n-1)...(1),.

To describe specialization to the case where ¢ is a root of unity, we use, for N > 3 anc

for ¢ = €*,
(4.31)

-—

(n,N) =1, the ring-homomorphism %3 : Ec — C, which assigns to any f: ¢t — f(t) in Eq
the value %2(f) = (‘l ) % is wcll defined since %3(sinh(t)) = isin ( ) #0.
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Then

. (e ¢ Ug(bt) Rz U, (b%) - C,
’ . _ (4.32)

(e = oy 0 (),
defines 2 contraction of U, (5-) and U, (b*), seen as C-algebras. The nullspaces, | ;.; =
{z e, (i)*) | (k,z)ep =0, Yk € V,(b")}, and, similarly, I%, then form C-Hopf ideals, by
equations (4.17)-(4.19). So we can define the following C-Hopf algebras:

U (o) =0, (67) /15, U () =T/ 13, (4.33)

which, by the properties of {.,.),p, are related as C-algebras as follows.

U () = (05 ()" e

\

Using the intrinsic formula for m given in [48] and identifying h; with k;, this formally

defines a quasitriangular quantum group, U;"’ (slas1), at a root of unity, ¢ = &' %,

For a more explicit description we remark that the Borel algebras Ur*d (b%) are

generated by the elements [E;] and [A;], resp. [F] and [fl.-], &.vhere [1:U, (b*) - Urd (6%)

denotes the complex-linear homomorphism onto U;“' (b%), and further that ¢ (and m)

can be omitted from the set of genérators by setting

Foed=f () @ i

From (4.35) we also infer that the generators obey the Hopf algebra relations (4.21)-(4.22)
and (4.26)-(4.28), where, e.g.,lE,- is replaced by [E;] and the expressions in g = €' € E¢
are replaced by the specialized ones in ¢ = ¢F € C. In the same way we can obtain the
elements [E,)] and [F,] from the specialized versions of the recursions (4.23) and (4.29) and,
further, they obey corresponding commutation relations. Hence every element in U;'d (b%)
can be written as a linear combination of the respective classes of the monomials in (4.24).
Since, by oz o (a,b) = ([a], [b])sp, the diagonal form of {.,.) in (4.30) with respect to the
monomials (4.24) is inherited by (., ).y, We have that the set of monomials in Urd (b%),
with

[y Egy bt B #0, | (4.36)
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by the z;'s, the commutator

is a-basis, by the nondegéneracy of (.,.}.p, 2nd similarly for U (b~). From
() =0 if m>N, for q=e¥, (4.37)
Qe find, that the expressions in (4.36) are characterized by
0<mi<N, i=1,..n, (4.38)
and the monomials [Ef ] vanish. v
The formula for the multiplication m (see (4.20)) given in (48] shows that z;:=
h; — h; are central elerricuts, and itA yields, after quotienting by the ﬁopf-ideal generated

(E:, F3] = 6 (i), - N (4.39)

We collect these observations, based on computations in 48], in the following proposition.

Proposition 4.2 In the following statements all equations to which we refer should be -

understood as specialized, i.e., we have

g=¢%, withN23 and(n,N)=1. ‘ -

i) The complez, associative algebra, U;“ (b%), defined by generators-E;, h;, 1 and
relations ({.22), together with »

EN=0, forala>0, - (4.40)

where the E, are defined by (4.23), has a PBW-Basis given by the monomials
(4.24), restricted by (4.98). It has a Hopf algebra structure defined by the comulti-
plication and antipode in (4.21).

1) The dual algebra (U;“’(b*)r, with opposite comultiplication, denoted by Ul (b™),
is genérated by the elements F;, h; given in (4.25). It is equally described in terms
of relations (4.28) and

FV=0, forala>0, O (44))
and co-relations (4.26) and (4.27), and admits o PBW-Basis analogous to the one
of Urd(b*). The cantractt:on (s dop s U (b7) @ U4 (b%) — C is given by (4.50)
and (4.92). : ’
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iii) The algebra, Ur*d (sly;,), which is obtained from Ured (b*) VU (b ) by dividing
out the relations (4.99) and h; = h;, has a PBWW-Basis

m. &n
{Esy-- By byt - A Fam Fitm} s (4.42)

i

with0 < m; < N;0< & < N, and is _guasitriangular with R-matriz

R = exp(g) (- Ban) @ Faqy) - exp(g) (-0 Este) @ Fam) ¢
' (4.43)
Her; we use the notations
-\m X7
exp(ﬁ)(X) = Z_oq (1 -q 2) R

and

t:= Z (a’l)j h; @ kg,

ik
with the inverse, a~!, of the Cartan matriz a, i.e., a® 8-t =(a,8). The a.lgebra
Ured (sy41) is identical to D (U:‘d(b*’)) quotiented by the central subalgebra U(h)
generated by z; = h; — h;.

There are, of course, further possibilities of defining a quasitriangular quantum group at

* a root of unity. For example, if we insisted on having the entire Borel algebra, U, (6%),

‘without the relations (4.40), the dual ;lgebra U; = (Ug(b%))° would contain U4 (b-) as

a subalgebra, but, in addition, it would contain elements F, defined by
(F¥, E¥) =1, (4.44)

and =zero on all other monomials. It follows that U is just the Borel algebra of the
quantum group at a root of unity, U;, defined in [49]. To be precise, we also would have
to replace the generators h; by generators K; := ¢™ and impose the relation K?¥ =1.
The algebra U;‘d (s€4+1), with these modifications in the Cartan generators, is still qua-
sitriangular, but, in addition, it is a finite-dimensional subalgebra of U,. It is possible to
show that the R-matrix of UF*d (sly,,) is also an admissible R-matrix of Uy, so that U,

is quasitriangular, although it is not double-constructed. Here we call a q{xasitriangular
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Hopf algebra double-constructed if, for the map

1R K=K, m(@=({,.)91)R
and hence
() =(18 (¢, )R, (445
we have that
K=immgVimrg.
In general, we have for a quasitfiangulat Hopf algebra
R €imry @im 7r, (4.46
so that mg is well defined on (im =%)°. Using equations (4.9) we find that
R (im w%). —imwg
is an algebra isomorphism, which is anticohomomorphic. Therefore
(im w%)o Ximwg. ‘ (4.47

Thus in the case of a double-constructed aIgebrg, K, and by the uniqueness of the multi

plication (4.20), (see [3]), we infer that K is a quotient of D'(im wg).

In the following we shall consider only the double-constructed examples Uzt (slasa)
seen either as a C- or R-algebra, and US* (sluyy), whicéh is the quantum group over the ex
tended ring, E8*® of meromorphic functions, f, such that sinh (nyt)™ ...sinh (ngt)™ f(t
is analytic. for some n;,m; € N. The automorphisms of the Borel algebras can be easil
described. | 7

Lemma 4.3

i) For every Hopf automorphism, a, of U;’d () (Uq““ (b*‘)), there are invertible ele
ments, 7;, t = 1,...,d in C(E®*") and an involution, 7, of the A4-Dynkin diagran
ie, #=1id or n(j) = d + 1 — j, such that

a(h;) = hxg) (4.48

and a(E;)

15Ex(s) - (4.4€



ii)

iti)

Moreover, we have that a can be chosen either complez-linear or complez-antilinear
for US™ (b*) with ring E*® and specializations ¢ € R and for Ugtd(b*) for real
specializations t € R, so that ‘

3

a.?_:_(t) =1 (450)

\

in both cases. a is complez-linear for non-real specializations and U (b%). -

Canvers‘cly, every map, a, defined on the generators by ({.48), (4.49) and (4.50)

eztends uniquely to an automorphism on Urtd/s== (b+),

Similarly the set of anticohomomorphic automorphisms, &, of U, (b%) is character-

1zed by
&(hj) = ha : (4.51)
&(E;) = n;Eqiq (4.52)
and as(t) = —t | (4.53)

Thus anticohomomorphic automorphisms only ezist for purely imaginary specializa-
tions, i.e., t € iR or [g| = 1, and for U;’d (b%), where they have to be antilinear.
The description of antihomomorphisms can be obtained from the above by composi-

tions with the antipode.

For specialized parameters t, the scalings E; — n;E; can be obtained by conjugating
elements of the Cartan torus so that the group of outer automorphisms is isomorphic
to Z,. In particular, every cohomomorphic or anticohomomorphic automorphism

maps Uy (n*) to itself and is an involution on f.

Furthermore, the automorphisms specified in i) and i) have unique eztensions to .

U, (slas1), given for the generators by
1 B

a (FJ) = - F,(j) (454)
-
= 1 he(; =
and a (F,) = 17_ q '(’)F,,(j) . (450)
J .

These eztensions are also cohomomorphic, resp. anticohomomorphic.
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1) If we denote by C the exztension of the anticohomomorphic automorphism with

nj=1, ™= id, then we have the relations

ct =1 (4.56)
and C®CR = R, (4.57)

C will thus be called the conjugation of U, (sfy41).

The symmetry in the sets of generators and relations of U, (b*) and U, (b~) enables us

to define involutions on Uq (sfa41), which are important in the study of highest-weight

repfesentations. In general for a quasitriangular, double-constructed Hopf algebra, K, we

call an R-linear, antihomomorphic involution, 4, on K, a _Cartan involutionif 8 satisfies
6 : imwg — im7k

(4.58)

thus 6 : imxy — imwg

and

§Q6R = oR. : (4.59)

Similarly a *-_involution is a R-linear, antihomomorphic involution which also maps im xz

to im 7% but instead of (4.59) obeys

*+ QxR =0R"?, (4.60)
Lemma 4.4

i) Assume, that 8 is a Cartan involution and = a *-involution on a double-constructed

Hopf algebra K. Then we have

62804 Aol, BoS=5104 (4.61)

and *8+0A = oclos, *0S =S80, (4.62)

i) For the isomorphism 7z, it follows that
T8 =fry and Sawh =mwgs S, (4.63) .
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Thus, if we define nondegenerate, R-bilinear forms on im x% by
(a,b)e:= (77'6(a),)  and  (a,b):=(7z'x(a),b),  (4.64)

it follows that (a,b)s is symmetric and obeys

(A(a), 8@ c)o = (a,cb)y  and  (S(a),t)e=(a,S(b))s (4.65)

and further that

(al b)' = (S(b)) G). ) (466)
so that
(Aa), b8 c)s = (a,b¢)s; (48 ¢, A(a))e = (cb,a).
(4.67)
and  (5(a), S(b)). = (a,bd)..
tii) Suppose a is an automorphism of im 1r§¢’, so0 that for J =im 7k Nim 7»
o(J)=J and (aob) ly=ids (4.68)
end
(afa), b)s = (a,a(b))s, resp. (a(a),b). = (a,c(3)).. (4.69)
Then there ezists a unique eztension, &, to K, such that
6'=&08, resp. ¥ =ao= (4.70)

is a Cartan-(resp. *-) involution. Moreover, given some involutions § and x, then
all other involutions are given by (4.70) for some a with (4.68) and ({.69), and the

eztension, &, is always cohomomorphic, thus a Hopf-automorphism.
This, together with the characterization of automorphisms of the Borel algebra and the

conjugation, C, in Lemma 4.3, put us in a position to find all Cartan- and *-involutions

of Uy (84441). They are given as follows:
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Lemma 4.5 1) There ezists a Cartan involution, 8, on U, (sly1) which is given ¢

the generators by

0(E;) = ¢MF; » (4.1
8(F;) = Ejq™ (475
0(h;) = k; (4.7
f=(t) = t. (4.74

It can be chosen antilinear only if E = E8*® or if t is specialized to real values. Ina
other cases, 0 has to be complez-linear. 8 is determined uniquely by (4.71)-(4.74
and the sign 6(i) = +i.

ii) The Hopf automorphisms, a, of Lemma 4.9 i), which give rise to all other Carta
involutions by (4.70), are those with
nj = 1a(j) - ‘ (475
iti) The antihomomorphism
*:=Co€r=eoc, ) : ) (4.76

where C is given in Lemma 4.9 iv), is a x-involution, for all versions of Uy (sf4:1)

where C is defined. It is given on the generators

x(h) = hj (a
«(Ej) = F ‘(4.73
«(F}) = E A
=(t) = -t (4.8¢

iv) Equation ({.80) holds for all x-involutions ', so that »' is defined on a quantu:
group whenever * is defined. All possible «' are given by (4.70) where the automo

phisms a, specified in Lemma 4.8 i), are constrained by
*z (M) = Ma(i) - (4.81
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One way to verify formulae (4.59), (4.60) and (4.57) is to directly apply the involutions,
resp. their compositions with the antipode, to the expression of the R-matrix. Also
we can use the fact that these formulae are equivalent to the symmetry relations of
the forms (4.64) and similar constructions. Following this strategy it is useful to know
that any bilinear form on U, (b*) for which the comultiplication is the transpose of the
multiplication (compare (4.67)) is uniquely determined by the scalar products of the
generator E; and h;. For convenience we give the general forms of the involutions in
terms of the original definitions (4.13), using the identification

A

F=qty; (a8
They are
6(e;) = nfet *(e;) = ﬂ:(f,')fr(i)
8(f;) = mmnes (4.83) | «(f)) = et (4.84)
8(hs) = hai); *(hj) = huis);
and
CE;=e;, CF;=f, CH;=h,. (4.85)

As an example, let us have a more detailed look at Ur*d(ss,), for ¢ = ¢ ¥, where we

assume (n, N) =1, N > 3. The relations defining UI*¥(s¢;) are

[h,e] = 2e
(b, f] = -2f (4.86)
h_ g=h
-9
e, f] =
Sl = =
and
eN=f¥=0
The universal R-matrix is given by
N-1 _ a-y (1 =g ) n iy
R=Y g-itren ¥ (_(n)#q Perg P (4.87)
n=0 q
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Here we use the q-numbers, defined by

_ =9
(n)g = = (4.88)

They arise in the calculation of the commutators

(e, /7]
(f,e”]

P (m)e(h =+ 1)

e Hn)g(—h —n +1);.

(4.89)

For the classification of the irreducible representations of U:‘d(slz), we next describe the

- generators of the center:

q

) (4.90)
= A=l
= ef + ( 5 )q
and P = '™,
They satisfy the relations
P — P-g]z N-!( 1 z)
— = - p— + .
[(q - ,I;Io ° (’1 2)¢ .
or equivalently o (491)
‘ P+ P-?]’ N-1
W - (@-0%) -
[(q -q ) ,I;Io (2-6%)

Relations (4.91) define a variety U in C?, on which the Casimir values of (@, P) have to

lie. The real part of this variety, Ureal, is the intersection of Y with
RxS'={(Q,P)|QeR,|P|=1},

describing representations, that admit sesquilinear forms. A more detailed description

of U will be given in Section 5.2.
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Chapter 5

Representation Theory of Uged(sez)

5.1 Highest Weight Representations of 'Uq‘°d(sfd+1)

We show that the irreducible representations of U, (sla+1), for g a root of unity, have
a mazimal dimension and can be obtained from Verma modules by quotienting by the
nullspaces of hermitian and bilinear forms. The contragradient of a representation is

defined, and categorical aspects are discussed.

The finite dimensional, irreducible representations of Ug(sfy41) and UI*(slyy,) are rep-
resentations of highest weight, because the generators h; of the Cartan subalgebras are
bounded operators. In the generic case of Uq(.’ldq.]); g% # root of unity, it is known [50]
that the highest weights, characterizing the representations, are (up to irrational shifts
A~ X + 7, where ¢? = e%) all integral, and the associated representations can be seen
as deformations of irreducible representations of the corresponding classical Lie algebras.
In the rational case, (i.e., ¢ a root of unity) we see from (4.22) that the subalgebra Uy(n~)
" is finite dimensional. Thérefore, any highest weight will lead to a finite dimensional, irre-
ducible representation, the dimension of which is bounded by dim Uy(n~)+ 1. For Uy(sa),
with g? = ¢?™®, this bound is equal to N.

A useful tool to determine irreducible representations from their highest weights

is the study of real linear forms, (.,.) and (.,.), that are invariant with respect to the
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antiinvolutions * and 6, introduced in (4.23) and (4.24).
The proof of the following lemma uses the direct sum decorﬁposition
Uq(stas1) =
C([A)) © C([M]) - Ug(n) & Ug(n7) - C([A:]) (5.1)
O Uy(n™) - C([A)) - Uy(n¥).

and follows from a standard reconstruction argument.
Lemma 5.1.1

a) On any pair of highest weight representations Wy., Vi,(Wir, Vi, respectively) o

Uy(slasr), with A* = loa (AT =2Ao a), there exist invariant, real linear forms
() : Wa ® Vi - R(H),

() : War @ o = R([t]),

with the properties

(vew) = (*(a)v,w),

(8(a)v,w),

(v, aw)

for all a € Uy(sasr), and

(f(t)v,g(t)w) f(—t)g(f)@»w) ’

v(f(t)v,g(t)W) fg()(v,w), for fogeR(t]),

which upon specializing to t € iR (ice. || = 1) become sesquilinear, resp. bilinear

forms.

b) The invariant forms (.,.) and (.,.) are uniguely determined by (vx-,va) ((var,vs)
where vy are the highest-weight vectors. In particular, if (va- , va} = 0 ((var,v2) = (

then (.,.)=0((,.)=0).
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¢) If N\ and M,. are defined by

N"\ = {3 l <y’x) =01 Vy € W/\‘})
and (5.3)

My = {yl{y,z) =0, Vze W},

'

the quotients Va/Ny and Wi./ M. are ezactly the irreducible representations of
highest weights X and A*. The irreducible representations can be obtained from (.,.)

and § in the same way.

In the statements made above, we may as well replace highest weights by lowest weights.
By unitary representations we henceforth mean highest weight representations, for which
{.,.) is positive-definite on V4 /N, so that the repreéentation space admits a Hilbert-space

structure.

In analogy to the classical case, tensor products of representations are defined by

the comultiplication. The trivial representation is the counit, which by (4.6) can also be

characterized as the only reprcsentaiion such that V3 = W} @ 1, for all A. Furthermore,
for any representation p on V, we can define a representation, p¥, on the Vdual space, V*,
(VY as a module) by

p'=p'0S . (5.4)
called the representation’ conjugate to p. We have that p¥V = p and that pV is uniquely
determined by the requirement that the trivial representation is a subrepresentation of
V & VV. The latter can be seen by replacing the action of X on V@ WV, by the adjoint
representation on Hom(V, W). A trivial subrepresentation of Hom(V, W) consists of an
intertwiner from V to W, so that V and W have to be isomorphic. Finally commutativity,

pi 8 pj = p; B pi, is guaranteed by the invertible intertwiner

Rij=PF;p 8 pR, (5.5)

where R is the universal R-matrix in KK, and P;; : V;@V; — V@V, is the transposition.

For later applications we want to introduce an antilinear mapping x» : V3 — VY,

replacing the Clebsch-Gordan matrix P; ay.v, intertwining VA ® V¥ with Vi:
{v) = (x3'4v) = PLav(v 8 ). (5.6)
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It is related to the antihomomorphisms S and * by

0@ = paev (§7(a") | (5.7)
and, having (4.11) for the square of the antipode, can be normalized to

XasvXa = qu .

5.2 The Irreducible and Unitary Representations of
Urd(sty)

The irreducible representations of Ur*(sly) are classified and given in a highest-weight

~basis. We use the surjective parameterization by highest weights to discuss the topoloyical

structure of the center-variety. We show that representations over non-singular points and
with a diagonal Cartan element, k, are completely reducible. We determine the ranges
of highest weights for which the irreducible representations are uniterizable with respect

to %

In this section we describe the irrleducible and unitar} representations of U""(slz), for
g* = e*™¥ a root of unity. The irreducible representations have been determined in [51]
for the algebra without relations (4.22) and generators e, f, k* = ¢*, so that e and f could
still be invertible. For U*¥(s{;), however, we have only highest-weight representations,
and any A € C appears as a weight. In the next proposition, which summarizes these
observations, we will see that integrality of A is only necessary to obtain representations

with dimension less than N (rather than oo, in the geheric case).
Proposition 5:2.1

a) For UI¥(st;), with q* = €™ R, any highest weight X € C corresponds to an irre-

L for highest

ducible representation which is given, in the standard basis {ve},o ,. -
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weight representations, by

hvy = (A =20y,
f"-’t = U1 (5'8)
ey = ([)q(A +1- l)q V-1,

where the dimension py,1 < py < N, is N if n) is non-integral and is determined

bynpa=n(A+1)mod N if X € 1Z.

b} The trivial representation is identified with X = 0, and the highest weight, AV, of the

conjugate representation pY = pav is given by
AW=2pa-1)-X. (5.9)
A sesquilinear form on V) ezists only for A € R. Moreover, there.is an algebra

automorphism, T, with

T(e)=e, T(f)=f, T(W)=h+22, (5.10)

such that there is an invertible mapping F : Vi — V), 5, with
Prs22(a)Fx = Fipx(T(a)).
To prove a), we only need the commutators (4.89), and the fact that (z), = 0 whenever
T € %Z. The irreducible representations are then obtained in the usual way. o

From the automorphism T, defined in (5.10), we can find all irreducible and unitary
representations, by only looking at those with X € [0,2%). On the center 3,T(C)=C
and T(P) = e %P, so that ™is= id. Hence the representations belonging to X and
A + 2N, yield the same values of Casimirs in Y. More precisely, we have the following

result:
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Proposition 5.2.2

a) Let D be the variety described in ({.91). Then the mapping C — U C C?, assigning
to each highest weight the corresponding Casimir values
o (A+1Y

A (PQ)= (e‘ ‘,»(—2 ) ) (5.11)
q

is surjective, and can be defined on C/2NZ.
b) C/2NZ — U identifies ezactly n(N —1) pairs of points, A, ~ A_, given by

/\t+1=ia+£bmod2N,

n : (5.12
a=1...(N-1), 4=0...n-1,

and 1is injective for all other values of A, so that V is an infinitely long tube with

n{N — 1) singular points.

¢) The subvariety describing representations which admit sesquilinear forms is de

scribed by R/2NZ — V. Thus BV,y can be identified with the lattice edges of

171 1 171 1
<§(;»ﬁ)'5(;"ﬁ)>zm°”*z

on the upper half of the torus T* = R?/Z x Z.

The crucial point of Proposition 5.2.2 is that irreducible representations cannot be dis
tinguished completely by their Casimir values. A point in U only determines the set o
representations that appear as quotients, e.g. in Jordan-Hélder series, of indecomposabl
representations. Note that, for the dimensions, we have pa, + pa_ = N, and the successor
(A+2), of a highest weight ) is also the lowest weight of an irreducible represcntation,fwit]
the same values of Casimirs. For non-singular values of Casimirs, the picture become

much simpler.

Lemma 5.2.3 Suppose W is a representation space of Uy(slz) on which h is diagona
and (P,Q) has only non-singular eigenvalues in W, i.e., all highest weights X occuring i

W are in (C\%Z) U (%Z - l). Then W is completely reducible.
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To show this, we restrict our attention to a single Casimir value, (P, Q), such that the
set of highest weights is in {) + 2kN}iez, for some M. If hv = Mv, for some v, then v is
2 highest-weight vector. Otherwise, we could find some 5,1 < s S. N —1, with e’v being
a non-zero highest weight vector. Since its weight (A + 2s) is not contained in the above
set; this is impossible. With a similar statement for lowest-weight vectors, and since A is

diagonal, W decomposes into

W= ZQW,\“,LN . N (5.13)
The invariant subspaces are
N-1 ‘
Wi =3 ®ker(h— (A —2k)), (5.14)
k=0 :

for which we have
ker f | Wy =ker(h — (A = 2(N —1))) and kere [ Wy =ker(h = ]). (5.13)

Thus all weight spaces in Wy, have the same dimension, so that, for some basis {v;,...,v.}
r ©
of ker(h — ), we have the direct sum decomposition Wy = 3 V;, V, being the irreducible
=1

representation (vt, . ,fN"w). » o

Next we state a result on unitarity.
Proposition 5.2.4

a) If the representation on Vy is unitary, then A € R, and the representation on V) _in

1s also unitarizable.

b) For A= N":"‘, with s € [N, N), Vy is unitarizable iff

either s€[-1,1), or s=n, or s=(-1)(ng—nar),

(5.16)

r=1,...,p42, £=_11"')f_11

where ny and p, are defined by the Euclidian algorithm:
N=pn+n;n=pn +n0s,..., %1 = Peafe + Mgy -y Bpo1 = Praany + 1,

withng > ngey, N =n_y, n =n,.
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¢) There ezist unitary representations for all singular points in Y, i.c., all dimensions °*

pr=1,...,N, only ifn = 1. In this case V} is unitarizable for

Ae{0,1,...,N=2}U(N~2,N] (mod2N).

The proof is elementary, although somewhat tedious, and will not be reproduced here,
see [6].
In the case of unitarity, we define an orthonormal basis {¢2} with p>= Pa, and
m=—j,—j+1,...,7, with 2j + 1 = p,, which is obtained from (5.2) by setting
" 1

= ———.

GRNI]

The representation then has the form

(r-b2)e = wma, | :

e, = \/(T— m)y(j +m+1)g {hsas A Y

fé& = \/(j+m)q(j—m+1)w Em-1s

where we have set by = F(A+1—p) € Z.

5.3 Decomposition of Tensor Product Representa-

tions

We present a basic result on the tensor product decomposition of two irreducible, integral
highest-weight representations of U;’d (s&;), for g a root of unity, usingvnon-degencrate
bilinear forms. We discuss the structure of the indecomposable representations arising
in this procedure and state the fusion rules for irreducible representations with non-zero

g-dimensions.

In this section, we investigate the decomposition of a tensor product of irreducible repre-
sentations into its indecomposable parts. If, for two highest weights A and p, A+ p & iZ,

s
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then, using the Casimir P from (4.90), with A(P)=P Q® P; we deduce from Lemma 5.2.3

complete reducibility, so that

min{ps.pu)
VigVu= X% Vigyeon. (5.18)

n=0
In the case where )\, u ¢ "—‘Z, but X + g € 1Z, the decomposition of V3 ® V, is similar to
the one where the highest weights belong to 1Z. The interesting case is the one where
A, p € LZ. We use the basis (5.17), regardless of unitarity, with ks = F(A+1-p,) =0
All other decompositions can be generated from the automorphisms Té(e) = +ie;

TH(f) = %if; TH(h) = h + £,

Our main result is that the §U,-fusion rules of rational conformal field theory and
of SU;-Chern-Simons gauge theory can be recovered from the representation theory of

Urd(sL;), in the following algebraic sense.

Theorem 5.3.1 The tensor product of two irreducible representation-spaces V,, and V
with heighest weights X; = 2j; = p; =1, 1 < p; £ N — 1, and with the action of U'“‘(sl,)

defined in terms of the comultiplication, has a decomposition into invariant subspaces

given by :
min(p: +p3~1IN-1-(p1+p2)) N
Vo 8V, = > Ve 3»° W (5.19)
imipy —pal+t im2N$1=(p +p2)
iBp; +p2+imedd -l’1+n+lmedi

The spaces W; are indecomposable subspaces, with Wy = Vi and dxm W; =2N, fori < N,
on which [Q - (¢ )’] but not [Q ¢ )’] vanishes.

In the proof of Theorem 5.3.1, we make strong use of the fact that the bilinear form
(.,.), introduced in Lemma 5.1.1, naturally extends to tensor products, because § com-
mutes with A, (Lemma 4.4), and is non-degenerate. The derivation of the decomposition
amounts to an explicit construction of the representation spaces W; in a natural basis.
The first step is the computation of all hxghest weight vectors and of their squares with
respect to (.,.). '
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Lemma 5.3.2

a) For everyi, i =25+ 1, with

|pr=—pa|+1<i<p+p2 -1,

(5.20)
i=p+pr+1mod?2
there ezists ezactly one vector, f‘, of highest weight in V,, @ V,,, i.e.,
he=(i-1)¢, and  efi=0. (5.21)

The {;'- form a basis of kere.
b) The squares ( ;,{;) vanish iff

AN+1-(m+p)<i<N-1.

"In order to determine the vectors‘fg, we express them in the basis {7 @ €72, with coeff-

: i
cients ay: o
. Si+ia-3

G= 2 anfla®im.

n=0

From A(e)é; = 0 we find the recursion

0 = q—(j+i)a§-+1 (n+1)g(271 - n)q‘ i
(5.22)

+abf(ia+ i1 =5 —n)(l 442+~ j1 +n)g.

Solving this in terms of a; = afg?1(i+1) (ﬁggﬂ),' we find for the highest weight vector

foa 3 (<t giney [P =mhlGati—jtn)d
’ n=0 (n)e!(51 + 72 = 5 = n)g! (5.23

e.n -« ® E;:J'l +n

with j; = ’1

This recursion can only be solved for i in the range given in (5.20), so that we hav

found all vectors of highest weight.
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The expression for the square ( ;,E;) is obtained by use of the g-analogue binomial

(a : ﬁ)q _ g gElok=(n-)8) (:>, (n fj k)’ , (5.24)

a)  (a)g...(a=n+1) o o :
(n),‘ ey @ @PERmEN (525)

identity

with

It is given by

(€.¢) =

agq(:':(:'m)-:‘x(:'x+x)-j(j+1))(jl —h+ )2 =51 +4)d!

(jx+ja+j‘+1)
hti-i /,

To show Lemma 5.3.2 b) it is now sufficient to find the zeros of the g-analogue binomial

(5.26)

coefficients.

The non-degeneracy of the bilinear form (.,.) now enables us, to assign to each
vector ¢ with (¢},€;) = 0 an indecomposable subspace W; within which it is contained.
In contrast to the classical case, the {} are no longer cyclic with respect to W;. However,

a candidate for a cyclic vector of W; is given in the next lemma.
Lemma 5.3.3

a) The square, with respect to (.,.), of a vector of highest weight, &, in Vp, @ Vi, is
zero, iff there ezists a vector f; € Vo, 8 V,,y, such that
, hE = (i-1)&
and J - ’ (5.27)
§ = fef).
b) E; and f-; can be chosen uniquely, up to a sign, by imposing the normalization con-

ditions

and © (5.28)

c) The subspace W;, generated by f; , also contains £33 . and is the desired component

of Vo, ® V,, in Theorem 5.8.1.

Proof.

a) Oge easily derives from the invariance of the bilinear form (.,.), that if (5.27) holds

for some vectors ¢ and £, the square of £ is zero:

(E;vf;) = ( ;afcf.;) = (ef;rcg;) =0.
To prove the converse, we can assume, for f} with ( ;, E;) =0, that by Lemma 5.3.2
B)2N+1—(p+p) SiSN -1 :

Since (.,.) is non-degenerate, and since both A and Q are symmetric and commute,
there has to be a vector f; that belongs to the same generalized eigenspaces of A

and Q as £}, but has nonvanishing scalar-product with ¢, i.e.,

hE

CHONK

for a sufficiently large, and (f;,{-;) £ 0.

(i - 1§

(fe)és, L (5.29)

In the following line of arguments, we will see, that any such f; has the desired

property (5.27).

From the r;:la.tionship of Casirnir values with highest weights, as computed in Propo-

sition 5.2.2 b), and from the bounds on the weights in (5.20), we see that the only

highest weight vector, having the same Casimir values as E-; and £, is €¥75%,. Since -

N-j-1-
we have N +1 < 2N — i < p; + p3 — 1, this vector has non-zero square. As e'f;-
has to be a non-zero highest weight vector, for some 1 < s < N, we immediately

conclude from the previous observations, that

N8 = agil3,, (5.30)
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for some a # 0. The case s =0 is excluded, because f.;, having, by (5.29), a non-
zero scalar product with £}, cannot be proportional to ¢}. Applying @ — ()3 to the
vector f;,".;:_, = ie""f}, we ﬁnd‘eN"‘feé; =0.

The argument used above now shows that e'}ef} is a non-zero highest-weight vector,
iff =0 and ]ef; #0 Finally we show that fef; # 0, which, for some suitable
rescaling, implies £ = fefl # 0. Assuming the opposite, el should be a lowest-
weight vector which has, by calculations similar to the ones at the beginning of the
proof, vanishing square with respect to (.,.). From Lemma 5.1.1 for lowest-weight

representations, we conclude that (.,.) vanishes identically on the sub-representation

generated by the lowest weight vector eg; This contradicts, with (5.28) and
a (W05t 650) = (16 "6) =0,

the fact, that ¢3V i1 has non zero square.

b) We suppose that there are two vectors obeying (5.27). Then their difference, §,

has to be a multiple of 5; Otherwise, we have from fef = 0, that e is a non-zero
lowest-weight vector with zero square. By the same reasoning as for cf; in part a)
this is impossible. The proof of statement b) concerning the uniqueness is now just

a matter of scaling and adding.

c) So far, we have constructed a direct sum of cyclic subspaces in V}, ® V,,, generated
by vectors &, for | py—pz | +1 <4 <min(pr+p2~1,2N —1—(p +p3)), ori = N,
and by f;,for2N+1—(p1+p2)_<_i_<_N—1, (i=pi+p;+1mod?2)."
In both cases it can be verified, that f7¢} is in the kernel of e, by using the commu-
tators (4.89). Fori < N -1, its weight is —2(j + 1); but by Lemma 5.3.2 a), there
do not exist highest-weight vectors with weights below | p, — p, |, so that we have
figg=o0. (5.31)
Hence if ( ;,(;) # 0, i.e., i satisfies the restriction in the first summand of (5.19),
f“; generates an irreducible subspace V; = U:‘d(sl;) ;, on which the bilinear form
(.,.) is non-degenerate. We therefore have V; N V;* = 0 and can complement V; by

Viie, V8V, =V,o Vi
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This yields a decomposition

min(p; +p3 ~1,2N =1-(p1+p3))
(-]

N
Vo 8Vpy = Vie >, ® Wi, (5.32
ixlpy —pyi+l i=IN+1-(py +p3)
iZp) +p3 +1modd iZp1+p3+1mod2

where the W have the same Casimir values as the subspaces W; generated by th
f; In order to prove c), without constructing W; explicitly, we want to show tha
W/ /W; does not contain any vectors of highest weight, and therefore has to be zero

Suppose [¢,] is of highest weight in W!/W;, with weight
MEe{-2N+i-1,~(i+1),i-1,2N —i-1}.

A representative ¢, in W/, with the same weight, cannot be of highest weight itself
because all highest weight vectors are already contained in W;, so that again e*, i
of highest weight for some 1 < s < N — 1. The only combinations left are:

et = & with A =—(i+1) (5.33,

or
eN_‘f,.

N with A =i-1. (5.34)

In the second case (5.34), we have eV~ (f, - i.;) =0, so that, by a similar reason-
ing, & — i-f.; is of highest weight. We then have ¢, = if; + B¢}, which is impossible
since [&,] # 0.

In order to exclude the second case, we first note that

ef€l = flefi = f(fe)éi = e =8, (5.35
for some 4 # 0. Since f'¢} =0, £, is the lowest-weight vector of the subrepresen.
tation generated by E; Furthermore we have that ¢'~? ‘_j = 7{;, so that, by (5.33)
we have that ¢! (6‘_,» - 1e£,) = 0. Thus E‘_J- = vye,. By (5.35), this implies tha

e (7?{, - f‘f;) =0, and again, with Lemma 5.3.2 a), y%, = f‘g;. This shows tha
[¢,] = 0, completing the proof. C

We complete our analysis on the decomposition of tensor products with an explicit de
scription of the representation space; W, equipped with natural bases determined by £

and E-; in Lemma 5.3.3, with normalization (5.28).
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The space W; is spanned by 2N vectors

:"n’ .:ny m. = j,(J—I)A"],
AN g8 m = 7,(j'-1)...- 5",

with j = "T‘andj’z N—‘_‘,"—l

The representation is given by

, i+
Wb = 2mE,, kG, =2mé, : 2\90;'
(5.36) :
hor = (£N +2m)pit; : 2m= N - T
. ]
i+
ff-:n = \/(j+m)q(j—m+1)q E:n—li ‘ -j.\
v - ~i
. . | €&,
fen = \/G +m)e(f —m + 1) €ner s m2-(j- 1)§ (5.37) ' i — 6,
fod = JGEm G- m i, m2-(G'-1; | . : P s
. . | .
e = \/(.7 +m+1),(7 - m)q Emi1s E mN - Em
o . . : i i
efn = fi+m+)-m) b - - 1
1 (5.38) :
+ :n ) m < j - 1);
Vi +ma)G-m) " ( o
et =~ Hm DG e, m< (-1 - i~ AL
and . . . -l /_/
' e, = o, fE; = o, \ | : pi-
: - < =N —
e; = 0, e} = (,g'_';.,, 2m N -
, _ (5.39) i-
f‘Pl:;' = E;x 5'17;"‘ = ij, ' o~ _jl
e‘l’j‘f = 0, f‘Pt}' = 0.
Figure 5.1
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The representation W is visualized in Figure 5.1. Each dot marks a basis vector, its
height in the diagram indicating its weight. The arrows in upward- or downward direction

stand for non-zero matrix elements of the step operators e, f, respectively.

For a better understanding, we introduce the Casimir element

=[Q—(%):] fe—( +1+1) (_,;,)'
ef - ( +;) (+1-9),.

By construction, we have that ¢ = f ef; = D.'E.;'-. So if we inductively define £ by (5.37)

(5.40)

the action of f on £, is determined by ¢, = D,-f.,‘,,. Having E‘-,’ =e f{.f,,-, the qu;, can be
consistently defined by equation (5.39). Notice that the £, are the basis of an irreducible
subrepresentation and that D is zero on ¢, and (p‘*-,. This is now used for an inductive
definition of it as in (5. 38) and ©¥7 as in (5.37). By comparison with the proof of Lemma

5.3.3, we see that, e.g., w is proportional to {ﬁ';_,

" In this basis the form (., ;) has the values

( i";)

1 H (wm 1wm __' (_l)j'*m

o (5.41)

&) = Zme-m

and on all other pairs (.,.) vanishes.

5.4 Fusion Rules, and g-Dimensions: Selecting a

List of Physical Representations

In order to show that the tensor product decomposition of U4 (sl,) defines a fusion-rule -

" algebra, in the sense of Section 2.5.1, we need to verify associativity, i.e., we have to show
that the ezcluded representations are an ideal under forming tensor products. This is done
uskng a condition introduced by Pasquier and Saleur [52] which characterizes saturated

representations of the Borel algebras of U, (sfy). It is shown that this criterion entails
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the vanishing of q-dimensions of representations for which it holds. Our criterion an
the vanishing of g-dimensions are, in fact, equivalent for indec;:mposable representation:
The group-like elements of U;‘d (s£) are used to define characters which diagonalize th
fusion rules, and the so-called S-matriz is expressed in terms of g-numbers. - We defin
a subset of representations which will be used in our duality theory.

It was already pointed out in [52] that the representation spaces W; have the propert
that kere = imeM-?, which we will abbreviate in the followmg by (E). It is conclude
from a simple calculation for V; ® W and an iteration of tensorproducts that if (E) bold

on some space W, it is also true for V, @ W. i
Lemma 5.4.1

i) If (E) holds on some module W and W = A @ B, then (E) holds on A and B.
i) (E) holds on V, only ifp= N.

i) If (E) holds on W then it also holds on V,@ W, p=1,...,N.

Part i) is a trivial consequence of the definition of direct sums of modules, and ii)
immediately checked for the representations given in Proposition 5.2.1. We show ii
first for p=2. Let v= {i Ru, +{f* ®w_ be in kere, with hwy = (2m F 1)wy,
that A(h)v = 2mv. Then 0 = A(e)v = ¢} ® ew, + q'("‘*%)fi Qw-+q 7} @ew
implies ew. = 0 and ew, = ¢~(™*w_. By hypothesis w. = ¢ EteN -1y, so that éuv
A(e)V? (ﬁ* ®y) = {z} Quw, + {i% ® w_ for some w), where we use that the (0,n
graded summand of A(e)" is ¢"~ 3 ® e". Hence it is sufficient to show, that v’ € ime, wil
vV=v-6v= {’% ® (w+ - wf,,), i.e., we can assume w_ = 0. In this case we have fro
IO =0 that ewy =0, thus wy = g~ 5 ¢¥~'z and w = A(e)¥-! (6;, ® z) In order

show iii) for general p, we use the fact, that V, ® W occurs in ¥, -1 @ W as a dire

summand and apply i).

This statement only depends on the representations of the Borel-algebra generat
by e and k. For these, however, the tensor product decomposition is solved by a simj

basis transformation, showing immediately the invariance of “saturated” representatior
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as .pr‘oposed_ in iii). This, together with the fact that if a direct sum satisfies (E) then

all the summands do, makes the convenience of working with this property evident. All -

of this can be understood from a more general representation-theoretical point of view in

a very natural way [6].

In the decomposition given in (5.19), (E) is true on the right summands and false
on the left ones, so that we are led to the definition of the fusion rules

i

min(py +p2 —1, 2N =1 —(p1 +p2))

1 if |p—pa|+1

AN IA

Nopai = - . - (5.42)

71+ p:+1mod?2

-
1}

0, else.

~ The fusion matrix Nj is then defined in the usual way, i.e., (N;)a := Nijz. '

These fusion rules show that the list of algebraic objects producing the combina-
torics of the Ap-1 series, beginning with 3t;-symmetric models in rational conformal
field theory, and continuing with SU;-Chern-Simons-gauge-theory and towers of algebras
. arising in local quantum theory, can be completed with the quantum group Uy(sfz), with

g = exp(ir/N).

In order to compute the eigenvalues of Nj, we introduce quantum group characters.

Lemma 5.4.2 If we define the r-th g-dimension of a representation space V,dy, as the

character _
d{, =tiry (q'h) f ) (543)

then

a) for the irreducible representations V,, with highest weight A = p — 1 € Z, these

" characters have the values

d,', = ("P)v . . (5.44)

(r)e '
b) &} = (p), is positive, for all p=1...N -1, if and only if n =1, as for unitary

representations.
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In the next lemma we draw the connection of vanishing g-dimensions and property (E).°

[}
.I

‘Lemma 5.4.3 Ifkere = ime¥=1, ie., if (E) holds on some ;-épmentation space V, and

if I intertwines V with itself, then
‘ ' : : |
try (q"'I):O, for r=1,...,Nf—1.

Proof. We derive from (E) by induction, that V; = kere! = iu{e” =~ for all ¢, with

O?KC";---CVN-1CVN=V-!

|
. B
Because of (q"‘I) (Vl) C V,, the trace can now be rewritten as a sum over characters on

the successive quotients:

Na1 : :
trv (1) = E try v (a1) - ‘ _ (5.45)
Obviously, e maps V4, onto V;, with e"}(V,y) = V;. We the;;foré have an isomorpﬁism :
¢*, with ) )
‘_.F Vi /Vl"" Vif Ve k (5.46)
with
[he']=2h and [I,e*]=0..
Hence
trvgve (1) = ¢ trvgm,., (a1),
leading to - |

‘ | Nl "
try (q'hf) = (g q-z") iry, v, (q"']) = 0.

o

With these tools in our hands, we are now in a position to coriipu\‘.e the eigenvalud of the
fusion matrix and to show that the fusion rules are well defined, in the sense that we inve
associativity , i.e., N;N; = N;N;. As the fusion rules themselves (with the representation-
labeling introduced in Se;tion 5.3) do not depend on n, we will restrict our analysis to

the cases n = £1; (| n [> 1 will just permute eigenvectors and cigenvalues).
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Proposition 5.4.4 For ¢ = ¢*¥% let Nj;, = (N;)a € {0, i}, be the multiplicity of Vi in
ViV, ‘ '

Then the eigenvduei of Nj are ezactly &}, r = 1...(N — 1), and we have that.

Nyl = 2. (5.47)

Proof. Taking traces of ¢™ on both li"du of the décomposition, we arrive at the familiar

equation .
dj-df =Y Niadi, - (5.48)
or in terms of the eigenvectors
g = dr i) d’N-
- = & ) (5.49)
N,'q,. = d; q' .

In the speﬁal caseof ¢ = e*%, the vectors ¢,, r =1,..., N — 1, are linearly inde;;endent,
and g, has positive components. Note that Ny =1 and N},_; = 1. Forevenj < N — 1, we
" can infer the ergodicity of N; from the fact that any unitary representation is contaiﬁed
in a tensor product of V;. By a Perron-Frobemus argument, we conclude that ¢, is the

unique vector with N,'ql = |IN;llgs. Similarly, we find that, for odd values of j, N; has

~ two ergodic invariant subspaces, one spanned by even-dimensional representations, one by -

the odd-dimensional ones. |N;|| is now doubly degenerate, with Perron-Frobenius vectors

a1 tgno.

With these results, it is not hard to see that the converse holds, too.

The multiplicity matrices obey [|N;|| = d},for j=1,...,N -1, onlyif g = R,
Since the matrices N; are all diagonalized by the sa.mé matrix,
W5 = dl(3)e = (i3)es (5.50)

they evidently commute. In terms of representation spaces, this can -also be inferred
from the associativity of the comultiplication (4.2) and the invariance of (E) under tensor

products.
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The first g-dimensions, d} = ||N;|| » can be interpreted as the quantum dimensions
the Vj's. Fox' the fundamental representation Vj, for which Nz is mdecomposable, this
the well known formulu v ! v

N | = 2 cos - I (5.

We conclude this section with a summary of those conditions ixﬁposed on a quantum-gro
and a list of those representations of the quantum group that appear in applications
local relativistic quantum theory. The rational fusion rules a.re only reproduced by |
subset of representations with A € 1Z; ; (ie. P =1). If we denote the representatnon
in (5 3) by [pa, k] then we have that !

Nl a pra) = 1s
, (5.
for K} =ki+k and

: Np,w,:.p,x; =1

and zero otherwise. The smallest subset of representations,: invariant under fusion,

therefore obtained by setting ky = 0. From Proposition 5.2.1 f;vve see that it contains 1

trivial representation and closes under conjugation.

By Proposition 5.2.4, ‘thése representations are unitarizable only if n=1
n=N-1

o daertanne
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Chapter 6

Path Representations of the Braid
Groups for Quantum Groups at

Roots of Unity

6.1 Quotients o,f Representation Categories :
The Vertex-SOS Transformation for

Non-Semisimple Quantumgroups

We develof an intertwiner calculus for non-semisimple Hopf algebras in which the notion
of irreducibility is replaced by indecomposability, so that Schur’s Lemma is not applicable.
We use this to generalize the “ertez-S OS-transformation” which is defined as @ map from
an intertwinerspace, e.g., @ space of intertwiners between tensor product representations,
to linear maps on quotients of intertwiner spaces. This yields a rigoroﬁ procedure to
obtain braid group representations of rational local field theories and Boltzmann weights
of the restricted RSOS-models from gquantum groups at roots of unity. (In this contest,
we shall speak of a “rational”, or “restricted” vertez-SOS-transformation.) The ideal
property of the ezcluded representations is used to shm) that the resulting SOS-forms
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i .
i

of the intertwiners can be writien as linear maps on path spécc:. A trace formula for®

the rational vertez-SOS-transformation is given. A ‘more cajf:upact presentation of this

construction may be found in [61]

From the universal element R € K@K of a quasitriangular Hopf-algebra K one can derive
representations RV of the braid groups B, on an n-fold tensor "p:oduct ‘
~V=Z;° Vi ®---® Vi |
. *ESn N :
of representation spaces V; of the algebra K, by setting ,

i

1

Rv(a.')= 1®... ®.R,'.‘+; Q.—..®i '
for the generator o; of B,. Here the matrix ;

Riigr: Vi.m e Vi-(u,x) - V:"(:u) ® V:-m

t
i
is given by v

Risp1 = Pin (p,',(‘) ® Pj,(m,) R,
and commutes with the action of K. If the representations of K are completelj reducible

it is well known [53, 43] how to construct representations, RF, of B, on the path space

PG = T PGl del)

Here the path space P(ilj;l,..., jnlj) is defined to be ‘the linear span of paths
w= (ﬁ;a;,p;a,,...,p,.q,.), with y.“ =J, #o = %, and Vo is an irreducible subrepre-
sentation of V,,_, ® Vj,, where ay =1,..., N,,_, ;. labels the multiplicity.

The construction of RP (Vertex-SOS-transformation) useis the fact that the compo-

sitions of Clebsch-Gordan matrices ;
Pugiyi = (Pim(@)®...®15)... (Pursiiun () ® Liy .o ® L) 61)
o (Pracririns(00) 813) (Pracisislen) '
and’ . ;
Piuts) = Pisn-s50(@n) (Poa-ssmerin-s (an1) ©115,) ... 62)
(Puninii(@) @ @15) ... (P i (@) . ©115)
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are a basis of intertwiners between the spaces V; and V,®V;...®V;, and can be

normalized such that

Py attiyPatiing = byt (6.3)

The matrix elements of

RP(b) : P(iijh vee )jnU) nd P(i!ja(l)y (X :ja(n)'j) ’
where o is the image of b under the natural projection of B, onto S,, are given by
R'®OPgs= 3 RP(Bw Pt (6:4)
W' EP(iljo(1)-To(myl)
Let us note,

at this point, that the path spaces carry a multiplicative structure by simple
composition

5P (ldsn- 1 3l3) % P (fliesss- . julk) 2 P Q. ) (65)
3 .
giving rise to a path algebra.

In the absence of complete reducibility, e.g. when X = U/ o(82441) with g = ¢ %, the
Vertex-SOS transformation has to be modified. For this purpose, let us introduce linear

spaces of intertwiners between an irreducible representation space V and an arbitrary
representation space W.

In order to describe the set of irreducible subrepresentations of W isomorphic to V,

we shall make use of thexr embeddings. Therefore, let us introduce the linear space of

mtertwmers

Int(VV,V) ={I:V W, Ia=al, Va € K}. (6.6) .

By .Int(V, W) we denote the space of intertwiners in reverse direction®. It identifies
subrepresentatxon:, V¢ = ker I, with the property that W/V¢ ~ V. As an example, let
us consider K = Uy(s£,), with g = e¥ and W = Vy_, @ V2 ® V2 and V = Viy_;. Since the
number of highest- and lowest-weight vectors for a given weight is the same as in the

generic case, the dimension of Int(W, V) is unchanged.

“We prefer the more suggestive notation Int(W, V) to Homy(V, W).
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~ sense, that

. s ing the fusion
Since intertwiners P;;; can be defined for all 4,3, k < N obeying the
ordinary SU(2), see (5.20), a basis of Int(W, V) is given by

Pooapaney = (Pwv-mn-2® 1a) Pw-aja ov-1)
d
" P 6!-1):2.(»-:) = (P (N-12.8 © l’) Pran-1)-

As in the generic case, we have a natural map from the space
Int(Wy,W;) = {R: Wy » W, Ra=aR, Va€K}

into Hom (Int(W;, V), Int(W, V)) by left multiplication, denoted‘ by

P : Int(Wy,W;) — Hom (Int(W;,V), Int(Wa, V)
R — P(R). -

. . ivide out subs}
To recover the path structure for the ratanal case, we have Ito divid

.intertwiners. For this pufpose let
‘ ' W, W1)}
Into(Ws, Wa) = {I € Int(Wi, Wy) | tr(g1J) = 0, VJ € Int(W2,W1)}

‘ : : . it is given by |
where g implements the square of the antipode; e.g., for Ug(sh) it 1 gth "
non Vi
If one of the representations W; = V is an irreducible representation wi t t
ces of inter

g-dimension we see that Int,(W;,W;) can be given as the subspa

without left or right inverse. More precisely, we hgve
\ ; WV, W)}
Int,(W,V) = {I e (W, V) | JI =—._a..¢3_g| Int(V, W
and

. Int(W,V
Into(V, W) = {I € Int(V, W) | 1J = 0, ¥J € Int(W-V)}

jrreducible, “JI = 0" ané
If we assume V’ only to be indecomposable rather than rrecuct ‘

. vJ". These sets
s , “ J nilpotents _
in (6.9’) have to be replaced by “JI and IJ nilp $0S.-transformat

are line

- )Y/ t -

and yield common invariant subspaces of the generic Verex
: V),

P(R) : Int,(W;,V) — Into( W‘ uV)
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lRel
. 'E ot(W;, W;). The complemented irreducible representations in W isomorphic
are identified with points in

Tnt(W, V)/Iat(W, V).

our ex
amx?le Into(Vw-1 ® V3 ® V4, Viv_1 ) is spanned by P(-1y22,n-1- This can be seen
m the explicit form of the intertwiner

P(;l—x)zz,(n-l)f,’x“ =
m-& — .
TEE ), Fom), e e geg
+ g™t (%’)q e €3§ ®£§ ' (6.11)
o i (Fam), e ged,

+qm+¥‘/(¥_m)q(g! +m)' mii ® £,8¢,.

n this case
Pt N-
.
P(N«x)zz,m-;)ff'& = A’(e)( N-1 ® E: : ®£z )
here A? =

(A®1)A. Aleft
s to be ill defined N-1 inverse intertwiner P(N -1)(N-sn b0 P(N -1)22,(N-1) therefore
on fur; @f* ®f§, as

N-1 +
6 =f (P(N—l),(N-l)ﬂ{’i"-::-ll ® ‘f; ® 63) € imf

not possib] i -wei :
ible for highest-weight vectors of irreducible representations. A similar result
 first obtained in [30).

As in the
case of the tensor prodyct decomposition, we can find a vector N3 €
1@ V2 ® 1, given by 5

. ) .
b= /), ezi; eqeq+d dden, o4

(6.12)

+q' T f’ifaxg’f;@{f*,
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which satisfies (5.25) and (5.26) of Lemma 5.3.3, and therefore yields a subrepresentation”

Wy_3 of V-1 ® Vs @ V4. In fact, it can be shown that all tensor products decompose

into three sets of subrepresentations:

a) irreducible representatwns with highest weights X € {0,.. N-2}

b) irreducible representations of dimension N and wctghts A €NZ-1

¢) 2N-dimensional, indecomposable rcprcseutatmna, whosc structure differs from the

one given for the W; in Section 5.9 only by shifts, a — a + N, in the weights.

In order to define the rational Vertex-SOS-transformation, we put

~

PW,V) = Int(W, V)/Into(W, V). (6.13)
i
For any linear map T': Int(W,, V) — Int(W;, V), that maps :

Int,(W,,V) into Int,(W,,V),

we have'a well defined map T : P(Wy,V) = P(Wy, V), given by the condition, that the

di agram

Int,(W;, V) — Int(Wx, V) hd ’P(Wl, V) '
it : T | T i
Int,(W,,V) « Int(Wy,V) — P(Wa,V)

Figure 6.1:

0 whenever [I}; = 0, then T is defined by T[T} =

commutes. Stated differently, if [T, =
V) into the quotient space

[T1}3, from the set of equivalence classes of Int(Wi, V) /Into(Wh,
In@(Wz, V)/Int,(Wg, V) .
As mentioned in (6.10) this is the case for T = P(R), for any R€ Int(W;, W), so

that we have the following definition:
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Definition 6.1.1 The rational Vertez-SOS-transformation is the map .

Int(W,, Wl) — Hom ('P(WI, V), P(Wg, V))

6.14
R o PMR), 10

where P™*(R) is the extension of P(R) given by P™(R) := ‘PTFZ)

For 1y ® R € Int(Vy_; @V, @ V3, V-1 ® V3 ® V3), with R = \, P, + ),P,, P; being the
projections onto the respective subrepresentations of V3 ® V3, the ordinary Vertex-SOS-

transform is given in the form

' M iAo~y
'P(R)= ’ ;(7)1

[/ D W

(6.15)

where the invariant subspace of P(R), spanned by the vector (;), is identified with
Int,(Vn-1 @ V2@ V3, Vyoy) = (P("‘;._,),,'N_J, Taking quotients for the rational case we
nﬁve at the one dimensional space P(Vy.; @ V2 ® V3, Vi-,), on which ’P".'(R) acts as
multiplication by ).

~ Clearly this map factors through the composition of intertwiners

Int(Ws, Wz) X Int(W,, Wl) — Int(W;, W1) . (6.16) o

Next, we use the results of the tensor product decomposition (Section 5.3) of Ug(séz) to -

identify P(Vi®@ V;, ® ... ® V,,, V) with the restricted path space, Preaw(i | f1,-.-,3n | 7).

The latter space is defined in the same way as in the case of complete reducibility, with the"

restriction, that N, _ ;. .. # 0 and p; € L, for all k. For any restricted path, the inter-
twiners Pj,),; and Pj.(;;) givenin (6.1) and (6.2) are well defined and can be normalized
as in (6.3).

Lemma 6.1.2

a) Iffor IeInt(V; @ V;, ®...8V;,,V;), Piuiiiyd =0, for every restricted path w, then
S Telnt(VioV; ®...8V;,V;).
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b) The images of intertwiners Py(;,); in the quotient P(V;® V;, ®...® V;,,V;) for
abasisin P(V;®V; ®...0V;,,V;).

The corresponding statements are true, if we pick a different ordering of the intertwine

in (6.1) and (6.2) and, moreover, if we ezchange left with right intertwiners.

Proof.

We first show,‘ that if V; C V,,,_,®V;, ®...8V;, is complemented, i.e., its injecti
hasaleftinverse I : V,,_ @ V;, ®...®V;, — V;, then there exists some px, for whi
Ny # 0 so that V/* = (Pm'm_,,',_ ®1;,,..-® 15‘) (V;) is non-zero and comp]

mented in V,,, ® V;,,, ® ... ® V;,. Statement a) then follows by induction.

Suppose that, for any u, V“ * is either zero or not complemented. This means th

1 (Puy i ® Ly, - @1;,) (V24) = 0, for all ;. Hence IPy(V;) = 0, where

P = Z

acNyi, _, Sen#0

Pnn-xj..m. Pm.m-x:i. ® l:iu,; - ® 1:'-

is the projector on the first summand of the decomposition

Vn--x ®VJ'A®"'®VJ'-.=

(6.1
ZQ Viu ®V55-n ®...0V, o (Eew ®V 1% ®"'®Vin) .
"ﬂt-r;: "h'"’
Thereforc 7 = (1 —Px)(V;) # 0 can be complemented and is contained in the seco!

summand of (6.17). However, we know that property (E), introduced in Sect:on 5.
extends to tensor products and direct summa.nds As (E) is satisfied for all VV,, it al
has to hold on V. For j < N =2 this leads to a contradiction. The second statement

an immediate consequence of a), since forany I e mt(V;®V;, ®...9V;,, ,)
I- chP,,,(ji),,- €elnt,(V;@V; ®...9V,,V;),

with 1c, = Pj.;,)], (by the normalization chosen in (6.3)). From Lemma 6.1.2, a) -
find that the rational Vertex-SOS-transformation preserves the multiplicative str;xcf.u

of the path spaces, as explained in the following remarks.
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‘Under the natural composition, the spaces Int,(W, V) have the ideal property

Wt(V®V, ®...0Vi, ;) x Into(;®Vi, ®...0V,, V) (6.18)

C Int,(V:i®V; ®.. ®V,.,V.),

as well as

Int,(V;® V3 ®...80V,,, V) x t(V;®V,,, ®...0V;,V.) 619)
C Int, (i®V;;®...0V;,Vi). '
With the identifications made above, we can view the rational Vertex-SOS-transforma-
tion, in the case of U,(s¢;), as the map
Int (le ®...8V,,, VJ': ®...8 Vu) ~ Hom (P("L?'l -«J'llj)!P(l’llx»--nli)) ' (6 20)
’ R ~ PIVR).
By (6.18), (6.19) and (6.10), this map is evidently compatible with the multiplicative
structure defined in (6.5), in the sense that for
A€ Iny(V,®...0V,,, V;8...8V;,)
and i
B € Int( ‘h+l ®...8 Vn-u)VJn-u ®...0 V:-wn) )
P (A®B) maps P(ilj1, - -+, 3nlp) X P(Plins1, - - -, in+mls) into the product of path spaces
’P(ilsh s ,SkIP) X P(Pl3k+h 13k+l|.7) by 'Pn‘(A) ® P;;'(B)r for all pE€ L.

The kernel of the rational Vertex-S0S-transformation is given by
N KV.®...8V,,V;0...0V; | V), (6.21)
N ;70
where K(W,, W, | V) is the subspace of intertwiners in Int(W;, W;), which map all
intertwiners Int(W;, V) to Int,(W;, V).

A more efficient way of characterizing X(W,, W; | V) can be given with the help
of Lemma 5.4.3. From the proof of Lemma 6.1.2, one can see that the common kernel
Wy = nkcr P; .(;;) is the maximal subspace in W := V;, ® ... ® V;, satisfying (E). We
associate’:o it the projection P, = 1 — ,Z,Z Puii)iPiwtic), and, as Py € Int(W, W), W[, is

seen to be a subrepresentation of W.
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Lemma 6.1.3 If C € Ini(W, W), where W is an n-fold tensor product of irreducible o

representations with dimensions less than N, and a € U,(al;), then the following trace
formula holds » '

tr(aC [W)= 1
N-1 : (6.22)
2 (a1 V))u (PHO) IPIWV)  +1tx(aCo I W)

where C, = P,CP,. (

Proof.

The second term on the r.h.s of (6.22) can be identified with the second term on the r.h.s
of tz(aC) = tr((1 — P.)eC(1 - B,)) + tr(P,aCP )-

In order to evaluate the first term, we note that

tr (Pw(:'.-).:'Pjp(i.-)ac Purigt ;".u'(:';))

bijtr (aPiutinC Purig PyuntinPutins)
= oy chustr(a [ V;),

where Cd 1= (i )C Purtii). g

are the matrix elements of P™(C) on P(W, V). l 4 o |

Next, we choose functions {fp},=1,.n-1, such that tr (f,,(q") | V,r) = bpp and
tr (f,(q") [W) = 0, if W has property (E). With the help of Lemma 5.4.3 we see
that any function with f(1) = &4, fo(~1) = —&n-y, folg") = 1 (Spwts = Epp1),
r=1,...,N-1and f(¢") = f,{g™"), is a candidate. This defines an inner product of
A € Int(W,, W) with B € Int(W,, W2), by

I

(A,B), = tr(f,(g")AB | W,) |

‘ ' (6:23)
tr(P™™(4) P(B) | P(Ws, 1})) . v
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Since the map P™ : Int(Wg, Wz) — End(P(W,,V})) is surjective, we have from (6.23)
that : .
K(W;,W; |V;)={A|(A,B), =0, VBelnt(W,Ws)}. (6.24)

Let us conclude our discussion of the rational Vertex-SOS-transformation, with some
comments on the structural properties that are present in the vertex picture, but not
observed in the SOS-picture. First, it is essential to restrict j < i,’—', since every subrep-
resentation isomorphic to Vr_:’-_; is, by Lemma 5.2.3, complemented, i.e., Int, (W, V%._‘) =
0, and since the dimension of the highest weight spaces is larger than in the generic
case, P (W, Vg’ﬂ) is described by unbounded paths. An explicit example is given by
W=V;®V,andV =V, with N;;;,; =0, j # # From the decomposition of tensor
products; discussed in Section 5.3, we see that Int,(W,V;) is given by the embedding of
V; into W;, (mapping &, — ¢2,), and Int,(V;, W) by D;, (mapping £ o ¢, rest — 0),
where Dj is defined in (5.38).
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6.2 Braid Group Representations and Fusion Equz
tions. -

With the help of the rational Vertex-SOS-transformation, as defined above, we obta
a faithful representation of the braid group on n-strings, B,, on the space of restrict

paths
Proa (i | {5} 1) = 20 Preat (i | etays - - 23t 1) - (6

*ESn .
By compatibility with the multiplicative structure of the path algebra, if is sufficient

give the generators in Hom(P(k | p,q | i), P(k | ¢,p | 1)), by

(168 RE) (Pns(6) @ 10) Pras(@) = (b, 9, 25 (Pra) ©1) Poh)

mod Int, (Vi @V, ® V,, ;) .
Here we put Ry, = (R;) _1.‘

Since by the arguments of Section 5.4, Afor all d € N and g a root of unity,
can find a family of indecomposable representations, with nonzero g-dimensions, a
fusion rules for Uy(sla41), such that P (V; ® V; ®...® V;,, Vi) admits a péth basis
the above sense, we explicitly include the multiplicities in the following formulas. It
convenient to use the following graphical notation for products of intertwiners. A ten
product V;, ®...® V;, is represented by n-ordered strings with colours jy, ..., a, and
intertwiner  : V3, ®...QV;, — V,,®...®@V;,, by a “deformation” of the strings j;,....

into 4y,...,%m. Schematically, this is shown in Figure 6.2:
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The normalization (6.3) is then represented by

1y im
k
® o 0
I | J = bpt by
* 0o 0
i, in 1
Figure 6.2 Figure 6.5
The generators of these “deformations” shall consist of the intertwiners P;x(a), and equation (6.26) by
P.;;(B) and Rf,which we represent, graphically, by braids
K q p
j i ] i
\ — Rz , / L R,_, = (Rﬁ)-l = Eﬁ*(kr va’i){f.:
: =
\ / L
ST S .
: . - . i
1
i 6.3 k
Figure Figure 6.6
. Fi 6.4 : -
and forks eure The proof of Lemma 6.1.2 shows that a choice of basis in P(V; ® V;; ®...@V;,, Vi) can
» be given for any ordering of the Clebsch-Gordan matrices. In fact, a change of basis
| J k : by reordering can be entirely expressed in terms of the SOS-weights (p*(k,q,p,i)ff:)‘ '
The following fusion identities mainly rely on the duality relations (4.9) which can be
— Pialn), — Puij(p)- . . .
reexpressed in terms of intertwiners by
‘ K o j (L@ RE) (RE®1;) (18 Pim(@)) = (Pim(a) ® 1) R, (6.27)
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and is represented, graphically, as follows

X

Figure 6.7

3

Analogous equations hold, for the reflected version of Figure 6.7; see also {43, 44]. Note

also, that the labels in (6.27) do not have to correspond to irreducible representations.

Let us assume that we have chosen a basis of intertwiners such that
(1,8 A)P1, =(A® 1,)Pipp = A(v:) 1, (6;28)

for all X € V;, with v, independent of p. Then we have
Lemma 6.2.1

a) The images of {(1: ® Pi¢m(a)) (Pima(B))} 00 in P(Vi ® V; @ Vi, Vi) form a second
basis.

b) The coefficients, &, ezpressing the change of basis

(1 @ Pytm(a)) Pena(B) =

. - . ) 6.29
z ¢(1,Jy L, k):?;‘:‘ (Pii.r(l‘) ® l[) P..l,g(v) mod Int, (V, ® VJ V., Vb) ( )
and
(Pijr(p) ® 12) Prea(v) =
. (6.30)

3 (5, 5,8, k)% (1: ® Pitm(@)) Pima(B) mod Int, (Vi @ V; ® Vi, Vi)
lap .
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can be computed from p-matrices:
90,5, L k)0P =
' F c PN ke: s g pyman key oo Nidg (6.3
ZP (lym:tvk)m,lqp (J:":t)k)r,(’v 4 (1)"').7:")6:1")
n

and
' ¢(i)js l, k):n":p =

. min kg JU (6.3
%p‘ (L4, m, R)5" 02 (3,5, k)t #%(L,5,5,m)508

The proof of Lemma 6.2.1 is purely computational. For convenience, we understan
the following equations modulo Int,(W, V), without further\mentioning. Since A® 1
Vi ® W — W is an intertwiner, for any A € V;*, we obtain from (6.26), for k =1,

R Pi(@) = 32 0*(1,,2,9)535 Penilk).- (6.3:
"
Applying RE ® 1, to (6.26) and making use of (6.27), we have that -
ke _ ,

(1 ® Py i(B)) RE, Pigi(e) =

- ifa (6.3
2 p(p 0 (REPras¥) O 1,) Poi(h).-
Wilk ‘
We now use (6.11) on both sides of (6.12) and invert p*(1, 5, q,i);:ll: by using
2P (1,0,5,4)53% £*(1,5,9,4)3in = B (63!
—~ ' ;

This yields the desired expansion of the basis {(1¢ ® Pip,j(8)) Pojé(n)},s,, in terms
the path basis, with coeflicients (g, k, p,i){f"} given by (6.31).

The ékpressiou for ¢(p, k, q, 1)1‘2? are obtained by applying the product of R-matric
(Rf, ® lq) . (1;, ® Rj’p) to (6.26) and proceeding in the same way as above.
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Expression (6.29) is expressed, graphically, as follows , ) .

= Ep—(lij)qri)},‘ll;
. a

Figure 6.8

To demonstrate the convenience of the graphical notation, we repeat the proof of equation

(6.31):

z P (l)J)qn‘):l: P+(k' qnpit)luu \

avul

Zﬂ{ﬂ (1.1.4,1)2'1’.',' Pt (k02,000 p* (1,9, k, OFF
av l

Figure 6.9
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In the same way we obtain

6.3 Unitarity of Braid Group Representations Ot

= E ga(t, IR g tained from Uy(sfy;1)

If it is possible to generate all representations in L out of a set of fundamental represe

tations F := {fi,..., f,} by taking tensorproducts and decomposing, then, by equatic

k k
(6.38) and (6.39), all SOS-weights can be obtained from the weights p*(k, f;, f;,4);
Fi&‘f“ 6.10 and & (k,r, f},l)f,f:,,. Comparing the complex conjugate of (6.38) to (6.39), we arrive
Since the P,ju(a) form a basis of left invertible intertwiners in Int(V; ® V;, Vi), we - the following expression of unitarity:

find a dual basis P, ;;(B) in Int(Vi,V; ® V;), with
 Puii(B) Pyala) = bap -
The path expansions of these intertwiners are evidently given by

(1@ Pprs(v)) (Pem({) ® 1) Pm-.-'(‘v) =

(6.36) ' Lemma 6.3.1 For a given choice of basis {Pijx(a)}, the representations of B, on 1
path sapce P(i | {j1,...,Jn} | 5), a3 defined in (6.25), are unitary iff the representatic
of B, are unitary on P (i [{fe, ..., fan} | 5), for arbitrary fi, € F, £=1,...,n, and

(6:37) GGr7s For D = Bir 31 Jrr 7 (6.
Ew(t 7,8, )78 Ppi(w) mod Int, (Ve ® V5, V) - 412170 mas aidv
With these orthogonnhty relations, we obtaxn the fusion equatxons in SOS-form, by . As an example we may apply this result to U, (slz), where F = {V;}.

expanding both sides of a version of (6.27):

R::' = (Pori(8) @ 1,) (lv ® R::.) (R:r ® lo) (1, ® Prug(8)) -

Since all the multiplicities are unity, we can set P, jz = P} ;. In this case

(k25,00 = Gk 2007, (6
Together with the reflected version, this yields @k, 2,p,)m = @k, 2,,3)7 |
Sou Sssi P (K, q,p, l)i'e: = and it is sufficient to check, that the expressions
i' ¥ . '
3; B(,r 8, 8 )le o (kym )il g (6.38) x™(k,2,p,1)f := ¢(k,2,p,9)%, @(k,2,p,i)7, (6
ok )
pr(m',s,p,8)pe @(k,7,s, l):t'f K v " which are invariant under scalings of P;;,, are positive:
and i s (k,p,q,t),.pa _ Their values can be expressed in terms of g-numbers: o
do+ b 4di—dv), (G — o+ 3 +5)
Y @lk,r,s l)m,‘, P (m',p, s, 1)"'““ (6.39) - . Pk 2 p i )RR = ( B o * e 6.
o) ' (k2o )i = (275 +1), (27x +1), (
vy! B .
m'¢'n s

P (k,p,r,m), ‘P(J'v'r’vi)q,in .



a.nd.

(o +du+5i+3) (o4 1+ —3),
(25 + 1), (23x + 1), '
. (6.44)

7*¥(k,2,p,i)f5} = 1 - a"*(k, 2,p,i)iE] =

where 25, +1=k.

The computation of the braid matrices, for p = ¢ = 2, gives
P*(k + 27’) 2) 21 k):i:’ = q** 6’}' 6'00’ )

for 7,0,0' = %1, and

—t* k1),

i1 o g*t
pE(k,2,2,k) = . ’ . (6.45)

! L V(R + 1)k - 1) ¢ ' ‘
These representations are therefore unitarizable, iff all g-numbers (n),, with 0 < n < N,
are positive; or, stated differently, iff ¢ = e**F. We will see in Sectio,n’ 7.3 how this is
related to the result obtained in [54] for Hecke-algebras. It is possible to rewrite the
expressions (6.43) and (6.44) in the form

1 Mg '
P+l skdn _ k(p+1)s A2pp+1
LY (P)a? Mkantpi Meziesn’ (6.46)

with
(e + 3o + 5+ 1) o + Ja = 50),! Up + Ji = 56) N (255 + 1),
(G = Jp + 30)g! (256 + 1),

Mepi = (6.47)
where k= 2j; + 1 and 5 = £1.

This enables us to set @(k,2 p,t)“" = _lj‘.'!’ for all k,p,% and 9, in a normalization,
where PT | Pipi = Aip;i. The recursions given in (6.38), and (6.39) then take the form

pE(k,pg+1,8) = Y pE(k+m,p,0,0)0, pE(k,2, 25 +0);" (6.48)
o=%1
and
pa(k,q+1,p,i)] = Zp. k,2,p,5 + n)m Ios (k +a,q,2,8)}"", (6.49)
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where the subscript “o” refers to our new normalization in which Pl i Pepi = dip;, with * .

Aips 2s in (6.47). These expressions and the equations

pE(k+2,2,2, k)50 = qF6,, bner, - for ;n=il,

Y P TS (6:50)

+
Ps (k,2,2, k) .
: (k)' (k - l)c _‘!#
' !
'show that the p%-braid matrices can be identified with those found in {9, 55], with the

indices in reversed order; (one must compare the recursions gi\ircn there with (6.49)).
i

In the following, we show how to constrﬁct an inner pro&uct on the representation
spaces of on the braid group representations derived from Ug(sfa41), in order to isolate
requirements for the spins in the spectrum of the monodromy matrix and mvestngate
unitarizability of these representations. We conclude this sectlon thh a more systematlc
proof of the above result on unitarizability for U(sf;). We start by taking the star-

conjugate of (6.26) and insert the transposition
P : V8V » BV, : vQ@w —» w@u.

Usix_mg
R%" = Py RE, Py, ‘ . (6.51)

see formula (4.24), we find the following equation for RY.

7‘.«:‘(“) (ln ® ?J'.Pk(ﬁ)) (R:q ® l,,) =

- (6.52)
> 02(k, 0,2, 005 Pipt(w) (1, @ Praa(v)) , mod Into (Vi V, @V, @ Vi) ,
Lvp
where we have set .
Pigi(a) = Pigi(a) Pyj. (6.53)

If we represent P; gj(a) by
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— F-’.u'(")

q J
Figure 6.12

then, in addition to Figure 6.6, we obtain the graphical expansion (see(6.45)):

=Y p*(k,q,pi)i0n
Ly

Figure 6.13
Applying :
(1,@ RY,) (RE, ®1,) (1. ® RE)
to (6.52), and making use of (6.27) and of the Yang-Baxter equation (4.12), (6.52) takes
the form
P.ui(e) R, (P;nu(B)RE, ®1,) (1. ®RE) =

3 o2k, 0,235 Pigu(p) Rep (Prar(v) Rig ®1,) ,mod Int, (V,, i ®V, ® ;) .
Ly,
g (6.54)
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From the SOS-form of (6.54) we find the following factorized relation for the S¢
weights: 7 ‘ ’ ' '

SR (W) (V) -
V'

SR R i

(6.

Here the sesquilinear forms N}¥ ; on CPues, the spaces of multiplicities, are defined b

(M) = Pralv) RE, Pt = Pig”(v') RPuga(v),
and . _ (6.
= Pra(v') Ry Puga(v) = Pugt*(v') oR™? Pogu(v),

=
-
~
g
[

with
Nk’:.l. = Nk-q.l . (6:

Using the graphical expression for (6.56)

Figure 6.13

and with the help of Figure 6.12, (6.55) can also be derived from the dngram
Figure 6.14, by either expanding the first braid from above, according to Figure 6.12
the first braid from below, according to Figure 6.6.
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Figure 6.14

The symmetry properties of these forms can be expressed by the monodromy matrix
M=0RR, ‘ (6.58)

which has matrix elements u(1,k, q,l)::::', defined by

MPig(v) = Z»(l k,q, 01y Piga(v'), mod Int, (Vi@ V;, Vi) . (6.59)
If we set - ‘
=Yz Mo w (6.60)
w!

for z,y € CMs+, we compute from (6.56) - (6.59) that
(=, ¥)qe = (W, 8L,k 0, D) - (6-61)

Identifying P(ilj1,--.,inlk) = ):?“} CNivw @ ... ® CNoen-tinsn  the inner product (.,.)-
defined in (6.60) extends naturally to the pathspace P(i[{ji}|k), so that by (6.61)

(Ww)- = (w, ). for w,w' €P]{5}]k), (6.62)
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where g acts on CNivom @ ... @ CNa-1iniin by B(1,3,51, 1) ® ... @ 51, a1, Jn, V). With
the help of (.,.)-, (6.55) can be reexpressed by

(RP(r)', RP(ni)w)_ = (o' w)- (6.63)

and
(RP (1"") o', uRP ( ) p"‘w) = (v',w).. (6.64)

Since by the definition of the intertwiners { Pi,s(a)}, the form (.,.)- is nondegenerate, we
conclude from (6.64), that 4 commutes with RF (b) for all b € B,, and equations (6.61)
and (6.64) simplify to -

(R"(b)w RP(bw)_ = (', w)- (6.65)
and furthermore

(wo,po) - = (W) (6.66)

If we assume certain weak indecomposability conditions on RP, we can deduce from -
‘BE (RP (B,,))', that u is diagonal, i.e.

H(1 kg, Oty = Buap €7 Shut (6.67)
ax;d p’roportiona.l to unity on P(i | {55} | k), which implies /
i+ i = Skt s Sh: modl, o (6.68)
whenever all indices obey fusion rules. A solution qf (6.68)lhas the form
Skei =3kt Sqg—sj+miy modl,  (6.69)
with s; = 0, S; = St and m,,; is totally symmetric,
My = —mpg
and (6.70)
Mipy+ Mjgs = Mgl + Mgy

For highest weight representations, it follows, by application of x, see (5. 6), to (6.59)
that
ket = Sku
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- and eventually ‘
* Mpg; =0 and Se=5;.

Hence p is given by

WLk, q, 0430 = b ePitSemed) (6.71)

Since p(1, k, q,2) and u(1, g, k, £) are equivalent matrices (by conjugation with a p-matrix)
and, further, are unity if either k = 1 or ¢ = 1, we find with (6.71) that

S), = 8. . ) (6.72)

The spins of the monodromy-spectrum can be deduced more directly if we assume that

K is a ribbon-graph Hopf-algebra (Section 6.4 or (43, 44]), i.e.
M=v®vA (v"’) and  vcentralin K,

so that (6.59) reads

Pr(v) ® po(v) Pras(v) =
- , (6.73)
2 u(L, kg, 050 Pigu(v') po(v) mod Into (Vi ® V, Vi)
v
For an indecomposable representation V;, we have
pp(v) = €1  mod Int,(V,, V}),
g0 that again i
w1, kg, 0800 = 8, mrtSmed (6.74)

with s, = 0, s, = 85, by E(v) =1 and S(v) = V.

For Ug(slds1) the spins are determined for highest-weight representations, with

highest-weight A, by the classical Casimir values
Cr= (LN +2(p,}), (6.75)

so that
palv) = &7 = g0, -  (676)
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~The original computation [43] used the fact that Uy(sls4,) is a one parameter-deformati
of U(slys1) and proceeded by analytically continuing the spectrum of Ming. Ame
explicit way to find these values is given by computing the ribéon-graph-algebra eleme

. |
v=L®R (a’R"’) (q‘) , ' (6.7
“with L ® R(a ® b)(z) = azb, from known ((4.87), [48]) formulae. If one applies the e
‘ (E hat T, M-‘)
pression (6.77) to highest-weight-vectors vy, only the term g \>¢ vy will survi

yielding the above expression for py(v). For Uy(sf;) we obtain;

1/, j
Gy, =3 (*-1), = (6.7
so that for g = ¢'F
2
. -1
%=y (6.7

Continuing our discussion
m = e"«"‘*""‘)(y,z);”, with s; € R/Z,
so that for any choice of s; € R/2Z the form
(@, 9)Eqr = (2,9) g e*lortee=d) (6.
is symmetric and hence admits an orthogonal basis {e,} of CPut with

{ews eu) = (_1)":"‘ S (6.8

. Inserting (6.81) into (6.55) we see by

px(k,q, p,i){f:(_l)":..v‘"f,..- = (—1)":”*"7-.-' ¥ (k,p, q,i)f’;ﬁ (68

that for this choice of basis R represents B, in some U(N, M). If we assume unitari
the numbers n}, , € Z, will satisfy constraints similar to the ones imposed on Skau

(6.68), so that they can also be presented as
n}‘,-'k =n;+n;—n mod 2

and thus correspond just to a redefinition of the spins. We summarize these argume:

in the following Lemma.

168



Lemma 6.3.2 The representations RP of the braid group, defined by a quasi-triangular
ribbon-graph Hopf-algebra with *-involution are unitarizable iff there ezists a choice of
spins

s; € R/2Z

such that all the forms (.,.)3., d‘eﬁned in (6.60) and (6.56) are positive definite.

As an application of Lemma 6.3.2 we shall show unifarizability of RP for K = Uy(sts)

with ¢? a primitive root of unity.

For py,p3=1,...,N—1, ¢#0, we define the cohtinuously g-dependent matrices
e(g) and f(q) in Mat(V}), V, being the inner product space V, = <£f,;1,. .. ,f,;t_), by
. 2

the normalized representation (5.17), so that

@) =elq™) sd elg) = £(2). (683)

In the domain Dy = {t € C|t #0; ¥ #1j=1,...,N —1} the map

Dy — Mat(V,,®V,,)
t — R()

is by (4.87), with t = g% , well defined, continuous and obeys by (4.23), (4.24) and

(6.83) .
RA)7T=R(t?) and R() =oR(). (6.84)

The spins s, E R/2Z are determined by
| v = {5 (6.85)
From (5.23) we have highest weight vectors ¢' in Vj, ® Vi, with
BEW =G-DEE)  amd  Bnf(t) = 607, (6.36)
for i=|p; — pal,...,p1 + P2 — 2,1 + p2. We now consider the expression.

Nt = (£(8), R (D)) ¢HH4s3-741) (6.87)

169

for which we find by (6.84), (6.85) aad (6.86)

T = (€0 CROREN ROE®) - (-7 K052 (qg)

Here (.,.) denotes the canonical inner product on the tensor product space Vj, ® V,,.

If we restrict the values of t € Dy, by |t| = 1, (6.88) implies

Ne () ER. 4 ~ (6.89)

Comparing (6.87) to (6.56) we see that N3, .(t) is the square of a multiplicity vector

with respect to the form defined in (6.80), and is therefore nonzero for
dimP(V,, ® V,, Vi) = 1. - _ (6.90)

If for fixed 1, p;,p; (6.90) is true for t = e, (n, N) = 1, then we find from the fusion
rules (5.19), that it also holds for ¢ = e"'i%’, (n',N') =1 with N' > N or for generic ¢.

Hence if, for t = e¥¥, Npipai =1, then we have

| N:ln.i(t) #0 for  arg(t)< % (6.91)
From : |
Nopi1) = (£(1), €(0) > 0 (6.92)
we obtain _ \ o
Nopmi®)>0  for  t=eiiv,  (699)

Combining (6.93) with Lemma 6.3.2 we find the following lemma.
Lemma 6.3.3 For Uy(sL;), with t = e's% , the braid matrices
pE(i,p, 4, k)]

define unitarizable representations of the braid group.
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6.4 Markov Traces

The definition of q-dimena'ions is generalized, using the observation of Drinfel 'd [5], that
the square of the antipode of a quasi-triangular Hopf algebra is an inner automorphism
. We eztend the selection criteria already encountered in Section 5.4 to the general cde,
i.e., we show that the set of indecomposable representations with zero-g-dimensions is
an ideal under forming .teruor products. This completes the rigorous construction of
brai gfoup representations on path spaces from quasi-triangular Hopf algebres in the case
where semisimplicity is not assured. We define a Markov trace on these representations
and identify spin, statistics parameter and statistical dimension with central elements of

a ribbon-graph Hopf algebra, as defined by Reshetikhin and Turaev [44].

The discussion of Markov traces and their role in the vertex-SOS-correspondence re-
quires certain restrictions on the Hopf algebra K and its representations. The first is the
restriction to quasitriangular ribbon-graph Hopf algebras, introduced in [44], that contain

a central element v with -
v¥=uS(); Sk)=v, El¥)=1 (6.94)

and

M=v@vAQ™), - (6.95)

where u = m(1® S~1)oR. Suppose that K admits a star involution satisfying (4.24). In
this case u is unitary, so that we have p? = 1, for p = vv*. On unitary representations we
therefore have, from p;(p) > 0, that v is unitary. Its eigenvalue on Vj is thus identified

with the phase factor €™* and we have s; = s5.

The element g = uv™! satisfies

5%a) gag™! Ve €K ’
and : (6.96)
Alg) = 9@y

and gives rise to a general definition of the g-dimension, dp, of an indecomposable repre-

. sentation V:

di=tr(g 1 V). (6.97)

1m

1In the following we shall consider a set L* of indecomposable representations that close

under taking tensor products, i.e.,

i
{ (6.9¢

Wa® Ws=Y.° W, @ CNetr |
v
and conjugation, i.e., for each a € L*, there is some a¥ € [ﬁi, with pav(a) = g (5(a)

The fusion rules {N,g,} again commute and are symmetric in the first two indices. W

have the following result.

Lemma 6.4.1 For a system L' of indecomposable r-epresentati!ons of a ribbon-graph Ho;

algebra, closed under taking tensor products and conjugation, we have

Nogva=1 if a=f and da#0.

This follows from the fact that we have the identifications
Int (Wo @ Wev,1) = Int (W, W,) = Int (1, Wa ® Wav)

given by

(t ®z, Pagva(l)) l(I:c) .
and : (6.9
Pl.uﬁ"(p) L Rz l(I'gz)

for I,I' € Int(W,,Wg), z € W, L e W,.

[}

The composition is given by

tr(gII' | W,)
P (6.10

= ——(dim Wu) tT(II' [Wc).

Py agv(I) Pagva(1')

In the last identity we used the fact that the W, is indecomposable, i.e.
Int (W,,W,)=C- 18 Int,(W,,Wa), (6.10

where Int, (Wa, W, ) only consists of nilpotent mappings. The expression (6.100) is nc
zero iff d, # 0 and II' is invertible. Since Wy is also indecomposable, by assumption, ¢

latter implies W, = Wj.
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From the commutativity and associativity of the tensor product we infer, that
Napya = Napyv Novaa

is completely symmetric in all representation labels. If £* is generated from some fun-
damental set F with F¥ =F and FN L, =9, where L, is the set of indecomposable
representations with vanishing g-dimension, then L, := L, N L' is a maximal conjugation

invariant subset that obeys

L'eL, ¢ L,

and _ (6.102)
FnL, = 0.
Hence, defining £ = L*\L,, we have the following decomposition laws
VieV; = Y ieClitg 3 ° W,@CNi-
keL a€l,
VieW. = 3 ° W@ Cles (6.103)
BEL, . '
W¢®Wﬁ = ZQW1®CN¢.1_
T€L,

Generalizing Lemma 6.1.3 by using (6.101), this allows us to identify the quotient space
P(Vi®V; ®...8 V., Vi) with the path spaces P (i1, . -, Jalk) constructed from the
fusion rules {N;;, s} for ,j,,k € L.

Figure 6.15

173

Consequently, it is always possible to assign to a pair (K, F) a path representation’ 4

of Athe braid group in a unique way. For any path representation of the braid group B,
with fusion matrices {F} (resp. {¢}), we can define Markov trace as in (2.67). If we take
the SOS expansion of the operator depicted in Figure 6.15 and use (6.99) we obtain the

following expression in the vertex picture.

Lemma 6.4.2 For any pair (K,F) with F¥ = F and FN L, =0, and for the definition

of the path representation of B, given as cbévc, the Markov trace is determined by
l n n /
5(b) = & tr (9®"RP(b) [ V") . (6.104)

(a]

This trace has an obvious generalization to different colorations (i.e., different represen-

tations involved) if we restrict b to the appropriate subgroup of B,.

By Lemma 6.1.3 we have that
2 =X %0 () 17 (e 1)) - (6.105)
kec %
This show that 7§, is positive for alln iff d, > 0 for allp € L.
We can easi;y compute the statistical pafai'ncter of a representation from the diagram
P

pv L= (ID®P1.PFV) (R" ® lyv) (l, ® PPPVJ) (6]06)
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From a ® 1,v Pppvy = 1, ® S(6)Pppv, Va € K, u = m(1 ® 57')oR and (6.100), we have l

1 _plyh) et

Ap = =
R b &
The analogue of Theorem 2.4.c) can be shown by inserting the projection P, =

Ivj Prar(v) Prpg(v) into (6.105) and making use of ' ' ‘ . Chapt er 7

tr (Pq 1 P (% ® Viu Vo)) = Nog,o 6 - g

'

Duality Theory for Local Quantum
Theories, Dimensions and Balancin

| in Quantum Categories

7.1 General Definitions, Towers of Algebras

In this section we give the complete definition of a quantum category. We show that
quantum category can equivalently be described by a system of structure constants, nam
fusionrules, and R- and F- matrices. We also introduce C*-structures and discuss thi
consequences for the ezistence of balancing phases, positive traces and dimensions. |
ezplain the result of Doplicher and Roberts on the duality of compact groups and propos:
‘generalized notion of duality. Finally, we show how quantum categories arise in algebr

field theory and relate them to the theory a subfactors and towers developed by Jones.

The structural data of local quantum theories, in terms of fusionrules and R- and
matrices, which we investigated in chapter 2, and the data pbtained from the intertwir
calculus for quasitriangular Hopf algebras explained in chapter 6 _‘fullﬁll the same tyj
of equations, which were, in our language, interpreted in the graphical Yang-Baxt

and Polynomial Equations. In fact, in the construction of charged field operators w
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permutation statistics and gauge group symmetry, as proposed in [19] it is needed that 4 ii) A tensorproduct on such a category consists of a binary operation, o : Obj x Obj — * .

these two sets of structure matrices are equal. In order to organize our language, it is ; Obj : (X,Y) = X oY, together with a bilinear product of morphisms
helpful to observe that fusionrules, R- and F- matrices are precisely the structure constants ' ‘

) . 1 ’ : '] 1y .
needed to determine (up to equivalence) a certain type of braided tensor categories. We -0 Mor(X, X) @ Mor(Y,Y") » Mor(X oY, X'0Y"): I® J = I'oJ.

review the notions entering their definition : -

i) We start with a semisimple, abelian, finite, reduced category over C. It consists of a
set, Obj, called the objects. To any pair of objects X,Y € Obj is associated a vec-
torspace, denoted Mor(X,Y) or Int(Y, X), over C, called the (space of) morphisms

from X to Y. We have distributive, associative composition
Mor(Y,Z)® Mor(X,Y) = Mor(X, Z)

so that, in particular, End(X) := Mor(X,X) is an associative C- algebra with
unit. Semisimplicity of the category means that End(X) is semisimple and that
the pairing Mor(X,Y)® Mor(Y,X) — End(Y) is non-degenerate. In this case the
category ig abelian iff it has subobjects and direct sums. The subobject requircmcnf

is that to any projector II € End(X) there exists an object U and morphisms '

Iy € Mor(U,X) and Py € Mor(X,V), such that Pyly =1 and II = IyPy. If we
consider also the object V and morphisms Py and Iy associated to the projector
1 — T we obtain what is called a biproduct, X = U @ V. The axiom of direct
sums states that to any pair of objects, U and V, there exists an object X with
a biproduct, X = U @ V. We call a category reduced if equivalent objects are
equal, i.e., if for two objects X and Y there are morphisms f € Mor(X,Y) and
g € Mor(Y,X), with fg =1 and gf = 1, then X = Y. With these assumptions
any object, X, with dim(End(X)) < oo can be decomposed into a finite direct sum

of irreducible objects,

X = @ Nxji,
jec

where j € Liff End(j) = C. The category is said to be finite if dim(End(X)) < o0
for all objects X € Obj and rationa] if |£| < oo. Thus, the objects are naturally
identified with N€. '
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This product shall be compatible with composition, in the sense that
(o )I'eJ)=(II" o (JJY),

whgnever defined, which makes o into a distributive operation on N€. Thus, the

tensorproduct on Obj is completely determined by the f\;sionrules :
1

in = ZN,‘,"gk.
kec

with i,j € L.

iii) A category is called a tensor category or monoidal category if there is an isomor-
phism, a(X,Y,Z) € Mor(X o(Y 0 Z),(X oY) o Z), which satisfies the pentagonal

equation

a(WoX,Y,Z)a(W,X,YoZ) = (oW, X,Y)01z)a(W,XoY,Z) (1w 0 a( X, Y, 2))
and the isotropy equation
a(X',Y', 2"\ Io(JoK)) = (IoJ)oK)a(X,Y,2)
for all possible objects. This makes (Obj, o) into an associative algebra. Moreover,
we may define F- matrices by the commutative diagram of isomorphisms :
Orec Mor(Ljok)® Mor(tiol) T4 @, . Mor(l,i03)® Mor(t, 1o k)

= g

Mor(t,io (j o k) olist) Mor(t,(i 0 j) o k),
(1.1)
with 4,7, k,t € L. Here the vertical arrows are given by the compositions I @ J —

(1oI)J,and I®J — (I 01)J, and the lower horizontal arrow is defined by left
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- multiplication of a. The F-matrices obey an analogous pentagonal equatior},

* (ea F(i:jvk:") ®1N.u.-) (61 lﬂu,. ® F(i")l’t)) (@n F(jvkr'!’) ® lN;.,:)

= (@. 1N.',,. ® F(-’, k: l,i)) Tu (en an.. ® F(i,j,.!,i)),
(1.2)

and any such system of F-matrices defines a unique associativity constraint a. The

category is called strictif @ = 1 € End(X oY 0 Z).

iv) A tensor category is called braided if there exists for any pair of objects X,Y €
‘ Obj an isomorphism ¢(X,Y) € Mor(X oY,Y 6'X), which satisfies the hexagonal

equations:
a(2,X,Y)e¥(XoY,2)a(X,Y,2) = (e(X,Z)* oly)a(X, 2,Y)(1x 0 £X(Y, 2)),
where £ = ¢* and £ (X,Y) = ¢(Y, X)~? ,and the isotropy equation -
X, Y)IoJ) = (JoI)e(X,Y).
We define structure matrices,
r2(i,5,k) : Mor(k,ioj) —+ Mor(k,j 0i)

by left multiplication with €(i, ). They fullfill the respective hexagonal equation,

(@, TG, k1) ®1Nu,.). F(i,k,5,t) (@ r*(, k1) ® 1n,,) (1.3)

= F(k,i,jt) (D ln,;, @ r*(Lk 1)) F(i,j,k,t),

and a system of r-matrices obeying (7.3) defines a unique commutativity constraint

" ¢. Frequently, we shall use the R-matrices,
“RE(i,5,k,t) : @ Mor(l,i0j)® Mor(t,lok) —»@c Mor(l,iok)® Mor(tw,loj),
R Y- € :
defined by
R:(i,j,k,t) = F(i,k,j,t)(ED r(j, k, s)* @ 1)F (4,5, k,t). (7.4)

A braided tensor category is called symmetric if e* = ¢~.
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v) The category is rigid if to any object X € Obj one can associage a conjugate obje
X" and morphisms ¥y € Mor(1, X" 0 X) and 9§ € Mor(X 0 X¥,1), such that

|

hotx)a(X,X¥,X) (1x 09x) - = 1y
and (1xvosh) a(X¥, X, X¥) 1 (9x 0 1xv) = 1xv.

(7.
H these objects and morphisms exist then they are unique up to isomorphism
starting in XV. Also the equations (X®Y)¥ = XV@OYY and (XoY)¥ = YVoX

hold true in a reduced category. A choice of conjugates yields a transposition
t: Mor(X,Y) =5 Mor(YV,X)
and more generally an isomorphism

Mor(X,Y 02) & Mor(X 0 2V,Y),

which for the symmetric, bilinear form (X,Y) = dim(Mor(X,Y)) provides equ:
tion (3.2). The conjugation defines an involution on the set of irreducible objec
L, and we can verify the axioms of a fusion rule algebra given in chapter 3.2 for tt
algebra (Obj, o). »

In the follov;ing we shall call an abelian, semisimple, finite, rigid, braided tens

category a quantum category. As opposed to symmetric categories the equation

(Lxv o r(X)Wox = w(X¥, X)0x, (e

with p(X,Y) = &(Y,X)e(X,Y), defines set of non-trivial automorphisms (X)
End(X).

Lemma 7.1.1 The automorphisms defined in (7.6) have the following properties:

a) 7(X) is independent of the choice of conjugates (Xv,'l,;,'l’x)
b)) r(V)I =1I7(X) forall I € Mar(X,Y)V .
c) T(XV)=7(X) :
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&) 1(X)o7(¥) = WX, Y r(X oY)

Considering equation d) of Lernma 7.1.1, it is reasonable to introduce a notion of a square

root of 7(X). Also we wish to introduce categories with a *-structure :

vi) A quantum category is balanced if there exist automorphisms o(X) € End(X)

such that

a) o(X)? = 7(X)

b) o(Y)I = Io(X) for all I € Mor(X,Y)

¢) o(XV) =o(X)

d) o(X)oo(Y)=p(X,Y)o(X oY)
It is evident that any balancing {¢(X)}x can be multiplied by a Z,-grading of the
category, in order to obtain a new balancing structure and that any two balancings

differ by a Z,-grading. From b) we have that a balancing is uniquely determined by
_ the numbers o(j) € C. o

vii) A C* category is an abelian category if the morphisms form Banach spaces with

an antilinear involution * : Mor(X,Y) — Mor(Y, X) such that ||IJ|| < ..

1t = W, W21 = ||7}|* and (IJ)* = J*I*. 1t is clear that any C*-category
is semisimple and that it is, up to *-isomorphism, un‘i'quely determined by the set
L of irreducible objects. A C°-quantum category is 2 quantum category with a
.C*-structure such that (I 0 J)* = I* 0 J* and « and ¢ are unitary. The spaces
Mor(k,i o j) thus admit an inner product and the R- and F- matrices are unitary
" with repect td this product. Conversely, any unitary set of such structural data

uniquely defines a.C*-quantum category.

A peculiar feature of C*-quantum categories is that they are always balanced.

Lemma 7.1.2 In a C*-quantum category let v/\x € End(X) be defined by
(e(X, X)9x)" = 3§ (x 01) (1.7)
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We have that Ax is normal and that its unitary part 0, € U(x ) in a polar decomposition
Ax = 0o(X )f‘Px, withPx > 0, is a belancing structure of the category.

A final important structural ingredient in the sfudy of Q‘-qumtum categories are
traces. In order for a trace on the endomorphism spaces to factorize with respect to the
tensorproduct, we have to use the balancing structure in its definition:

!
Lemma 7.1.3 For a balanced -quantum category we definé a set of linear Junctionals,

trx € (End(X))", by i

tre(1) = SL(o(X)™) o 1)e*(XY, X)ox (1.8)

It has the following properties:

a) trx is imiepemicntko;’c the choice of conjugates. i i

b) try(1J) = trx(JI) for all I € Mor(X,Y) and J € Mor(Y, X).
o) troxany(T 0 J) = trx(Diry(J) for all I € End(X), J € End(Y).

d) trx(f) = trxv(I') for oll I € End(X).

¢) If we have a C*-quantum category and irx is defined with respect to the canonical
balancing {0,(X)}x given in Lemma 7.1.2 then it is a positive stale on the C*-
algebra End(X). '

From Lemma 7.1.3 it follows that

d(X) = trx(lx) (7.’_9)

is a dimension and, for C*-quantum categories, it is positive for the balancing {o,(X)}x.
Hence, in the latter case it coincides, for rational categories, with the unique Perron

Frobenius dimension given in (3.30).

b
£

-
-

S

The best known example of a C*-quantum category is the representation category, ’

Rep(G), of a compact group G. Its obejects are the inequivalent, finite dimensional,
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unitary representations of G and the morphisms are the intertwiners, Homg(V, W) =

Int(W,V) = Mor(V,W), between these representations. The conjugation is given by

k passing to the contragredient representations, and the commutativity constraint is given

by the transposition ¢(V,W){v @ w) = w®v of factors in VoW =V @ W. Thisisa
strict, symmetric C*-quantum category, with oo(X) = 1, for all X € Obj.

More generally, we can consider the representation category Rep(K) of a quasi-
triangular quasi Hopf algebra K. The antipode, the R-matrix and the ¢-matrix yield
the conjugate objects, the commutativity constraint and the associativity constraint, re-
spectively, using formulae (5.4) and (5.5). A balancing structure is implemented for 2
ribbon-graph Hopf algebra by the special, central element v from (6.94) and(6.95). This

category is semisimple - and hence a quantum category - if X is' semisimple. However, in

the case of primary interest to us K is not semisimple and we have to divide out the ideal

of intertwiners discussed in Chapter 6.1. Using the trace introduced above we can give a

more general and concise definition of the Int,-spaces, namely

Int,(V,W) := {I € Int(V, W) : troy(1J) = 0, VJ € Int(W, V)}.

We denote this quotient category by Rep(K'). Here, the trace tr(V'), defined on Endy(V) =
End((V)) in Lemma 7.1.3, is related to the canonical trace try on Endc(V) by

tr(V)(I) = trv(gl),

where g is as in (6.96).

Two quantum categories are equivalent if there exists an invertible, compatible ten-

sor functor between them. On the level of structural data, equivalence is expressed as
follows: Suppose we have two quantum categories, one characterized by the set of struc-
tural data. {€, Nijx, F(4,3,k,t), R(3,5,k,t)}, the other one by the respective set of data
{£, Nij, ¢(i, 7 k,t), p(3,7,k,t)}. Then the two categories are equivalent iff

a) There is a bijection

""LoL i-d (7.10)
such that i
Nijx = Nojip
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b) There is a set of isombrphisms
TE : Mor(k,i0j) — Mor(K, i o:j')
such that

¢(i1j: krt) (el T;'h ® T-'l) = ($l Tlt, ® Tfk) F(i)j: kyt)

71
p(t.,j,k,t) (el T:'; ® Tl‘h) = (@l Tu‘l: ® TI;) R(i,j,k,i) ( :

b
Note that it is sufficient to specialize to £ = 1, i.e,, to the (¢, 4, k) -matrices, in t]
second equation of b). In the case of C*-categories the isomorphisms T,’; are assumed |
be unitary. We next quote the famous result of Doplicher and Roberts on the duality

compact groups.

Theorem 7.1.4 [29] Suppose C is a strict, symmetric C*-quantum category with o,(X)
1, for all X € Obj. Then there ezists a unique compact group G such that C is equivale
to Rep(G). :

In ’local quantum field theories in the formulation of [19], as described in Chapter
C*-quantur categories arise in a natural way. The fusion rule algebra was already deriv
at the end of Chapter 3.1, using *-endomorphisms of the loc$l algebra M localized in
given spacelike cone. More generally we consider these endomorphisms to be the objec
of a category where the tensofproduct is given by the compésition of en’domprphisn

The morphisms are the intertwiners B
Mer(ps,2) = {1 € D0 : 1n(4) = (A), VA € T}
and the tensorproduct is given by .
IoJ :=Io'(J) = o()I, forall I € Mor(c",0),J € Mor(¢', p):

The category is strict and the commutativity constraint is obtained from the chas
transport operators. The structural data of this category are disussed in Chapter 2.
four and more dimensions, this category is also symmetric and the natural balancing

trivial, so that we can apply Theorem 7.1.4. We-sa'y that the local quantum theory is d
. i
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to the group G associated with the category where the commutativity constraint (%, j)
- is multiplied with a - sign if { and j obey para-Fermi statvistics [19).

' The main purpose -of finding a dual group is to construct field operators with a
group symmetry. To this end we use the intertwiners between the representations of the

local algebra rather than the intertwiners between the endomorphisms. They are related
to each other by (2.18). We define the physica.l Hilbert space of the theory as '

Hops. = D Vi O H;, (7.12)
{7 . ’
where H; is the representation space of representation j € L of 2, and Vj, is the represen-

f.atioh space of the corresponding representation j' of G. Let {e;}:’;l' be an orthonormal

basis in Vj. We define a linear map Pyy(c; e2) from Vi to Vo by the equation
.(v, Py (a; e;) w) = (P,-:,v#:(a)v, w® e,\) , (7.13)
for arbitrary v € Vy and w € Vi

If the local quantum theory under consideration is dual to the grouja G, in tixe

sense of the definition given above, we can introduce charged “ﬁgla operators”, 'qbf\(p’),
by setting . - l
| A =T P (o) VWY, (1.14)
~ where the tv?o intertwiners are related to each other by the isox'no'rphisml T,'; It isr easy
to check that these fields obey ordinary Bose- or Fermi local commutation relationg: I o/

and p* are localized in space-like separated space-like cones then
W (7)) ¥t (") = £t () 0L (F) o (1.15)

where the minus sign is chosen if j and k obey para-Fermi statistics, and the plus sign is

chosen otherwise.

Let x and #' denote the representations of % and G, respectively, on Hpy,,. Then
we have from (2.20) and (7.14) that

~(A)¥} (7 ) ¥ (#) = (F(4) (1.16)
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for all Ae a.nd 4 '
) (7) % () = St (7)) )
where { j’(g‘)u:.} are the matrix elements of j'(g) in the Basist{e;} of V,~,.

In low dimensional quantum theories thh braid ltatutu:l our notion of duahty

" must be modified. We say that a local theory is dual to a qnuxtnmgnlu Hopf algebn.

K iff its category of superselection sectors is equivalent to the guot:ent category Rep(K).
Contrary to the case of semisimple groups or Hopf algebras, this causes difficulties in
the construction of field operators with an explicit Hopf-algebra symmetry, since Rep(K)

is in general non-Tannakian for non-semisimple K, i.e., it is not realizable in terms of

* vectorspaces and linear maps between them. The extent to which analogous field operators

obey local braid relations is discussed in Chapter 7.2. l,

An important consequence of properties (P1) and (P2) of Chapter 2 - in particular
of the rigidity usumptxon - is that the jndex of an meducxble lector is finite, i.e.,

. Ind(p) = [p(M): M <00, © (1.18)

where the index, [N : Al],'of the embedding of a von Neumann algebra N in M is defined
in [41].' It has been shown in [23] that (7.18) is equivalent to (P1) and (P2). Also it is
proven in [23] that the dimension given in (7.9) is related to the index by

Ind(p) = d(p)*. . (7.19)

For an irreducible endomorphism p, we have by rigidity isometries T'pop1 € Mor(1,p0p)
and I‘;o,J € Mor(1,5 0 p), with

P (Tiopa) Poupa = (o)™ e0d 5 (Toeps) Taopa = (o)™, (1.20)

where the sign is always + if p 27 and an invariant with res‘pect to normalization if p
is selfconjugate. In this case, if the + sign appears we call p real and pseudoreal if the
- sign appears. ) ' i ’

Finally, we present some elements in the categorial ducnpt:on of local theories that

are related to the theory of subfactors. Assume that 9 C 9.71 u an inclusion of type 11,

i
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von Neumann algebras (with the same units). Let L?*(90) be the Hilbertspace obtained
from 9 and from a state on 91, and let Jyp denote the modular conjugation with

respect to a cyclic, separating vector € L?(91). We then define the modular extension
M, C B(L(M)) of M over N as

My 1= Syt oy - .
It is shown in [23] that the modular extension of p(9) by p ¢ 5(9) is isomorphic to M.
The action of M on L?(p(9N)) is given by
M.p(A) := £d(p)p(Tpop1)" p 0 H(Mp(A)T poz,)
where A, M € M and the sign is as in (7.20). For the projection

&y = I‘,,,,,,J‘;op., € m,

we then check that
eo.p(A) = eo(A4), forAem
where
€ : p(M) — po (M)
P(A) = po 5(P;°,',p(A)P,¢,',)

is a conditional expectation )

indexconditional expectation, i.e., a positive, linear map £ : 9t — M between included

von Neumann algebras such that
e(mn)=¢e(mn, if neN.

It is a known fact that this projector together with the extended algebra generates the
- extension : '

{p(90), e0) = . (7.21)

Inductively, we thus have a tunnel (tower) of successive modular extensions

...Cpopop(M)Cpop(IM)Cp(MM) C M. (7.22)
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Furthermore, from the series of isometries

T = (007 (Topa), 72
Tansry = (p0o )" 0p(Tpopa) - ! (72

we obtain the conditional expectations
tn(4) = pop(T(m ATm). (7.2

They correspond to the sequence of projectors
en =TTy, : (12

which obey the relations of the so called Temperley-Lieb algebfa:

ﬁpen €ntl en/ = €p, .
€nlm = €men if Iﬂr—ml >2. .
Here

B, = Ind(p).

As an alternative to the chain in (7.22) we can consider the sequence of inclusion

w.CM,CMC..., (7.2
where o :
M = (popl(@YNM = End((pop)), 2
My = (pop)top(MyNM = End((pop)*op).

The advantage of confining ourselves to the commutants M, is that they are all type I;
11, von Neumann algebras and that they are purely categorial. We also héve condition

expectations E2,, : M,y — M, by setting
Epu(a):=T{al(m), @€ May, (7.2

However, (7.27) is in generalnot a sequence of modular extensions (tower), i.e., t
modular extension of M, over M,_; is contained in, but not equal to M, .. Still, if t
theory or category is rational then the sequence.(7.27) becomes a tower for n > |£].Mc

precisely, we have
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Lemima 7.1.5
Let My C ... C May C M, C... be the chain of algebras defined in (7.27), and let C3,
#=0,1, be given by C{V={j|j € (pop)"} and C{ ={k|k€(pop)"0p}. Then

Ma,.4 has a decomposition into simple factors

Myp= @ My
kecl)

where M}, , 4 acts faithfully on Mor(k, ((p op)"o p#) , by left multiplication, i.e.,
M}, 4 = End(Mor (k,((p o 5)" 0 p*))).

The inclusion matriz, AG™+#), of Mz,.+#._1 C Many4 is equal to the restrictions of the
fusion rule matriz N, : (") = C, for# =0, and N : C — C{™, for # = 1.

The se@cnce ... C Cg' ) ¢ Cg' .. c Cy is strictly monotonously increasing, or -

C;f ) =C,, where Cy are the minimal invariant sets of NiN, given in Chapter 3.2,

» A very important ingredient in the study of inclusions of von Neumann algebras are
Markov traces. On the algebra M, =UM, a Markov trace, 7y, is characterized by the
n

properties that it.is a positive trace and that
Tm(ae,) ='ﬁ;"rM(a) Jforall a € Mpy:.

It is easily shown that the functional given by the formula

™™ = d(p)'(z""'#) tr(”,)n”«(a), for a€ Manig,

where tr is as in Lemma 7.1.3, is well defined on M,, and is a Markov trace. It also
satisfies

m(E%(a)) = Tm(a), for a€ M,

so that .
rm(a) = E{...E%(a), for a€M,.

This trace is in fact the only possible normalized Markov trace on M.
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7.2 Quantum Group Symmetries of Charged Fields* ,

We start from a physical Hilbert space which carries unitary representations of an observ-
able algebra over M® and a Hopf algebra, K, and define, in analogy to the case where K is a
group algebra, spaces of field operators that transform covariantly (contravariantly) under
the adjoint action 6}' K. ‘We ezplain how this notion of syrmﬂctry eztends to conjugates
and compositions of field operators and derive the resulting commultation relations and op-
erator product ezpansions, in case K is semisimple. We show t:hat commutation relations
and operator product ezpansions hold for uon;acmisimplc algebr:'as K only in a weak sense,
i.e., the respective equations have to be contracted with K-tensors with non-zero guotients
in the intertwiner calculus of Section 6.1. For U, (s¢3), we show that if the total order
of the monomials does not ezceed the level these contractions can be omitted. It would be

interesting to see how these subtleties have to be treated in conformal theories (9], where

L

we have a similar construction of primary fields in which the quantum group is replaced

by a current algebra.

In general, there is no procedure to construct a field algebra, F(C), generated by charged
fields, ¥(p®), where p” is a morphism of the observable algebra A localized in a cone C,
which has a quasi-triangular Hopf algebra K as a symmetry algebra and closes under the

commutation relations determined by the universal R-matrix of K.
In our context, charged fields with K symmetry are defined as follown.

The “fieldspace” F;*(C), with elements y(pF), p® being lécalized in C, is & subspace
of B (Hphye.).- The Hilbert space Hahys. carries unitary representation s, denoted ‘w, of K
and 2, with ,
Kco, -~ (7.30)

and contains the vacuum sector, H;, which is determined by

Hy = {v € Hpnys. | *(a)v = E(a)v;Va €K}
(7.31)
and Q € Hl )

.

where  denotes the vacuum vector.
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The space F7°*(C) is defined as the span of finite dimensional Banach spaces,
Fp» C B (Hpuys.), that are characterized, for any *endomorphism g? localized in C, by

Fp = {$() € ™€) | $(P)n(A) = 7 (P(4)) $(7°), VA€ }.  (7.32)

K symmetry is expressed by the fact, that F5°¥(C) is invariant under the action of K on
B (Hphys.)given by the adjoint representation ady defined in (4.8).

It is not hard to see that the finite dimensional spaces F,» are also invariant under K,
and if p? and 7® are equivalent as representations of % on H,, then Fj» and Fpkare

equivalent as K modules.

We now assume that Fy» is irreducible as a K representation, and
(A)FT7(C)Q = Hppys. - (7.33)
F is identified with an irreducible K-representation V, by
VP—DF’:S—"II)(Q,;”),
with ]
adi(a) (¥ (2, /%)) = ¥ (az,/") . - . (7.34)
For the charge transport operator Tz s € B, see (2.19), with
Tppr(A)= P(A) o,
we have »
. 'I(I‘p.’n) ¢(31P’) =¢(R(?1P’)'t7ﬁ’) = r(ﬁ’)l”) 11’(3)?) ) . (735)

where we use that I'ss » € B and hence R (5, o) commutes with the action of K.

From (7.31)-(7.35) it follows that H,uy,, is described by

PEL
and the fields are given by
$(2 ) = DL ® (2,.)) Pai(v) ® VI () (7.31)
. v :
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for some set of intertwiners Py ;(v) € Int(V; ® V3, V;).

From now oh we assume that the K-representations assoiciatcd to different secto
are inequivalent and that the intertwiner P ;(v) are a basis of P (V: ® %, V;). With tl

conventions (5.6) and (6.51) we can compute the *-conjugate of (7.37):

@ @A) =¥z ' (13
where

¥(2,0) = X (Piilv)2 ® 1)) Vi (7)

with ‘
Vi(e) = Vi) .

i
H

The relations of these fields with K and 2 are given by ,
) |

0dh(a) ¥ (z,7) = ¥ (az,?) BCE

and .
*(A) ¥ (2,7) = ¥ (2,) 7 (P(4)) . (1.4
The total covariant (contravariant) field-algebra F°*(C) (F°®(C)) is the algebra gene

ated by elements in F7°7(C). Note that F{*(C) = F5°*(C)*. The transformation laws
the monomials in F*°¥(C) (F=**(C)) are ' b

adi(a) (¥ (z1,6™)... ¥ (zn,p%)) =

(A1"(0) 2, ® ... ® Zn, B (%) P (., "))
: ‘ ‘ (74
ad(a) (9! (21,0)... 9! (20, ) = ‘
(A" Da) 21 ®... @ 2n, P (2 67) ... 91 (™))
withz;®...z, €V, ®...0V,,.
Let us assume that K is dual to Qi,yin the sense explained in Chapter 7.1, so that t

identifications of K-representations with superselection sectors coincides with (7.10).
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K is semisimple, this implies commutation relations for the fields, that close in F*¥ ()

and are given by the universal R-matrix of X:
1/’ (zp A ¢ (yqyl’.') =
= (2 ® v RE (AN ¥ (") (7.42)

= (Po RE P 2 ® 35,8 (169 9 6))

and

W (¥, 0%) ¥ (25, P°) =
= (RE 44 ® 25, ¥' (2 ) ¥ (. 69) (1.43)

= (Vc ® Tp, Pﬂ R?ﬁpﬂ 11”(:[”) 'ﬁ'(':?q)) 3
where pP and p? resp. p¥ and p9, are spacelike separated, Py, is the transposition of
tensorfactors, and z, € V,, y, € V;. Moreover, with the relation (7.11), we have the

operator product expansions:

P (2p, £°) ¥ (¥4, %) =

(7.44)
= 'Z a#(’:;ﬁ) 6) F(l,ﬁ, -8 F);:‘l‘: PP’°P‘-P'(“) (zr ® Yg» PFC-’(”) "/" ('1 pf))
and
¥ (25, °) ¥ (¥5: %) =
(7.45)

= Z ou(ria,p) F(1, Q:P:_r):'.‘l‘: ! (ﬁf.pq(") (2, ®a), P') Fﬁ'np’.p'(l‘) .

Yy

If we turn to the case in which X is no longer semisimple equations (7.42)-(7.45) no longer
hold, since the intertwiner spaces Int, (V; ® V;® V3, Vi) and Int, (Vi,V; @ V, ® i) are
nontrivial. There is, however, a way of understanding commutation relations if we consider
the subspace of B (Hnys.), spanned by the monomials ¢ (., p#)... ¥ (., o) “smeared out”
only over a certain subspace of V,, ® ... ® V.. To be precise, we define the subspaces
(f,‘e",'{ (pprs- - ,p,;,,) as the restriction of ¢ (., p")... ¥ (., p*) to

Zf%@lnt(%%@---@tfp,),
PE )
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seen as a subspace of V,_1 ®...QV,,, i.e., F23 (-p",..‘:,p’“) is the linear span of all”
fields |
(@ Jop.on ¥ (2 67) . ¥ (L P™)) l

with T € ‘; and I}.ﬁ...’. € Int (V’, Vh ® e ® V’“) .
Similarly we define F551 (0™, ..., p%) by restriction to the subspace

zllalnt(V,‘Ga...@V,_,{/;,)@&l,, )
pE .

of Vp, ®...®V;,‘,i.e., the span of all i

(s #1607

Note that the spaces Frou/*™ (6™, .., p7) are invariant under the adjoint action of K and
!

coincide, for serﬁisimplc K, with the total space of monomials. However, the collection of

these subspaces does not form an algebra. i

From the definition of the vertex-SOS transformation and assuming that we have
duality in the sense of the equivalence (7.11) , we see that we have to reinterpret the
commutation relations (7.42) and (7.43) as being valid only inside of the contractions

restricting them to F351.

They can be expressed in coordinates if we fix a basis e, in V}; and 2 dual basis £%

in Vj,.

If we denote the matrix elements of Ipp, . 5, € Int(Vp, V5, ®...0 V), Iy 5up € '
Int(V,, ®...® V., V;) and pr by

|
i

1.0 Gin

(Cﬁ,lphmh‘al D... ®[a.)

(Tppr..0n)8
(0.0 I p.pe8) = (Im--h.p);‘""

md  (00F, Roepe) = (RE)Y

and the field components |i
V() 1= Y (00 ) 9L () = 9! 0, 0?)
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For this purpose we consider three irreducible, arbitrarily localized *-endomor-
phisms, pi, 1 =1,2,3, which are equivalexit to causally independent endomorphisms, g,
with as (5;) > as (p2) > as(ps). Then there exist charge transport operators T's, ; € BEe.
obeying (2.19). We choose the frames, {Vc"‘ (pg)} , {V,,”‘ (ﬁ.-)}, of different fibres V, (p;),‘,
Ve(pi)i < Tepis related by (2.26). This yields a relation between the natural frames,
{V:f‘ (p1)...Vinre (p,.)}, of Vi(pr0---9Pn)i = Tior..onk EVER Y the equations

Vit (3y) VE (82) = i Cams (Tmn)) V' (01) V5" (p2) (7.59)

and

Va';k (f’x) V;‘ (P2) Vf" (f’a) =

‘ (7.60)
i (Cam P2 Tinpa) 210 P2 (Tisn)) Vik (p1) VA (p2) Vo™ (ps)s-
The s&.atistics operator £* (p1, p2) is given by
e* (p1,02) = P2 (Thn) Do T 1 (Tina) - (7:61)

Clearly, it is a unitary operator in 8°* intertwining p; © p3 with pz 0 p; and, 2 priori, it

" might also depend on f and j;. The connection to the statistics matrices is qbtained if
we combine egs. (7.59), (7.61) with (2.27), using that f)‘x&;, and as(p,) > as(p2). We
find that

. . s oa k'a'f ik’ k't
i(e* (pr,p2)) Vi¥(p1) Vgt (p2) = kg;ﬂﬁ” (s, 2, Ohag” Var (p2) Vo' (1) - (1.62)

Since €% (p1,p2): Int(p20p1, 20 p2) = Hom (Vi(p1 © Pz)g ,Vi(p20 p1),) is an isomor-
phism, we infer from the properties of statistics matrices (see Theorem 2.3.1) that
et (p1,P2) only‘ depends on the asymptotic direction of p; and 3 , and we will write

€ (pr,pa) if as(p1) < as (pa). Obviously we have that

e (prpa) = (¢¥ (P:hl’x))_1 . (7.63)
Equations (7.60) and (7.62) also imply the identity
i(p1 (% (p2,03))) Vik (p1) VE(pa) Vi (ps) =
| (7.64)

z R* (k)PhPS:m)ll:Bﬂ-;" Vﬂu (p1) Vﬁk'l’ (p3) V‘Vl"m (ps) -
"ﬂ’,'
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This identity, eq. (7.62), the Yang-Baxter equations for the statistics matrices, and the

injectivity of Int(p3 0 p3 0 p1,p1.0 p3 0 p3) — Hom (Vi (o1 0 p;:o P3)m> Vi(pa© p20p1)n)
yield the Yang-Bazter equations for the statistics operators, i.el,
: |

¢ (pn.p3) p3 (% (prpa)) € (propa) = |
s (7.65)
pa(e* (1, £2)) €* (b1, 3) Pr (6* (P, p3)) -

: I
For detailed calculations see [24]. If we specialize (7.62) to i = 1, k = [p;], and use the

normalization Vel (p;) V¥ (p;) =T, (a) VI (p‘)for tliw isometries, T, ,,, (),
we obtain the following presentation ' |

ei (Pl: P:) = z Ri (1’ P1y P2:t :::’ rham.p'(al) P:xon,p‘(a) . (7‘66)
laa’

In the case of interest we have that p; = p; = p, and the thion in (7.66) ranges over

pte{nv}, ¥ #Zo,a=a =1,s0that |

(0, 0) = 2 (5 +1) ealpip)=1) , (7.61)

where

R(ln P P 0):%: /
LA b Tl 4y = CR(1,p,0,9)0.
R(1,p,0,%)0 Y ST

The consequence of having a two-channel decomposition is that the braid group rep-

&%=

resentation given by the generators 7, := ‘l’p’! (e*(p,p)), With TnTns1Ta = Tnt1TnTnt1, if
contained in the set of representations of the Hecke algebra, Hy, o, since we also have tha
72 = (g, — 1) Ta + g, i-¢., the ideal I C C[Bg), with C[Bu)/ I = Hy, e, is aunihilated by
our representation of Bo. As remarked in [22], one can then utilize the classification ¢
unitary representations of H,,, as given in [54], to find the possible values of g;: q, =' et
N =4,5,...,00. . Lo

For the associated projections e, = %‘:{-} = p"(es(p, p)), we find the usual Tempe
ley-Lieb relations (7.27), with 8 = d2, provided o is an automorphism and using (7.5
and (7.58), with p = p;, 1 =1,2,3, and 0 = o' = ¢". In this case, one finds, by inserti:
(7.67) into the Yang-Baxter equation, the compatibility condition

B=g+q +2. , (7.¢
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decompositions.

We first note that if a{ € p o p, which means that there exists an isometry
- 0 #Tpopey Elnt(pop,0,), and o, is a localized automorphisms, then we have, for the
*_endomorphisms 7 :=oi' 0 p 2 pooj? (“=", for alx;;), that 5o p(A) p0p1 = Tpop14,
for all A € B, where T'pop1 := 07 (I'pope, ) Similarly, we find an operator Tpop1, with
p0 A(A)pop1 = TpopiA, VA € B, such that there always exists a conjugate sector. It
follows from the result in [23], that Ind(p) < oo, for all cases. Hence Ind(y) < o0,V € &,

® Being the sectors generated by p. Moreover, we find from i) that

pop=10y (7.50)
and from ii) that - A
pof=10004y : (7.51)
where ¥’ := ;' o9, and 0 := 07 0 0y,

The assertion follows for cases o), iii) and iv) from the basic properties of sta-
tistical dimensions, namely: d, o, =d,, ' d,,, ;00 =d,, +dp, and d, =1 iff o is an
automorphism. For o), we have d, = 1, for iii) &} = d; + d,, + d, + d,, = 4, and for iv),
@ =1+ dy, dyd, = d, + d,,d, + d,,d, = 3d,, hence dy = 3 and d, = 2. The proofs of i)

“and ii) require some additional knowledge on connections of automorphisms to condmonal
expectations and Temperley-Lieb algebras.

We first consider two irreducible *-endomorphisms, p, and p,, which are arbitrarily
localized and have finite index, and assume that there exists a localized automorphisms, ¢,

with
0" € 71 Opg.‘ . v (7.52)

From an isoxﬁetry, T'p 0.0, intertwining o’ with a subrepresentation of p; 0 g, we find -

an isometry  (0')”' (Tpopmet) Which intertwines the vacuum representation with the
*.endomorphism ((0’)" ° p,) 0 p3, 50 that 5, = (') o p; by property (P1) and T,,0p, 00
is unique up to a phase factor. It follows that N,,,, .» = 1 and d,,, = d,,. In particular,

for some choice of 7,, there exist a localized unitary operator, Totops.01, 20d an isometry,
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Fh“h-” such that i
i
Loome =Torp, ,, o' (Taiopa) - | (7.53)
i

These properties u:nply that the projections e, (p1,p2) := I‘,,.,m,.,:l“ p10p3,0 &T€ Unique and

obey ' '
eo (p1,p2) = Loiom ' (€1(P2,p2)) I‘a’ch 1y (7.54)
where e,, = ¢, (5,, pa) is just the Temperley-Lieb projection mtroduced in Section 2.5,
Moreover, we have that e, (P1,P2) = €5 (2, p1). Let us assume there exist an endo-
morphism, p3, and an automorphxsm, o, with 0" € p, 0 ps. We 1mmed1a.tcly find that

Pr00" = p3, dy, =d,, =d,,, that the isometry, T\, o, ov, is umque uptoa phase and can
be expressed,similarly to (7.53), by

Torops.on = p2 (P;iw”,p]) Torozat) | (7.55)

where T,0,1,, is unitary, and Tpiom,a is normalized, relat:ve to T'pep1, such that

(7.20) holds. The identity following from (7.55) for the (umque) Projection egn (ps, p3) =

p20ps o™ 18 expressed by |

Cor (Pz, p3) = p; -(r;,”",,,) e1(p2,52) p2(Ty00m) - (7.56)

1t is straightforward to derive the generahzed Temperley—Lleb relation

Bor (eq (P2,05)) €0t (P1,p2) p1 (n (p3, £3)) = py (e,,, (o2, £3)) (1.57)

from the previous equations and from relation (7.27), i.e.,

Bpa(er(pa, P:)) e1 (P2, p2) pa (e (p2,72)) = p, (e1 (Pz,pz)) ,

and, similarly

Beq (Pllpz) P1 (Cc" (PZ; Pa)) €y (p], PZ) = e,; (Pi, Pz) . ) (758)

From (7.57) and (7.58) we can infer that Ind(p) < 4, in case i), by using the statis-
tics operator which is fundamental to previous approaches (19] to braid statistics and
whose definition requires the explicit use of charge-transport operators and: ireference-
(specta.tor-)endomorphxsms We therefore briefly rederive its properties from those of the-

stahstlcs-matnces discussed in Theorem 2.3.1.

204




constraint (3.68) imposed on A*, := N} [ €5 : C}° — C°, i.e., by determining the solutions
of Awht, = AwAt,. We first note that, since 2> [|Aasl| = [|AwAle ||} = |Au], the graph
associated to A, has to appear in the classification of graphs with norms not larger than
two, given in Theorem 3.4.1 . Since any cycle (subgraph isomorphic to A{})) has norm
equal to two, the only graphs in this set with cycles of length two, four or six, are Agl),
A and AQ_). All other graphs, in particular those listed in o) - iv) of Propositi'on 7.3.1,
fulfill the prerequisites of Corollary 3.3.7. Thus if there is some Ay, [|Axl] 5 2, for which
there exists a non-isomorphic solution, AL, of the normality constraint, A’_ has to be of
type, A(,l,,).,,, ,m=0,1,2. Since Ay :CP® — C5° has no cycles of .length two, four or six,
we have, by Lemma 3.3.6, that the component A := (%), = ( 3,) of the twice iterate
of one coloration obeys a) - c) of Lemma 3.3.6, so, by iv) of the same lemma, T'y, = G4.
For Ag ), we see that A; := (Am )c contains a double edge and is therefore excluded
as a candidate for T, but, for 4, := (Am ) and A; := (A(l) ) statements a) - c) are
easily verified. We therefore obtain the only I'e, = (Ao, C®,C5°) with non-isomorphic I,
by going through the construction of G4 given in Lemma 3.3.6. We conclude that
Ga = DY,

and _ (7.48)
Gas EQM.
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It follows from (7.48) and the positions of (+) in (A10) in Appendix A, that, for real-
izations of Dgi) in a fusion rule algebra, we have that Out (C®) = C® = {1,0,, 03,03},
(thus = Z, x Z; or Z,), and dec;omposition iii) follows. Similarly, we have for E‘(,‘), that
Out (C®) = {1,01,03, } (hence = Z; and 03 = 6,%), and therefore C° = {p, 01 0 p, 73 0 p}.
If we define p €C° by pop = 1@, (ie., C° = {1,0,,03,9}), decomposition iv) fol-
lows, since ¥ is a neighbor of every element in C{° in the graph Eg‘). For all other
graphs, listed in o) - ii), we have by Corollary 3.3.7, a bijection, £ : C* — C§°, such that
AwE = Aw. If v\lve apply T to the C®-part, d°, of the Perron-Frobenius eigenvector of N,
d=(d°,d",..)eCPDCP ... (if C® = C® put d° = d'), obtained from the statistical
dimensions, d,, which is the Perron-Frobenius eigenvector of A in the finite case, then

we find that
Td° = dI DAL =4} (ALD ) & = 4t = &AL D = &P
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By (3.55) the equation dy;) = d; implies that Z(Out(C)) = Out (€5°). Hence there i

at least one automorphism in (C5°), namely o := £1. More gelnera.lly, the set
. |
stab(p) := {0 |oop=p} |
I
is a subgroup of Out (C), since 1 = -‘25 = d, and because of grading considerations

Hence, using stab(p) — Aut(I'y): 0 N‘ | C5°, stab(p) is also a subgroup of the graph
automorphisms of I's, that fix the vertex associated to p. It consxstn of the vertices in ',

of edge degree one that are joined to p and is given, in the case where |[T'o| < 2, by Z,
or Z; x Z, for DS ), Z, for Dy, Z;, for Dy, D‘,, and Aj, and i n trivial for all other cases.

K E:C — €3, as defined above, exists it follows, that }Z‘(a) ©p=pfor any I :=
Z(stab(£)) C {pop}. Also, T consists of automorphisms and, as A := 515 is an auto-
morphism of T, fixing p, for any I/ : C® — C° with AT = Ao, we have that A maps
stab(p) to itself. Thus T is independent of L. Conversely, if, fora€C, @05 = pholds
we have, from Lemma 3.3.4, that a € {po £} N Out (C°). Foxf' any such automorphism,
we can define Za := N{ [ (2 : C® — €, with AT, = Ao, 50 that @ = L,0€Z. In
conclusion '

T = E.(stab(p) = {a € " : a0/ = p} = {p 0 p} N OUL(CY),
and ) .

IZ] = |stab(p)|, for Out(C)#0, and I= 8, for Out(Cr)=0.

(7.49)

We now can assign to the remaining inclusions the decompositions o) - ii) by comparing
the isomorphic inclusions I'y, and IV, and their automorphisms. Since, in thesef,casea, the
number, v, of representations in p o 5 is less than four, we have that v =|lpo =

llo o pl|* is equal to the number of representations in pop; (here ||(.)]| is the euclidean

~ morm of eq. (3.3)). Since v, <3 and [stab(p)] > 1, the number e = v, — |stab(p)] o

non-automorphic representations in p o p obeys 7 <2 and 1, =2 only for v, =3 anc
Istab(p)| = 1. However, the only cases with v, =3 are D,,,,, D, and D, for whic!

stab(p) =Z; or Zs, so that there is at most one non- automorphic representation in p o

- This completes the first part of the proof, showing that Ind(p) < 4 leads to the decompc

sitions listed in o) - iv). ‘
<

1t remains to prove the converse implication, i.e., to derive Ind(p) < 4 from the give
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restriction of the fusion rule matriz to fusion between 0- and I-graded sectors is given by
the incidence matriz of one of the following bicolorable graphs:

0) Asz;
) Aups, Doss Foa(lnd(p) < 4); A, ES(Ind(p) = 4);
) Dup =0, lad(p) <4); Dk, D (¥ # 03, Ind(p) = 4)
ii) DY,
iv) EM.
(For the definition of these graphs see Appendiz A. )
Proof. We first assumne that Ind(p) <4 and show that o) - iv) are the only possible

inclusion graphs. We consider the superselection structure, ®, generated by p. Since

Ind (py 0 p2) = [p1 0 p2(M) : M] < [ps © p2(M) : pa(9M)] [p5(M) : ] = Tnd (py) Tnd (o),

- [23], we have that Ind (p;) < o0, for any sector p; € &, and can thus assume properties (P1)

and (P2) of Chapter 2 to hold on &. It follows that the fusion rule matrix, N,, is well de-

fined on ® and has only finitely many entries in each column and row. Moreover, we can as-

sign to the sectors p; € P the statistical dimensions, d; = Ind (p.»)} < 00, which form a pos-ﬂ
itive eigenvector of N, according to (2.54), with eigenvalue d, = ﬁé = Ind(p)}. Further, it
follows from (P1) and (P2) that, in sequences .. .Cg') C Cg'“) C...,#=0,1, each of the
subsets Cg‘ ) of ®, as defined in Lemma 7.1.5, is finite. We denote by C® = UC’;’ ) C & the
(possibly infinite) union of these sets, whose elements are the “#-graded se:tors”. We use
the inclusion matrices, A(™), of the commutant algebras M,,_; C M,, which are, by Propo-
sition 3.2.11), just the restrictions A := N, | -1 — C{™, AGn+1) .= N TCM - e,
Cg' ) labelling the factors of Mjn44, in order to define matrices A, : C° — C5°, with only
finitely many non-zero entries, by setting

AGY (A@n+1) - on )

A (Azn41) ==
0, elsewhere.

For these matrices, An+1 — A, has non-negative entries, which are zero at positions

where entries of A, are non-zero. Thus, for the graphs, I', = (Az,.,Cg"),Cf"'”), Tongr =
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(Azaﬂ,C"" C(")) we have that T, is a subgraph of Topa (i‘e, it is obtained from

Fay1 by amputating only the edges that are joined to vertices in ITat1}\|Tn|). These
graphs therefore inductively define I'o, = (Ao, C® ,C;”), with A =N, [CZ : C> — e,
AL =N, IC:C - C®. Asiniv) of Proposition 3.2. 1, we have Perron-Frobenius vec-
tors (7",9") € C x C°, with finitely many non-zero components, such that A" = ﬂ,%
and Aly" = ﬂ.% 7", and, for the vectors formed from the statistical dxmenslons d* ¢ (68
we have that A, d° = ﬁ, d' and AL &' = ﬂ,’d° Since Ao, — A, has non-negative entries, it |
fllows from 0 < (&, Aue ~ Al 1) + (1 [Au = Aa] ) = (8F - B8 0, 17) + (&2, )
that B, < B,. Thus, as the §, are monotone j increasing, S, - ‘-» sup B < ﬂ, (In -order
to show that 8, = sup Bn for the general infinite case, one hos to go back to the defi-
nition of the index {23], since, for general infinite N,, there corresponds to any eigen-
value /G > sup Br a sequence of numbers, d;, which form an elgenvector of N,). For
Ind(p) < 4, it follows that any subgraph I, C I's, has norm "1" = IIA,.H < 2. The finite;
bicolorable graphs with norm not larger than two have been classxﬁed in Theorcm 34.1
and are given by A,, A%},,, D, D), E¢qs, E,;7 s from which we also find the non-
bicolorable graphs 4, §1.’, T and 4,. (These graphs are given in Appendix A.) It
follows from A,1 = 4, that each of the indecomposable graphs, T, has at least one ver-
tex, 1, with edge degree one, which excludes A( ) from the above list of bxcolorable graphs.
It is easily verified that the only infinite series of graphs I'y, S T, : . whlch can be
constructed from the above list are A, C Ap1 C ... and D,. € Dny1 C ..., where the
common vertex, 1, is given by an endpoint of A,,, in the first series, and thc eﬁd};oint o‘f
the short leg of D,, in the second series. Besides the infinite graphs A, and D, we are
left with the finite graphs A,, D,, DO, E; 7.8 Es 7.8, which are listed in o) - 1v) In any
case, we have that 8, — 8, since ﬂ,. =4 cos? = vy ( 4 cos? m) tends to 4, as An T A -
(Da 1 Dy), and we have that 8, = B,, for n > diam (T, ), when the graph I‘,,o is finite.
The sites in Ty, at whlch we have automorphisms, i i.e., the sites correspoudmg to the
smallest component of the Perron-Frobenius vector of the incidence matrix of I'y, have

been indicated by () in the graphs of the Appendix.

We are now in a position to derive the decompositions of pop and po p, stated

in Proposition 7.3.1, from the list of possible inclusions by considering the -normality
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7.3 The Index and Fundamental Decompositions

In this section we investigate, for C*-quantum categories, the connection between the
structure of the tensorproducts pop and po j of an irreducible object p and its sta-
tistical dimension d(p). In particular, we find criteria in terms of these fundamental
decompositions which are equivalent to the statements d(p) < 2 and d(p) < 2. We also
prove that if the fundamental decompositions contﬁin, only invertible objects then the ele-
ments in po 5 form a group isomorphic to (Z,)M. The proofs are given in the formalism
of C*-quantum calegories as arising in local qguantum theories (see Chapters 2 and 7.1).

They can be translated into the language of abstract tensor categories without diﬁ‘iéulty.

The classification of fusion rule algebras presented in Section 3.4 was based on the ADE
classification of graphs with norms not larger than two and is therefore associated to
local quantum theories that are generated by a single localized *-endomorphism, p, with
Ind(p) £ 4. In general, the computation of the index, Ind(p) = [p() : M}, is rather
difficult, so one is interested in replacing the index by other more computable quantities,

. which involve the use of locality and braid group statistics.
From the obvious inequalities for statistical dimensions,
dy21, ad di=3 Nepuwdu2#{:¥€pop},
¥

it is clear that if Ind(p) < 4, pop, as well as pop, cannot contain more than four

irreducible subrepresentations. Also, it has been observed in [23] that, for selfconjugate -

sectors p with two-channel decompositions, p o p = 1 @ 9, the existence of a unitary braid

group representation enforces that Ind(p) < 4. Below, we extend this result and list five

classes of endomorphisms, characterized by the decomposition of p o p and p o 5, for which
Ind(p) < 4 follows. The purpose of Proposition 7.3.1 is to show that it is possible to find
constraints on the decompositions of pop (resp. po p) equivalent to the index restric-

tion. More precisely, we prove that, for any endomorphism p which does not belong to

one of the five classes, Ind(p) > 4. In the description of these decompositions we not only

count the total number of irreducible subrepresentations, but also the number of automor-

phisms in po p (p o p, resp.). We shall see that the representation o in the decomposition
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pop=~a@®yisfound to be an autémorphism if and only if the corresponding projectior
es(p, p) € p*(IM)’ N NN satisfies 2 Temperley-Lieb relation. The group of automorphism:
inpop,i.e., » ‘ : '
stab(p) i={o|oop2p} |

— which is important in cases ii) and iii) of Proposition 7.3.1 — is studied in generality, i
the course of the proof. During the proof, we shall have to make a small detour, in orde
to rederive the braid-statistics formulation in terms of statistics' operators from the theor;
developed in Section 2.2. The possible forms of the fusion rule n;zatrix, N,, restricted to th
O-Qraded sectors, will be given in terms of griphl, for cach case uepa.ratély, and knowin;
that the index of p is given by the square-norm of these grapl;s we can find the possibl
values of Ind(p) : Ind(p) € {4 cos? & —— In the more complicated cases, ii) (¥ # o
iii) and iv), of Proposition 7.3.1, we shall reach the accumulation point, 4, of this set
and it turns out that, for p = p, the fusion rules are dual, in the classical sense of [29], t
the dihedial-(ii) and iii)) and the tetrahedron-group (iv)), regarded as discrete subgroup:
of SU(2). '

Proposition 7.3.1 Suppose that p is a localized irreducible *-endomorphism of a loca

: quantum theory with braid éroup statistics. Then

Ind(p) < ¢

'

if and only if the composition of p with itself has one of the following decomposjiians int

irreducible endomorphisms:

o) p is an automorphism
i) pop = 0@Y; .
i) pop = a,@&,@gb, or, equivalently, pop=1GodY';;
i) pop = 190,90 Do03;
w) pop = 1@Y, with Yop=p@poo,; @pooy;
where g, 0;, 1=1,2,3 are localized *-automorphisms, i.c., 0,05, X 5;00; X id,'c'n
¥, ¥' are irreducible localized "-cndamorphism.g. Under these assumptions p* genérafc

@ Z- or Z,-graded superselection structure in which all sectors have finite indez,‘ and U
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we obtain in place of (7.42) and (7.43):

{2:} (!"h""‘);‘"“ Ya, (P") < Yan (P’“)Vo

= X (h.n..;.)?"“"( *m,,,,)mm Ya, (P). .. (7.46)

{a}nnn aht1h
¢‘nu (P’“‘) 'I"u (P’.) . -"l’a. (P’“) Vo

and

) (Z:)(In---h.n);‘"" '1’1; (P”)’/’L (P’“)”o

Cp.1@h

={E)(Im..m)§“"“ (RE_)™™" b (o). (7.47)

¥l (™) WL, (). 9L, (PP) ve.
for any ﬂ, I’."._h € Int(V,, V" ®.. . ® Vﬁ) ’IP\---PmP € Int (VPI ®...8 V", ‘/,), v, € Hl
and pP*+1 and pP, resp. p”-1 and p™, spacelike separated. The expressions from (7.46)

and (7.47) are contained in  (eg) ® H,, es € V,, and ‘vanish if we insert Ipgs. 5. €

Into (Vp, V3, ®... @ V), resp. Iy pnp € Into(V,, ®...8 V,,,1}), so that the “internal
states” on which K acts are actually described by the path spaces P (Vp, V5, ® ... ® V5, )
and P(V,, ®...8 V,,V;). ’

_ In the same way we find operator product expansions in constructions generalizing

(7.44) and (7.45), relating the restricted monomial spaces by e.g.
m(p",...,p")c '(m) Z m:(ﬂﬁi"'vph-llpﬁ:ph”v")P’“) )
pec _

so that, eventually,

.

Ez(ﬁhl"'!l””)c’(m) Z‘F’l(P’) .

peC
The necessity of contracting the fields is in fact not surprising, since we cannot expect to

recover the entire R-matrix, R;;, if V; ® V; contains representations of zero g-dimension,

from the information (the braid matrices) given by the statistics of superselection sectors.
We conclude our discussion of the field construction with a remark on Uy(s¢;).

If we put ¢= eﬁ, we see from the tensor-product decomposition (5.19), that any

monomial expression ¥ (.,p*)...¥(.,p") can be reproduced from the contracted prod-
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ucts, i.e., we have
You (7). . Van (P7) € B P .., P7)

for all {a;}, whenever f: pi —(n —1) < N, where the labels p; are the dimensions of the
=1 )
quantum group representations. Thus, with these bounds on the dimensions, (7.46) and

(7.47) bold even when the tensors Iy, .5, and I, .5, , are omitted.
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" b) stab(p) = Z; x G, with G as in a), and an additional generator T of Z,, so

that
q(r*g)=i""q(9), foree{0,1}
andg €@, q(9) € Z; as in o). Furthermore, A= +e¥, and
b+ % — 40, mod 1, : (7.105)
where + applies fora € 0,0 G, and — fora €ET00,0G.
c) stab(p) = (Za2 x Z,) x G, with additional generators v and b, so that
g (r*¥g) = (-1 o(9), (7.106)
with €,6 € {0,1} and g € G, g{g) € Z; as in a). We have A= £1, and
8, 46, mod 1, fora€eG',

) : (7.107)

9,+§ 46, mod1l, fora€bo@,

where G' = {1,7} x G.

il

Proof:

i) These are simple consequences of the fact that o3 € pop and 0y 057 = 1 implies

p=70y0p.

ii) For some 03, let A>and g be defined by equations (7.98). We ﬁrst. show (7.99), using
the fact that q(a)v can be interpreted as the ratio of two particular intertwiners. To

se¢ this let R,, La € Int (po p,01 0 ) be given by

Ra=T50, 0 P(Tooay) and La r,,o,,.,p( *(2,0)) Tpoa.  (7.108)

First, it follows from

Ae ™% g(a) R,

Ra€*(p,0) =Ty, P(Tpoae) €1 (p1p) =
F;Op.vl £+(P, P) P (E+(C(, P)) I‘pba,p

Ae p(e*(a,p)) Troap = Ae™™ L,
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that o
Ry =g(a)? L. | ~ (7.109)

This implies |

Tioper #(Tooao Tooss) = a(@) 2 T, 2 (€4(2,0)) F,o;.p p(Tross)

o) Tinpe, # (4 P) @ (Cpss)) T

= qa)? Tioper # (P (£7(8,0)) Thos,s £*(,0)) r,,o..

= o) o (e7(8:@)) Rs p(e*(2,p)) Thoan

= g(@)™ a(8)™ o1 (€7(8, ) Tiope, £ (e¥(6,0) Tyops # (€7(2,9)) Tooms

= 9(@)™ 9(B) Thupey £ (0 (7(8,2)) €*(8.2) B (£¥(20))) Trop Pooas

= 9(@)™ ¢(B) Thope, p(e*(@p) a (*(8,) € (ﬂ,a)) pobio Toonp

2@ 4(B) R (9,8, 0), Tipis £ (6°(2,8) @ (£¥(8,9))) Tooas ot

For fixed a, B € stab(p) there is a unitary, Iyog,08, with p (F;ob,aﬁ) Tpoap Tposp =

Il

Tpoas,s 204 p (Taogap) £*(a, ) a(*(8,p)) = €¥(aB, p) Tacp,as. Hence multiplying

both sides of the above equation with o, (P ;,,jg,aﬂ) from the right we obtain

Rag = g(a)™" ¢(B)™ f(B,@) Las .- (7.110)

But by (7.109) this implies (7.99). This, however, implies that f is symmetric as
well as skew symmetric, hence f € Z; C U(1) and f>=1. Now we use the non-
degeneracy of f on stab(p) x stab(p) and the normal form of Lemma 7.3.2 to see
that all v; = 2 in.(7.85), i.., the claim of ii), stab(p) = (Z,)™, is true. If we
speciaiize o

f(@,8) = q(a)q(B)g(ac B)™ (7.111)
to @ = B and use a? = 1, we find ¢(a)? = f(a, @), which together with (7.‘87) gives
(7.100). Finally g(a)* = f(a,a)? =1, so ¢ : stab(p) — Z, C U(1).

The formulae (7.102), expressing the dependente of A and ¢ on oy, follow directly from
the defining equations (7.98).
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where we use the basic commutation relations and (7.20). If we insert (7.91) we

obtain
IgEs I, lstab(p)l ( s, ﬁj Those rﬂop,p) Tgop.p (£(8,@) Tacp,p Tposip)
. .
s | (5,208), (7.94)
_ hence
1

Z f(6 5) aoff « (795)

|5t°'b(P)| Bestab{p)
For any character ¢ € G of a finite abelian group G, we know that 3y T o(g) = &oa
9€G

Es I, =

So if A C stab(p) is the degenerate subgroup of a bihomomorphic form f, i.e.,
N = {a| f(a,8) = 1 VB € stab(p)}, then this means

1. forae N
, 7.96
g 5 )= { o (7.56)
With this formula we find from (7.95)
S E =Y L. - (7.97)
§ TEN

However, by completeness, }:E; = 1, this implies M = {1}, i.e., f is non degener-

ate. With this knowledge the orthogonality relations E,Eg = s.,gE can be easily
verified. m]

The remarks made in Lemma 7.3.3 will now serve as an important tool to prove the
féllowing assertions on the situation where pop decompdses entifely into invertible ele-
ments. Proposition 7.3.4 classifies the possible groups, stab(p), to be of the type (Z,)M
and gives the general spectra of the statistics operators £(a, 8), £(p, p), in a suitable choice

of generators of stab(p).

Proposition 7.3.4 Suppose p is an irreducible object of e quantum category and assume

that p o.p decomposes into invertible elements. Then

1) supp(p o p) = stab(p), and for any o1y € po p we have pop= T U;o a.
a€stab(p)
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1) All elements in stab(p) are selfconjugate, i.‘e., there is some M € N, such that
stab(p) = (Z2)™ ,
so, in particular, |d,| = 2(¥),
iii) For any given o, € po p, let ¢ : stab(p) — U(1) and A € U(1) be defined by
elpp)=Ae™% 37 g(a) eroalps ) (7.98)
acstab(p)

and g(1) = 1. Then we have that the bihomomo’rphism f defined in Lemma 7.9.9
is a 2-coboundary given by ‘

f=6q. « 7 (7.99)
We have '
g(a)? = ¥ (7.100)
and further ’
‘ ¢=1, ff=1
The constant A? is given by
AR = (4600, ) : (7.101)

_If oy is replaced by oy = B o 01, B € stab(p), then the quantities A’ and ¢’ associated

to o] are given by
A'=gq(B)A,  and q'(a) f(ﬂ,a) q(a) (7.102).

v) There is a choice of 0, and a system of generators of stab(p) such that the quadratic

function g : stab(p) — Z4 is as in one of the following cases:

a) stab(p) = G = (Z, x Z,)" with generators &, n;,i=1,...,N, and”

N . f:“"" )
oI &rt) = (05", frahetny. ()
i=1
In this case A = +1 accordmg to whether p is real or pseudoreal (if selfconju-
gate) and
0, =46, mod1l, Va€pop. (7.104)
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the skew symmetry, f(a,B)= f(B,a). The polynomial equations on the one-

dimensional intertwiner spaces, Int (po a; 0 --- 0 a3, p), are given by

F(p,,8,p)e0s R*(p, a0 B,7,p), = R*(p, 0,7, p); R*(p,8,7, Y5 Flp, 0,8, )28
etc., which imply that f is homomorphic in ever-y component, after cancelling the

F-matrices.

It is clear that we always have a normalization of intertwiners such that

Tigs @(Taan) = @ (Toay) Tass =1 (7.88)
for all o € stab(p), with a # a. However, for o? = 1 this can @ priori still vary by a sign
(pseudoreality). To exclude this possibility note that in general

€(a,a) = €™ Taay Ty (7.89)

For a? = 1 this specializes to £(a, a) = €™ and hence f(a,a) = €*™% ¢ Z,. The sta-
tistical parameter is then Ao :=a (1"”1) e(a,a)a(Taa,) = €™  but also A, =
€293, 1a(Taq,). With e*™#« =1 this implies reality for a and (7.88) holds for any «,
i.e., by unitarity we have Taos,1 = @ (Tsoa,1). For the unitary intertwiners, I'poa,, we have

an F-matrix identity
Ppoa,p Fpoﬁ = ‘Pa P (rco&,l)
for some ¢,. We obtain
I‘P"‘ﬁP ‘PG pou P P(Pao& 1) - (Pa poap poa (FEOG 1) = Pa P(Péoa 1) Fpoa,y )
which yields, after multiplication of I'jeq,, from the right, ¢, = ps. Hence
p(e(a,&)) Tooap Tposp = ¥a g?mife P (Taoan)
= € Tron Tpoay

and therefore f(a,a) = €™, for general a.
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i) First let us record a simple consequence of the equation !

fa

#(4,4, k,l)::; = Z R*(l,i,r, t)gg' R¥(j, &1 l) iR:F(le»’v"):::' (7.90

(compare (2.38)) for the matrices, , defined by ,
|

pi v(r”"’."'(a)) r"”’-"(ﬂ) = E@(i’jr k, ‘):5 Fﬁ‘:»’.ﬂ‘(f‘) Pp"op".p‘(") .
1f (7.90) is specialized to j = t =s=r=pandk=aq,i = B € stab(p), then we finc
j
#(B,p,a,p). = R%(p,a,8,p)" ;
and therefore = . ‘
B (Tpoap) Topw = £(2,8) Tgopss Tooarp - . (7.91:

We introduce an orthonormal basis, {Ia},¢y o) OB the |stab(p)|-dimensional In

tertwiner space Int (popop,p) by

Ia:=T4op, @(Tpopa) Taops (1.92

and consider the action of the complete set of orthogonﬂ projectors, {E;}“mb( 5)
given by

Es = p (Tsops Taps) = (7 (Tios) Trora Thops (Tooss)) » (.93

~ on Int (popop,p) with respect to the basis (7.92). A matrix element of Ej i
given by

I Es I,

Thopo B(Thepa) Toops 2 (5 (Too) Toopa Thop P (Coos)) Top
a(Pesa) Ty
= Thop B(Thesa) B0 p (7 (Thoss) Trera) Tons Taopp @0 p (Tesa)
5(Toet) @(Trepa) Faons
= rao,,,ﬂ(r;‘,,;,) B (T3ps #(Taopa)) Tons Tacpp @ (p (Thops) Trosa)
a(Tpot) Tacp
1

= m I‘;op,p B (r;o&,p) Pﬂ\;p.n P;og,p a(Ppoﬂ.p) |
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For the proof of these assertions the following presentation of skew-bihomomorphic

forms on abelian groups will be useful.

Lemma 7.3.2 Let G be a finite abelian group and
f:GxG-U(1)

a nondegenerate bihomomarphic form.

i) If f has trivial diagonal, i.e., f(a,a) =1, Va € G, then
G=(Z, xZn)f(Z,,xZ,,)):-»-)f(Z,.xZ%) - (1.84)

where the orders divide each other as vy | va | ... | v and “T ” means orthogonal
with respect to f. On each factor Gj = Z,; x Z,; with generators { and 1, f' is

determined by
2mi

flem=e5 . o as)

i) If f is only skew symmetric, i.c., f(e,8) = f(B,a), Va,B € G, and f(a,a) = 1,
then either
a) f has trivial diagonal; or

b)) G=12, X G, with f(1,7) = —1 for the generator T of the Zy-part, and f is

nondegenerate and has trivial diagonal on G, or

c) there is some (unique) m > 1, such that G = (Zym X Zym) X G, where f is given
on the generators £ and 1 of the (Zym X Z,-;) part by

flem) =¥, f(660=1 but finn)=-1. (7.86)
" Furthermore, f is nondegenerate with trivial diagonal on G.
We shall not give a detailed proof of this fact here but satisfy the reader’s curiosity with

a few remarks. The first part is a standard exercise in normal forms, using the invariant-

divisor form G = Z,, X --- X Z,,,, ¥; | ¥i41, of the group and the nondegeneracy of f. If f
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is only skew, then @ — f(a, ) is 8 homomorphism G — Z,, so there is some T € G, with

- f(r,a)= f(a,a), Va € G and 7% = 1. In case a) we have 7 =1, in case b) 7 # 1, with

f(f,‘r) = —1, and G is simply given by G = 7. . The complications arise when 7 # 1 and

m-1)

f(r,7) = 1. Then 7 is contained in some maximal Z,;~ with generator ¢, so 7 = ¢%

The relevance of studying nondégcnefa.te, bihomomorphic forms becomes clear in

the next lemma.

Lemma 7.3.3 Suppose that, for an irreducible object p, of a C*-quanium category,
supp(p o p) = stab(p). Then

i) the multiplicity of 0 € po p is one, for all 0 € stab(p), and d2 = |stab(p)|.

i) Let f(e,B) := R*(p, a, B, p); for all @, B € stab(p). Then fis bﬁwm&morphic and
skewsymmetric, and ! ’
flaya) = 2™ Z,. (7.87)

All selfconjugate elements a € stab(p), i.e., a® = 1, are real.

i) f is nondegenerate.
Proof:

i). We first repeat an argument given in the proof of Proposition 7.3.1. We have that
oo p=pisirreducible. Thus 1 = Nyopp = Nopop. From pop= ¥ o we have
hat o€stab(p)
tha

dp-dp= 3 1 =|stab(p)l,
o€stab(p)

asd, =1.

ii) The number  f(a,B)6s,6,, := R*(p,a,B,p)f € U(1) is well defined because .
dim (Int{p o @ 0 B, p)) = 1. The claim of Lemma 7.3.3 is that the sectors in stab(p)
obey trivial statistics, so m(a, B) = €(B, a)e(a, B) = 1, which on the level of R-
matrices means R*(p,8,a,p)R*(p,,8,p)2 = 1. - But this is just exﬁréssed by ‘

[
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the monodromy m(p, o) = e*(a, p)e*(p,0) = U~(0)*U*(0) = 3% defines a character
on stab(p).

We can define a second operator U(c), which is different from U*(0), for p # p, by ‘

setting
U(o):=d, poo (r;op.l) Tpopt» o (7.7§)

so that U(c) € Int(p 0 0, p). Also, since 0 0 p = p and by (7.76), we have that U(c) €
pop(M) NM, and’
U(o) Tpopa = Tpopa - (1.17)

From the irreducibility of 5 and 5 o o and from (7.76) it follows that U(o) is unitary. Thus
&U(,) o j = poo. This shows that o — U(o) is a unitary representation of stab(p), since,

by (7.77), no 2-cocycles (as in (7.73)) can arise. Therefore we can write U(0) in the form

Npeps .
U= 30 (b)) Trona(@) Thopi(B), (7.78)

where h; : stab(p) — End (CN'M"), o — h(0), is a unitary representation of stab(p) on
CNrerr and hy(0) = 1.

The left inverse, ¢, of ﬁ;‘ defined by
¢a(A) = Ty ap(A)peza, A€M, | (7.79)
maps Int( o o, 5) to Int(,1). It therefore follows from Schur's Lemma that
vz (ﬁ(c)) =0, for o #1. (7.80)
Note th;t, by the “generalized” Temperley-Lieb-relations (7.57), we also have that
va(e(pop) =87, - (181)
for all ;r € stab(p). |

In the case of interest, jop=1@ 0 @, (7.78) specializes (with IpopyLpopg =
i- el(ﬁn P),— ea(ﬁ) P)) to

U(0) = hy(0) + (1 = hy(0)) (7, p) + (ho(0) — hy()) s(7, ). (7.82)
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If we apply the left inverse to (7.82) and use (7.80) and (7.81) this yields the following

equation for 8: L4 o) ;
p=2- —h,,(a) . ' : , (7.83)

Here h,(c) and hy(o) are characters of stab(p) and, because of the equation
ﬂ:d::d‘+d'+d‘=2+d" .

they are constrained to satisfy —%:’-’(? =dy 2 1. If ¥ is an automorphism stab(p)

is of order three, thus isomorphic to Z3, and therefore ¢y = 5. Also, we have that

ho(o) = (hy(c))™? is a third root of unity, and it follows that

- i

B=3.

For a  which is not an automorphism, we show that stab(p) = Z;, so that h,(o),

hy(o) € {1,-1}. The only solution of (7.83) with 8 > 3 is therefore hy(o) = —1, k() =

1, and we obtain that : '
- B=4.

This completes the proof of Proposition 7.3.1. ) ' u]

The statement of next lemma can also be expressed as the fact that all sectors in stab(p)

are either fermionic or bosonic and obey trivial statistics relations among each other.

_The superselection structure of stab(p) may be realized by any finite, abelian group.

This changes if we assume that the automorphisms stabilizing p constitute the entire
decomposition of p o p, i.e., if we assume supp(p o §) = stab(p).and p o p contains at least
one invertible element. Still there exist fusion rule algebras for any abelian group G such
that G = stab(p), but if we require this fusion rule algebra to Aescﬁbe a quantum category
(resp. a local quantum field theory) these automorphisms are given by the representations
of a finite, abelian reflection group, i.e., stab(p) = (Z,)N for some N. The best known
examples are those for N =1 which arises in the quantum category constructed from
Urd(sty), g = e, with Aj-fusion rules, realized by the SU(2)e2 WZNW-model ( or any
other ¢ = 3-RCFT ) or the critical Ising model, and for N =2 where the c]ategofy is
obtained from the dihedral group, D; C SU(2), with Dgl)-fusion rules, and realized by
the SU(2)/D;-orbifold model at ¢ = 1 or a 4-state Potts model.
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More precisely, for Hy, o0 = C[Bw)/I¥, Agec = C[By)/ I3, we have that I¥ C I, iee.,

Apg o is 8 quotient of H., 0, if and only if (7.68) holds. From this we obtain the possible
values of d,:
d, =2cot ﬁ , (7.69)
which, in particular, shows that Ind(p) < 4.
We remark here that, for the situation where pop = o @ ¢, the Temperley-Lieb
relations for the projections e, := p" (e,(p, p)) imply that o is an automorphism. This is
most easily verified by computing £* (0, o) from e*(p, p) with the help of the polynomial

equations and the cabelling procedure. It turns out that
e*(o,0)=12}q, 1. (7.70)

However, a result in [19] tells us that if £¥(0,0) is proportional to the identity o is an

automorphism.

Finally, for case ii) we only assume that po 5 = 1@ o @ v and show that Ind(p) = 4
follows. The peculiarity we exploit here is that the decomposition of pop yields an
automorphism ¢, with o 0 p X p, which, in-the language used above, means that the
- subgroup stab(p) C Out(®) is nontrivial (= Z,). At the level of a local algebra, a stabi-
liger subgroup of Aut(C) can be defined similarly, by stab(2) := {o € Aut(C):0(A) =4
YA € A}, where A C M. If we restrict the projection 7' of Aut(C) onto the quotient
Aut(C)/ Int(C) = Out(P), as discussed in Section 2.5.3, t§ stab(p(901)) it is clear that its
imaée lies in stab(p), i.e., we have a group homorphism = given by

7 stab(p(M)) — stab(p)
! -
Aut(C) - Out(2).
For a representative o' € Aut(C) of [0'] € stab(p), there exists a unitary operator
Torop, € U(C), with 0’ 0 p(A)gr0p,p = Torop,pp(A). Thus o := ar;;.’.’ 00’ is an element
in stab(p(9M)) with [o] = [0'], showing that x is surjective. Since p is irreducible, it also
follows from p(M)' N U(C) = C1 that = is injective. Hence

stab(p(9M)) = stab(p). (7.11)
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In particular, this implies that stab(p(9R)) is an abelian group, although its elements are

in gcneral not causally independent, and the group extension
0 - Int(C) — G — stab(p) — 0
splits. Here, G C Aut(C) is the respective preimage of stab(p) .

The one-dimensional space Int(0 0 p,po00)=Int(p,poo), is spanned by either
U*(0) :=€*(p,0) or U(0) :=£7(p,0), s0 U*(0) = > U~(0) and by the definition

of the statistics operator, we have that

P (Fa*,o) c* o (O‘) ) (772)
where G*Xp and as (%) 2 as(p).

Since po o = oy1(,) 0 p, we find that o — U% (o) defines two projective representa-

tions of stab(p) in U(C). Thus there are 2-cocycles v* € B>(stab(p)), with
U*(o) U*(p) = ¥*(o, 1) U*(o 0 ), (1.13)
where7 ~q" by'y —'y+ 6( ”“")

If we let Tyzoot wos = p* (Fot,0) Tyt be the charge transport operator for the
composed automorphism ¢ o 4 = g0 o € stab(p(?N)), we can relate these cocycles to the

charge transporters, by inserting (7.72) in (7.73). This yields

#(Tot o) =7(o,p) Tot . T (1.79)

Applying p to (7.72), it follows that

8 (U40) = F@A U(0). (am)

From (7.73) and (7.75) it follows immediately that 1*(0, p)isa bomomorphis;n in both
arguments separately, and, by (7.61), we have that e¥(o, p) = (o, )1. Since U*(a)
is proportional to U~(0), we conclude from (7.75) that v*(o,p) = v (o, ;1.) In other
words, the sectors in stab(p(91)) obey ordinary Fermi-Bose statistics among tﬁemselves,

ie., e*(o,u) = €7 (o,p) =: ¥(0, ). Moreover, it follows that 5( "‘") = 1, so the value of
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The equation (7.101) follows from the monodromy spectrum m(p, p) = £(p, p)* =

> i(30-0202) €o,0a(p, p) 2nd relation (7.118) of Lemma 7.4.1, below. If we attempt
aEstab(p)
to compute the statistical parameter of, p, we find from

2 1= dlg*’ﬁ" =p (P;,,.x) e(p,p) p (P;OFJ) '

P

and the generalized Temperley-Lieb relation (7.57), that

4! =dL’ > )q(a), (7.112)
a€stab{p

where d, = i‘/m , the sign depending on the reality of p. In order to obtain the

more detailed information on the braid matrices, given in part iv), we have to use the
presentation of stab(p) and f in Lerﬁma. 7.3.2. We shall restrict our attention first to
case a), where f has trivial diagonal or, equivalently, all sectors in stab(p) are bosonic.
This implies that ¢* = 1. G has the decomposition G = (Z; x Z;) oo X (Z; x Z,), with
generators n; , & in each factor, and f (n;,n;) = f(&:¢;) = 1 and f (m;,&;) = (=1)%4. Thus
from (7.111) the value of g on a general element in G can be computed from q(n;) and
a(6) € {+1,~1}as

g (ﬁ & nf")

=1

INI' g (e n¥) = ﬁ(—l)“'“ q(€) (n‘)

=1 =1

(7.113)

: et N
(—1)"Z: ’ TLa(e)" a(m)® .

/ i=1
To prove (7.103) we have to show that oy can be chosen such that q (&) =q(m) = 1.

Clearly any map g from the generators of stab(p) to Z, extends uniquely to a homomor-

phism § : stab(p) — Z,, such that §(&) = ¢(&), (%) = g(n), (but in general § # q).

Since f is nondegenerate there exists some a, € stab(p) with f(ag,g) = §(g). If we now
set 0] = @, 00y we find from (7.102) that ¢'(&) = f(’a,,{.')q(f,-) =4(&)q(&)=1 and
also ¢'(n;) = 1. Thus, for a given choice of generators ¢; and ; of stab(p), o, is in fact
uniquely determined by q (&) = g¢(m) =1. »

Using -
I E A

{e.8}

= 2N ) & 6!' € {0) 1}
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and [stab(p)| = 4V we find from (7.112) that A= 1. Inserting this into (7.101) anc

using 8o,0a = sy + a = 6,, mod 1 in the bosonic case we arrive at (7.104).

For the cases b) and c) we can repeat the above procedure on the E—parlts.‘ Agair
from orthogonality, 7+ = G, we have in case b) ¢(7°g) = g(7)* q(g), that £ € {0,1}, and
since ¢(7)? = f(7,7) = —1 and because of the freedom to change the sign of g(7) b
replacing oy by T 0 0, we can choose o; such that g(7) = —i, and g(g) as in (7.103) on G
From the equation ae.gb(’)q(a) = :=012.pec(‘i)‘q(g) = (1 —1)2", and [stab(p)] = 2(2N+!

we find the value of A. This yields ( with (7.101) ) 46, = %‘*‘ 6oy, and since freogos, =
Ori0g + 00y = & + 0., we find (7.105). '

Similarly we can choose o, in case c) (with m =1) such that g(7) = 1, ¢(b) = i anc

gon G = (Z; x Z,)" asin ). We then find Eb( )q(a) = 2¥+1) and |stab(p)| = 4V, s
a€stab(p L

that A = +1. Similarly as in b), this, together with f,.4s, = $mod1, g € G, implie

formulae (7.107). _‘ . [

We can now use this result and the previous ones on fusion rule algebras, in order to obtai:

a sharper version of Proposition 7.3.1 in the case where d(p) < 2. This restriction on th

" dimension eliminates the possibilities iii) and iv) of Proposition 7.3.1. The decompositio

under ii) belongs to only one inclusion, namely D,. The associated fusion rule algebra

given in (3.128),(3.129) and (3.130) of Theorem 3.4.11, with stab(p) = Z;, wecan b

" excluded, by Proposition 7.3.4, to be associated to any C*-quantum category. If we als

require d{p) > 1 the only remaining case is the two channel decomposition in i). Th
ratio of the two eigenvalue of the monodromy m(p, p) = £(p, p)? is g%, related to the inde
by (7.68). Thus, we can exclude the d(p) = 2 cases in i) if we require the monodromy t

be nonscalar. To summarize, we have: .

Proposition 7.3.5 Suppose that p is an irreducible object of a C*-quantum ‘categor

Then the following are equivalent:
i)
1<dp) <2
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ii) We have a decomposition
pop=o+,
" where v is an irreducible and o an invertible object, and the monodromy of p is

nonscalar, i.e.,

m(p,p) = &(p, p)*¢ Clyop.

'14i) The 0- and 1- graded part of the fusion rule algebra are finite and the restriction of
the fusion rule matriz N, corresponds to one of the following bicolorable graphs:

A(1>3), Dy(1>3), Ee, Es. : (7‘1141

The results proven above also lead to the exclusion of various fusion rule algebras at
d, = 2. For instance, if we consider the series of fusion rule algebras obtained from‘Dg,?“,
?' € N, (see Lemma 3.4.5 ii) (3.93)) by the procedure given in Proposition 3.3.2, we find
for the element f:= (O,w,:); that fo f =a§aol oa if grad(f) =1land fof= azejca
if grad(f) =0, where G = Out (®o) = stab(f). In the list of possible fusion rule alge-
bras, Theorem 3.4.11 ii), the cases G = Z; X Z;, (3.146)-(3.150), for any p, and G = Z,,
(3.151)-(3.158), are both represented. For p = 2p/, the existence of the sub-quantum cat-
egory with generator f and Proposition 7.3.4 imply that only the fusion rule algebras

with G = Z; x Z; are admissible. Comparing this to Lemma 3.4.9, (3.111) and (3.112),

we then find as a result that all fusion rule algebras with selfconjugate generator, p, of-

dimension d, = 2 which vdescribe a quantum-category are in fact realized by a compact
subgroup of SU(2) or O(2). At the d, = 2-threshold we also encounter the first two ex-
amples of fusion rule algebras, specified in Lemma 3.4.10, which cannot be deduced from
a selfconjugate version. However if, as in the case of Dg‘) (A§”)(°"’), a>3,pop=2r
then the monodromy £(p, p)?, clearly has to be scalar, so either ¢(p, p) = e2i(%-48:)1 or
e(p,p) = ¢?mi(Be-40r) (eX(p, p) — €2(p, p)). For these two possibilities,the statistics parame-
ter A, :=p (I"

pml) €(, p) P (Tpop) is either a phase, i.e., |A,| = 1, or A, = 0, both contra-

dictory [A,] = ﬁ[ = 1. A similar argument applies to exclude the algebras Eg (Agl)) e-2)

and descendcnté, (3.159)-(3.162), from those consistent with a quantum category.
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7.4 Balancing Phases |

%

In this section we compute the possible balanciqg or statistical ’yhases Jor the fusionrules
determined in Theorem 8.4.11, assuming that they are usoci{xted to some C*-quantum
category. This computation, based on the situation described in Pmposition 7.8.5, imposes
consistency conditions by which the E- and D- algebras and éﬁertain twisted A- algebras
can be excluded. It will be seen in Chapter 8 that the reinaining; Susionrules ére in fact all
realized as object algebras of a C*-quantum category. In the dcfivatior; of these results we
again use the language of local quantum theories which can bei easily translated into the

general categorial formulation.

As we have seen in Lemma 7.1.2, any C*-quantum category admits 2 natural bal-
ancing. The balancing endomorphisms, in this case, are all unitary and are determined

by their values on the irreducible objects. We thus have phasesf 0, € R/Z, defined by
oo(p) = £R(1,p,5, 1)} =: €27 = &0 - (1.115)

where the sign is as in (7.20). These phases will be called spins or statistical phases,

in reference to the spin-statistics theorem for relativistic local quantum field theories.
For some simple quantum categories, the spins can be computed directly from the fusion
rules, witbout any further knowledge of the category beyond its existence. In doing so,
we encounter consistency relations by which most of the exceptional fusion rule algebras

from Theorem 3.4.11 can be excluded as building blocks for quantum categories.

One of the main tools used to determine spins comes from the analysis of the braiding
relations involving invertible objects o, i.e., ¢ € Out(®). Since, for any ¢ € Out(®) and
'irreduciblc.¢ € @, 0 o ¢ is irreducible, too, we find that

e(o, ¢) 0 e(¢,0) =: m(o, ¢) = m(¢,0) = ¥C¥) . 1 . (1.116)
with
O,(¢)=044+8, — 8,04 mod 1. ’ (A

The properties of the phases ©,(¢) that can be obtained from the polynomial’ eq‘uations

have already been mentioned at the end of Section 3.3. We give a more complete summary
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in the following lemma.

. Lemma 7.4.1 Suppose ® is the fusion rule algebra of a C*-quantum category, and let

O,(¢)eR/Z, ¢€®, o€O0ut(d)
be defined as in (7.117). Then the following statements hold.
i) For any ¢ € Out(®), the map
Q,:% -+ R/Z
is a grading, i.e., there ezists a character,
@, : Grad(®) — R/Z,

such that

0, =0 ograd. ‘ (1.118)

. 1i) The assignment

©': Out(®) — GCrad(d)

¢ = O
is a group homomorphism.
iii) Ifi* : Grad(®) — D(®) is the pull back of the inclusion D(®) C Grad(®) then
0’ : Out (&) — keri® = (Grad(®)/ D(3)).
Thus there ezists a homomorphism

e":D(®) — D(?)

with 0; (92) = O (a1) : (1.119)

suchthat i*00, = Of.- (7.120)

223

Proof. If 13 € ¥; 0 3, i.c., there exists an isometry Ty, oyn.vs #j 0, it follows from
i)+ T, !
¥a (6 (43,9)) € (91, 0) £(0,%1) ¥ (6 (019)) Thiomen
V(e ($2,0)) €($1,0) @ (Cpernss) €(0rh) | .
= Tt £(¥5,0) = Ty, €70 00),
that @, (qb;,) O, (¥%1) + 6, (¥2) mod 1,ie. O, is a gradmg Here we use the nota

¥(I), as in the frame work of local field theories, instead of the more conventional nota

1}

1

1y 01, for an object ¢ and an arrow I. Similarly, we have that ©,,0.,(%) = ©,,(¥
O,,(1) mod 1, using the fact, that oy (¢(03,9)) €(01,9) is elquivalent to £(oy 0 03,
This shoﬁrs that ©, is a grading, and he.nce, by the considerations of Section 3.3,

be expressed by the homomorphism @/, and ¢ — @, is also a homomorphism. Cle:
we have that ©,, (03) = ©,, (01), which implies &/, (grad (o)) = 0., (grad (o1)), ¢
therefore, since grad (o) = 1, Vo € Out (®,), statement iii) of Lemma 7.4.1 follows.

In the Z,-graded case, the most general expression for © (¢) can be found without di
culty:

Lemma 7.4.2 Assume &  is the fusion rule algebra of a C*-quantum category a

Grad(®) = Z,. Let r be given by D(®) = Z, and the inclusion D($) C Grad(d)

6"Z, C Z,, where a = r - a". Then there is a homomorphism ',
7 Ow(8) = Zer
and, for any fized 017 E' Out(®) with grad (0,) = a", e number k,, € Z,, with
ke, =7 (0]) mod 2", | (7.1
such that |

Oorop($) = ( (ﬁ)> grad(¢) mod 1, (7.i1
forall B € Out(®,), ¢ € ® and k€ Z.

Proof. Clearly every © € Gr;d(‘?) = Z, is determined by some number he € Z,, so t!
O(grad(¢)) = f‘-aﬁ grad(¢) mod 1. |
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A character © is in ker:® iff it annihilates ¢"Z, C Z,, i.e., iff hg is a multiple of r. Hence Lemma 7.4.3 Suppose & is a Z,-graded fusion rule algebra of a C*-quantum category,®

-

keri® = {9 : Ine € Zow : O(grad(¢)) = ﬂ-a-,e-,- grad(¢) mod 1} .

The homomorphism ©' : Out (o) — keri® from Lemma 7.4.1 iii), is then determined by
the bomomorphism 7 : Out (&) — Z,», with ©p(1) = ﬂf’;’}). Furthermore, by Lemma 7.4.1
i), h: Out(®o) — Z, with ©/(1) = 2= is a homomorphism. Therefore, for some fixed
o1 € Out(®) with grad oy = a”,
' h
orosl(1) = KOG, (1) + Op(1) = k —* + n(8).

a all

So far this is the general form of a character on Z x. Out (®,). However, in order to be
a character on Out(®), we have to make sure that it vanishes on the kernel of the pro-
jection ¥ x B — ok c; B, which is generated by o] x o;". The latter yields the condition
hg, =n(07) mod 1. Together with Lemma 7.4.1 i) we obtain the assertion for ©,1,5(¢)
- from the formula for G"{. os(1) n]

It is clear that the above result gives an exhaustive description of the homomorphisms,
¢ — O, since Z x Out (%) — Out((I’) thxf— o¥ o B is surjective for any oy € Out(®)

with grad (o1) = a". The choice of h,, depends on o, as
hoyop — hoy = () mod a. (7.124)

In the case where o; = (1,1) is the canonical automorphism of the presentation & =
e (Z, * "), with Grad(®") = Z,«, then h,, is constrained by h,, = n(a)mod a”, as
o] = a. The relevance of Lemma 7.4.2 can be understood if we rewrite equation (7.123)
in terms of the spins:

17(5)

by | |
04 — 0,:.05“ = (k —;L + 7) grad(¢) - 0,:.03 mod 1. (7125)

Suppose we know the spins of elements in Out(®). Then (7.125) gives the change of the
spin-value of an arbitrary representation¢ under the multiplicative action of Out(®) on &.

The determination of the values ,, 0 € Out(®) is the content of the next result.
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and let a” vand r be as above. Then there are homomorphisms

n:0ut(®e) — Zgw ;
and - §:0ut(®) — Z;,

and, further, for any fized 0y € Out(®) with grad (o1) = a”, constants
' hey €Zoa  and €, €24,

constrained by

n(0}) = ko, moda” (7.126)
and §(6]) = r(es, +hs) mod2,
such that ’ .
‘ Boros = 5(2@ - é‘; (hoy +7€4,) mod 1, (7.127)

for all B € Out (®o) and k € Z, and equation (7.125) holds fq;' any ¢ € .

Proof. If we insert ¢ = o o into (7.125) and use grad (a{" ° ﬁ') = a" - k' we obtain
that

ke :
0,:,5 + 9'1.:“3, = 0’:.“,:050’, + --r—‘ k-k"mod1l. . (7128)

In particular, we find, for k = k' = 0, that Out (®0) — R/Z: 8 — 05 is a homomorphism.
Since for spins we have g = 85 = 65-1 = —fgmod 1 the rangze of this map is in 3Z/z,
i.e. 265 = 0 mod 1, VB € Out (®o). The spins on Out ($,) are therefore given by

8 = % 5(8) mod 1 (1129)

where § : Out (®) — Z, is a homomorphism. Setting ' =1 ax?md k= (;we obt;aig‘the de-
composition fpue = P& + 36(B). The numbers pi € R/Z, k € Z, are defined by p, := B,n
and satisfy po = 0, px = p_i and, by (7.128), pi + P = Prur’ -{L 'l;-’- kk' mod 1. The most
general solution of these equations is given by pi = —12':1 , where g€ Z, obeys

g = ho, mod r. The latter constraint is solved if we pick some h,, € Z3, such that its

image under the projection Zza — Z2a/ 6Z3 = Z, is the original h,,, and set ‘

g =ho, +r €, mod (2r)
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with €, € Z,. (If a” is even this is also well defined for the original h,, € Z,). Finally we

have to make sure that 8,505 as given in terms of the above decomposition, is well defined,
i.e,, we have to impose the condition 1§(c]) = p, = —F = —§(hs, + 76, ) mod 1,
which is just condition (7.126). This, together with Lemma 7.4.2, proves the claim of
Lemma 7.4.3. ~ : o

For convenience and later applications we give a more detailed description in special cases:
Corollary 7.4.4 Let @ be as in Lemma 7.4.2

i) If a” =1 then there is some h € Zy, such that for

h
0 := 0s + 5 grad(¢)(c + grad(¢)) ,
we have
63+6 =04, VoeOui(d), ¢€d. (7.130)

In particular, 0 — 63 is a homomorphism of Out(®) to Z, whose kernel contains
all &®, a € Out(®), end stab(¢) for any ¢ € &. If it also contains Out (Do), i.c.,
6; =0, Vo € Out(%o), then h can be chosen such that 6; vanishes for all invertible

elements.

it) If a" =2, and, for oy € Out(®) with grad(o,) =2, there is some p €  with

o1 0p = p and grad(p) = 1, then there is some h,, € Zy, and homomorphisms

7,6 : Out(®) — Z,

obeying
n(6])=hs, mod2  and : §(o])=rh,, mod2
such that ’
_ 8B8) _Fhs ‘ _

. Ooros = T " o mod 1 (7.131)

" and ‘

06— Ooropop = %‘;—‘ k(k + grad(¢)) + -6(—5—) + @ grad(¢) mod 1. (7.132)
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If h,, is even, i.c., there is some y,, € Z, with h,, = 2v,,, then

by :=04+ % grad(¢)® mod 1-

is well defined and there exists a homomorphism 7 : Out(P) — Z, with CAE
such that ,

0, 4+05-0,4= @ grad(¢): (7.1t
and o — 62 is a homomorphism Out(®) — 3Z/Z, with 62, = 0. In particuler,
have

Boros =0, forall €@, (.12
If hy, is odd, then we have o] # 1. If Out(®,) = {1,0]}, with o] #1, and -
Out(®) — Z,, is the canonical isomorphism, with 7 (01) = 1, then

O — Beu = 222 (x{0) + grad(4)), (1.3

for any o € Out(®) and ¢ € 9.

Thus for odd h,,, o] € stab(¢) implies grad($) = r mod 2.
Proof.

1) Clearly, for a" = 1,  does not appear in the formula and h = h,, is independe
of 0y. The equation (7.130) then follows immediately from Lemma 7.4.3 and impl

the remaining remarks in i).

ii) From (7.125) and Lemma 7.4.3 we obtain, for the case ¢” =2 and 0, 0 5 = p wi

grad(p) = 1, that

: hay ~
0 b5 — 6, =05 — 05,05 = = grad(p) - 0, =

h‘l 1 Eoy -0
= -—T+2—r (hﬂ +7'5v1)—_2_) so 5,1—0.

The first part of Corollary 7.4.4 ii) is obtained simply by specializing Lemma 7.
to a¢” =0 and inserting £,, = 0. The following statements are again immedi

consequences of (7.132).
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In the ‘proof of Proposition 7.3.1 the unitary representations of the braid groups and the
Temperley-Lieb algebra, that arise in local quantum field theories have been considered.
It follows by straightforward translation that all of the statements made there also hold for
a general C*-quantum category. In particular, we have Temperley-Lieb pr'qjectors e.(p, p),
for ahy invertible o € p o p, which satisfy the genefalized Temperley-Lieb equations (7.57)
and (7.58), and, fox a two-channel-situation p o p = o @ 9, the decomposition (7.67) of

the statistics operator.

The restriction of the possible values of g, to g, = e*z)?., where N is the Coxeter num- .

ber of the inclusion graph of the tower discussed in Section 3.4, evidently has to imply cer-
tain restrictions on the possible values of spins. These are given in the next lemma. Here
we also distinguish the situations corresponding to the two signs in T}, ;0 (Tpopn) = :{:;‘;,
d, > 0, for p selfconjugate. If the positive sign bolds p will be called real, for negative

sign p'is called pseudoreal.

Lemma 7.4.5 Suppose that for an objeci pEDofa C‘—qﬁant‘um category

pop=01+¢,

with 0y € Out(®) and 9 irreducible, and assume, further, that its monodromy, m(p, p) =

e(p, p)?, is not a multiple of the identity. Let a be giben by Z, = Grad (‘I’M)' soa"=1
or 2. Then there ezists some-t € Zy,, some N € N and a sign such that

+6, = i— moa 1 :
and (7.136)

+6, i+-t—rno<:\1.

4N  4da

]

Here N is the Cozeter number of the inclusion N,, i.e., [|N," = |d,| = 2cos (ﬁ), and,

comparing with Corollary 7.4.4 we have

t = +£2h moda, for od"=1,
(7.137)
t = xh, moda,  for a"=2.
- For the representation ' := &, oy, with ¢’ € po p, we have
2
+ 0¢,: = TV. rnod 1, (7138)
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independent of t. In the selfconjugate case, i.e., if 0y =1, we findt=¢6a, with§ €24 o

and
§ even, for p pseudoreal

(7.139)
§ odd, forp real.

Proof. With the decomposition (7.67)-of the statistics oper;tor, we can compute the
statistical parameter: : . i
| |
M1 i= p(Tg) €5(00) p(Tpopa)
N !
2 [(% +1)» (rpop,l) eo(p,£) P(Tpopn) - 1]
]
g +1 ] o
z, | —— -1
% |
by the generalized Temperley-Lieb equation (7.57). Using (7.68) we obtain

z
A, =——2
g 1+g,

as in the self-conjugate case of [23]. Comparing with the expression in [15]
—Axid, _ ﬂp—l e-«rx",

we find

Awif, _ -2
e ’—qez, .

Further, the monodromy m(p, p) satisfies i
‘ i
2,2 1
m(p, p) Tpopo = 2,8, Doopory |
which has to coincide with a similar equation, where the eigenvalue is expressed in terms

of spins, i.e.,

2 g2 = m(rtn).

Combining these equa.tions we have
e2i($0-001) = 3 (7.141)
With g, = e* equationé (7.136) follow from (7.141). In tcm';s of t and N we also find
2= (1) 5 (7.142)
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In the selfconjugate case we can use the polynomial equation

P (Trepa) €*(ei0) £ (€*(p1P)) = i
to obtain .
M =T 0(e(0i0) Tpops) =€ 3- 257 5 (7.143)
withe =1forreal pand e = -1 for pseudoreal p, and d, = 2cos F. Together with (7.140)
this yields

‘Q.

2 =—geth,
The statement on reality and pseudoreality of p now follows by comparison with (7.142).
For 85, defined in Corollary 7.4.4, we have 0=0; —6;=0,,0,—05=26; -, hence
8., = —2 mod 1. Equations (7.137) are thus found by inserting the expressions of Corol-
lary 7.4.4. 1t follows from (7.67) that g3 is the ratio of the eigenvalues of the monodromy
m{p, p). In terms of the spins, this ratio is expressed as ei(fy=0e,) — %% Q,, (¥') =
e?™%' since 9’ is trivially graded. Thus equation (7.138) follows from a comparison of

these phases. ) (]

The special situation in which the generating object p has a two-channel decomposition,

pop=0y+1, allows us to determine the spin for each object by an inductive procedure.

Although the following arguments and computations apply to the general framework of

a quantum category with arbitrary, compatible fusion rules, they areé closely related to
the analysis of exchange algebras in conformal field theories presented in [55]. First, we
shall give a formula relating the matrices R*(k,p,q,£) and R™(k, p, q,£) which is derived
in [15] for general local quantum field theories, using the spatial rotation group in M® and
the actual spins. However, the proof given below only uses elementary’identities of the

categories under consideration, so that only statistical phases appear in the statement.
Lemma 7.4.6 For any C*-quantum category let the unitary maps
R(k,p,q,8) : 3, CNori @ CMNint — 3~ CMies @ CMirst
3 H

with R=(k,q,p,) = (R*(k,p,q,£))"" be defined as usual. Then the following equation for
the matriz elements holds

R*(k,p,q, Ol = mOtei=0e=0) R=(k p g )2+ 7.144
wu (-1
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for any orthonormal basis of arrows or intertwiners.

Proof. Fixing an orthonormal basis, Toq:(v), v=1,..., Ny, we consider the composi
tion
I:=e*(q,k) *(k,q) k (€*(7,9)) Thops(¥) Tioqs(k)-

The definition of the. R-matrices yields

v

I = 3 RYkp, 0,0 c*(9,k) €* (k) Trogs(v') Tiopu(i)
= Y e Octhh) BH(k,p,g, 0% Thoqi(v') Dione(K'),
v ;
using the fact that the T'ioq ;'s diagonalize the moﬁodromy m(k,q). Alternatively, w

evaluate I using the polynomial identity for Trep(¥):

I

E+(q) k) q (Pkop.i(y)) E+(‘.» q) Fioq.l(l")
= eﬂn’(o.-+0‘—0,) 5+(q: k) é(rkﬂp.l'(y)) Ei(i: q) F"";'l(“)

€488 £+ (g, k) £ (k,q) k (67 (7, )) Thop(¥) Tioq.(H)

>0 +04=00) 5™ B (k, p,¢,0)2 % Thog i(v") Tiopa(t'),
'

where £-(p, q) = (€*(g,p))”". The identity (7.144) is now obtained by comparing t}

coefficients of the two expressions given for I. ' |

Note that (7.144) is not a proportionality relation among R-matrices, but it is a rel.atic
of R-matrices and diagonal maps on the path space, similar to the ones used in (7.60
In special cases, however, where we can show that the R-matrix is in some sense bloc!
diagonal, (7.144) implies strong restrictions on the values of spins and the possible for:

of the F-matrix isomorphisms. The precise statement is given in the next coroi]éry.‘

Corollary 7.4.7 Suppose we have irreducible objects k, £, p, so that the statistics operat
is block-diagonal on Int(k o p o p,£), in the sense that v

R*(k,p,p,0) € 3_° End (Ci @ CVirt) C End (Ze CNoei @ c"f»t)
j 3
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i

(or, more specifically, R*(k, p,p, )l =0, for i # j). Then for any ¢ € supp(pop) N

supp({o k) the‘spin; obey
O+ 6, —28; = Qg —20,mod 1, (7.145)
whenever the camspondi‘ng block of the F-matriz
F(k,p, p,8)5: : CNoei @ CNirt — CNutt @ CNont
is non zero.
If, for irreducible objects, k, £ and p, we have that there is a single object, j, with
supp(p o k) N supp(5 o £) = {5}
then the equation (7.145) holds, without any essumption on the R- and F-matrices, and

B¢ is independent of £ for all £ € supp(p o p) Nsupp({ o k).

Proof. Assume R*(k,p, p,¢) has the proposed form and consider the block-matrices

R*(kyp,p, )} € U (Choes @ CYond), with R™(k,p, . = (R* (k. p,2)3) ™ 16 we spe-
cialize (7.144) to p = g = p and i = j we find the equation
R¥(k,p, p,8)] = e=@=%=8) R~ (k, p, p, £)]
thus
M(k,p,p,0)] = § =00 ]y, im0 (7.146)
b

As remarked earlier, the isomorphism F(k, p, p, £) : S8CNeri @ CNiet — TOCNset @CNoos,
: J 3

diagonalizes the monodromy, in the sense that, for

M(k,p,p,8) = F(k, p, p,£) M(k, p,p,2) F(k,p,p,) € End (Z%"“" ®CN"‘") )
. €

we have

M(k) 212 ()E, = 6“' 6211'(294’"{) IC"""‘ Nepd - (7147)
It follows, that (7.146) is equivalent to
F“(kyp: p,l)f ezn'(zo,-a‘) F(k)Prp:l)£ 2’"(”’—"_“)
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assertion.

If supp(k o p) N supp(p o £) comsists only of one object, j, then the prerequisite on the
block-form of the R-matrix is void. Moreover, in this case the F-matrix provides an

isomorphism of CNatd @ CNiet 2 3-8 CNatz @ CNest 50 none <;f the different blocks can

be zero, if £ € supp(p o p) Nsupp(£o k). Hence equation (7. 145) holds without further

assumptxons ) : m}

|
If d, < 2 it is possible to find situations in which Corollary 7.4:7 is applicable:
\
Corollary 7.4.8 Suppose for p and ¢ :rreductble and 0, € Out(®) we have pop = 0y +1,b

and let the spins be gmen by the ezpressions in Lemma 7.4.5.

i) If, for irreducible k,L € ®, ' |

Lepopok and LH# o0k
then :
1 t
0+0-20; =% (5 + Z) mod 1 (7.148)

holds for all j € supp(k o p) N supp(¢ o p).

1) If for an irreducible object k € & also j := ko p is irreducible then their spins are
related by

3 — mod 1.

+2(6; - 91:) 3N

— (1 + 2 grad(k)) + (7.149)

Proof.

i) In the two-channel case, the F-matrix diagonalizesl R%(k,p,p,£) in the same way it
diagonalizes the monodromy, using the fact that the multiplicities in the decompo-
sition are at most one. If, in addition, we choose k and £ such that £ # o, o k we

have an isomorphism .

ﬁ'(k: g0 8): Z:Q CN'E“j ® CNiet — CNwva
J
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for all £ € supp(p o p) Nsupp(f o k) and j € supp(ko p)N sup;')(ﬁ o £), which implies the ®



ast,M:Oa.nd Np,»: 1.

Clearly the action of the statistics operator e+(p,p) on the intertwiner space

= CNumvt @ CNerw is given by R(k, p, p,2) = —2,1, so that also R*(k,p,p,£) is 2 mul-

tiple of identity and, in particular, block-diagonal. Furthermore, since Fare isomor-
phisms, E((k, p, p, l)': # 0, for all j € supp(k o p) N supp(£ 0 5), and thus, by Corol-
lary 7.4.7, 0, + 0, — 20; = 64 — 26, = 8,, + 6y — 20, mod 1. Inserting here the ex-
pressions from Lemma 7.4.5 gives (7.148).

ii) The final statement of Corollary 7.4.7 applies to this situation if we set £: =0, 0 k,
sothat fol=pooy0k=pok=j. Clearly oy gloE:alokol_c,sothat (7.145)

holds for ¢ = o, and can be written as

- 2(6; - 6x) = 20, — ©,,(F),

where ©,, is the gradation given in (7.123). From ©,,(p) =8,, we find that

©,, (k) = Figrad(k), and (7.149) is obtained from the values given in Lemma 7.4.5.
u]

The relation (7.148) among the spin values can be used as a recursion formula for the

; spins of certain sequences of objects. For any maximal sequence of this type we then

find from (7.149) that its length has to be a multiple of the Coxeter number N. This
observation excludes most of the exceptional fusion rule algebras. The solution to the

recursion and the precise termination-condition are given in the next lemma:

Lemma 7.4.9 Assume p, ¥ € ® are irreducible and 0, € Out(®) withpop =0y + . Let
&,7=1,...,L, be a sequence of objects satisfying

h=1, ba=p

(7.150)
and & €pobajr, ajn € pobaj,

such that
&-1# & foralj=1,...,L. (7.151)
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i) Ift and N are as in Lemma 7.4.5, then the spins are giv?n by

+6; =f;1+igrad(f~)mo<il (7.1}
Y7 4N 4e 4 P o

Here we have that grad (§;) = 0, for j odd, and grad (¢;) = 1, for j even.

i) Suppose the sequence cannot be continued aftef L steps, i.e.,

FolL

€1 ifLis eveni
poty = &y ifLisodd!

Then L+ 1 is a multiple of the Cozeter number N.

|
|
|
|
!
!

Proof.

i) To compute the spins of the sequence §; it is convenient to use another sequence, *
of objects given by v(j41) i= a{ 0 {3(j+1) and Yp541 1= o{jo b441,5=1,...,L. F
these we have, with 4, = 1, the simpler recursion relations ;41 € p o y; and ;44

0190 Y5-1.

Equation (7.148) of Corollary 7.4.8 is now applicable to the triple k = v;_;, j = -

£ = v;41, for any j, i.e., we have

. 1 t :
Oian + 0oy — 20‘!:‘ == (2_]7 + Ea—) Ii!wd 1.
- ! . .
With the initial data, £6,, =0 and +6,, = 3; + £ mod 1 this can be easily inf
- grated to
-1, G-1

—4—N_—+—4¢;_t mod 1. (715

From Corollary 7.4.4 we see that, for any o, with ¢, 0 5 = p, where grad(p) = 1, t

+0, =

following relation holds for any ¢:
84 = Oon0p — 85, n(grad(4) + n). (7.1¢
This allows us to compute the spins 6;; from the spins 0,; given in (7.153). ‘Inserti

the value of 6,, given in Lemma 7.4.5 we obtain equation (7.152). Finally (7.1¢
<
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can also be used to find the spins of all compositions o7 o ¢; which can be expressed
as follows:

-1t
%0 = T+ 1 (erad (§) +2n)". (7.155)

4N
Note that, by identification of the 1 in grad (§;) € {0,1} as the conventional gener-
ator of Zy,, the above equation is meaningful, however the squared term in (7.155)

cannot be substituted by grad (of o §;) € Z..

ii) It is again convenient to work with the sequence «; for which the termination con-
dition is f 0y = -1 or p 0y = 01 0 yz-1: We can now use the formulae from the

" proof of part i) to compute

+2 (avw‘n,-x - g'u.) = £2 (911.4 - e'n.) + 29,;(L -1)

L-1 3 t
_@-y 3t

N on T 5. (1 + 2grad (7;)) mod 1

where grad (y,) = L — 1. If we compare this to (7.149) in Corollary 7.4.8, with
j=o109L-; and k = 4, we find as a condition on L: %vﬂ =0 mod 1. This is Just

the assertion. : o

Note that not all fusion rule algebras with a generator of dimension d, < 2 have a two-
channel decomposition to which the above analysis applies, namely those obtained from
the D,-algebra. For these, however, we have that p o p and p o 7 decompose entirely into

invertible objects, i.e., supp(p o p) = stab(p). In order to discuss the possibility of finding

spins and eveﬁtually quantum categories for fusion rule algebras of this kind, we first -

elaborate on the observation, already made in the proof of Proposition 7.3.1 that the

" objects in stab(p) := {o : ¢ 0 p = p} C Out(®) have half integer spin.

- Lemma 7.4.10 Let & be a Z,-graded fusion rule algebra of a C*-quantum category, and

a”, r as in Lemma 7.4.2.

Then we find for any p € $, with grad(p) = 1, that

6 =0, VPBestab(p), ifa"isodd,
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and, for a” even, we have a homomorphism

6 :stab(p) = Z3: B — 05.

The gradation Op for elements B € stab(p) is gt;ven by

95(¢) = 9,, grad(cﬁ) mod L.

Proof. For any p and f € stab(ﬁ), we clearly have that @p(p) = 6. Since § — 05 €
Grad(®) is a homomorphism, 8 - 05 is one, too. Since stab(p) = stab(p), we find from the
gradation of ©4 that 0 = ©g(p) + O(p) = 26 mod 1, s0 thatj 85 € 12/Z. Assume now
that p has grad(p) = 1 in a Z,-graded fusion rule algebra. Then we find from Lemma 7.4.2
that ©g(p) = L), and therefore a”s = 0 mod 1. This shows that 65 = 0, for odd a". The

gencx;al form of ©g follows from the same lemma. . . D
: I

The formulae and constraints obtained in the previous lemmas, Fspecially in Lemma 7.4.9,

-allow us to discard from the list of fusion rule algebras in Theorem 3.4.11 those which are

not fealized as object algebras of 2 C*-quantum category.v Together with Proposition 7.3.5

we can summarize the results of Sections 7.3 and 7.4 in the following proposition.

Proposition 7.4.11 Suppose p is an irreducible object of a C*-quantum category. Then

i) The statistical dimension of p obeys d, < 2 if and only if we have that
pop=00Y, |
where o is invertible and ¥ irreducibl?, and, furthermore, m{p, p) = €(p, p)? is non-

scalar.

it) If i) holds for p, and p generates the fusion rule algebra, &, of the C’f—quant’mp
category (or if we restrict our consideration to the subcategory associated to the
fusion rule subalgebra generated by p) then €. and the statistical phases are restricted

to the following possibilities: .

a) & is a fusion rule subalgebra of some A, x Z, (the crossed product being the
same as in Lemma'S.S.S), namely (.9..117} or (8.120} of Thecrem 8.4.11. The
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inclusion, i, of ¢ is given as follows:

for @ = A,*xZ,, n21,

(7.156)
i:9d o A, xZ, .

is the inc-lusion (8.77) from Corollary 8.4.3, multiplied with the identity on
the Z,-factor; for & = Agp.y xZ,, n 2 2, we have

1:9 — A,,,..;xZ,,

(6,k) — £@amdlth), (7.157)

where £ € Agn-q, grad(¢) € {0,1}, and a generates Z,,.

b) The fusion rule algebra is given by either (8.121), with n odd, or (8.125), with

n even, i.e.,
$= Ta (AZn-l * Zr) ’
withn > 3, and
r=n+1mod2. © (7.158)

iii) Let p;, 7 =0,...,n—1 denote the irreducible elements of the A,- fusion rule algebra
as defined in Lemma 8.4.2 i) with fusionrules (5.75). The possible statistical phases
can be given in terms of the standard spins of An-fusion rules,

e
o U =1

4(n+1) !
and the set of possible statistical phases, {67}, of the fusion rules corresponding to
Z, are labelled by T € Z,,, with 7r = 0 mod 2, .and are determined by

6,=— mod1, (7.159)
where a is the generator of Z,.

a) If ® is a fusion rule subalgebra of A, x Z, andi: & — A, x Z, then every
choice of statistical phases is given by

-~

:i:0,,=0.~(,,) mod 1, kEé,
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i
i

where 8 : A, x Z, — R/Z is given by :

fegat = 08 + 6 mod 1, (7.16(

_ for some T as above.

b) For & = 7o (Aam-1 * Z,) the possible phases are given by
2r +1 f
£ 0 = 05 + 25 (grad () + 2K mod 1, (1161

fork=0,...,r -1, and some T € Z,,. %

Proof. First we shall use the previous results to exclude all fusion rule algebras not liste
in Proposition 7.4.11 from those realized in a C*-quantum category. The most importar
tool here is Lemma 7.4.9 ii). It states that if A is the matrix-bljock of N, restricted to ¢
and we consider the bicolored graph associated to it, every path in this graph starting at
for which two succeeding vertices of one coloration are distinc; and which terminates :
a poin't of edge degree one (i.e., an end point of an “external” leg) has to have a length

with the property that N divides (L + 1). Since all bicolored graphs with norm less thz

two are trees, any such path is without self intersection, thus reresents an A-subgrag

with Coxeter number L + 1. By monotonicity of the norm with respect to subgraphs

follows that L + 1 < N, and therefore by Lemma 7.4.9 ii)
N=L+1.

Again, monotonicity implies that the Az-graph is already the entire graph.

This fact can also be verified by finding paths in the E- and D-graphs violating t]
condition N/{L + 1). For d, < 2 and a"” = 2 in Theorem 3.4.11, this excludes the algebr
(3.118), (3.119), (3.122), (3.123) and (3.127) with two-channel decompositions of p o
The only admissible algebra with a” =2 is the one in (3.117), since the bicolored graj
associated to A is the Coxeter graph As,. From Proposition 7.3.4 ii) and the followi
remarks we learned that the Dy-algebras (3.128), (3.129) and (3.130) are not admissit
either. The additional constraint (7.158) will be obtained in the following calculation
the spins. )
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From Lemma 7.4.3, (7.120), we find the form (7.159) by specializing to Out($;) = 1
and a” = 1, so that both 7 and § are trivial. Setting T = — (hs, + 7., ), the constraint
7r = 0 mod 1 is equivalent to (7.119). In order to treat the case & = 4, x Z,, with a” =1,
we use Corollary 7.4.4,i). As Out (&,) = 1, we have 62 = 0, so0 that formula (7.123) yields

Ogas = O¢ + 625, , (7.162)

for £ € ®o, (i.e. grad(¢) = 0 and 6§ =6¢), where a is the generator of Z,, with grad(a)=1,
and 7 = h(a + 1) mod 2a; (this form is equivalent to 7a = 0 mod 2).

As suggested above, in the computation of the A,-spins, we mainly make use of
Lemma 7.4.9 i). For the selfconjugate case, po p =1+ 9, this has to be specialized to
t = ba, with & € Z, as described in Lemma 7.4.5 and we obtain using that lgrad (¢;) =
=1(*-1)mod1.

L
o, =122 ( N:“_— ) mod1. (7.163)

Let us choose a basis of the A,-fusion rule algebra : {p1 =1, 2 = p,...,n}. Then N,
is given by ]
POY = @iy twiqr ,ori=2,...n-1,
and poy, = @+ Pn-r.
The only path, {¢;}, in the A,-graph, which satisfies the prerequisites of Lemma 7.4.9 is
the following ' |
& = v fori=1,...,n,

(7.164)
and §

‘P(2ﬂ+1)-i‘ fOI‘ t= (n + 1), e ,2n )
so that
Nex. =L+1=2n+1.

Evidently we have the consistency requirement that 8¢, =6, . Vi =1,...,L, which

turns out to be equivalent to § = — N, mod 4. We find

2 ‘
3 -1 .
- dd
2 _ 4N ] ) J o
£+, =11 (—1— -N ) = oo (7.165)
i g Neo. (Neox. — 3 -1 i even
4NCox. !

using that Ng,,. is odd.
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Comparing (7.165) to the explicit formula for the inclusion
i) = ey jodd, ’
i(p;) = pN-j-1, Jeven,
we can summarize (7.165) in the formula
+0,=6%, ,Vp€Zh.. | (7.166)
This proves the assertion of Proposition 7.4.11, ii) a): @ =‘ 2,,;* Z,.

" Forthecases® = Ay, *Z, and ® =17, (Azn-1 *Z,), the path we have to consider

- is clearly ¢ = (pj-1,0). Here the relevant formula to find the possible values of spins is
given by (7.150). If & = Asn-y * Z, we have that o] = 1, s0 foyo¢; = f;, which is the same

as requiring t to be even. With ¢ = 27 and a = 2r we obtain

,
0,0 = 6); + o (grad (p5,k)) mod1, (7.167)

and this expression is now well defined for grad (p;, k) € Z,,. The second term in (7.167)
has precisely the form (7.159) for the spins of & = Zj,, the contraint (2r)r = 0 mod 2
being automatically fulfilled.

Finally we consider (7.150) for & = 74 (Azn-1 * Z,). Since y70p, = 9

Pin-20p; —

6py_;-, We obtain additional contraints on ¢, r and N, which are given by:

-t = lmod?2 ~ ; (7.168)
and n = r+1mod2 (7.169)

To show this we use (7.155) and we replace @ = 2r and ¢ = 27 + 1 to find (7.161). Propo-
sition 7.4.11 is thereby proven. ’ , i o

Let us add a few remarks concerning the reality of selfconjugate objects, p, with pop =

1 + 9. From Lemma 7.4.5, (7.132), we see that the value of §, already determines whether

p is a real or a pseudoreal object. For instance, for p € 4,, it follows from § = —N mod 4 '

and N = 1 mod 2 that p is real. This is what we expect, since the reality property provides

V2

a Zj-grading, Grad (Z,.) =1 However, if p € An-1 has the standard spin, 8}, as for the
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fundamental representation of Uy (s4;), it is pseudoreal. The remaining possible values of

spin for a selfcbnjugate p can be derived from Proposition 7.4.11 as follows:

The possible spins of Aj,; are found from the inclusion i : Agp_y — Ajn_q X Z,.
For a given 7 € Zy, as in (7.159), this yields the general expression of Lemma 3.4.10 for
the selfconjugate case with

§=1mod 4. _ (7.170)

The remaining fusion rule algebra with selfconjugate generator is A,,, n > 1. It appears

in the classification as 4, x Z;, where the isomorphism is given by

i jFemod2 B
<Pj®a‘—s{ pi Femo (1.171)

pN-; J=€mod?2

where a is the generator of Z;, ¢ € {0,1}, j = 1,...,n. Following Proposition 7.4.11, ii)
we can for A, x Z,, we can determine the spins for some choice of 7 € Z,. This.induces

spins on Aj,, reproducing the formula in Lemnma 7.4.5 with

§=N+7rmodd. (1.172)

The observation made in this discussion is that a selfconjugate sector p, with pop =

1 + 9, can be changed from real to pseudoreal and vice versa by tensoring it with a semion,

whereas its reality properties are unchanged if it is tensored with a boson or a fermion.

We note that all the fusion rule algebras with selfconjugate-generator are contained

in part a) of Proposition 7.4.11 ii), i.e., they do not involve any 7,-operation. We also
notice that the only enclosing algebras Ay_; x Z, listed in part a) are those with r even.

However, for odd r, i.e., r = 2r' 4+ 1, we have, by virtue of Lemma 3.3.3, an isomorphism

¥ AN XZ, — Any+Z,
E®a — (£ L+ grad(¢)).

The canonical generator of gradation is therefore p = p; ® a'*"" and the parameter ¢ from

Lemma 7.4.9, (7.147) is related to 7 in (7.159) by

t=47(r' 4+ 1)? mod 8r. : (7173)

243

It is not hard to show that the list of fusion rule algebras in Proposition 7.4.11 is nc
redundant, i.e., no two fusion rule algebras are isomorphic to each other. The transfo
mation of spins under fusion rule algebraautomorphisms are given by automorphisms «
Z,,, changing the constant 7. The sign ambiguity in the determination of the spins reflect
the fact that we can obtain from any braided category a second, in general inequivalen

one by replacing the statistics operator € by £~! everywhere.
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7.5 Theta - Categories

In this section we present a complete analysis of categories for which all irreducible objects
are invertible. In reference to what is known as §- (or abelian) statistics in quantum field
theory we call these categories § — categories. The fusion rule algebra, @, associated to a
0 - category is thus entirely described by an abelian group, G, namely & = N€, wheﬁ the
composition law on @ is induced by that on G. The classification of 8 - categories can be
reduced entirely to a problem in group cohomology. The relevant classifying constructions
are obtained from are the Eilenberg - MacLane spaces, H (G’ n) , which are the homology
-groups of complezes denoted by A(G,n).

In the following discussion we shall not consider the most general aspects of this
construction, but rather exemplify it for the complex A(G,2) which is obtained by start-
ing from the ordinary inhomogeneous chain complt’;x over G, here denoted by A(G,1). We
provide the basic tools, e.g., a chain equivalence for cyclic groups, the Kinneth formula
and the universal coefficient theorem, allowing us to compuf.e the homology- and coho-
mology groups of A(G,1) and A(G, 2) in low dimensions. (For details, generalizations and
proofs we refer the reader to the textbooks [59]). To begin with, we review the definition
of the complex A(G,1): '

This complex has a grading, A(G,1) = 9 A,(G,1), where each A,(G,1) is a free
Z- module, and a canonical Z-basis is given by cells, eca=[q |...| gn)s 9 € G, gi #€,

where e'is the unit element in G. We use the convention that ¢, = 0 if g; = e, for some -

1=1,...,n. The boundary, 8 € End(A(G, 1)), is a map of degree —1, with 2 =0, and

has the form

9 lal...lgm)=
(921 1 ga) + Z35(-1Y I |- [ 95 g1 |- T gnl + (=1)" [0 | oo | 9nea] -
(7.174)
The resulting sequence of maps of the chain complex is commonly summarized in a dia-
gram
0—2z 222 4G 2 Z[G)1-2 & A(G1) & ... (7.175)
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We use the notation By(G,1):=im 84y = imd N Ai(G,1), for the boundaries, for the ~
cycles we write Z,(G,1) ;= kerdN Ai(G,1), and the homology groups are denoted by
Hy(G,1) = Z,(G,1)/B\(G,1). For small k and abelian G, the homologies can be readily
computed. Of course, we have

' . H{G)=Z. (7.176)
Since Z,(G,1) = 4:(G,1), and 8[g | h] = [g] + [k] — [gh], Hi(G,1) is the abelian group
with generators [g] and relations [g] + [k] = [gh], so ‘

i]iG — H1(G,1)
g — Td

is an epimorphisms, and, for abelian groups G, an isomorphism. For finite cyclic groups,

(7.177)

G = Z,, all homology groups are known,

R

Hzm (Zg, 1) 0 ’ i ’
and (7.178)
H2m+l (za: 1) = Zu .

This result is obtained from a simpler chﬁin complex, M(a,1), which is homologically iso-

morphic to A(Z,,1). It is a free Z-module with grading, M(e,1) = @ M,(e,1), and
each M,(a,1) is one-dimensional. Hence there are generators vy, ax';gow,,, such that
Mym(a,1) = Zvpw, m = 1,2,.. ., and Mymya(a,1) = Zwm, m = 0,1,.... The boundary, 9,
is given by : .
Oom = aUm_1, and  Owm =0. (1.179)
Clearly this is the simplest chain complex producing the homology groups (7. 178) In

order to define a chain equivalence, we introduce, for some fixed generator 1€ Z,, the
cochain 8 € Hom (4; (Z,1),Z), given by

B()=i, for 0<i<a, ~(1.180) ¢

and the cocycle v € Hom (4;(Z,,1),Z), (with §(y) =y08 =0) by

sy

. 1 afi+j<2as, 0<i,j<a
¥(i,5) = L
0 0<it+j<a. '
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We note that

56 = av. ' (7.182)

The two complexes are related by chain transformations I: M(e,1) — A(Z,,1) and
P:A(Z,,1) - M(a,1), i.c., I and P have degree zero and intertwine the boundary by

P8,y = P and 18y = 041 (7.183)

The explicit {;otmulu for P and Iread .

(ﬁ'r(iuj-)) Vo

sz([ix Lin oo fim | dm])

= (7.184)
Pamsa (i3 11| Lim L ) = (ﬂ(ﬂﬂﬁ(‘""") o |
hm(vm) = z [ 1. im 1]
o imez (7.185)
Dt (wm) = Z il lim 1]
it nim €2 :

from which (7.183) can be verified easily. Here 1 is a fixed generator of Z,. The situation

is summarized in the diagram (the maps & are defined below):

8 - 8
0 — Z & A(Z,,1) = A)) S5 A1) =

oAb e A o

0 — Z & Zwy, & Zv, & Zw, 2

for which (7.183) expresses the fact that each square invo]vihg either. P or I commutes.
Equation (7.183) also implies that P and I map boundaries and cycles onto one an-
other. Hence they induce maps of the homology groups H(P): H (Z,) — H(M(a,1)),
and H(I): H(M(a,1)) —» H(2,,1). It is shown in [57] that there exists a homotopy‘
®: A(Z,,1) = A(Z,,1) for IP =1, which proves I and P to be the injection and the

projection of a contraction, respectively, i.e., we have that

3

PI = 1, 0% + $0 1-IP,
$r = 0, P® = 0.

(7.187)
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From this one sees that H(P) and H(I) are isomorphisms of the homology - groug
with H(P) = H(I)™. A popular strategy to compute the homologies for an arbitra
abelian group consists of the repeated application of the Kinneth formula which express
H, (G, @ G;,l) in terms of H, (G,) and H, (G,), r,s < k, starting from the results
cydic groups. We carry out this exercise for the group H,(G,1). We consider the cycl
[z 19]— v | 2] € 25(G, 1) and their classes in Hy(G, 1),

oI} =TTH-BTa. . s

" Using the relations in H,(G, 1) given by the boundaries,

Olg | R I K] =[h| k] —[gh | K]+[g | Rk —[g | h], (1.18
we show that {g | b} is bilinear which means that we have a homomorphism

iz:A"'G i Hg(G,l)

v (7.19
gAh — {g|h}.
The Kiinneth theorem for H,(G,1) asserts that the map
(:Hz (Ghl)@Hz (G:,l)@G1®Gg —ng (Gx@Gz,l) . (719

is an isomorphism, since Tor (Z, G;) = 0 and by (7.177), where ¢ is induced on H, (Gy,
simply by the inclusion of cycles and, on G; 8 G, we define ¢ by

((021®9:)={g1 | 92} . (7.19

Having a natural decomposition of A?(G; © G,) with mixed term G, ® G;, we obtain t]

commuting diagram:
NG, ® NG, 0 G, 8 G, = NG @G

liz,c, 8 12,6, ®idg, g6, _ li,m,ec,) (7.18

H;(G1,1)© Hy(G2,1) 8 G, ® G,

H (G, 9 Gy,1) . -
It demonstrates that if 15,6, and 13,6, are isomorphisms then the same is true for 12,6,86

Since, by (7.178), we have that A’Z, = H, (Z,, 1) = 0, we conclude that (7.190) yields :

isomorphism for an arbitrary abelian group G.
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Similarly, A3G appears as a subgroup of Hy(G, 1), with inclusion
aAgAg = Y sgn(r) ox) | 9e) | 9x(s)] » (7.194)
L3N
but, due to non-trivial torsion, Tor (Gy, G;), present in the Kiinneth formula, and because

H3(Z,,1) # 0, this is obviously not an isomorphism.

As originally intended, we shall now proceed with the construction of the complex
A(G, 2), for an abelian group G. To begin with, it is essential to remark that A(G,2) can
be equipped with the structure of a ;iiﬂerential, graded, augmented (DGA-)algebra. This
structure manifests itself in tl;c existence of an associative, graded product, *, defined on

pairs of cells,‘which obeys the Leibnitz-rule, i.e.,

deg(c1*c;) = deg(c1) +deg(ca) (7.195)
and 8(c *c;) = (0cy) % e+ (—1)%8a) ¢, % (Bc,) .
On A(G, 1), * is given by
[91 .- 1 98] % [gp41 | --- | Gpual = ZS: 560 (7) [ge(r) | - - | Oxtpra)] (7.196)
) *€Sp.q
where S, C Sp44 is the subgroup of all permutations, called (p, g)-shuffles, with
x(3) < x(j), for 1<i<j<p (1.197)
andfor p+15i<j<p+g.
For cells of dimension less than two (7.196) yields
o] » [A] =[g | h] — [k ]g] = —[h] x [d], (7.198)
and ,
LK) = LiE)-[r Kl +[h]k .
(g1x[h|k) = [glh|kl-[h|g|k]+[h]k]|g] (7.19)

(b | k] =g,
for any g,h, k€ G.

The first step in the construction of A(G,2) is the definition of a doubly graded,
free Z-module, A(G,2) = @ A@nm)(G,2).
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A Z-basls of A(nm)(G,2) is given by elements [¢; | ... | c,,.], where ¢; € A(G,1) ares -

cells with 2 deg(cx) = n. The total degree of a cell in A(G, 2'[) is then
k=1 !

deg([es |- | cml) = m+ 3 deg (ck) (7.200)
k=1
Since A(G,2) has a differential and a multiplicative structure, there are two ossible

boundary operators: One is defined similarly to the boundary (7.174) on A(G, 1), namely

) 3’:.4(,._.,,)(0,2) — A(,.,,,-;)(Gﬂ) .
I (7.201)

m-1
F(erl...lem)) = D (—1)testel-led o | cjucinl...|cn]-
=1 4
The other one is obtained by extending 8 on A(G,2) to a derivation,
9" A(n'm)(G, 2) — A(n—l,m)(G, 2) . i
i (7.202)

(e |- lem)) = f;(-l)*-ﬂﬂL-Jé-'D er]..18¢f]... | cm] .
|

=1

Besides the conditions (&' )2 (6”)z O, one can also prove from (7.i95) and (7.201) that
a8 +08"8 =0. (7.203)

Thus (A(G,2),8,8") is a double complez, and we can define A(G,2) to be the corre-
sponding condensed complex, where the grading, A(G,2) = @ A,(G,2), is given by
n20

n(6.2) = D A-i5(G.2), ‘

=0

and the boundary, 8 : A,(G,2) — A,.,(G,2), by
8=08+0". ' f (7.204)

(In the generalized form of this construction, one can also obtain A(G,1) systematically
from the complex A(G,0): 0 — Z[G]} 200..., and define ‘complexes A(G,n) induc-
tively, for arbitrary n.) ' '

We remark that
§:A(G,1) —» A(G,2?)

7.205
¢ o g (7.205)
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for any cell ¢, is a chain transformation, i.e., 85 = S8, of degree one. The induced homo-

morphism S, : H(G,1) — H(G,2) of the homology groups of degree one is called the sus-
pension. In order to describe the cells of A(G,2), we adopt the convention to replace dou-
ble brackets by double bars, e.g. [[g11921a] | [94] | [95196]] = [9:19:19519419596] € Ao(G,2)-
A Z-basis of A(G,2) is given, up to dimension five, by

4(6,2) = Z,
A(G,2) = 0, ,
AlG,2) = Z[G] = $ (41(G,1)) L
As(G,2) = S(4:(G,1)) (7.206)
A(G2) = S(A(G1)e @ ZhlA,
9.he
A(G2) = S(AG1)e @ Zighlkle D Zisllhlk]
ahkeG ahkeG

where G := G\{e}

Obviously the homology groups of dimension not greater than two remain unchang-

ed, i.e., we have

Ho(G,2)=1Z, H,(G,2) =0, (7.207)

and’
S. ] 1:1 H G - HQ(G, 2) (7.208)

is an isomorphism, ‘where i is as in (7.177) and S, is the suspension. Also the cycles

Z4(G,2) = §(2,(G, 1)) are the same, so S, is onto, but we have to add the boundaries
lgllh] = (glh] — [klg] . (7.209)

to S(B,y(G,1)),in order té obtain B3(G,2). From (7.209) it follows that {g|h} € ker S.,

and, by (7.190), S. 04 = 0. Since the latter map is surjective, we conclude
Hy(G,2)=0. _ (7.210)
The equations (7.189) and

. 8la1lgalgalaal = [92195194) — [9:92195194) + [9119295194] — [911219394] + g1 lgalgs] (7.211)
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hold also for cells in A(G,2), because S is a chain transformation. The remainir
.

generators of By(G,2) are given by ’
|
i
|

Olglhlik] = ~llglh]s k) + [dlalh] | [k]]. (121
= —lglhlk] + [olkIR] — [klglh] + [RIIK] — g - hik] + [g]}¥]
and 7 :
olgllklE) = [la] » [Alk]} - [lg] | BIAIK] (21

lolR|k] - [Rlglk] + [hlklg] + [gll] — [g]lh - K] + [gll]

From (7.209) we see that [g]|g] and [g]|A] + [Alg] are cycles. Using the relations (7.21:

and (7.213), we find that they are not independent in H,(G, 2):

TolTR] + Thllg]
Ig-hllg-h]-m—m.

Further manipulations with (7.212) and (7.213) prove that {z’yllh} is bilinear which, t

{glla} :
(7.21

(7.214), is the same as saying that [gl|g] is quadratic. To be more precise, we introdu

the abelian group. T'4(G), with generators {g}, g € G, and relations

{g-h -k} —{g-k} - {h-k} —{g-k} +{g} + {R} + (K} =0

(7.21
and {9} ={¢7'}.
Then the previous observation; imply that there exists a homomorphism
i
14:Tu(G) — Hy(G,2) |
: (7.21

[oflg].

For cyclic groups G = Z,, the chain contraction (7.187) to th;e complex M(a,1) can’

with  v({g})

used to prove that v, is an isomorphism. This depends crufciaﬂy on the existence

.a multiplication on M(a,1) for which P and I are homomorphisms. Then the ma

!
P*([ar]...lem)) i= [P(e1) ] ... | Plem)] and T¥([cr ] ... | cin]) i= [I(e1) | --- H (e
define a contraction of A(G,2) to the complex M(a,2) which is constructed similar

|
The homology groups in M(a,2) can be computed easily, and we find that
T4 (Za) = Hy(Za,2) = Ziappe | (1.2:
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where [1]1] = ™ (Iwalwo]’ is a generator if 1 € Z, is a generator. The proof that v,
in (7.216) is an isomorphism, for general, abelian groups G, now follows the same lines
as the one for 7, in (7.190). Using that H,(G,2) = G and Hy(G,2) = H3(G,2) =0, the

Kinneth formula yields an isomorphism

¢:Hi(G1,2)® Hy (G2,2) G ® G3 — Hy (G1 & Ga, 2) (7.218)

“which, on Hy(G;,2), is given by the inclusion of cycles and, on G ® G, is given by

( (51 ® 9a) = [mallga] + [o:ll9a] = {alg2} - (7.219)
Notice that, besides T'y(Gi) with inclusion i :T(Gi) =T (G:®G,), k=1,2,

Iy (G, ® G;) also contains a crossed term given by the image of

L TG ®G =T (G @ Gz) 10109 = {g1- 90} —{n} - {g2} . (7-220)

If we compare formulae (7.214), (7.219) and (7.220) we obtain the following commutative

diagram

Fq (G])@Fq(G:)@Gl ®G2 _— ' I‘4 (G; @Gg)

felor

l’h,al @ Y4,Ga @ idG;GG; J"Y‘(Gx@Ga) (7221)

H(G,2)0H(6n2)0680, ————  H(GoGw2).

Thus, with (7.217), this impiies, that 44, is an isomorphism , for arbitrai-y G. We note
here that the suspension _

S, : H3(G,1) - Hy(G,2) (7.222)
vanishes on A3G C Hj(G, 1), generated by the expressions in (7.194), by the syxmﬁetry
of (7.212) in g and h. Moreover, I'y(G) is closely related to the symmetric part of G ® G

by homomorphisms
D:Ty(G) - G®G:{g} - g¢®g and 4
Q:G8G — Iy(G):g®h — {g-h}—{g} - {h}.
The maps D and Q satisfy QD = 2, and 2- DQ=1-T,withT(¢g®h)=h®g. From
im(D) = ker(1 ~ T) and D(imQ) = im(1 + T') we obtain a map

(7.223)

D :T4(G)/imQ — ker(1 = T) /im(1 + T) = G/2G, o (7.224)
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where the isomorphism on the right hand side s induced by G — G ® G /im(1 + T):q

g — g®g. The group on the left hand side is given in terms of generators {g}, g € G,

-

and relations, {g -k} = {g} + {h} and 2{g} = 0, and hence is equal to G/2G. Since D -
is onto this yields ker D Cim @, and, by DQ =1+ T, we have ker D = Q(ker(1 + T)).

Also, we have ker Q@ = im(1 — T') C ker(1 + T), so that
Q:3G Zker(1+T) /im(1-T) = ker D (7.225)
is an isomorphism. ’ |
In particular, we find that
' Dox'eS. =0, C (1.226)

‘where we use that D o ;" is the restriction of 5 : Ax/By = G ® G, withy ([g||h] )=g®h
and 7([glk[A]) = 0, to Hi.

Let M be any abelian coefficient group. The cochains (A°(G,n; M), 6),W n=12,
with A*(G,n; M) = Hom (Ax(G,n), M) and § = 8*, define cobomology groups which we

‘denote by H*(G,n; M). We write

BYG,n; M) C Z¥(G,n; M) C AYG,n; M),

for coboundaries and cocycles. The main link between the homology groups determined

above and cohomology groups is provided by the universal coefficient theorem which

asserts that, forn = 1,2,
0 = Ext(Hi1(G,n), M) < H*(G,n; M) & Hom (Hiu(G,n), M) =0 (7.227)

is exact and splits. Here the epimorphism, a, is naturally induced by Z*(é, n\; M) =
Hom (Ax(G,n) /Bx(G,n) ; M) 5 Hom (Hi(G,n); M). The left term in (7.227) arises
from the identity ‘

Ext (Hx(G,n), M) = Hom (By(G,n), M) /Hom (Zi(G,n), M) , -

. » o i
and § is induced by 8* : Hom (B,-,(G,n), M) = Z¥(G,n; M). If G is torsion-free, or if

M is a Q-module, e.g., M = R,Q, R/Z..., then Ext(G,n) = 0, and a is an isomorphism.
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Note that the map from (7.205) also induces a suspension
§*: HYG,1; M) = H**'(G,2; M),
for cohomology. Among the immediate wnsequenées of (7.227) are

HY(G,1; M) H%G,2; M) = Hom(Z, M) = M
CHYG,LM) = 0 : (7.228)
H*(G,2; M) f_. HY(G,1; M) —": Hom(G, M).

i

With the homologies (7.177), (7.190) and (7.210) at our disposal, we can readily compute

the cohomology groups for the next higher dimensions:

H*(G,1; M) Ext(G, M) @ Hom (A’G, M) , (7.229)
(80i7) " @i 0a )
and ‘
HYG, ;M) ———  Ext(G,M). - (7.230)
(870803 ‘

Thus §° : H}(G,2; M) — H*(G,1; M) is just the inclusion of Ext(G, M).

Tﬁe cocycle condition, y € Z%(G,1; M) forsome p: G x G — M : (g, k) = p([g|h]),
can be derived explicitly from (7.189) as

0 = (8p)(g, h, k) = p(h, k) — pu(gh, k) + u(g, hk) — u(g, ), (7.231)
and the additional condition for 4 to be in §*(Z%(G,2; M)) C Z*(G,1; M) takes the
form -
(9, k) := p(h,g) = (g, k), (7.232)
by (7.209). Here we denote p(g, k) = p([g | h])-
The coboundaries are given, for any A: G — M, by
(6M)(g, k) = Mg) + A(h) — Mg - ). (7.233)

Thus, in a fashion more accessible to calculations, the formal identities (7.229) and (7.230)
can be restated as follows: The map & which assigns to each p: G x G — M, with (7.231),
a skew-bilinear form in Hom(A’G, M), by

a(w)=p -, | (1.234)
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is surjective and vanishes on boundaries. For any symmetric i:ocycle, 4, there exists ar
abelian group E D M, with E/M = G, and a section ¢ : G — E, with 7 04 = idg, sucl
that u(g,h) =+9(g- k) —¥(g) -¥(h)e M. If Ext(G,M) - 0, then we have y(g) =
g+ Mg) € G® M = E; hence pu = §), for any p € kerda. In the last considerations w
made use of the well-known one-to-one corresp;ndence between Ext(G, M) and the in

equivalent, abelian extensions of M over G.

There is another interpretation for H(G,1; M) in terms of central eztensions of M
over G. The aim of our discussion is now to find interpretafions for H¥(G,1; M) anc
HY(G,2; M), at least when M = R/Z, and investigate how th;y are related by the sus
pension. Contrary to the previous example, §* is going to be very different from a mer

injection. From (7.227), (7.216), (7.210) and (7.190) we find

>

BGLM) — Ext (A°G, M) @ Hom (Hy(G, 1); M) (7.235
0610

and

HYG, M) ———  Hom([4(G),M). :v (7.236

7foa
For later applications, we give a more detailed description of the relations (7.235) an
(7.236) and the associated complexes. The elements of A3(G,1; M) can be givén a
functions, f: G x G x G — M : [g|h|k] — F(g,h, k), (G = G\{e}), and the cocycle con
dition, f € Z3(G,1; M), becomes, with (7.211),
0

Il

(sf) (91192)93:94)

£(92,93,94) = £ (9192,93,94) + £ (91,9295, 94) — f (91,92, 9394) + f (91,92, 93) »
(7.231

and the coboundaries are as in (7.231). Denote by [A] the generators of A%G,2; M
where A : G x G — M and §*([A]) = A € 4%(G,1; M). The elements of A%G,2; M)
then be given as pairs [f,7], with fG XxXCxG—Mad r:GxG— M, so th

It

v [f,7)([g}hlk]) = F(g, h, k) and [f;r)([gl|h]) = r(g,h). The suspension is induced by t

omission
s'(if.r) =1, (1.2¢
and we find from (7.209) that

8] = [&\,Al M, (1.2
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for the coboundaries in B*(G,2; M).

Since, by (7.238) and 5°6 = §S*, we have that

(81£, 7)) ([91191g3194]) = (65) (911 92, 93, 94) »

the cocycle condition, [f,r] € Z4(G, 2; M), is given by f € Z3(G,1; M) and we obtain the

. two equations
= (61f,lslAl) (1240
= —f(g,h, k) + f(g,k,h) = f(k, g, k) + r(h,k) = (g : h, k) + (g, k)

and

=}
il

(@1 )l
f(g)h:k) - f(h'rg) k) + f(h:krg) +T(g) h) - T’(g,h' k) +1'(g,k).

The definition of I'4y(G) in terms of the relations (7.215) allows us to identify the space

(7.241)

n

Hom (T'4(G), M) in (7.236) with the set of M-valued quadratic functions, 6, i.e., with all

functions 6 : ['41(G) — M, with

8(ghk) — 8(gh) — 8(gk) ~ 8(hk) + 6(g) + 6(h) + 6(k) = 0

(7.242)
and  6(g)=8(s7").
The isomorphism of (7.236) is then given by
8(9) =1 0 of[fir]) =1(g,9). (7.243)

In particular, (7.236) implies that a cocycle [f;r] irsr a coboundary iff the diagonal of r

is zero, and, conversely, to any quadratic function §, there corresponds a cocycle with

(7.243). We now claim that

0 — Hom (A%G, M) Z Hom(G ® G, M) 2 Hom (T'(G), M) - stebi))’ H’(G 1; M)
(7.244)
is exact, where 7 is the projection onto A’G, and D is given in (7.223). The definition of D
implies exactness at Hom(G ® G,VM ), and the composition of maps at Hom (T'4(G), M) is
zero by (7.226). Suppose now that 6 € ker (5‘ o ('y; 1).), for some quadratic function 4.
Then there is a representing cocycle [f;r] with (7.243), and S*([f,r]) = 6) € B3(G,1; M),
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s0 f =&6A. The function @ is then also represented by the cécycle [f.r] - 6] =
=7 — (X — At). The cocycle conditions (7.240) and (7.241) s;how that p is bilinear and
therefore extends to G ® G. For 6 € ker (S' ( ”) ) we find

09) = (g ®.9) = D*(p)s), for some p € Hom(G ® G, M), (7.265)

which proves exactness of (7.244).

In order to extend results on the cohomology of cychc groups to arbitrary abelian

groups, we consider the dual version of (7 221): i
|

H‘(G;@Gz,2;M) — @L, H*(Gi,2; M) @Hom(G;@G,,M)

El‘r:.(o,ea,) Elv: 6 O Tig, ©id

‘ Hom (T4 (G1 ® G3), M) —— &2 =1 Hom (T4 (G:), M) @Hom(G; ® Gp, M).
| 3 (7.246)
The horizontal arrows in (7.246) that project onto the ditecé summands of the spaces
HY(G: G2, 2; M) and Hom(I'i(G: ®G;),M) are obtained from the inclusions in
) (7.221). Thus, to every quadratic function 8 on G8G; ,
ments  6; € Hom(T'4(G;); M) , defined by the restrictions of 4, and some g = 7°(6) €
Hom(G; ® Ga, M), where 7 is g;ven in (7.220), such that :

we associate unique ele-

. - 6((91,92)) = 61(91) + 62(92) + ¢ (91 ® g2) . (7.247)
If we set Kg :=ker (S‘ o (7;‘).) =im(D*) C Hom (T'y(G), M) the composition
K(6,66,) = Kg, ® K¢, ® Hom (G, ® G;, M) (7.248)

holds in the sense that Kg, are subspaces of Hom (T'4(G:) , M) in (7.246). 'I:o see this,
we define p € Hom ((G, © G2) ® (G1 @ Ga), M) to be equal to g on G, ® G and zero
on all other G; ® G,-.' Then p((91,92) ® (91,92)) = ¢(91 ® g2), and (7.247) implies that
Hom (G, ® G3, M) C K(g,66,)- So, if 6 € K(,ec,) then (§ — D*(p)) = T6; € K6,06:);
and therefore there is some § with 5((91,92) ® (61,92)) = 6; (g:) + 6, (g2)- Setting g, =0

yields 6, = D*(5) | Gy ® Gi € Kg,, and (7.248) follows.
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The image of S* in H*(Gy ® G;,1; M) is thus described by

5o (1;1)' (Hom(T'4 (G, ® G;), M)) .
@D s (‘YI:)'(Hom(I\ (G:), M)) € Hom (T4 (G:), M) /Kq, - (7.249)

i=1,2 i=1,2 -

R

- The complete image of S* can now be easily determined by starting from (7.217) and

iterating (7.249). Note that D*Q* = 2, found from (7.223), implies
2Hom (T'4(G), M) C K¢, i (7.250)
so that all elementbs in imS* are of order two.

This observation leads us to consider cohomology with Z;-coefficients. Since reduc-
tions of coefficients strongly depend on the original group M, we shall avoid complications
by restricting our attention to the case M = R/Z (in which we are actually interested).

First, we remark that there is an involution, F, on A%(G,2;R/Z) with
Fifith=[-£r]. (7.251)

One immediately verifies that it maps cocycles to cocycles, that F§[A] = —6[)] and that
the induced map Fis the identity on H4(G,2; M). It follows that 1 — F maps any cocycle

[f; 7] to a coboundary. Since we have coeficients R/Z we can choose this as

(1 = F)(f;7]) = 2614,

where g € A*G,1;R/Z). Another representative of the cohomology class of [f; 7] is then
given by [f;#] := [f,r] — 6[u], which, by the last formula, is fixed by F. This means that,

in every cohomology class, we have a representative with
2f=0modl1 and F=#. (7.252)

We denote the space of cocycles ébeying (7.252) by Z2},..(G,2;R/Z). The restricted
projection Z3 . (G,?2; R/Z) —» H*(G,2;R/Z) is still onto, and its kernel is given by
B = ‘Z_‘,,,,m N B%. Since F acts as —1 on the boundaries, the F-invariant set is
given by 2( BY(G,2;R/Z)), where we use the notation ,G = {g € G : g* = 1}. But for [}],
with §[)] € By ..(G,2; R/Z), this implies 2[] € Z°(G,2;R/Z). Since by (7.230) we have
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that H*(G,2;R/Z) = 0, we can find some 4 € A%(G,2%R/Z), buch that 2[] = 264. Fo
[M] = [A] — 6, we then have §[\] = §[)] and M(g, k) € 3Z/Z. :We conclude that

Bl (G, % R/Z) = »(B*(G,2,R/2)) = B* (G,iz; 12/z) . (7253

Similar to S* in (7.238), we have a well defined suspension of éocycles

Siyem : Zem(G, 5 R/Z) = 2°(G,1:12/2)

(7.254
fir] = f.
By (7.253), it has the property I
, |
Saran (Bbema( G, 2 R/2)) = B*(G,1;32/2) .
Together with Z} / Bl = H‘k(G, 2;R/Z) this induces a homomorphism
S HY(G,ZR/Z) - H*(G,1;12/2) . (7.255

The connection of g:m and §* is obtained by considering the short exact sequence
coeficients

0-12/2 S R/Z 3 R/Z - 0 (7.256
and the associated long exact sequence
- HG,R/Z) > B*(G,32/Z) & H(G,R/Z) > H¥(G,R/Z), (7.257

|
where & is the connecting homomorphism, and 7 and 2 the maps induced from (7.256

We find the following commuting diagram

HYG,%;R/Z) 5, H3G,1;R/Z)
N S i (7.25

B (6,1,}2/2)
For general abelian groups, working with this substitution of the coefficients tends to

rather awkward. However, for cyclic groups, the decomposition of S* according to (7.2

~ turns out to be pertinent. First, we observe that, for G = Z,, H*(G,R/Z) = 0 imp]
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& = 0 in the exact sequence (7.257), and 1 is injective. From (7.217) and (7.236) we find
that
H(Z4,2,R/Z) = Z301a (7.259)

and the generating quadratic function ,f,, is given by

N_ 3 ,
6a(5) = G modl, Vj€Z,. (7.260) |

Moreover, since Z, ® Z, = Z,, the bilinear functions are generated from

Ai®i)=Lmoedl, Vij€Z.. (7.261)

By (7.244), the kernel of S* (which is, with injective , also the kernel of S,,,..) is given

by Z, and has generator (2,a)8, = D*(p). Hence

imS$* 2imS, ., = Zu,). (7.262)
Comparing this to
" H?(24,1;32/Z) % Hom (24, 12/Z) = Zs,0), (7.263)

which follows from H; (Z,,1) = 0, (7.178) and (7.227), we infer that S, is surjective,

and hence

im$* = imi = ker? = , (H®(Z,, 1 R/Z)) . (1.264)

For odd orders a, the groups (7.263) and (7.264) are trivial and 8, = D*(p), so that the

representing cocycle in Z3___ of the class of 4, is
ng symm

'r(t,]) — p(‘i@j)) Vi,jezar (7265)
f = 0. |

For even order g =: 2a’, the groups (7.263) and (7.264) are Z, and the generator 6, is
" mapped to the non-trivial element in H® (Z,,, L1z/ Z) .

We shall use the special dependence given in (7.258), with 7 mapping into and 'S‘:m
onto, in the way, that, for any representative f € 23 (Za,l; %Z/Z) of the non-trivial

cohomology class, we can adjoin some (unique) r : G x G — R/Z, such that

(f :7) € 2 m (Za, 5 R/Z)  2nd 7(5,5) = 6a(5).
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In order to determine a cocycle f of this kind, we employ a chain contraction of the cochain ©

complex A®(Z,,1; M) onto the cochain complex M'(a,l;M) , where M*(a,1; M) =

Hom (Mk(a,I),M), M,(a,1) as in (7.179) and § = 8°. The projection and injection are °

I* and P*, from (7.184) and (7.185), and the homotopy is $*, and we obtain a diagram

as in (7.186) with all arrows reversed.
The cohomology groups of Z, can be computed directly frtorn M*(a,1; M) as follows:

Since 3 is zero on Mam41(a,1), § vanishes on M?™(a,1; M), and we have

0, Z (7.266)

B*™(a,1; M) :
Hom (Man(a,1); M) > M : (7.267)

- 2°(a,1; M)

Furthermore, it follows from (7.179) that

B¥™(a,1; M) = a-Hom(Mn(e;1); M) =aM, (7.268)'
and _ }
2?1 e, 1; M) =  (Hom(Mamii(a,1); M)) = M. (7.269)
Finally ,
H™(e, ;M) = M/aM, (7.270)
and
H™ (g 1, M) = M. _ (7.211)

In particular, for odd dimensions, two cocycles are cohomologous only if they are equal.
|

. i
Equation (7.271) confirms that H? (a,l; %Z/Z) ¥ 4(Za) = Z, for even a, and the
non-trivial cocycle is o

g: Ms(a,1) — 3Z/Z,

(7.212)
with  g¢(w)) = jmodl.
Thus, a non-trivial cocycle f € Z3 (Z,, 1; %Z/Z) is given by‘
f=Pq), ' (7.273)

where P has been defined in (7.184). The explicit expression is then found from (7.184)

as

f(i,5,k)

a (Pa(fLD)

(7.274)
= %B(l)'y(])k) mod 1)
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for all i,j,k € Z, , and with B,v asin (7.180) and (7.181). To find the éocycle [fir] €
Z} n (Za,2;R/Z) representing the class of the generator 8, € Ty (Z ), we have to solve
the following set of equations for r : Z, x Z, = R/Z:

J-z
r(4,7) = e mod 1,
r(i,7) = r(5,%), (7.275)

and _
r(i,7) + r(8, k) —r(i,5 + k)

3 B(i)(j, k) mod 1.

Here we used that f is iymmetric in the last two arguments and f = —f. One easily

verifies that

1) = 2080)

mod 1 (7.276)

is‘a solution, by viewing the left hand side of (7.276) as a 2-coboundary for fixed 1
and‘ using (7.182). In a more systematic approach, this particular cocyde can also be
obtained from the chain complex M.(a,2) that we mentioned previously as being ho-
mologically equivalent to A,(Z,,2). Starting from § € Z*(a,2;R/Z) C M(a, 2), with
§([wo | wo]) = 3; mod 1 and §([w]) = ] mod 1, [f;r] is the same as (P#). (§). More

precisely we have

r(i,5) = q(P*END) = (P(E) | PLDY)
fGa k) = G(P(BEIRD)) = a((PCEIKDD,

which reproduces (7.274) and (7.276). We interrupt our line of arguments with a summary

(1.217)

I
it

on cohomology of cyclic groups.

Lemma 7.5.1 For anya € N, we have
H* (Z,,2;R/Z) = Z(;‘,,).l .

(Here (2,a) =1 ifa is odd and (2,8) =2 ia is even,) A symmetric cocycle f;r] €

z:mgz.,z; R/Z) with the property that |f;r] gengrates H*(Z,,2;R/Z), is given by

.. 1 N\ ars
"6d) = g BB med 1
_ (7.278)

f(3,3,k) B(i)~(j, k) mod 1

it

1
(2,0)
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foralli,j,k € Z,. For the suspension
S*: H(Za, % R/Z) » H* (Zo, ;R/Z) 3 Z

we have r
im S* 2(H3(Z.,1;R/Z)) Z(2,0)
and : (7.2
ker S* 2H*(Z2,,1;R/Z) = Z,.
In particular, for even a, the cocycle f € 23(Z,,1;R/Z) from (7.278) represents ¢ n.
trivial cohomology class in H*(Z,,1;R/Z).

It
R

The technology presented so far allows us to generalize Lemma 7.5.1 to arbitrary fin

abelian groups )
G=2,0..0Z,. ‘ (7.28

First, the quadratic forms of G are decornposed' by iterating the lower horizontal map
(7.246):

Hom (I'«(G), R/Z) = @ Hom (T4 (Z,),R/Z)® @ Hom (Zq, ® Z;,R/Z) . (7.28
i=1 1<i<ign
For any 6 € Hom (I',(G),R/Z) and any ¢ € G, givenby g = g1...gn, ¢ € Z,,, We can u
(7.247) to write the components of 6 in (7.281) in the form

6(g) = Z 0: () + ZPIJ (9: ®95), ‘ (7.28

=1 i<y

where 8; € Hom (I (Z,;),R/Z) is given by 8; = 6 | Zy; and p;; € Hom (Zy; ® Za;, R/
by pi; (9: ® g;) = 0(g: 95) — 0 (g:) — 6(g;). More explicitly, we have
Hom(T'y(G),R/Z) = @Z(ﬁm)ﬂe ® @ Z(a; 05) (7.28
=1 1<iKjisn

in the sense that, for some given generators {; of Z,, C G,1=1,...,n, we have

oy ... = 2(2 a)a v + Y v v; modl (7.28

=1 1<l<3<n( i @ J)

where 7; € Z(3,0,)a; 20d Tij € Z(g; q;). The decomposition (7.248) together with the spec
result (7.279) put us in the position to determine which of the functions 6 from (7.284) he
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bilinear extensions to G ® G, i.e., § € im D*, and are thus annihilated by the suspension
map in (7.244). The condition is
beKe f (2,a)[n, Vi=1,..,n. (7.285)

From the two short exact sequences

0 — imD* < Hom(T4(G),R/Z) — Hom(kerD,R/Z) —» 0

'-%I'r: EI’n‘ 3]77

0 — kerS* —  HYG,ZR/Z) —— imS§* C H(G,L;R/Z) — 0
(7.286)
we can derive the unique isomorphism ¥, which, together with (7.225), yields
imS* HkerD ¥,G. (7.287)

For @ as in (7.280) this group is Z(a,2) @ ... ® Z(a, 2), and the map i* can be explicitly
given, once we pick a; = a;(§;) as the generators of ker D, which are of order two, for

even a;; and zero, for odd a;. We have

i’(@)(a;):a%)- modl. (7.288)

For the computation of representing cocycles for the associated cohomology classes we no-

tice that by the commutativity of (7.246), the following short exact sequence is a canonical

presentation of H*(G, 2; R/Z) in terms of cocycles and coboundaries, compatible with the

decomposition (7.281):

05 @B (Z.2R/Z) — DI'(Z.2%RZ) & @ Hom (Z,, ® Z.;,R/Z)

i=1 =1 iK1<jign
n ' ‘ n
BY(G,q;R/Z) Z%(G,q;R/Z) N
H*(G,q;R/Z) —0

7 (7.289)
Here the surjection onto H*(G, a;R/Z) is given for the crossed terms by the identification

Hom (Z,; ® Z.;,R/Z) — Z%(G,2R/Z)
pij — [0;0],
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where p € Hom(G ® G,R/Z) = @ Hom (Z,, ® Z,,,R/Z) is equal to f;; on the summand

with r = i and s = j and zero for all other r and s. ;

Furtbermore, the inclusion 24(Z,,,2;R/Z) C Z%(G,2;R/Z) is naturally given by
(:,') : AY(Z..,2;R/Z) — AY(G,2;R/Z), where 7¥ : A,(G,2) — A, (Zs;,2) is the chain

map obtained from the projection m; : G — Z,;, with

(o |l gal) = [milg) |- I mi(gn)]
g € G. Explicitly, [f;, 7] € Z2*(Z.,,2;R/Z) is identified with [f;r] € Z*(G, 2;R/Z) by

r(9,k) = ri(ni{9), mi(F)) ,

and : (7.290)
fla.hk) = fi(mlg),mlh), milk)) -

Exactness of (7.289) also implies that two cocycles with a decomposition of this form

are cohomologous iff their contributions in each Hom (Z.‘. ® Z,, ,R/Z)b, 1< i<j<n,

Z24(Z.;, 2% R/Z)

,n. Suppose now we have a quadratic

are equal and the respective components in

in the space H*(Z,,,2;R/Z), for all i1 =1,...

have the same class

o

.
wy

function, 6, given by (7.284), with coefficients 7; € Z(3,4)0; 20d Tij € Z(q, q;): Then we can

use the compatibility of (7.289) with (7.281), the canonical representatives for the mixed
terms and the explicit formulae for the cocycles (7.290), given in Lemma 7.5.1, to obtain

a representing cocycle for the class associated to 6. It is given by [f;r], where

TE ) ‘2(2 aya; ) B )

=1

+ vipjmodl,
Z (a., J) Hi

1<i<jsn

(7.201)

and

FUER .. e gt )

n i

;)mod 1.

l—l

The advantage of this normalization is that [f; r] € ker S‘ if f=0 (instead of just
f =63 '

Alternatively, we can find from these expressions representativesin Z;
defined in (7.252). They are obtained from [f;#] = [ fir] = 6[A), with

(A N T PR S B(w:) B (ki)

1<icjisn 2 (q'" a; )
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so that

B (v) B (m)

= (£ L Y Hn
7 (& LA = ‘5;:(2 )

+ E 2(8,, )(ﬂ(v.)ﬂ(ll,)*l-ﬁ(v,)ﬁ(#.))

T 1€i<iEn
and

FlEr ) = 3 s ) 7 ()

=1

+ X 2(:;’:”) () v (wioms)  (7.202)

1<igji<n

2 2( a0 ) (Vn“l)ﬁ(ﬂ:)

1<i<ji<n
Given these normal forms, we end here our discussion of the algebraic properties of the

cohomology groups H ‘(G 2;R/Z) and turn to their interpretation in the context of 6-

categories.

In general, if a cohomology group, H¥(G,n; M), with k > n > 1, admits an inter-
pretation (e.g., in terms of a classification of certain algebrﬁc objects), we expect that
there exists a similar interpretation of the group H**!(G,n + 1; M), which is related to
H*(G,n; M) by the suspension S* : H**'(G,n + 1; M) — H¥(G,n; M), and, further, that
there is a connection between these interpretations which is parallel to S*. We already
encountered the example §* : H3(G,2; M) — H?(G,1; M), where the suspension could be
interpréted as the inclusion of the group of abelian extensions of M over G into the group
of central extensions of M over G. A similar relation can be found for H3(G,1; R/Z) and
HY(G,%R/Z). '

The group H*(G, 1;R/Z) can be naturally interpreted as the classifying object of in-
equivalent, relaxed, monoidal C*-categories with fusion ruleA algebra & = NC. Analogous
results have been obtained in slightly different contexts, with possibly nonabelian G, like
in the classification of WZW-actions with gauge group G [60), or in the guise of quasitrian-
gular quasi-Hopf algebras, A = C[G] X C(G), with certain restrictions [33]. Nevertheless
we shall recall the derivation in a purely categorial language. For a category of the type
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910(920(g3094))

specified above, the composition of two irreducible objects is again irreducible, hence

1

associativity isomorphism, |

agnx € Mor(go(hok),(goh)ok) t (7.2
I
for irreducible g,k and k, is irreducible, too, and, as the arrow space in (7.293) is ¢
dxmens:onal we can consider it to be a scalar. A realization as a linear map is obtai
1f we choose a basis, Igongn € Mor(g - h,go k), and let a act on these arrows by
multiplication, i.e. i
i

aghk (1g X Thoknk) Too(hk)gnk = (g, b, kg - b k)% (Coohgh X 1) Tgnokgnk, (72

the @-matrices are numbers. We shall use the simpler notation

@(g, b kyg - h-k)ih = 2xifl@hk) (7.
Clearly the numerical data from (7.295) and a choice of basis determines & uniquely.
order for a to determine a monoidal category, it has to satisfy the pentagonal equati

meaning that the following diagram has to commute

Qgy ,02.93094 Qg;092.93.04
—_—

(91092)0(g3 0 94) ((g10g2)0gs)og

‘llm X Qg;,g3,94

Qg, ,92093,94

g, 92,93 X 19«]

g10((g2093) 0 94)

In terms of f : G x G x G — R/Z, this is equivalent to

» (g10(g2093))0g
(1.2

1
)
|
i
H

|

f(91,92,93 94) + f(91°92,93,94) = f (92,93, 94) + f(ghgl - 93,04) + £ (91,92,93) .

If we consxder f as an element of A¥G,1;R/Z) and compare this to (7.237), (7.296

reexpressed as

f € 2%G,1;R/Z).

(1.2

We may now ask when two categories C and C’' with identical objects, ® = N¢, and defi

by cocycles f and f' are isomorphic. An isomorphism maps the spaces Mor(go A, g
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onto each other. Thus if {P’,oh .ah} is-the image in C of the basis chosen in C' then there

obviously has to exist A : G x G — R/Z with
P'goh.gh = e-ZﬁA("h) I‘goh,gh ) 7 (7298)

and f’ is the cocycle determined in the basis (7.298) instead of {T'yonn}. From (7.294)
we see that they are related by .

f(g: hx k) - fl(g: h’ k) —A(g) h’) - A(ghr k) + A(’7'1 k) + A(gs h- k)

(7.299)

= (60)(g,h, k).

Thus f and f' define isomorphic categories iff
f-feBG,1LR/Z). ~ (7.300)

Hence the possible associativity arrows and thereby the possible inequivalent monoidal

categories with & = NC are identified with elements in H*(G,1;R/Z).

An analogous interpretation can be found for H*(@,2;R/Z) if we require that the
(relaxed) monoidal C*-categories, with & = N, in addition admit a braided structure.
We call a braided category of this type a f-category. The statistics operators of a §-

category

€(g,h) € Mor(goh,hog) (7.301)

are determined, for irreducible objects g, h € G, and a fixed basis {Tyohny} , by some
7:GXx G- R/Z,so that

C(g, h) rnch,hq = e?rirlah) I‘goh,h-g . (7302)

For general objects X and Y, £(X,Y) has to satisfy the isotropy and the hexagonal

equation, which can be summarized in the polynomial equations.

We shall use them here in the form of Theorem 2.3.4, where the R-matrices are
defined by

a,,;‘_;,(lp X E(h,k)) a;,h,k (P,op.,,.}. X 1x) Tg-hok,g-hk
i (7.303)
= R(ﬂ) h: kyg “h- k):: (Pgoh.g-h X lh) Fp~kok,y-h-k .
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i
f

R(g,h,k,g-h- k):jﬁ = eﬁﬁ(f(h.k)w(:,h.h)-!(n.h.h)). ' (7.304)

From this, tbgether with the ¢-matrices _ i
(ﬁ(g’ h, k,g he k):: = Q-Zﬁf(ﬂ-hvk) , ,E | (7.305)

1
'

we can reduce the first polynomial equation
RHL-g,hkt-g b E)YTE R¥ (L, kL g- K)E G- k,g,k,L-g-h- k)oK
: - (7.306)
=@t g,hL-g-h);S R*(L,g -k k,L-g-h-E)iEn
to the condition
£(9,h k) = £(g, k. ) + f(k, 0, ) = r(k, k) + r(g - h, k) = (g, )
= (8£)(t,9,h, k) — (6F)(t, 9,k ) + (6f)(¢, k, 9, k)

on the functions f and —r. Since the pentagonal equation also holds for 6-categories,

(7.307)

the right hand side of (7.307) vanishes by (7.297). We recognize the resulting equation
as the cocycle condition (7.240). Similarly, we obtain (7.241) from the second polynomial
equation. Thus, a pair of functions f and r defines via (7.295) and (7.302) a 6-category
if and only if

1 -
Again [f;r] and [f’;r] define the same category iff they differ by a rescaling of the basis
as in (7.298). Besides (7.299), we obtain from (7.302)

r(g,h) —r'(9,h) = X(g,h) - A(h, 9). (7.309)

Comparison with (7.239) then shows that the §-categories constructed from( If; r] and

[f';7'] are isomorphic if and only if
[fir] = 1fr') € BYG, % R/Z). (7.310)

This establishes the interpretation of H*(G,2;R/Z) as the class of 0-categories with
d = N€,
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Combining (7.294), (7.295) and (7.302) we find » ‘ *

(f;7] € Z4G. 2 R/Z). | a (7.308) '



Notice that we have by (7.302)
e(g,9) = &9 1, | (7.311)

showing that r(g, g) is 2 basis-independent quantity. For a §-category the dimensions of
irreducible objects are all one, so that the statistical phase, 8(g), of an irreducible object g

is equal to its statistical parameter. Hence, we obtain from (7.311) the identification
8(¢) = r(g,9) mod 1. (7.312)
Let us also introduce the (basis-dependent) function 4 : G — R/Z by

19) =r(g,9)+r(9,97") = f (97", 9,97") mod 1. (7.313)

We easily find that

7(9) = -7(¢g7!) mod 1

) (7.314)
and ¥(9)-7'(9) = X(9,97*)M(¢7,g) mod 1.

Hence, for elements g € ,G of order two, 7(g) is an invariant and 7(g) € 3Z/Z. In other
words: v distinguishes among the selfconjugate elements ;G the real (v(g) = 0) and the

pseudoreal (7(g) = 1) ones. Furthermore v : ;G — 1Z/Z is a homomorphism.

For the following considerations let us denote by Cat (G) the class of §-categories
with & = N®. So far, we have achieved an identification of Cat (G) and H*(G,2; R/Z) only
as sets. Apparently Cat (G) also carries a group structure induced by this correspondence

which we want to describe more direcﬂy.

To this end we define a composition of f-categories associated with two abelian

groups G and H.

Cat(G) x Cat (H) — Cat(G@& H),
(7.315)
(Ce,Cn) — Co®Chy.

The objects in Cg @ Cy are given by NG @ N¥ = N(G®H) with composition

(91, k1) 0 (g2, ha) = (g1 0 g2, b1 0 ha)
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and the arrows are given by

|
Mor ((gl) h’l) ] (921 hﬂ)) = Mor (91:92) ® Mor (;’hh h!) )
with correspondingly factorized arrows a and e. ‘

In the cohomological translation, this corresponds to the embedding of the :
terms in (7.246), H%(G,2; M) ® H'(H,2; M) — H*(G ® H, 2/ M). If G contains a:
group G, with inclusion i : G < G, then we have the natural map

i*: Cat (G) — Cat (G),

'

which restricts all arrows to the objects in N¢ and obviously c;:)rresponds to
i* . HYG,2;R/Z) — H*(G,2;R/Z).

Let us choose this injection to be diag: G — G @® G : g — (g, g) and consider the com

sition ‘

Cat (G) x Cat(G) — Cat(G@®G) — Cat (G) -

(C&,CE) - CLeC: — C4-C%=diag'(CLoCk). (

This is by c;nstruction precisély the multiplication induced by H*(G, 2; R/Z). Theref
the correspondence between f-categories and group-cohomology is in fact a group hon
morphism, once Cat (G) is endowed with the group structure given in (7.316). The u
element in Cat (G) is the ;ardinary representation category of G, where the statistics op
ator is just the flip, and thanks to the special properties of H ‘(G, 2;R/Z), especially il
im §* C o(H¥(G,1;R/Z)), the inverse, C’, of a category C € Cat (G) can be obtained
setting ¢'(g, k) = e(h, g)* and o' = a. (For general, monoidal C*-categories with & =
the definition of an inverse requires a choice of basis.) As the key observation of‘c
discussion on §-categories, let us record their correspondence with cohomology" éroups

the following proposition:

Proposition 7.5.2 For C € Cat (G) and a given arrow-basis, let the R- and (-matr
be defined as in (7.294) and (7.803). Then the assignment

(¢, R) - [fir],
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specified in (7.295) and (7.804, yields an identification of C and its basis with a cocycle
in Z%(G,2; R/Z). The category C is trivial iff [f;r] is a coboundary. The induced map

Cat(G) — HY(G,2;R/Z)

is an isomorphism of abelian groups, where the multiplication in Cat(G) is given by
(7.816). '

The isomorphismexplained in Proposition 7.5.2 serves as a tool to translate the results on
the properties H*(G,2; R/Z) into the context of the group Cat (G). They are gathered

in the next proposition:

Proposition 7.5.3
i) For a 8-category C € Cat (G), the function b; : G — R/Z; g — 8¢(g), defined by the
statistical phases 8¢(g), is quadratic (see (7.242)) and yields an invariant for each C
which is separating in Cat (G). Conversely, to every quadratic function 6 € 1":(22’),
there ezists @ unique category C € Cat (G) such that § = 8c. Hence

Cat(G) = T(G) : C — & (7.317)
is a group-isomorphism.

i) Let G and H be finite abelian groups, Cg € Cat (G) and Cy € Cat (H) two cor-
responding §-categories, with statistical phase functions 6g and 6y , and g€

Hom(H ® G,R/Z) a bilinear function. Then there is a uniqucr 0-category
C=Cc®,CheCat(Go H) (7.318)

called the sum of Cg and Cy with “statistical interaction” q, such that the objects
“and arrows of C' are as in the sum (7.815), and
Qg1 ,hy),(g3,ha (o3 hs) = gy 02,98 B Ay b by

but
£ ((91: hl) 3 (921 h!)) = ez"q(hh”) € (ghgi) Q¢ (hls h?) . (7319)
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The statistical phases of C are given by
8c((9, b)) = bc(g) + 0u(h) + q(h,9). " (7.320)

Every 6-category C' € Cat (G @ H) is isomorphic lo a category given in the form

- (7.818), where ¢ € Hom(G ® G,R/Z) is unique, and the categories Cg and Cy are

unique up to isomorphisms. If two f-categories C' € C:lit (G‘Q H), i=1,2, have
a presentation of the form (7.818), in terms of C§ € Cat (G), C; € Cat (H), and
¢ € Hom(H ® G,R/Z), the product in Cat (G @ H) can be expressed as

C'-C? = (Ch - CE) Bsm) (Ch - cﬁ,) . (7.321)

Also we have that _
Co ®,Cn=Cu®yCa. (1.322) |

Suppose C € Cat (G, ® G2 ® Gs) is decomposed in two ways
i

(Co, Bas o) Olgasras) Con = Co, B(y, 1) (Co Bz, CG,) (7.323)

where (g23 + g13) € Hom (Gs ® (G1 © G1),R/Z) is written as the sum of g3 €
Hom (G; ® G;,R/Z), i = 1,2, and similarly (g}, + g13), then we have

% = 4
’ ? (7.324)

- /]
Co: = C5,.

. Hence, for any C € Cat (é G.-),* there is a unique, well defined presentation of C
i=1 '

as a sum of B-categories, C; € Cat (G;), with statistical interactions given by g;; €
Hom(G; ® G;,R/Z), i < j, denoted by

C=@ i< Civ (7.325)
=1

such that the statistical phases are given by
!

Oc(gr..9n) =D 6c(a)+ X aiilgirgi), - (7.326)
i=1 1<i<jsn

S

where g; € G;.
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i) Let Cat(G) be the set of monoidal C*-categories with & = N° und

o Cat (G) = Cat%(G) . (7.327)

the identification of 6-category as a category in Cat °(G) by omission of the braided
structure, i.e., €. If Cat%G) is equipped with the same multiplication (7.516), so
that o is a homomorphism, we have Cat°(G) = H}(G,1;R/Z), and the unit ele-
ment, Co € Cat °(G), is characterized by the fact that there is an orthonormal basis

of arrows such that
aphk = (Tgongh X 1k) Tgnakgnk Tgornrygnk (1g X hoknk)’ (7.328)

and it is realized by the ordinary representation category of G.

For a 6-category C € Cat (G) the corresponding category in Cat°(G) is trizﬁ'al, i.e.,
o(C) =Co, iff 8c eztends to a bilinear form p € Hom(G ® G,R/Z), meaning that

6c(9) = p(g ® g), or equivalently, iff 6 vanishes on ker D = ;G, where D is given

in (7.223).
Further, we have that ,
26 =imo C Cat%(G) (7.329)
and clearly
0 (Co ®eCx) =0 (Cc)® o {Ch) . (7.330)

w) If w? define, for a 6-category C € Cat (G) the function .on G givén by
e = 26c | .G (7.33>1)
this is a character ¢ € G with
1c(9) = f(9,9.9) € 32/Z, (7.332)

for any g € ;G A selfconjugate object g € ;G is real i}"'yc(g) = 0 and pseudoreal if
v6(9) = }-
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In part i) of Proposition 7.5.3 we merely put the isomorphism (7.236) into the languag
of 6-categories, using the identification of the statistical phases (7 312) with the quadrat;
functions in (7.243).

‘ Part ii) is an applicatioxi of the Kiinneth formula (7.?465, where the spin formul
(7.320) is a repetition of (7.247). In the construction of (7.319) we use that the re
resenting cocycle of the mixed term can be chosen in the form [0;p]. The direct su
decomposition of the cohomology groﬁps entails, as eélementary consequences, equatior

(7.321)-(7.324) which by iteration yield (7.325) and (7.326).

The map o, which is investigated in part iii), is, in cohémological terms, just tt
suspension S* from (7.238). The kernel of o, 07! ({C;}), is found from the exact sequent
(7.244) or (7.245), whereas the formula for the image (7.328) follows from (7.287). Tt
obvious relation (7.330) corresponas to (7.248). In part iv), the properties of v fro:
(7.313), evaluated on elements of order two, are summarized., Finally, we combine t}

correspondence of Proposition 7.5.2 and formula (7.291) to provide a normal form

* @-categories, for a fixed choice of generators of the underlying group G.

Proposition 7.5.4 Let G be a finite abelian group with generators §;,1=1,...,n, su

~ that

G=2Z,(4)0 0Ly, (). (7.33:
Thenv

i) the group of 8-categories over G is given by
Cat (G) @ Z(2 m)c. @ e Z(a.,n;) 3 d (7.33‘
=1 1<i<j<n .

and, for e given category
i

C=(n1Si<n, 7, 1<i<j<n) (7.33
with 7; € Z(2,0)0; and Tij € Z(a, o;), the statistical phase function is given by

B (¢ ...6) = 22 et o

t—l 1<i<isn (a" J

~

u.v, mod 1. (7.33
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The set kero of categories which are trivial as monoidal C*-categories is character-
ized by the condition
(2,6,‘) IT,', i= 1,...,11. (7337)

The image of o, i.e., the set of monoidal C*-categories that can be equipped with

a braided structure, is given by
o(Cat(G)) = Zp3a,) @ -~ ® Z2,0,) - (7.338)

More ezplicitly, there are categories D; € Cat®(G), i=1,...,n, such that

{Di}s.= cven 07 independent generators of order two, and
oC)=nDi® - ®Dn - (7.339)
where C is as defined in (7.894) and the sum is as in (7.916).

1) There ezists a choice of arrows such that the R- and F-matrices are given as follows

. » " f: ’: B(vi) v(pimi)
Ge(vipn,v+p+ n)f,,j‘,g = (-1)= (2]

|

(7.340)

and

ezm (Z:l exnr ﬂ(m)ﬂ(na)+l5i<isn Py u-'m) (7-34—1)

RE(,pm,v + p+ )t

Here we abbreviated v = £ ... £ and used the functions 8 and v defined in (7.180)
and (7.181). The remaining matrices are given by

Glv v+ a0l = Gmny+pa+n)irt)

and. (7.342)
R(v, v +p+0)0tD)

For this normalization, ¢cv£s‘ in {+1} and R in (7.841) is independent of v. Fur-
ther, ¢c =1 holds if and only if C € kero. The normalization (7.840) provides

R+(V, vt p+ ﬂ)g::x))'

a homomorphism
a(C) = ¢c (7.343)

into the group of possible associativity structures of a category with a fixed dasis,
which is a right inverse to the map assigning to each set of p-mairices the equiva-

lence class in Cat (G) of categories they define.
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iii) The composition of arrows depicied in (2.56), which appears in the aziom of conju-

gate elements, is given, in the normalization (7.340), by

’

(Tgmtoga X 1)° agtggt (1% Toogmi) = e¥6) ¢ (g71,1) (7.344)

where

1(v) = < ¥ mod 1. : (7.345)

-
[

-
—
N

[

-
~

vc only depends on o(C) and
o(C) = % € Hom(G, } Z/Z) . (7.346)

is a homomorphism.

If ki := {‘F:ﬁ denote the generators of the subgroup ;G = Z(20,) ® ... ® Z(2,,), We
have, with ‘ ' ; ,

S p(a;1

T (mf .. ki) =(=-1)7F '(7.347)

. 1
where p(a) = 1, for a =2 mod 4, and p(a) = 0 otherwise, that, for arbitrary C all

elements in 2G N ;G are real (¢ is zero), and, with H := ;G [2G N3G, the map
Cat(G) » H
2(6) = (7.348)
C = T

is surjective.

In the first part of Proposition 7.5.4, the isomorphism (7.317) }!om Proposition 7.5.3 and
the formula for quadratic functions, (7.283) and (7.284), are combined, so that the con-
dition (7.337) corresponds to (7.285). In (7.340) and (7.341), v;ve inserted the expressions
from (7.291) into (7.295) and (7.304), using that 2f = 0 mod | and that f is symmetric
in its last two arguments. In part iii), the function ¢ from ('if.313) has been evaluated,

yielding a basis-independent statement on the reality of selfconjugate elements.

Given the classification of and the normal forms for §-categories, we anticipate to
find some conceptual insights by addressing the question of dﬁality. In fact, the duality
problemn, as posed in Chapter 7.1, can be solyed for 9-categ§ries in a straightforward
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manner. However, since we also included categories in our discussion that are not equiv-
alent to any strict monoidal category, it is necessary to extend the range of dual objects
from coassociative to quasi-coassociative Hopf algebras, first introduced by Drinfel’d. We

recall how the properties described in Chapter 4.1 have to be altered, in order to yield

the definition in [4]. In the first place, coassociativity (4.2) is abandoned and replaced by

the weaker condition (4.5), for some invertible element ¢ € K. The latter is subject to

the pentagon equation

(id®id ® A)($)(A ®id®id)($) = (1@ ¢)(id® A @ id)(¢)($ ©1). (7.349)

The Hopf-algebra axioms (4.6) and (4.7) remain valid. Also the commutation relation

(4.1) is assumed to hold, but the condition (4.9) becomes

1l

(A ®1id)(R)
(1d® A)(R)

$312 R13 $13a Raa ¢

(7.350)
$z RizdaaRuad7"

For quasi-coassociative Hopf algebras, the notion of equivalence is given by so-called twist-
transformations: For any invertible element F € K®?, another quasitriangular quasi Hopf

aigeBrn is defined by the coproduct
AF(e) = FA(a)F! , (7.351)
the R-matrix is then given by
RF =o(F)-R-F? (7.352)
and the coassociativity isomorplﬁsm by
¢F=(18F) (id® A)F)-¢-(A®id) (F)- (F'®1). (7.353)

On the dual space, K*, we still have a product induced by A for which, by lack of
associativity, basic properties, like the uniqueness of inverses, may fail to hold. However,
if we assume that two-sided inverses in X ® (K*)®" are unique then the antipode on K
is unique and antihomomorphic, although it is in general not anticohomomorphic. With

this assumption on K and KT, the twist transformations are not entirely arbitrary. The
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algebra can be equipped with a proper counit, E¥, and an antipode, S¥, only if t.

elements

19 E(F) ad EQILF)
are central, and if .
gr=m(18® S)(F) and pr=m(S&1)(F?)
are invertible and
Pr-4r

is central. In this case we have

EF=E

and

5F(a) = gr S(e) g5 -

(7.35

(7.35

(7.35

If a quantum category has integer dimensions we can always realize it, in the naive sens

as the representation category of some semisimple quasi-Hopf algebra, X. The unitari

quasicoassociative *-Hopf algebra.

" constraints on the category then make it possible to choose K to be a quasitriangul

The *-prefix signifies that X admits an antilinear antiinvolution, *, such that

Ax = *@=*A
$®*R = R-l ;
*QrQ*d = ¢71. '

The twists are therefore festricted to those with

F*=F".

(7.35

If the unitary representations of an algebra K of this kind obey the selection rules

® = NC then we have
X = €81=0c(6),
Alo) = 0Qc, o€l

and .
ot = o,
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The elements R € K82 and ¢ € K®® can be considered to be functions R € C(G x G)
and ¢ € C(G x G x G) on the discrete commutative space defined by the fusion rules.
Using (7.357) we can set

Hg®h®k) = e miflahh) (7.359)
R(g®hR) = erlioh (7.360)

with functioﬁs f:GxGxG—-R/Z and r: G x G — R/Z. Conversely, given func-

tions f and r we can express the elements of K by

1 s -
R = on Y ) 5(0)) 02 (92) o1 ® 0 (7.361)
5i€G0i€6
and
. 4 v
¢ = W Z e_z’"l(’“ﬁ‘g’) o1 (91) (2] (92) o3 (g;,) 1 ®0Q03. (7352)
9i€C,0:€6 i

Thus all the conditions on R and ¢ to define a quasitriangular quasi-Hopf algebra can be

translated into conditions on r and f.

Since K is commutative and accidentally cocommutative and coassociative, the com-

_mutation relations (4.1) and (4.5) are auto{'natically true. Not surprisingly, the pentagon
equation (7.349) reduces to the cocycle con&ition (7.237) on f and the axioms (7.350)
turn out to be equivalent to equations (7.240) and (7.241). If we choose as a twist-
transformation »

F(g® h) = e?™Xeh) . (7.363)

we find, for t’he functions f and 7’ that determine ¢¥ and RF, that
[f';#'] = [fir] = 6] € BYG, 2 R/Z).
The coproduct remains the same, since K is commutative

From this we infer a statement analogous to that of Proposition 7.5.2, nainely
that (7.359) and (7.360) induce an isomorphism of H*(G,2;R/Z) onto the group of
twistinequivalent, quasitriangular, quasiassociative *-Hopf algebras, whose unitary repre-

sentations obey the fusion rules & = NC.
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A quadratic function § on G can be identified, setting

V(g) = e"2%9) | I (7.364)
' |
with some element V € K, which satisfies !

A(V)VRVeV

(AWVhs (AV) @ 1) (1 8 A(V))

and (7.365)

Sw) = v,

and, conversely, if (7.365) holds for some V' the function 8 gi\;en in (7.364) is quadratic.
For the abelian algebra K we notice that m(R), given by

m(R) = ?*r(#9) | ‘ (7.366)

is a twist-invariant.The assertion for Hopf-algebras correspo:;ding to Proposition 7.5.3
now reads as follows: If K is the »-Hopf algebra from (7.358) then, to every unitary
element V € K which obeys equations (7.365), there exists an ( up to twist-equivalence
unique } quasitriangular guasi Hopf algebra structure (R, ¢) such that

vi=m®). o (1.367)

We observe that V is precisely the central element of & ribbon-graph-Hopf algebra as
defined in (6.94) and (6.95). The element U = m(S ® 1)o(R) is then

U(g) = e!wir(ﬂ.ﬂ“) 1 ' : (7368)
and ' . .
Glg) = (Uv) = @, (7.369)

with v defined in (7.313). Note that G is grouplike (i.e., 7 is a homomorphism) if we are
in the coassociative case, ¢ = 1, or if we have chosen the normalization yielding (7.345).
The case where [f;r] € ker §* occurs iff X is twist equivalent to a properly coas.sociative,
quasitriangular Hopf algebra. The corresponding condition # € im D* simply means that,
for V € K, there exist some R € K&? such that the equations {4.9) hold for R, and V is
given in terms of R by (7.367). The group structure induced by H (G,2; R/Z) is just given
by the multiplication (¢, R1)(¢2,R2) = (&1 ¢z,‘R{R3), and thfe direct sums from (7.246)
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correspond to the direct sums of the Hopf algebras, with ¢ and R defined analogous to
(1.319).

The description of the isomorphisms (7.236) in this language suggests that quasitri-
angular quasi Hopf algebras are the appropriate object for which a nonabelian general-
ization of (7.236) should exist. Thus, given some associative algebra K, with a list of rep-
rcsentaf;ions C, a fusion rule a.lgebrla ® = N°, and some “quadratic” element V € K N K,
one may hope to find conditions such that V determines, up to twist equivalence, a unique
structure (A, R, ¢) such that V is the twist-invariant ribbon-graph element of IC We shall

leave this as an open problem.
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Chapter 8

i

The Quantum Categories with a
Generator of Dimension less than

Two

8.1 Product Categories and Induced Categories

In the first part of this section we introduce the notion of product categories. We d
fine an action of the group, H*(Grad(Ob;), 2; U(1)), of 8-categories onvthe set of qua
tum categories with object (fusion rule) algebra Obj. It is deﬁoted C - (9, forgq
H*(GradObj, 2; U(1)), and C? is a diagonal subcategory in the product of C with t

respective 8-category.

Nezt, we define the class of fusion rule algebra homomorphisms to which the sub:
quent definition of induced categories applies, namely the irreducible, coherent or grad
homomorphisms, f : Obj; — Obj,. They are equivalently described by a subgroup
invertible objects, ker f = f~1(1), whose action on the irreducible objects, J; C Ob
by multiplication is free and Obj, is given by the orbits of ker f. For a given cohere
homomorphism, f : Obj; — Obj,, and a quantum category C,, with /object algebra Ob
we show that there ezists a unique quanturﬁ category Cy, with objects Obj;, such tha

eztends to a compatible tensorfunctor. We say that C; is induced by C, and f.
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We prove that for a cokerent homomorphism f : Obj; — Objy and ¢ quantum
category Cy with objects Objy there ezists a quantum category Cp with objects Objz such
that Cy is induced by Cy and f if and only if the sub’category associated to ker f is irivial
and the monodromies of elements in ker f with all other objects vanish.

The remainder of this section is devoied to the question for which categories Cy it
is possible to find a 6-category, g € H*(Grad(Objy, 2; U(1)), such that C} is an in-
duced category with respect to some graded homomorphism f defined on Obj;. We find
the relevant obstruction to lie in Hs(Grad(Obj)/(ker ), 2 Z3). We derive explicit
ezpressions for the case where Grad(Obj) is e cyclic group.

In the previous chapters various resilts on fusion rule algebras have been obtained by
using the special properties of invertible elements of a category. More specifically, we
showed in section 3.3 that nontrivially graded, invertible elements allow us to describe
fusion rule algebras in terms of smaller ones. In section 7.3, we learned that this leaas,
for the case of fusion rule algebras with generators of small dimensions, to the situation
where the generator is vselfconjugate. Finally the categories that contain only invertible
objects have been characterized in section 7.4. The purpose of this chapter is to combine

and extend these techniques, in order to describe categories with nontrivially graded,

invertible elements in terms of simpler ones. This requires the definition of a number of

relations between categories, namely “subcategory®, “products of categories” and, most
important, “induced categories”. We start by explaining what we mean by a product
category. For two categories C; and Cz with objects in Obj; and Objs, we introduce a
category, C; @ Cp, whose object set is NOY1X0b2 je 5 general element has the form

Yxie 0bj; P X, X, (X1,X2), and its sets of morphism§ are given by

Mor(Y nx,x,(X1,X2), Y myp(1,%)) =

@  Homc(c™nxa,c™m) @ Mor; (X1,Y1) ® Mory(X3,Y3)
X,Y; € Obj; . (8.1.1)

equipped with the obvious composition law. The tensor product for the objécts is the
linear extension of (X, X2) o (¥1,Y2) = (X; 0¥, X3 0 Y3), and the tensor product of
‘ 285

morphisms is the one naturally induced from Vecc,Cy and Ca. The special isomorphisms o
€ and a are obtained from ¢; and a; in C;, i = 1,2. One easily verifies from (8.1.1) that
there are isomorphisms among the objects, A + B ~ A® B, (X,)+(X,Ys) ~
(X,Y18Y2) and (X1,Y) +(X2,Y) = (X1 & X5,Y). It is possible to define a quantur-
category, C; ® C2, whose objects are the equivalence classes of Cy ®Ca, given by Ol;;il ®
Objs = n(1x73) of Obj; = N%, and for which there exists an injective tensor functor
€1 ® C3 = C1®C,. In the language of structural data which we have used in previous

sections, the underlying fusion rule algebra for n1xJ2) g given by the constants

_ 1 2
N("liz)(jxja):(kxh) - Nixjhh N‘zjz.kz’ ) (81.2)

accounting for the dimensions of
Mor((kika), (iri2) 0 (152)) = Mory(ky,iy 051) ® Morg(ka,iz052) . © (8.1.3)

The fusion matrices can be expressed as

F((i1,42), (1. 72), (b1, B2), (I, 1)) = Toa(F(in, g1, k1, h) ® Flizido ko ) Tos ¢

€D Mor((21,2), (41, 32) © (k1, k2)) ® Mor((ly,k2), (i1,82) © (21,52))

8152

— or((s1,82),(¢1,12) o (41,7 Mor((l1,12),(s1,8 ok,k’
%M ((s1,82), (31, 82) © (41, 52)) ® Mor((l1,12), (81, 82) o (k1 »2)%8.1.4)

where we used the identification (8.1.3) and the transposition, Ty3, of the second and
third factor of the resulting fourfold tensorproduct. Furthermore, the fundamental braid
matrices, with r(i,j,k) := R¥(1,1,j,k), take the following form C
7((i1,42), (41, 42), (k1. k2)) = r(iy, d1, k1) ® r(i2, j2, k2) :

Hm((kla k2)1 (1'1,1'2) ° (jler)) - Hom((kl) kz): (jl»jZ) ° ('1712‘)) .
(8.1.5)

The intrinsic invariants of the product category, the statistical phases and the statistical \
dimensions, are given by T
(i i) = i, di .
bisia) = 63, + 6i; mod1. » (8.1.6)
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Clearly the gradation of C; ® C; is given by

grad : Jy xJg — Grad(Cy ®C2) = Grad(C1) ® Grad(Cs)

(31,i3) — (grady(iy), grada(is)) . (8.1.7)

For categories with invertible elements, we already used t}_ﬁs structure: If 6; €
Hom(T4(J;),U(1)) are the statistical phases of C; and Cy, 6; + 2 € Hom(T4(Jy ®
_Ja),U (1)) is the statistical phase of C; ® C5. The procedure of taking products of
categbries is, of course, associative, i.e., (C; ®C2) ® C3' = €1 ® (C2 ® C3).

The notion of a subcategory has alrcady‘bcen used on various occasions in the previous
chapters. If J' C J is a subset of irreducible objects closed under tensor products, so
that Obj' = N’ C Obj = N’ is a fusion rule subalgebra, then we find a subcategory,
C', by restriction of the objects to Ol;j' and the morphisms to those between elements
in Obj'. The braid- and fusion matrices are obtained by restricting their arguments to
ob;j'. :

Suppose C is a category with gfadation Grad(C). Then we have a fusion rule algebra

rﬁonomorphism
(:J o Jx GradC) : § — (j, grad(5)),

identifying J as a fuison rule subalgebra of Jx Grad(C). Let ¢ € Hom(T'4(Grad(C)),

IR/Z), defining a 6-category, cGra.d(C),q , with object set NG'“d(C), and braid- and fusion®

matrices given by [fq,rq] € H* (Grad(C),2;R/z), as in section 7.4. We then consider
the product category C ® Cgrad(c),q With fusion rule algebra Jx Grad(C) which, by
the above inclusion (, contains a category C? with fusion rule algebra N/. For two
quadratic forms gq; and g3 on Grad(C), the category (C91)% is the subcategory of (C ®
CGrad(C),q1) ® CGrad(C),q2» Whose irreducible elements are (5, grad(5), grad(j)), j € J.
By associativity of the category product and the fact that ¢ < g ® g defines the

inclusion of the subcategory, we have that

Cerad(c) (g1+92) — CCrad(C).gr ® CGrad(C)as »
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as in (7.369). This yields immediately the canonical isomorphism (C%)% = C:+43,
For the group of quadratic forms on the universal grading ;‘group of a fusion rule

algebra, this procedure defines, therefore, a free action, C — Cq,%on the set of categories

realizing this fusion rule algebra. The braid- and fusion matrices, #¢ and F9, of C? can

be given in terms of the original data as follows:

F9i,j, k1) = e~27ifelorad()grad(i)grad(k) ;i 5 & 1),

29(i,5,k) = e2rira(orad(ioradi)) oi 5 gy, (8.1.8)
and the statistical phases and dimensions of C? are found from

4 =4
9 _

6; + gq(grad(j)) mod1, ‘ . (8.1.9)

for all j € J. In this formula, one application of our mam'pulafions becomes-apparent:
Suppose H € J is a subgroup of the set of invertible elements, Out(N’), and grad:H —
Grad(C) is injective. The restriction of the category to N¥ yields a f-category and
hence determines an element § € Hom (I'4(H),R/Z), where, by assumption, T4(H) is
a subgroup of T'4(Grad(C)). For coefficients R/Z, the character § can be extended to
T4( Grad(C)), i.e., to a quadratic form, g, on Grad(C). If we started from C™¢ ‘the
subcategory on H would be trivial, and, conversely, using th;.t (€ = b, we can
think of C as being included in the product of a category with the same fusion rules but
trivial statistical phases for Ithe objects in H, with a f-category in which H is cpnta.inecl';
too, but which carries the statistical phases given for €. If H is a direct surtxmand of
Grad(C) tl’ﬁs f-category can be assumed to consist of H only. ‘

Next, we explain an important tool for the analysis of the gradation reduction of cat-
egories analogous to that for fusion rule algebras, namely induced categorial structures.
To be more specific, we consider a fusion rule algebra epimoréhjsm ¢ : Objy —» Objy

and a category Cy with object set Objs. A category C; with 6bject set 0551 is then

called induced by { and C; if { extends to a tensor functor fron:x Cy to Cy.
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v ?

In the following discussion we shall find conditions on ¢ such that a unique, induced invertible (irreducible). To see this, we may write X VoX =Y +|X|%, so that = -

category C; exists for every category C3, and we shall also determine those categories .

C; which are induced by some Cy, given {. The first simplification we make is to confine
our atiention to “irreducible” fusion rule algebra homomorphisms, meaning that ¢ shall
map irreducible objects to irreducible objects. In this case, { : N1 —» NJ2, is already
given by ¢ : J; —» Ja. The structure of irredu;:ible fusion rule algebra epimorphisms can
be conveniently described as in the next lemma.

LEMMA 8.1.1

Suppose { : Jy — Jy eztends to an irreducible fusion rule algebra homomorphism, and

let
ker( = {c € J1 : {(0) = 1}. (8.1.10)
Then

(1) ke;'( is @ subgroup of invertible objects. .

‘ (i) The action of ker{ on Jy by multiplication is free, and different orbits of ker( are

mapped to different objects in Js.

(i11) ]f' R is a subgroup of invertible elements in a fusion rule algebra N whick acts
Jreely (by multiplication) on J, thén the Perron-F‘ml;eniua algebra, ‘NJV/NR, (see
section 3.2) is a fusion rule algebra, NU/R), where the irreducible objets, J/R, are
the orbits of R. The projection 7rj; :J = J/R eziends to an irreducible fusion
rule algebra epimorphism.

(iv) For { as above, there ezists an injection i : Jy/ker { — Jp, eztending to a fusion

rule algebra monomorphism, such that

(=10 Mpepe (8.1.11)

Proof: We remark that, for fusion rule algebra homomorphisms ¢, with {(1) =1 and

¢(XVY) = {(X)V - in particular, for irreducible ones and ones that extend to tensor

functors of categories — we have that {(X) is invertible (irreducible) only if X is already
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(X)W 0 {(X) = {(Y) + | X||%1. X ((X) is invertible we have that ((Y) = 0 and N

|IX|l = 1. Hence ¥ = 0, and X is invertible. This immediately implies the assertion in

). Also, if (7} is irreducible and {(i) = ¢(7) then

1= [CGN? = (CONCE) = el oY) =
= Z Njvo = Z Nigj =|{o € ker(ﬁ :j=aoi}é,

o€kerl o€ker( 8.1.12)

where ¢ (the evaluation) is defined as in section 3.1. i

This equation shows that two irreducible elements which ar; mapped by ( to the

same object differ by multiplication ‘by an object in ker o, (the converse being trivially
true). Furthermore, the invertible object is unique, which implilzs statement ii).

In order to show iii), we use the definitions in Lemma 3.2.2,_tdenoting by [j] € J/R

(or €U} € J) the orbit of j € J under the action of R. For the dimensions we find,

with o € R, j € J, that
digoj) = do dj = dj =: dJj, (8.1.13)

i.e., they depend only on orbits. Thus, the component of the dimension vec‘tor‘ corre-
sponding to an orbit [j] is given by
il = Y di4; = i > ¢is (8.1.14)
j € Cii) : J€Cy)
which has the norm ||dUl}| = djjVI R, since | Cii |=I R

‘

For the constants in (3.24), we thus obtain !
K = db] ‘ (8.1.14a)

Using (8.1.13) and (8.1.14a) we see that the dimensions in (3.25) cancel and, by (3.29),
we obtain for the fusion rules of N’ /RE .
— ¢
N[z][)].[k] = Z Nij.k (8.1.14b)
kel i .
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{for arbirtary representativesi € C[,], jE€ C[ﬂ' Since these are integers, N/ /NR = nNU/R)
is a fusion rule algebra. |
With (3.26) and (3.27), we also find the corresponding vectors in ()7
= L Y ¢4i=¢;08l, jec (8.1.14c)
= TR’ i = &5 y J i) 1.
jecy
Clearly the projection mg : J — J/R : j — [j] extends to an irreducible fusion rule
algebra epimorphism and ker mp = R. The claim in iv) is a direct consequence of the

previous statements.

O
Given an exact sequence of irreducible homomorphisms,
. TR
0-RHJITZT o0, (8.1.15)
v

where R consists only of invertible objects, we can describe J, in analogy to groups, as
an extension of J over R. For this purpose, we choose amap vy : J — J, with mgoy = id

and v([1}) = 1. Then
I':J x R— J definedby ([jl,g) = 7(j])og, (8.1.16)

is one to one, since R acts freely on J. The “cocycle” of the extension is given by a map

-

AT o R (G GLIE) - Agg (8.1.17)
- determined by
(@) o 76 = D0 Aum o (kD (8.1.18)
[kl eT ’

using the isomorphism T of (8.1.16).

For the objects in (8.1.17) we infer the relations

A = A,y (8.1.18a)

Ab’]h‘]".lll'e R, Ammv,[]] = 0, for [i] # [, (8.1.18b)
) 291 :

A = % Al i) © A = [;] A © Apmy (8118

and, furthermore, |

= (Agm) = Nam - 1- (81184,
The data needed for the extension of J over R can thus be viewed as N2-valued (instead
of N-valued) fusion rules. Due to the ambiguity in our éhoicc of v, we have a natural

!
notion of equivalence:

A =~ A" if and only if there exists amap ¢ :J — R,

with

A’mm’(kl = o(fi]) o o(li) o o((B) ™! Ay (8.1.18¢)
For example, the sequence (8.1.15) splits. In other words, J = 7J x R, as fusion rule
algebras, and i, 7 are the canonical maps, iff A ~ 1. ‘

Conversely, given J and R, a “cocycle” A asin (8.1.17), obeying the relations (8.1.18a),
(8.1.18b) and (8.1.18c), defines a fusion rule algebra, J = J x 4 R, which yields a se-
quence of homomorphisms as in (8.1.15), #nd the sequences for A and A’ are isomorphic
if Ax A"

For an adequate definition of induced categories, it is necessary to impose an additional
requirement on the fusion rule algebra homomorphisms that éha.ll be considered.’ In
order to arrive at such a definition, the following notion is useful: The free action of the

subgroup of invertible elements R on J is called coherent iff the‘ob jects A[i][j],_[k] € nk

as well as the objects A € NR in (8.1.18c), are of the form No, where N € R

and 0 € R.

By (8.1.18d), this implies the existence of invertible objects &[i]U],[k] € R, with

A = Fnm oune | (B9,
and the constraints (8.1.182)-(8.1.18c) reduce to° '

TG = Ok ; (8.1.20
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and ’
OG0 © ClalELI = ORI © CLIkLE (8.1.21)
where the right hand side (the left hand sid?) of (8.1.21) is independent of [t] ([s], resp.'),

as long as the fusion rules are obeyed. We say that an irreducible fusion rule algebra

homomorphism, { : J; — Js, is coherent if ker{ has a free, coherent action on J;. We

wish to express this property in a second, different way:

For a given v : J — J, we introduce a function
Y I xJ - Cy
with (Cjyy = wil([k]), as in section 3.2) by settiné
Vg EDAGD) = o © 1), 1)
and requiring the covariance condition
Yo oi,poj) = copoyp(i,j), VYo,p € R (8.1.23)
These functions rélate the fusion rules of J and J through the equation |
Nijk = Seyuid) Vi) (8.1.24)
It follows that the restrictign
¢ = supp(ioj) — supp([i] o [3]) (8.1.25)
is injective. The fusion rule relations accompanying these functions are as follows:
CYpd) = P, (8.1.26)

and

where the objects in (8.1.27) are independent of [s] and [f].
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In our applications we shall encounter only a special case c}f irreducible, coherent
homomorphisms, ¢ : J; — Jz, namely graded ones. They are characterized by the

property that
grady : ker( — Grad(n") (8.1.28)

is an injection, or, equivalently, that  is a fusion rule algebra moﬂomorphism if restricted
to the trivially graded subalgebra, (N/1)q. It easxly follows from (8.1.28) that graded

irreducible fusion rule algebra homomorphisms are coherent, and

grady(ogn ) = gredi(v(iD) gradi (+(lil)) gradl(v(iknr‘ . (8.1.29)

We note that, for any irreducible graded homomorphism (, there exists a unique group

homomorphism, ¢#, such that the diagram

" ¢ Ja
grad) lyradz (8.1.30)
J J.
Grad(K’) (—#. Grad(N ?)

commutes. ‘Moreover, if { maps onto the trivially graded component (N’?)y then we

have that

ker (¥ = gradj(ker (). - ©(8.1.31)

Hence, for a graded 7g, we have the exact sequence

#
0—— R——Crad(v') — 2 Grad(W) ——0  (8.1.32)

With (8.1.15), it follows immediately that two graded extensions (8.1.15) are ;qlﬁv-
alent if and only if the corresponding sequences (8.1.32) are equivalent. (In particular,
(8.1.15) splits iff (8.1.32) splits).

For irreducible, coherent fusion rule algebra homomorphism, the existence‘ of corre-

sponding induced categories is guaranteed by the following proposition.
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PROPOSITION 8.1.2

Suppose that :‘Objl — Obja is an irreducible, coherent fusion rule algebra homomor-

phism, and that Cy is @ quantum calegory with object set Objs.

(i) Then there ezists a calegory Cy, unigque up to natural isomorphism, whose object
set is Objy end for which { can be eziended 1o a tensor functor from Cy to Ca.
(ii) The 8-subcategory of Cy, given by the fusion rule subalgebra nker¢ Objl; is

trivial.

Proof.

We first comment on some properties of a general tensor functor, ({,F, C), extending
an irreducible fusion rule algebra homomorphism (. By F : Mori(X,Y) — Mors({(X),
¢(Y)), we denote the map between morphisms with the properties that F(Ix) =
T¢(x) € Endy(((X)) and that, for the isomorphisms C(X,Y) € Mory({(X) o ((Y),
(X o)), | | |

F(IoJ)C(X,Y) = C(X"Y') (F(I)o F(J)), (8.1.33)

for arbitrary I € Mory(X,X')and J € Mor, (Y,Y"). For the restrictions

F o @ recy Mori(k,X) — Mory([k],¢(X)), (8.1.34)

and
F : D recy Mori(X,k) — Mory(¢(X), [K)), (8.1.35)

we note that the spaces on the left hand sides (right hand sides) of {8.1.34) and (8.1.35)
are dual to each other by multiplication on X (on ¢{(X)). From the functoriality of
F and the fact that F(I;) = Iy it follows that the maps-in (8.1.34) and (8.1.35)
preserve the contraction and are thus injective. To the decomposition of the semisimple
algebras Endy(X) = @ copj, End(X )i and Endy({(X)) = Opjc 05, Enda({(X))y
into sums of simple algebras (ei Maty, ,(C)), according to the channels k, we
can associate a partition of Iy and H(x) into minimal central projectiqns, m(X) €

Endy(X) and m(¢{(X)) € Endy({(X)). Using the fact that the representation of
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Endj(X) on the space @, Mor(k, X) by multiplication on X is faithful, we find from
injections (8.1.34) and (8.1.35) that

F @ kely Endy(X), — End2(<(X))[k] . (8.1.36)

is an inclusion of algebras. For imF C Mory(¢(X), [k]), we also have that F(a)l =0
if a € Endy(X) and I € (imF)L C Mory({k],{(X)). But since we require that
F(Ix) = ¢ (x), it follows that (im F)* = 0. Hence the maps F in (8.1.34) and (8.1.35)
are, in fact, isomorphisms. The induced direct sum decomposition of Mors ([k}, (X))

is given by a refinement of the partition of unity,

X)) = Y m(X), (8.1.37)

kEeCy

where we define #(X) = F(mp(X)) € Endy({(X ))[k]' Counting ranks and dimensions

we recover the equation

Nexyu) = 2 N (8.1.38)
kecm

Similar to the “End-spaces”, the “Mor-spaces” can be decomposed according to chan-

nels given by k € J, and we have an injection

F @ keCy MWI(X:Y)E — MW?(C(X):C(Y))[H ; (8139)

for all X,Y € Obj;. As a consequence of semisimplicity, the image of the map in
(8.1.39) is given by o

imF = {I € Mora(¢(X),{(Y)) : m(Y) = IFe(X), Yk € Cy}- = (8.1.40)

The compatibility of these decompositions with the tensor product is expressed by the

formula

(X oY) = 3 (X oY) C(X,Y)(7:(X) 0 75(Y)) C(X;Y) 7,
i,j:t[)[g](i,j):k L
" (8.1.41)
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where the functions ) : J X J — Cj) are defined in (8.1.22), (8.1.23), for coher-
ent homomorphisms. The image of the (i,j)-th projection in the sum (8.1.41) in its

representation on Morg ([k], {(X o Y)) is given by the image of

Mory (i, X) ® Mory(3,Y) ® Mora([k], il 0 [j]) — Mora([k],¢((X oY)

I®J QK —» F(Io)K  (81.42)

and has dimension Ny ,NYJN[;][J] k) = NxiNy;N;;, Y (i) Summation over 1 and j

yields NXOY,E = Zij Ny |NyJ ijk = E" NX i JN[;]m &) ' (i) 25 the total rank
of #(X oY). As for general tensor functors, the braid- and associativity isomorphisms

are related by

a2 (C(X)x C(Y)! C(Z)) =
= (C(X,Y) 1o I)C(X oY, Z) 1 F(a1(X,Y, 2))C(X,Y 0 Z)(L o C(Y,( g%)4

and :
e2(¢(X),¢(Y)) = C(Y X) 1 F(ea(X,Y) NOE.Y). (8.1.44)

For the proof of existence and uniqueness of induced categories it is useful to introduce,

for a (not necessarily iireduciblc) fusion rule algebra homomorphism ¢ : Obj; — Objs,

the natural notion of a pulled back category, Cg , where Cg is an'arbitrary braided tensor

category with object set Objo: The object set of Cg is given by Objy, with the same

tensor product. The morphism spaces of Cg are defined in such a way that there are

isomorphisms:
D : Mor§(X,Y) =5 Mory(¢(X),{(Y)), VXY € Objy. (8.1.45)

The composition- and tensor-products of morphisms are defined to be the ones in-
duced by D, and the braid- and monoidal isomorphisms are given by cg(X,Y) =
e2(¢(X),((Y)) and a§(X, Y, Z) := az(((X),{(Y),((2)).
Note that, in contrast to the categories C; and C3, there éxist, in Cg, pairs of different
yobjects which are equivalent. More precisely, X ~ Y, in Cg, iff {(X) = ¢(Y) in Objs,
297

since for such objects Morg(X, X) = End({(X)) contains the isc;morphism D‘I(H((x) ).
The equivalence classes of objects in Cg are identified with im(i = Objs.

The two categories are related by a tensor functor

(¢,D,1) : C§ — Ca.
{

This allows us to factor any tensor functor, (¢, F,C): C; — Ca, by the unique functor
(id, F,C) : €1 — C§, such that the diagram

(id, F,C) CC

« f& ./C'D 1) v (8.1.46)

commutes.

To prove uniquenesé we show that, to every pair of categories, C; and C}, with functors
(¢,F,C) and (¢, F',C') to Cy, one can associate lsomorplusms (id,Gy,A) : C; — C' and
(:d,G2, B) : Cz — C( such that the following dlagra.m commutes:

G (id,F,C) Cg 1

1 :
(id,gl,A)[ [(id-,gg,B); . (8.1.47)
Cl (1‘11}:')57) CC
1— L2

For the endomorphism algebras in C( we have the decomposition into simple subal-

gebras, En.dc (X) = @ End( X)[k]’ induced by D, thh mxmmn.l central projec-

[k)eim¢
tions vr[k]( = l(r[k] (¢(x ))) The refinement of the partitidn of unity, analogous
to (8.1.37), is given by the projections #(X) := f(?rk(X)) = D7 (#(X)) €

|
Endg(X)[k]‘ The equation (8.1.41) for products also holds truc.in. Endg(X oY)y
We now first determine the functor (id, Gy, B) of Cg onto itself. A large class of such

functors, exhaustive for 8-categories and most other examples in this work, is given by
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the “coboundaries” of a set of isomorphisms, U(X) € Endg(X ), X € Obj; :

Gll) = UY)TUXY, T € Mor§(X,Y),
and

B(X,Y) := UX o Y)U(X) toU(Y) L. (8.1.48)

One easily verifies (8.1.33), (8.1.43) and (8.1.44), with F = G5, C = B, { = id, £3 =

€ = eg, ay=aj = ag. As in (8.1.40), we have that

F(Mori(X,Y)) = {I € Mar§(X,Y) : %(Y)I = Iqy(X), Vk € Cpy}

. ' (8.1.49)
and similarly for 7'(Mor;(X,Y)). Since, for a given X € Objj and [k] € im(, 7 and
1?;:, ke C[k], form partitions of unity in Endg(X )m of equal rank, there eﬁst invertible
maps U(X) such that ‘

UX)m(X)UX)™ = #4(X), VE € Ju. (8.1.50)

For a functor (id, G2, B) defined, as in (8.1.48), for a collection of isomorphisms U(X)
satisfying (8.1.50), we immediately find from (8.1.49) that

Gy : F(Mory(X,Y)) E» F(Mory(X,Y)),

bi.e., that G, provides an isomorphism between the images of 7 and 7', for any given

pair X,Y € Obj;. This shows that the.map G1: Mori(X,Y) =R Mor|(X,Y) is well
defined and unique if (8.1.47) is required to commute, in the sense of abelian categories.

In order to examine the tensor product structure, we consider the endomorphisms
a(X,Y) := UX oY) C(X,Y)UX) toUY) ! C'(X,Y)! (8.1.51)

in Endg(x 0Y). Using the decomposition (8.1.41) for #;(X oY) and #,(X oY), it is

a straightforward computation to show that

a(X,Y) #(X oY) = #(X o) a(X,¥). (8.1.52)
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Hence, by (8.1.49), there exists a unique isomorphism A(X ,Y) € End\(X oY) such
that |

F(AX,Y)) = o(X,Y). (8.1.53)

For the functor (id, Gy, 4) : C; — C], properties (8.1.33), (8.1.43) and (8.1.44) are then

 verified by a‘computation, without difficulty. This proves the? uniqueness of induced

categories. For the proof of existence, we again consider the pﬂ back, Cg , of C3 with
respect to { : Obj; — Objz. In our previous discussion, we :rema.rked that, for the
minimal, central projections of Endg(X )= @[k]Endg(X )[k]> we i'can express the rank in

terms of the multiplicities of X € Objy by

rk(m(X)) = > Nxp. (8.1.54)
kel : .

An induced category Cy can now be defined, for any partition of unity in Endg(X )[k]
as in (8.1.37), provided the projections, m(X), k € Ji, satisfy the condition

rk(wk(X)) = NX,k . (8.1.55)

By (8.1.54), we can always find such a partition. |

The morphism spaces of C; are then defined by

Mory(X,Y) = {I € Mor§(X,Y) : Im(X) = m(Y)I, Vk € Cp}. © (8.1.56)

They obviously close under the composition induced by C.f,. The projections m;, yield a

~ direct sum decomposition,

Mor§(k,X) = Mory([EL,¢(X)) = €D Mory(k, X),
kelpy I

which must be preserved by any morphism. Hence X = Y in C; iff dim(Morl(k,j( ))
= dim(Mory(k,Y)) which holds iff Nx = Ny, Vk € J, i.e., iff X = Y.
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For tensor products, the decomposition of M arg(k, X oY) can be written as follows,

using a natural isomorphism, as in (8.1.42):

© Mor§(k,X oY) = Mory([k],((X 0Y))
= P Mory(lil, {(X)) ® Mory([j],¢(Y)) ® Morz([K], [i] o [i])
(i) € im¢

@ Mori(i,X) ® Mory(3,Y) ® Mory ($13(3,5), 4 0 5)
JEN

R

R

@  Mori(i,X)® Mory(5,Y) ® Mory(K',i 0 ),
e C[.] i,j:%[.](i,j):k’ (8-1 57)

‘and the projection on the k'-th summand in (8.1.57) is given by
WX, Y) = mg(Xo¥) Y m(X)om(Y). (8.1.58)
L3 (id)=F
It‘s rank is given by 3 ;; Nx ;Ny,jNiji = Nxoy,w- It is thus equal to the rank of
m (X oY). Hence there exist isomorphisms C(X,Y) € Endg(XoY)[k], and therefore
isomorphisms C(X, ¥) = @C(X, ¥ )y € End§(X oY), such that

C(X,Y)-zrg(X,Y)C(X, Y)! = m(XoY), VEke Jy; (8.1.59)

compare to (8.1.41). Now we may define the tensor product of morphisms ‘

Ie Mor(X,X"),J € Mo'ril(Y,Y') :
IoyJ = C(X',Y'YIoJ)O(X,Y)™L (8.1.60)

By (8.1.58) and (8.1.59), I o J lies in Mori(X oY, X' 0 Y'), as defined in (8.1.56).
Furthermore, we define brp.iding and associativity isomorphisms in Mo*rg(X oY, YoX)
and in Morg (Xo(Yo02),(X0Y)o Z) by setting
e1(X,Y) = C(Y,X) (X,Y) C(X,Y)}, (8.1.61)
and
a1(X,Y,2):= C(X oY, Z)(C(X,Y) o I)a§(X,Y, Z)(T o C(Y, 2)")C(X,Y 0 2)~L.

- (8.1.62)
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From (8.1.59) we immediately find that
(X, Y)m(X oY) = m(YoX)e(X,Y), ie, e(X,Y)€ Morj(XoY,Y 0 X),

using (8.1.26). Condition (8.1.27) is needed to prove an analogous property for aj. Using
(8.1.27) and applying (8.1.59) repeatedly, we find that the projections m;((X oY) 0 Z)

and m (X o (Y o Z)) are given by i

i ((Xo¥)oZ) = C(X oY, Z)(C(X,Y)o)ad(X,Y | Z)(C(X,Y)}oT) C(X oY, 2)7,

(8.1.63)
with
qxY12) = 3 m(XoY)oz) m(X)om(Y)ow;(2),
‘b[h)?":;?j.):k ]
and

m(Xo(YoZ)) = C(X,YoZ)(ToC(Y, Z)) n)(X | Y, Z)(ToC(Y, 2)7}) C(X,Y02Z)7},
(8.1.64)

with

(X |Y,2) = Z (X o (Y 0 2)) me(X) 0 my(Y') 0 m3(2).
) 'ﬁ[n]{;jzf;):k

Clearly we have that a$(X,Y,Z)rd(X | Y,2) = 1d(X,Y | Z)a$(X,Y,2), so that
a1(X,Y,2)m (X o (Y 02)) = mp((X oY) 0 Z) a1(X,Y, Z), and hence it follows that
a1(X,Y,Z) € Mori(X o(Y 02),(X0Y)o Z). o

On the category C; constructed from these data, we have a tensor functor to C5 :
(C,D,C) : cl - C2 ] . (81.65)

where D is the restriction of the morphism map in (8.1.45) to the subspaces Mory(X,Y)
cCM org(X ,Y). This completes the proof of assertion i) of Proposition 8.1.2.
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In order to prove part ii) of Proposition 8.1.2, i.e., triviality of the §-category associ-
ated with ker{ C Jj, we establish an explicit relation among the braid-matrices of the
two categories. Recall that, for k # 1/J[k](i,j), we have that Mory(k,i0j) = 0. Hence,

by (8.1.34), there is an isomorphism

Hj) + Mory(¥yy(i,5),i05) — Morz (K], ] o i),
I — C(,5) F(I). (8-1.66)

For the braid matrices =, given by
r1(i,5,k) : Mory(k,i0j) — Mori(k,joi) : I — £(3,5)1, (8.1.67)

and similarly for r([i], [i], [k]), the following diagram commutes:

Mory(k,i03j) M»Morl(k,j o1)
lH[‘Z] N H[’,:]l | (8.1.68)
Mory(1k], ] o i) 2L EL IR, pcry 4 157 1

Since r2(1,1,1) = ra([0], [0],[0?]) = 1, it follows that ri(0,0,02) = e278(0) = 1, for

all o € ker{. Here 8 is the quadratic form which, by Proposition 7.4.3, determines the

category of ker{ uniquely. Thus § = 0 mod 1, and this implies part ii) of Proposition
8.1.2.

m]

As a supplement to our discussion of braid matrices presented in the proof of Propo-

sition 8.1.2, we wish to give the explicit relations between the fusion matrices F; and

Fy, for the case that C; is induced by C5. Since the fusion rule algebra homomorphism
¢ : Obj; — Obj, is assumed to be coherent, we have that Mori(l,i0jo k) = 0, for
i,j;'k,l € Ji1, unless | = ¢[q(i,j,k). In this case, we infer from (8.1.34) that there are

two natural isomorphisms

P, PEOR < Mory (winG, k)i 0 jo k) = Mory (1} i 0 4] o [8]),
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defined b);
5

(Toc(,k)y ) Cljo k)"f(!), (8.1.69)

and

A0

(CG,5) Yo T) Clio 4, k)L F(I). (8.1.70)

‘We introduce the following notation for the usual isomdrphismsf decomposing the space

Mor(l,i 0 j o k) into the basic spaces Mor(k,? 0 7):

s |
w9 @, Mory(s,50 k) ® Mory(lies) — Mory(l,iojok)

I®Jw— (Tol)d, (8.1.71)
and |
w* . @), Mory(s,i05)® Mory(l,s0k) — Mory(Liojok)
I®J e (Iol)J (8.1.72)
The isomorphisms #[2:‘]([;'][);]) a.ﬁd #g[i][j])[k] are defined similarly. The decomposed spaces

on the left hand sides of (8.1.71) and (8.1.72) associated with the two categories C; and

Ca can be related to each other directly by using the isomorphisms given in (8.1.66). By

-(8.1.27), we can write, for [ = 1/1[1](1',_7', k):

H®?. @Mor;(s,j o k) ® Mory(l,i03)
s

= @ MOT]_ (11)[,](]: k):j o k) ® M01’1 (‘¢’[l] (": ‘d’[s](]: k)) )7' o “b[g](j o k))
[sleim¢ '
: (k) ’
B Filer, "
D Mora(ls), il o [k]) & Mory ([1], ] o [5])
[sleim¢ (8.1.73)
which provides an isomorphism that factors. On the decomposition given in. (8.1.72)
H®?2 is defined in the same way. We consider the following diagram of isomorphisms,
assuming that I = 9y;(i, 4, k) :
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—— PMor(s,5 0 k) (CEL) PMory(s,io])
& ®Mori(l,ios) . 5. @Mori(l,s0k)
) | NG
Mory (i o (j o k) a1, ], k)  Mory (I, (5 0 ) o )
e pilit) Pk He?

a([i], 1], [K])

Mors (11} [i] o ([j] o [k])) Mors ([0}, (5] © [3]) o [K])

PG (RIENY
; 2 )
—v@Morz([s], [3] o [k]) F2([i]:"[j], (], 1) @Morz([a], [i] o [5]) —
(] @Mory({l], [i] o [s]) [s]  ®Mory({l],[s] o [K])
(8.1.74)

Here the squares on top and at the bottom of the diagram commute as a consequence
of the definition of F-matrices. From (8.1.43) we find that the square in the center
commutes, where aj and a3 act on io (7 o k) and [¢] o ([5] o [K]), respectively. Commuta-
tivity of the squares on the left and on the right of (8.1.74) can be verified by a direct
computation. We summarize the resulting relations between the fusion matrices F; and

Fy in the formula

Fi(i,5,k,0) = (H®%)™! Fy(li], (5], [k], [1]) HE2. (8.1.75)

This formula is consistent with the relation following from (8.1.68), i.e.,

nGik) = Hn@ UL A (8176)

If we use bases in the spaces Mor(k,i o j) obtained from some choice of bases in

Mory([k], [4] o [§]) by application of H, we infer from (8.1.75) and (8.1.76) that

povot

Fi(goi,pojvok,oopovol)goues = Fi(i, 5k, 1, (8.1.77)
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and

ri(coi,poj, oopok) = ri(i,4,k), i (8.1.78)

. . . !
where o, u,v € ker( (so that, by (8.1.23), [¢ 03] = [i]). In our analysis we have not, so -

far, considered the special balancing elements o(X) € End(X ); with e(Y, X)e(XY) =
o(X o Y)a(X)"1 0 a(Y)™}, which, in our context, are given by a(X) | Morl(k;j'() =
2™k € Jy, for statistical phases (or spins) 6;. If we cé:nsider balanced tensor
categories and tensor-functors between balanced tensor categoﬁes - which, in addition

obey F(o(X)) = o(¢(X)) - then all of the results above still hold. The condition
analogous to (8.1.77) and (8.1.78) is then given by

8p0j = 0, YoER, Vi€ = (8.1.78a)

The next question we wish to address is whether the triviality of the f-category of

ker{ is also sufficient for a category C; to be induced by a cétegory Cy, for a given
¢ : Objy — Obj. As a first step, we show that in this case the equations (8.1.75) and

(8.1.76) can be solved on the level of structural data.

LEMMA 8.1.3

Suppose Cy is a quantum category, R C Obj; a subgroup of invertible elements with
a free and coherent action on Jy, and the 8-subcategory asaociq:ted with R is trivial up
to isomorphism. Assume further that the balancing elements, 8;, of Cy are R-;hvariani,
i.e., equation (8.1;78a) holds. Then there ezist mairices F3 and vy defined on vec-
ior spaces modelled on basic spaces Mory([i},[5] o [k]) = Cﬁlﬂ-l“l-i"l,’ as in (8.1.68) and

(8.1.74), bottom lines, and corresponding isomorphisms
Hly + Mory (¥i(i, )i 0f) — cNintim, (8.1.79)

such that equations (8.1.75) and (8.1.76) hold.
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Proof. |

We first make a choice, corresponding to a map 7 : J3 = J3/R = Jy : [k] =
v([k]), with mgoqy = idy , of representatives in the classes of J;. We further intro-
duce Wm'm,[kl-dimensional spaces Mory([k], [i] o [j]) with “canonical” elements i[k] €
End,([k]).

The fact that the 6-category associated to R is trivial implies, for ithe structural data,

- that there exist numbers Ay € C (of modulus one, for C*-categories) such that

Aopdoopy
Fy(o,p,v,0 0 pov)lgop 0 Tpopor = ;‘“A—W Tuov © Tgopov,
BwAT oy
A
ri(o,p,0 0 p)lgop = :\‘M 147,
B0
Ao = A1 = 1. . (8.1.80)

Hence, for ¢,j and k in R, we can solve egs. (8.1.75) and (8.1.76) by setting
Hﬁ’]"(nm) = Af_-,,,, Iy, Vo,neR, (8.1.81)
and .
Fi([1],01),[1), (1)) == id, ra2((1),(1],[1]) := id. (8.1.82)
Next, we attempt to find a convenient normalization of the maps
BT, o) prd (o pon()) — Endy(l), L1#1).  (81.83)

For a given choice of these maps, we define numbers

e1j)(o,1,v), ¢l m,v) = Endy([j]) — Endy(lj]) (8.1.84)

by setting

(#Ey D+ @ gk D) By (0 0 (1), v, 0 0 0w 0 x(15])
= pra(o,p,v)(HEY @ ool wov ’
epie )y @ Hy ) (8.1.85)
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and

(a1t © 1 ) By (1,0, 0 4(1), o 0 o w 0 1([5])

= plo ) (T @ pwrororl),

: (8.1.85a)
For arbitrary assignments a;,b; : R — C, U(1), resp., with a;;(1) = b;(1) =1,
[5] # 1, we define the maps Har([‘ﬂ)'" and HOwoY(l) of (8.1.83) as follows:

’

If we set : ;

B (L) = afj)(e) T3,

BT (W) = i) Ty (8.1.86)
all other maps are uniquely determined by (8.1.85), with o = 1, provided we assume
that | .

:p'm(l,p,u) = so'm(l,p,u) =1. (8-1.87)
Note that (8.1.87) is consistent with (8.1.86) for u = 1, or v = 1, because Fi(i,1,j,k) =

Fy(i,3,1,k) = id. With this normalization, we consider the pentagon equation

(Rl 0 0 w0 7(U) @ T) (1@ F (4(1j]), 0 0 1,45 0 o w 0 (1))
(FI(U,IJ,,U,UOILOV) @n))
= (18 Fy(s on([j]). v, 0 0w 0 4(1j]))) T2
(1e A(l) epomaonovon(li])), -

- (8.1.88)
and conjugate it by H®3. Combining this identity with (8.1.82) and (8.1.87), we find
the resulting equation on Endy([j]) to be '

eplemy) = 1, f (8.1.89)
and
‘p’[j](d:Hy V) =1,
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by a similar argument. Thus, if we put

Rl 1, oL, = R(l1), [}, 1), W) = id (8-1-50)

we have a solution for (8.1. 75), provided either i,7 € R or j,k € R. Denoting by H i
and H [J’]’ the isomorphisms defined by setting a) = b[J] = 1, we find that, in the general

case, -
: R . o (MY
i a5k o) H‘m
bl aj;1(»)
and
grveri) _ b(v o k) I‘}'[;']uow([j]? (8.1.91)

b ()
In order to determine the coefficients a;)(p) and bj;)(g) in such a way that eq. (8.1.90)
can be extended to Fy([1], [j],[1], j]), we define numbers 510 | #,1), ppjj(o, ) and
55)(9, 1) in Endy([j]) by setting '

(ngao‘r(m) ® H[};]oa’o'!(m),v) Fl (ll, oo 7([]])’ Y, povoao 1([]]))

_ (o | ) (BETED g prmveser(i)
(@ [ mv) (Hp 1§ 28.1.92)
and
H{y "D (0,1 02l 0 0 0 A1) = p(ovn) H"’“°7(b])
gy (0 poao H#t"r(b]),v
) ri{poy(lil) o, poa0q(lf])) = ) (8.1.93)

In order to derive relations for the constants ¢U] introduced in (8.1.92), we consider the -

following two special cases of the pentagonal equation:

(Fi(o(liD 0 0 wor(li) © 1) (T8 Fi(o, 0[], v, 0 0w 02((4)))
(Rl 1m0 o (l3]) € T)
= (1@ Fi(o 02 4,0 0 0w 02()))) Tha

(18 Fy (e, 7)) v oy, 0 0 mowon(i]))), (8.1.94)

309

and

(Fuloum 210 0 wo2(l) @) (1 Fa(ovss o1l s o o 02(11))
| (R (1), w0 v o 2(1j]) @ 1)
= (18Rl emlneonoveril)) T -
(18 A(o.mv or(lidoopovor(yl)) -
conjug;ting these equations by H®® we find, using (8.1.90):
' !
WL 1 o) Y | 0v) = Pig1 | omow),
V(e o) dp(L pv) = $j(1leopv). (8.1.95)

In particular, since the two equations defining "ﬁ(i](” | o,v) have to be compatible with

each other, we conclude that [

: |
¥yt 1+) € Z2(RU(L), (8.1.96)

and, moreover, that every ¢v(j](y | -,) is a 2-boundary.

Next, we study the implications of the hexagonal equﬁtion‘

(r1 (w0 0 (LiD), o 0 w0 (L)) @ T) Fi (i, 0 0[]}, vy 0 0 0w 0 (L)
. |
(noor(lilvesori)) @)
= R(eorlillmueonovor(i)) (T®r(vor,eor(lil),kovoro())

Fi(g,v,0 0x([3]),0 0 pov o x(l3]) : | (8.1.97)
|
which, upon conjugation with H 82, takes the form i
. |

P, ) ¥5y(o | B,v) pp)(vi0) = ppj(p o v, o). (8.1.98)

From (8.1.98) we see immediately that '/’[j](l |-)isa sxmmetri 2-cocycle and, there-

{ore, lies in the kernel of the isomorphism

: Z2(R,U(1)) — Hom(A’R,U(1)),

!

'

{

. (8.1.99)
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v

s 'y

‘y~* as defined in (7.190). Hence, since Ezt(R, U(1)) = 0, we have that P51 1) €

-«

B2(R,U(1)), i-e., there exists a function f[;;: R — U(1) : o = fi;)(¢), such that

_ B() B (m) .

Yl lop) = By oK) (8.1.100)

Denoting by 1/;%] and B9 the constants defined in (8.1.92) for the choice of isomorphisms

Has given in (8.1.91), we deduce from (8.1.92) the relation

ag(pov)  by(v) by(e)

W) Yylao) W lmy). (8.1.101)

Y1 ) =

Thus if we require the normalization to be of the form

a(p) = &(emie),  byle) = Bl (w), (8.1.102)

for some maps {[; : R — U(1) and 5 € Hom(R,U(1)) = R, we obtain that "b[ﬂ(l |
#,v) =1, and, by (8.1.95), ¥[;(» | o, v) = 1. Therefore, setting

R([1),15), (1), l4]) = 4d, (8.1.103)

this choice of H-isomorphisms provides a solution of (8.1.75), whenever i,k € R. Sup-
pose p'[;.](a, p) is the constant determined in (8.1.93) for the case { = 7 = 1. Then the

general form of ;) is described by

pijj(o,u) = 7(0) piy(o, 1), (8.1.104)

independent of £. Another special case of the hexagonal equation is given by

(r(o o (I3 o 0 7(l)) & T) Flu,0,7(l), 7 0 w0 7((3]) ™ (rlorm, 0 0 w) @11)
= F(u,(li, 0,00 pox(liD) ™" (1@ (o, 02l o 0 o (D))

. Ay 1
F(oymv(li]),o o por(liD) ™ (8.1.105)

After conjugation with H®2, this equation becomes

pijjle 1) = pijlo,n), (8.1.106)
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ie., Pl5) is independent of p. Furthermore, we see that, since 'qu(a | mv) =1,
(8.1.98) implies that ¢ — pb-](a',l) is a homomorphism. We can therefore choose
(o) = p;-'(a, 1)1 € R, and hence pij)(e,#) = 1. The fact that the balancing elements,

j + 6;, are invariant under the action of R yields the equation -

(o, w0 1(31), 7 o3 () (07 (Li), 0,0 07 (11)) = e HEbmsn~emsntin) = 1,

(8.1.107)
so that, by conjugating with H{I};"Y([ﬂ):’ and using (8.1.93), we find that i
pilo.n) = pylom)™t = 1.
If we set : :
r2(lf), (1), 1) = ra({1L ), 1]) = 1 (8.1.108)

the H-isomorphisms determined so far also yield a solution to eq. (8.1.76), for i € R or
JER

For a given choice of i ["':‘} , consistent with our norinalizations for 1 € R or j € R, we
introduce invertible linear maps ‘

}',-:L([i][j],[k])’ ,:R([i]#[ju],,ik]) € Endc(Mm-g([ki, [i o [31))

uv, @

as the transforms of the F-matrices, i.e.,

(E{;}.uw(m) ® I';E:]’MO‘Y(["])) Fy(o,poy([i]),vo([j]),copo vo LANIOR (k)
= 7, (LR ¢ guoriwer(li]) o goworesmsmer((k)
= PL( )(Hm ® Ay ' )

P (8.1{.109)

and
suoy(li])wor(li)) o, puoveouywov([k])e
(a4 ® Hy, )
Fy(p o x((il),v 0 7([1]), 0,0 0 1 o v 0 oy 4y © 7({KD)

= ;,R([i][j],[k]) (e @ grerDomort) (8.1.110)

pyv, o
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Here we are using the invertible objects o13)15),[k) € R, defined, for a coherent action of
R, in eq. (8.1.19). Moreover, we are identifying Homc(Mora([k], [i] o [j]) ® Enda([k]),
Endy([i]) ® Mora([E], ] [j])) and Homc(Endy([j]) ® Mors([k], [i] o [i]), Mora([k], [i] o
[i]) ® Endy([k])) with Endc(Mory([k],[i] 0 [;])) by using the canonical elements T €

Endg([k]) The pentagonal equation for k := v o apy(; 1) © V([¥]),

(Fi(m o r(iD,k 0 e 07()) @ T) (T8 Falu o o (v or(liDo 0 o))
(Filosr(ED,v 0 2(li1)y o o ¥) 1)

= (18 Ri(soo, 7([:1),vo7(m),oouok))Tu(mFl(p,a,uo b I;)gu)

yields a factorization of FL of the form

() - () RO

Similarly, we find that

(mm 4 < () [k]) R(mm B ey

pv, o ulv ploov

Finally, from the equation
(Fl (D)) po k) @ 11) (1@ Fy(p, k', v,povok'))

(R v o ¥) ©1)
= (18 AlerED AU wnevo k) Tia(te Al rE v vGmeso k)

where k' = ajj1;1 i) © Y([k]), we obtain the relation

A([i],Lj,]L [k]> - ([l][:] [k]) R(h]lbl] ;[,k]) R(lszll .[,k]) 7 ([illbi],,;[;k])
: (8.1.115)
so that eqs. (8.1.112) and (8.1.113) can be rewritten as
([t]a[.:l], ;[xk]) (l’z‘]E]UU:]) 4 ([i] E’)];[k]) -
() (WA
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Replacing the isomotphisms, H [‘ﬁ, by the maps

o

w}»‘r([ﬂ)mo'r([ﬂ) - A(lz]bl lk]> Ei‘r([t]).po'r(b]), (8.1.117)

corresponds to replacing the “structure constants” F’L and f‘R by FL([‘]L’.]'U‘]) =

oV
Fr(Hlil¥) = 1, as follows from egs. (8.1.116), (8.1.117) and (8.1.109), (8.1.110).

Note that Fy = Fg = 1, and hence 4 = 1, when [i] = 1 or [j] = 1, so that the

isomorphisms determined previously/remain unchanged in this ca.se Thus, setting

Fz([‘]: b]:l’[k]) = Fz(l’[‘lrb]n[k]) = id, ) (8'1‘118)

we have found a solution to (8.1.75) when either i or k are restricted to R. A complete

solution to (8.1.75) can be found by using the hexagonal equati:on :

(r1(o 0 78D, o 0 @ 0 2([1)) ® L) Fi (o 0 (i), 1, 0 (1]}, 1 0 &)
(r(v oD mpovor(ls)) @ 1)
= Fl (F'z go 7([’])) vo 7(“}))" ° k") (I[ ® rl(k"a B 40 k”))

Fy(o oy([]),v o v(li]), 0 K"),
» (8.1.119)

. withk" = govoayy, [b]o'y([k]) With (8.1.108) and (8.1.118), lve derive from (8.1.119)

the equation

(a0 g aoro D) £y (6 5 7% il o k1
\ = grorlil) g goer(@uover(i)
= Hb'] ® Hlkl‘ .

]

Setting ?
Fy(fil, 1, 1], [¥]) = id ‘ (8.1.120)

we thus find a solution to eq. (8.1.75) if only j is restricted to JK‘Z
i
In the remainder of the proof we show that, for the choice of H’s satisfying (8.1.108),
(8.1.118) and (8.1.120), we can find Fy’s that provide a complete solution of (8.1.75).
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For this purpose, we define maps

Fy(i,3, k1)) = €D Mora([a], 1] o [K])@Mora([1], [i] o [s])
ls)

= €D Mory([s), li] o [11) ® Ma([1], [s] o [E])
o]
through the equation

1, 0 (il )lk s . . 'ﬁl (J)k)
(H[3®H[¢” ! ) FI(‘ ik, 'b[l](',Jxk)),/,::](i'j)
= By(i,j.k, [I])[,] (H" @H[,’]'p“‘(”")), (8.1.121)

with Fy(i, 7, k,[I]) = id if i, 7 or k belongs to R.
Foro € R,i,j,k€ Jyand l = ¢[,](i,j,k), we may consider the following special case

of the pentagonal equation:

(EBF1 (0rirjro 0 9y ® 1) (@ 1® Fi (0,95 (i» ), k.0 01) ) (Fi(i, 5 B, ) © 1)

E{?n&Fl(vo:,J,k aol))T12(®n®F(v i 'l‘:](J'k)'UOI)) (8.1.122)

The transformed equation for the Fy's simply reads
ﬁ'z(i,j, ka [l]) = FZ(U 0i,j,k, [I]) (81123)

By considering the equations obtained by replacing (0,1, j, k) by (i, 0, 4, k) and (4, §, 0, k),
we also find that '

Fg(i,d‘oj,k, [l]) = pf‘(i:j’UOkrIlD = ﬁ‘2(’:7j’k![ll):

for all o € R. Hence, one can assign, in a well defined manner, linear maps Fj to every

quadruple of objects in J1/R such that
By(i,5,k,[10) = Fa((l, [5], [k, [1)- (8.1.124)

These maps provide us with a general solution to (8.1.75). Similarly, we introduce

functions 72 by setting

[k]'rl(l Jr‘b[k](’:])) = "2 i ];[k])H[k] (81125)
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The hexagoﬁal equation
(ri(o,k,0 0 k) @ T Fi (0, &, 3, 0 by (k,5)) (1 5, b, (k. 5)) ® 1)
= Fy(k,0,5,0 0 Yy (k, 1)) (1@ 71 (o 0 5, k.0 0 ¥y (k,5) ) Fi (02, B, 0 By (. 5)
yields the equation ; o
#a(3,k,[0) = Ra(ooji k), (8.1.126)

and an analogous equation, with k and j exchanged, proves inva:riance under the action

by ¢ € R on the second argument. Hence we can write

#3(i, 5, [k]) =: ra((d), 3], [k]), (8.1.127)

and rp is a solution to (8.1.76).
Finally, the assumed invariance of the “balancing phases” under ¢ € R allows us to

define such phases on J;/R by setting

=: ff;) modl. (8.1.128)

* Clearly, for the structural data ry, F» and 8 just constructed, the pentagonal-,

hexagonal- and balancing equations can be derived directly from the corresponding
equations in Cy, via (8.1.75)-and (8.1.76). This completes the proof of Lemma 8.1.3.

]

This result leads us to a formulation of the basic criterion for the existence of induced

categories.

PROPOSITION 8.1.4

Suppose. that Cy is ¢ quantum calegory witk object set Objy, end let R C Objy be a
group of invertible objects with free and coherent action on Jy, .9;0 that we hav,c @ fusion
rule algebra epimorphism ﬁ; : Obj; — Obj; = N{Jl/m. Then tliere ezisis a cc{ltegory Cs
with object set Objy such that Cy is the category induced by Cp aénd mg if and “only.ij the
Jollowing two conditions are met in Cy: :
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(i) The 8-subcategory associated to R is trivial.

(it) The balancing elements (statistical phases) are R-invariant, i.e.,

6; = 505, Vo ER.

Proof:
As a first step in constructing Cp we build a certain category Cy, rciated toC; by a
tensor functor-
(id, F,0) : C —C. (8.1.129)
The object set of C; is the same as that of C;. However, two objects X and Y in C are
equivalent (X = Y) iff 7g(X) = wg(Y), i.e., modulo equivalence, the object set of C;
is Obj;. 7

" From the building blocks
M([k],X) := €D Mory(k,X) (8.1.130)
keCyy
we define the spaces of morphisms
Mory(X,Y) := P Homc(M([k],X), M([k],Y)), (8.1.131)

[¥]
equipped with the obvious composition of morphisms.

For I € Mori(X,Y), we define the action of F(I) on M([k]X) into M([k]Y) by left
multiplication on X, i.e., for v = Ekecm vy € M([k), X), with v;, € Mory(k, X), we set
F)w) = Y. Iv, Iv € Mor(kY) (8.1.132)

keCy
In order to find the (unique) tensor product on C; such that a functor (8.1.129) exists,

we use the collection of isomorphisms

k . : r .
ety : € Ml X) @ M(i}Y) ® Mora([kl, [i] o i)

[i,ileq/R .
— M([k],X oY),
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which, for v; € Mori(i,X) € M([i],X), v; € Morl(j,Y):C M([J]Y) and w €
Mors([k), [i] o [3]), are given by f

; ;i\ -1
I‘[;]cy(vg®vj uw) = (v,-ovj)(H[z]) (w)

€ Mory(Yy(i,5), X oY) C M([k], X o). (8.1.133)

The tensor product of two morphisms I € Mory(X,X') and J € Mory(Y,Y’) is then
given by '4 ’ ‘
k] _ plkl ;
(I'GJ)I‘X.Y = PX'.Y’(I ®JeI.). | (8.1.134)

It is immediately clear from (8.1.133) that
F(IoJ) = FUIBF(), - (8.1.135)

for arbitrary I € Mor(X,X') and J € Mory(Y,Y"). I the isc;morphisms in (8.1.133)
are chosen as proposed in Lemma 8.1.3 we conclude that C1, equipped with the following

braiding and associativity isomorphisms

EI(X:Y) : f(Cl(X,Y)),

@(X,Y,2) = F(ai(X,Y,2)), * (8.1.136)

is a quantum-category, and (id, F, ) is a trensor functor. Since the pentagonal and
hexagonal equations follow easily from (8.1.136), we are left with proving the isotropy
eéuations

g8(X',Y')(IsJ) = (JsI)&i(X,Y), , (8.1.137)

\

.and

@ (X', Y', 2"\ (Is(JsK)) = ((IsJ)5K) &(X,Y, 2), (8.1.138)

for I € Mory(X,X'), J € Mory(Y,Y') and K € Mori(Z,2').
. From the corresponding isotropy equations in C; and from relations (8.‘1.67) a.x;d

(8.1.68) we obtain that

ex(X,¥ o 0 97) (BE) " (w) = oy 090) (B3 (ralll ), (),
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for v; € Mor1(3, X), v; € Mor1(43,Y) and w € Mory([k], [] o [j]). Hence
a(x, V)l =t (D Tiz @ ra(ll, i, 1K), (8.1.139)
Bl '
where Ty : M([i], X) @ M([5]1,Y) — M([j],Y) ® M([i], X) is the flip of factors. From
(8.1.139) and the definition (8.1.134) of the tensor product 3, we deduce (8.1.137).
Similarly; (8.1.75) and the commutativity of the top of the total square in (8.1.74)

imply that

a1(X, Y, Z)(v; o (vj 0 vp))u'¥) (HO?)(2) =

v; 0 ;) o vy ) uIE (H®2) =1 (Fy([d], [3], [E), [1)(2)),
((vi 0 vj) 0 vg) u*)* (H®2)~1(Fy(la), [4), (), 1)(2)) (8.1.140)

for z € @, Mora([s], 5] o [k]) ® Ma([l],[i] o [s]). In terms of the isomorphisms I
introduced in (8.1.132); this relation reads as follows: '

&(X,Y, Z)rﬁv""z (E[}}) 1® rf:']z ® n)
s
= TEFI (@TEY o157) 1 @ 1% @ Fy (i, 4, 1K1, 1)) ©1140)
ls] Bk -
From (8.1.141) we derive (8.1.138) in the same way as we found (8.1.137) from (8.1.139).
This establishes existence of a category C; and of a functor (8.1.128), with the property
that X = Y iff np(X) = ng(Y).
For some choice of a map 7 : Obj; — Objy, with g 0y = id, we then define Cy, as

an abelian category, to be the sibcategory of C; with
Mory(X,Y) = Mory(v(X),2(Y)). (8.1.141a)

Furthermore, for each X with 7g(X) = X, we select a particular isomorphism Q(X) €
Mor(v(X),X), with Q(7(X)) = 1. We define a functor between abelian categories,

(Rr,0): C1 — C3, by setting

g(I) = Q) IQ(X),
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(8.1.141b)

for I € Mory(X,Y). The tensor product of two morphisms I € Mory(X,X') a
J € Mory(Y, V") is defined by

ToyJ := QWX oy(P") (BNQMX) 07(7). (8.1.141
Defining C(X,Y) € Endy(X o ¥) by
C(X,Y) = QX oY) H(QX)5Q(Y))Q(+(X) o (7)), (8.1.141c

then, for the functor
("Rvgy C) : El — c2: ‘ (81141(

the compatibility condition (8.1.33) is readily verified. For the braiding- and associa

tivity isomorphisms defined by

e2(X,¥) i= Q(r(¥) o 7(X)) &s (W(X), AT Q(H(X) 0 1(F)), |
and

as(X,Y,2) =
QX 0 7)o 2)) ™! (Q((X) 0 1(F)) 5T s (+(X), 7(F), 7(2))

(naQ('r(Y),"/(Z )))Q(“/(X ) f’7(Y °2) (81.1411)

we also find relations (8;1.43) and (8.1.44). Thus (‘8.1.141e) is, in fact, a tensor functor o
quantum catégories. Proposition 8.1.4 follows by considering the composition of tenso:

functors

(tR.GoF,C) : €1 — Ca.

C

Application of Proposition 8.1.4 requires that the subgroup, R = ker(, of invertibl
elements has trivial categorial properties, in tl_}c very strict sense that th:: braided
monoidal category associated to it is trivial, and ‘all monodromies with other objects ¢
the total categories vanish. (This can be expressed here by the invariance of statistica
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iases.) In many situations, however, thig information is not available, but only the

iviality c.>f the monoidal category associated to R is known. The following discussion

devoted to the question to what extent this suffices to conclude that, to a category C

ith objects Obj, one can associate a category C with objects Obj = Obj/R such that

is induced by C and =g.

We first recall some notation and some simple facts that have been used earlier.

We assume that R C Obj is a subgroup of invertible bb jects with a free, coherent
iction on the irreducible objects, J C Obj, of a rigid, braided, monoidal category, C.
We denote by ) .

wp : Obj — Ob; = Nf, 7~ [, (8.1.142)

with J := J/R, the fusion rule algebra homomorphism onto the Perron-Frobenius fusion
rule algebra Obj, whose irreducible objects, J, are the orbits of R in J. There is a uni-
versal gradation, grad, assigniné to each irreducible element an element of Grad(0bj),

see end of Chapter 3.3. Defining

Ry := {p€R : grad(p) = 1}, (8.1.143)

we have the following commutative diagram:

0 LR obj —™R__..O%; 0
= ‘ grad grad (8.1.144)
. rad 71‘# —
0 Ry« R-I%%, Grad(Obj) —E&— Grad(0b;) ——0

in which the rows are exact sequences. We define

R := R/Ry = grad(R) C Grad(Obj). (8.1.145)

For any choice of v, as in (8.1.15), the algebra Ovbj can be described by the fusion rules
of Obj and, with (8.1.18) and (8.1.19), by elements o151, (k) € R satisfying (8.1.20) and
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(8.1.21). To any map 7 : J — J, we associate a unique map 7 : J — R characterized by
i =)o), for jeJ, (8.1.146)

such that

nwoj) = won(j), () =1, for peR,

and, furthermore,
k
Gl = %, whenever k€ioj. . (8.1.147)

Our first result on induced monoidal categories is a simple modification of Proposiﬁon
8.1.2. The fusion rule algebra of a category without braided structure can be non-
abelian. For the notion of a coherent action of R on J to be ineaningful, we shall then

have to assume that

poj = jou, for peR,jeJ.. (8.1.148)

As a consequence, the Perron-Frobenius algebra Obj and the elements Aggis.[x) are well

defined, and we impose conditions (8.1.19) and (8.1.21), but omit (8.1.20).

PROPOSITION 8.1.5

Suppose that (: Obj; — Objy is a coherent ﬁuiah rule algebra homomorphism; (Obj; is

possibly non-abelian). Assume that there is A semisimple, monoidal category, Ca, with "

objects Obja.

(i) Then there is @ monoidal category, Ci, unique up to natural isomorphisms, such

that there ezists o lensor funcior,
(F.C): 0 — G (8.1.149)

compatible with the associativity consiraint and eztending (.
(i) The monoidal subcategory associated with R is trivial.
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Proof: We can adapt the proof of Proposition 8.1.2 word by word, discarding the
definition of € for the pull back category and omitting the definition in (8.1.61). This
will work, since these constraints were only used for the verification of the compatibility
condition (8.1.44) which can be ignored for a monoidal functor, as in (8.1.149).
Moreover, commutativity of the fusion rules, with the exception of condition (8.1.148),
has nowhere been used in the construction of tﬁe functor (8.1.149) and of the associativ-
ity constraint in t‘he proof of Proposition 8.1.2. Part ii) of Proposition 8.1.5 is obvious.

a

Next, we wish to formulate a result analogous to that of Lemma 8.1.3, concefning
the dependence of the structure matrices on the action of R. Although the monoidal
subcategory corresponding to R is assumed to be trivial, it is, in gex;eral, not possible to
eliminate the R-dependence of the associativity constraint by an appropriate definition
of isomorphisms, H['ﬁ .

Yet, if we assume that the category is equipped with a braided structure, a convenient
general form of the #3- and Fy-matrices can be derived, following the lines of reasoning
in the proof of Lemma 8.1.3. But first we study an invariant for braidgd categoﬁes

which was already used extensively in Section 7.4.
LEMMA 8.1.6
Suppose R C J is any subgroup of inveriible objects of a quanium category, C.

(i) Then there ezists an invariant of C, given by a character

m € Hom(R ® Grad(0bj),U(1)), (8.1.150)

(R = Grad(R)) such that
e(0,7)e(d, 0) = m(grad(s), grad(j)) s,

for @ € R, j € J. The restriction of 7 to R® R is symmetric.
(ii) Let E :=i* (Hom(Grad(Obj)@, Grad(Obj), U(l))) be the subgroup of characiers
defined in (8.1.150) with symmetric restriction to R® R, eztending .sjmmeirically
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to bilinear forms on Grad(Obj). Here i* is the pull back of i : R® Grad(Obj) —
Grad(Obj)®, ‘Gmd(Obj). We denote by :

[m) € Hom(R® Grad(0bj), U(1))/E (8.1.151)

the class of ﬁl in the quotient.

Then [1m] is unchanged if C is replaced by CY, defined in (8.1.7) and (8.1.8), with
g€ Hom(I‘4 (Grad(Obj)),U(l)). For any m' € [in)] there exzists some q such
that ' is t)u invariant (8.1.150) of C%. If Grad(Obj) is cyclic then the r.h.s. of
(8.1.151) is trivial, and 7 = 0, for some C9.

Proof:

For each g € R and X € Obj, we define the endomorphism m(u, X) € End(X) by

e(X,p)e(p, X) = Ty om(p, X).‘ (8.1.152)

Clearly m is isotropic, i.e., m{u,Y)I = Im(p, X), for any I € Mor(X,Y). Using the

hexagonal equations,
o, X, Y)e(X oY, a(X, V) = (X, w)* 0 D)a(X, p, Y )(T o e(¥, w)*),
with ¢(X,Y)™ = (E(Y,'X)'*‘)—l, we easily find that
m(, X oY) = ml, X) om(u, ),

i.e., m(u, ) is a grading. We thus have that, for j € J, m(p, j) =y, grad(j)) 1;, with
m(p, ) € Hom(Grad(Obj),U(1)). By a similar hexagonal constraint, we obtain that

m(p, X) m(v,X) = m(pov,X),

for X € Obj, and p,v € R. These properties of m, together with the symmetry obvious
from definition (8.1.152), imply the general form (8.1.150). '
From (8.1.8) and (7.267) we have that, for any 4 € R and g € Grad(Obj),

m(u,9) = m(p,9) bg(p,9),
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where 6g(p,g) = q(pg)q(g)‘lq(p)‘l, and m9? is the invariant of C9. It is clear from
(7.295) that 8g € E, so that [m9] = [/)]. Conversely, assume that 72 € E. Then we may

use a result from Section 7.4, namely that the map

Q : G®,G — T4(qQ), ‘
[gTA] ~ {gh} - {s} - {}, (8.1.153)

with G®s G :='G@G/im(1-T)=G® G/([g | h] - [h | g1), as in (7.276), is injective.
Hence

3* : Hom(T4(G),U(1)) — Hom(G®, G,U(1)),
is onto, and thus, given % € E, there exisis a ¢ € Hom (1‘4 (Grad(0b;3)), U(l)) , with
(g, k) = Q*(a)(g,h) = Salg,h) = algh)ale)q(h)™".

We have m = m? iff
g(g) = d(x(9)) e(g), | (8.1.154)

-where  is the projection: Grad(Obj) - G := Grad(Obj)/R, § € Hom(T4(G), U(l))!
and ¢ € Hom(G,Zz2). The fact that the map ‘

i' : R®Grad(0bj) — Grad(0bj).® Grad(0bj), (8.1.155)

induced by the inclusion R C Grad(O¥j), is into, for a cyclic Grad(Obj), and that the

right hand side is already symmetric implies the last assertion in part ii) of Lemma

8.1.6. Note that, for general R and Grad(Obj), the group (8.1.151) is non-trivial, and
(8.1.155) may have a kernel.

We are now in a position to prove the following generalization of Lemma 8.1.3.

LEMMA 8.1.7

Suppose that C is a quantum category, with objecis Obj, and R C Obj is a subgroup of

invertible elements with a free, coherent action on J C Obj. Assume, furthcrmare,.that
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- the category associated to R is irivial as a monoidal category. Denote by r1 and Fy the

o
usual structure matrices of C and by f

xg : Obj — Ob ’

the. fu.non rule algebra homomorphism defined in (8.1.148). Fmally, lety:J > T be

an arbitrary map with wpoy =1d from whickn:J — R and 9Ll [k) oTe deﬁned as in
(8.1.146) and (8.1.147). Then

i

(i) there ezist vector spaces Mory([k], [1] o [5]) = N aml isomorphisms Hm, as

in (8.1.79), such that the matrices 75 and Fy, defined by (8 1.181) and (8.1. 125),

satisfy the “gauge-consiraints”

Fy(w,i,5,[K]) = ByGdom k) = 1, (8.1.156)
and
Fa(r(li)m) = 1, o (8.1,157)

Jordi,j,keJ and p€R.
(ii) The residual “gauge freedom” preserving the consiraints (8.1.156) and (8.1.157)
s generated through transformations of the R-category preserving (8.1.156), for
i,j € R, by natural transfarmatwna of the Mory-spaces. More precisely, if H[k]

is a set of isomorphisms consistent with (8.1.156) and (8.1.157) then ‘any other

such set is given by : .
N
(#) = 4 7 ,(8:1.158)
where Af;:i € Endc(Mora([k], [i] o [§])) has the form
Af;,’] = w(n(i) o opps1, e 3))w (0( 1),0[.][,] &) E(t)f(]) {ﬂ]bl, ,(8-1-159)

with k= ¥p(5,3), €17 = U(1) (or €), [;2}" € Ende(Mory([K], i o }), and
w € Z2(R,1,U(1)). :
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3]

¢“  (iii) If the “gauge constraints” are obeyed the Fy- and 72 matrices can be expressed by

. matrices F'y and rzz, whose indices only depend on the classes in Obj, and by

p = 3 Irxr € Hom(R® R,U(1)), (8.1.160)
as follows:

205, k, [1]) =
p(n(j),ﬂ(k))p(b’[j]{k]'[l]x q(k)q(j)“l)ﬁz(grad(ﬂ(j)),grad("/( [.7]))) ;2([]]! [k](’S[l'piﬁl)

B, 5,k (1) =
= (6'9 plogp ) ™) @ 1 y,,_,)zrf'z(»[i], L L)

(@ T, 8 EER)
= (1w, @pletamym(30) a5 1, 1)

=1 -
o1y ) Iy, 1]’
(GPP( Ltk ts) 7(3)) Q N) (8.1.162)

The matrices +5 and Fa ere unity if [ij = 1, [j] = 1 or [k] = 1, but, in generadl,
they do not satisfy the pentagon- and hezagon equations:
. o
(iv) If F} and 7 are the structure matrices in @ new gauge, (H['i]) , a3 in (8.1.158),

then they are given by the same fomrulae (8.1.161) and (8.1.162), inserting

] (V,#)
plp,v) = o) plu,v), (8.1.162a)
(0, el ) = off1) 22050 80, D @) 2, (8.1.162b)
Fy(l, ], (61, 10) = (E[?w(am i e @ ahi)
v e 1Yol @ gl
(%9 (e oum)e Nn 6.11620)
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Proof: ‘

('i) The proof of the first part of Lemma 8.1.7 is merely a :rccapitulation of those
arguments of the proof of Lemma 8.1.3 that do not requirc% the tn'viaiity but only
the existence of a braided structure. As in (8.1.80) and (8j.1.82), triviality of the

monoidal category associated to R implies that there cxis;ts H ﬁ’]" , 0, € R, such
that '

Byl i) = 1, |
for o,p,v € R. Imposing (8.1.86), I:"z(p,u,'y([j]),[j])i =1, and By(y(lj)),
#,v,[3]) = 1, we derive from the pentagonal constraint (8.1.88) the invariance
corresponding to (8.1.89) and (8.1.90), namely

Byuvi ) = BGwnl]) =1, (8.1.163)

‘for p,v € R and j € J. We retain the “gauge freedom” expressed by (8.1.91).

From the pentagona]- equations (8.1.94) the cocycle condition (8.1.96) for

Y 1 mv) = Bl () v 5)
is derived. Assuming only the existence of a braided structure, we find from
(8.1.97) the constraint (8.1.98), with pj;(p,0) = fa(p, e 0 7([j]),[j]). Hence
¢[J-](1 | -,-) is symmetric and therefore a coboundary. Having a solution B« Id -
ﬂ[jj(”) to (8.1.100), we can therefore find a gauge such that ¢y;)(1 | -, ) =1 This
implies, with (8.1.94) and (8.1.95), that

By(p i li) =1, (8.1.164)
for p,v € R and j € J; (compare to (8.1.103)). We see from (8.1.102) that
if we impose (8.1.163) and (8.1.164) and keep the H[ll , for p,v € R, fixed,
then the remaining freedom in choosing H["l i’ and Hi’;]” is given by the “gauge

transformations”

Mo, §(poj) I

L € o
v ., §(poj) Hiw
HIY — (k) ol HI¥, (8.1.165)
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where ¢ :J — U(1) (or €C) is any function, with ¢ | R = 1, and 5 €
Hom(R,U (1)), with = 1 For the f-matrices with arguments in R the

transformation law then reads

#a(3, 5 [3]),
2(w, 3, [3])- (8.1.166)

204, l0]) —
"2(#,1,[.7]) - T[J]

( )
(n) #
Considering (8.1.97) and an analogous equation for the inverse r-matrices, we see

that, in any gauge consistent with (8.1.163) and (8.1.164),
s 31, 7203, 1) € Hom(R,UQL),
forall j € J, ie.,
Faiy 0wy Ll) = #ali,m ) 7o, i), (8.1.167)

and similarly for #2(-, 4, [4])-

Settmg 705) ='r2 (([5D), - ,[]]) a transformation of the form (8.1.165) produces
the desired constraint (8.1.157), as follows from (8 1.166).

Imposing the normalization conditions discussed above, we next consider the spe-
cial f-matrices defined in (8.1.109) and (8.1.110). The pentagonal equations
(8.1.111) and (8.1.114) yield the relations (8.1.112), (8.1.113) and (8.1.115). Per-
forming a gauge transformation as in (8.1.117), we finally find a set of isomor-

phisms such that the Fy-matrices fulfill (8.1.156).

(ii} For a general gauge transformation

H[’] — A[;g] H[h], (8.1.167a)
with A;L’] € GI(Mory([k],[i]o[5])), the conditions (8.1.156) and (8.1.157) yield the
constraints: ‘

- poi,j
[k] ® A[k] = A[k] 4 Alk] ' (8.1.168)
$2 ! — H il oj
Aj e Ay = Afk‘]‘ ® Ay (8.1.169)
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where k = ¢[k](i, 7). The most general solution to these equations can be found
by first specializing to i € R or j € R and determining the form of A'G']’ and A}
The result is '

bl

4 = 4 = wlunt) {5,

where w € Z2(R,1;U(1)) (see Section 7.4) and ¢ : J — U(1) (or C). Here we

(8.1.171)

-1
may assume that £ | R = 1, since we can substitute ¢'(j) = {(j)({(q(j))) and
w' = w(6£)~! without changing AD] Equations (8.1.168), (8.1.169) and (8.1.171)
give a complete descnptlon of how the transformations AEL’] depend on the ob jécts

i in an orbit [i] and j in an orbit [j]. This dependence can be absorbed into the

prefactor of a{;}]m in (8.1.159), using identities (8.1.147) and éw = 1.

(ii1) We assume that equations (8.1.156) and (8.1.157) hold true. The hexagonal equa-

tion (8.1.105) and the inverse version thereof provide us with the following formula

for the action of R:

Falw 04w, i) = Fal,w[1]) 206, [5]),

52(?: Bo jr [J]) = 712(") H [l]) 7"‘2("».7.3 [,7]) . . (81172)

In particular (8.1.172) and (8.1.167) show that the restriction of 7 to R x Ris a
bihomomorphism, justifying our definition (8.1.160) of p. ‘
We immediately find, with (8.1.157), (8.1.167) and (8.1.172), the general form

20w, i) = p(n(3),v),

#2015, 13]) = p(n(7) M (grad(v), 9'“d(7([j])))' (8.1.173)

If we insert (8.1.156) and (8.1.173) into the hexagonal equation (8.1.119) and use
(8.1.147) we arrive at '

B, w5 B]) = plogpupm) . . (8.1179)

The expressions (8.1.173) and (8.1.174) for #,- and Fy-matrices with arguments in
R enable us to find the general transformation properties of the structure matrices
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under the action of R: The hexagonal equation preceding (8.1.126) yields

7"2(” Oj, h) [l]) =
= o, (k) (grad(p), gred((1K]) ) e (opgeyme k) 72 ks 1), 81175)

and, similarly, from the inverse hexagonal equation

#a(d,pok, 1) = p(n3), m)p(opey i )25 By . (8.1.176)

The solution to (8.1.175) and (8.1.176) is given precisely by the expression in
(8.1.161), where #4 only depends on the classes of the objects i, 3,k in Obj. The
dependerce of the Fy-matrices on the first and third entry under the action of R
has already been determined in the proof of Lemma 8.1.3. With the help of the
pentagonal-equation (8.1.122), the invariance (8.1.123) was inferred, so that by

using a similar argument for the third index we can write
By, k) = BELAELI. 0 (8117

Tbe pentagonal-equations

(D 2., o)) @ Ty, ) Falivp o 1) (6.9 B3,k []) ® iwa)
=‘F2 (roi ik, 1)) (@ Ty, ® Fa(i, e, [q))
and '
(QB Bl e ﬂN,,,,,>ﬁ'2 (i,pojk, [zj) (G? By(j,pk,[s)) @ T Nw)’
,=' (D 1r,, © Bo(o b)) Bolidmo k) (81178)
yield th: following formula for the action of R on the second indgx
pg(m,,,o,-,[k],[i]) =
= (@ plog )™ @ I, ) E2 (1,5, 14, 1) (69 Ty, ® P(o(g0, 10 #))
= (6‘9 T, ® p(o(ayu 1) ) P35 (613, 8, 1) (G‘B p(ogim ) ® Thy):

(8.1.179)
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The general solution to (8.1.177) and (8.1.179) is given by (8.1.162). Note that,
by (8.1.21), the two expressions given in (8.1.162) and (8.!:1.179), respectively, are
equivalent. !

(iv) The gauge dependence given in (8.1.162a) is derived by applying a natural trans-
" formation to the deﬁning equation (8.1.160). By the very construction of the Ag],
this corresponds to adding a coboundary §w € B4 (R,2;-b(1)) to the f#-category

" associated with R C Obj. Formulae (8.1.162b) and (8.]:.162c) are obtained by

applying a gauge-transformation ’ :

@ ’ 1,J 0 iJ » D /s 2 §‘ i, (3 -1
Pytii k) = (D48 © afiD*) Ay, b, 1) (D 41 © A710H)
[¢] 8]
. T | .
Fai b, [0) = AR #2010 (4l (8.1.180)

to the identities

Fo(0i), 131, (61, 1) = B (ol (D), v((kD), )
#2030, [k, 1) = A2 (D, v([RD, 1)) - (8.1.181)

]

Until now, we have considered the general case of coherent fu;ion rule algebra homo-
morphisms. This structure has turned out to suffice to conclude the existence of induced
monoidal categories, in Proposition 8.1.5, and to derive the general dependence §f the
structural data, braid- and fusion matrices, on the g’roﬁp action,‘ (i.e., the action of R
on J C\ Obj) in Lemma 8.1.7. In order to give a characteriz;ition, analogous to the
one in Proposition 8.1.4, of those categories that are induced, as monoidal categqries,

by smaller ones, we need to find more convenient expressions for the R-dependence of

- and F-matrices from which the structural data of a smaller, braided, monoidal cat-

egory can be extracted. This probleni can be subdivided, in a natural way, into two

steps: First, we discuss the action of the subgrc:up, Ry, of elements in R with trivi_a.l

grading (see (8.1.143) for the definition). Subsequently, we determine the dependence
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of the structural data of the reduced category on the action of the graded subgroup

R = R/Ry; (see (8.1.145)). The a.dvanta'ge of working with graded fusion rule algebra

homomorphisms is that formulae (8.1.162) simplify considerably. As a consequence, the

#9- and Fy-matrices will then satisfy pentagonal- and hexagonal equations, up to scalar

multiples. For the first step, we make use of Lemma 8.1.6 which implies that all mon-

odromies with entries in Ry vanish. (Note, however, that, since we have no evidence for

the existence of coherent, non-graded fusion rule algebras with Ry # 1, the following

discussion could turn out to be superfluous.)

LEMMA 8.1.8

Let C be o braided tensor category and R C Obj a subgroup of invertible objects with a

free, cokerent action on J C Obj.

()

(i)

The subgroup, Ry, of R defined in (8.1.143) also has a free, coherent action on J C
Obj. The Perron-Frobenius elgebra, Obj' = Obj/Ry, contains B as a subgroup
of invcrtiblerobjects with a free, ‘graded action on J' = J/Ry. The situation is

summarized in the following commutative diagram:

TR .
Obj TR , Obj' "R 08
grad grad' grad (8.1.182)
7r# g 1r# —
Grad(Obj) £° Grad(0bj") R Grad(Obj)
| - ]
TR

The subcategory associated with Ry has abelian permutation group stalistics. It

is trivial as a monoidal category. There is a “bosonic” subgroup Rg' C Ry, and

either Ra’ = Ry or Ro/Rg’ = 7o, with the property that the braided tensor category

of Ra" is trivial, and C is induced, as o braided tensor category, by a category on

Obj" := Obj/Ra'. Moreover, C is induced by o category on Obj' iff Ry = Rg.
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(iii) Let us suppose that C is induced, as a monoidal category, i)y 7R and a category C

with object set Obj. Let us assume, moreover, that C -am% C are equipped with a
braided structure. Then there ezisis a braided, monoidal category C' with objects
Obj', such that C is induced, as a braided category, by C' and TRy and C' is

induced as o monoidal category, by C and p In particular, we always have that

_Ry= Rb" Up to auiomorphums of C, the functor from C to C is therefore given

by the composition

(r5,F,C) .

c g, (8.1.183)

(Wﬂo) f.o! CO) c!

where the first funcior is compatible with the commuiativity constraint. If C is
induced by C, as a braided category, theén also C' is induced by C, as o braided

category, and the funclor (rﬁ,f, C) is compatible with the associativity constraint,

Proof:

(i) As a subgroup of a freely actnng group, Ry clearly also has a free action on J.

Hence Obj' = Obj /Ry is a fusion rule algebra, and
TRy : Obj — Obj' : j = {j}

is a fusion rule algebra homomorphism. Clearly, 7p, maps invertible objects to
invertible objects, and the restriction, 7p, : R —» ‘R C 0bj', is the ordinary
projection amounting to taking the quotient by Ry. The fact that R acts freely
on J implies that R also acts freely on J'. Hence 7 is well defined, assigning
to {j} the class [j] = [{;j}], (where, on the left, we may pick any representative
j € {j}). The composition of 7 with 7, is just 7g, as indicated in the top row
of (8.1.182).

Let us now suppose that we have chosen a map 7 : J — J, along with’ the

corresponding map n : J — R, and elements o[k € R. To any section

¥ : R — R, with mg o ¢ = idg, we associate a choice of a map 7% : J' — J'as.

follows. It is clear that there is a unique map j : J' — R such that the diagram
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TRo (8.1.184)

commutes, and that i({s} o {5}) = {#} 0 i({j}), for any p € R, with {u} the

corresponding element of R. We define

(D) = B 0 7() - (8.1.185)

Forj€ {j} = "Ro(j)v it then follows from

R, (1°({i})) = {5} o 7R, (v({{7}])
= g, (n(7)) © 7R, (7(13])

= 7g,(7) = {j}

that 40 is an admissible selection of representatives in the classes of J'. Since
7 = %) o ¥°({j}), and by (8.1.185) we find that the map 7° : J — Ry, with

7%(c oj)‘= oo n(j), is determined by

n(7) = 2°G) o ¥(H{F})- ' (8.1.186)

From (8.1.185) or (8.1.186) we see that

AGrhRy = NEMARY TGN (8.1.187)

where we use the definitions of (8.1.18) and (8.1.19) with respect to Ry and 4°.
The invertible object ¢ in (8.1.187) is given by

O} {k} = ¥(@#({i})) e ¥ (H({i}) © ¢(ﬁ({k}))_l O TGk (8.1.188)

It follows immediately from this expresion that mp, is coherent whenever 7p is

coherent.
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From (8.1.31), and since grad(Rg) = 1, we infer that wﬁo is an isomorphism.
Using the properties of 7p, and the commutativity of (8.1.182) this proves that
]

the restriction ) :
’ !

* grad : R = Grad(Obj') (8.1.189)

is an injection. Hence 7 g, is a graded and thus coherent fusion rule algebra homo-
morphjgm. We remark that #, as defined in (8.1.184), corresponds to the choice

of :J — J' given by
D = mr (D). (8.1.190)

The elements in R corresponding to this choice are given by

T = TR (Opals k)-

They can be uniquely determined from

grad (G ) = 7k (97ad(r(i)) grad(n(1i]) grad(a(k)) ™), (81.191)

using that (8.1.189) is injective. This proves part i) of Lemma 8.1.8.

(ii) From Lemma 8.1.6, i) we see that

(o, X) = e(X,0)71, for o€ Rq (8.1.192)

For X = p € Ry, this proves that the category determined by Ry has permutation
group statistics. For the quadratic function g(0)Igos := €(0,0), this implies,

using that g(op) q(a)fl'q(u)-‘ = &(o, ) £(po):
g € Hom(Rg,72). | (8.1.193)

Hence we can define a subgroup R(T := ker ¢ for which the associated 0-categoyy is
trivial. Let a be the non-trivial element in Hom(?&g & Za, U(l)), and consider f;he
function #3(p, o)a(q(y), ¢(c)) ~1 The loga.x\'ithm of this function is skew symmet-
ric and vanishes on the diagonal. Hence #5(p, 0)a(q(x), q(o))"l can be written as
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59 with

(1
¢, i.e., adding the coboundary 6§ € B4 (Ro,2; U(l)) to the structure constants of

€(p,0)¢(o, p)! for some function & : Rox Rg — U(1)(C). Gauging the H

the 6-category determined by Ry, we can achieve that

fo(p,0) = alg(s)g(e). " (81.104)

With (8.1.193), this implies that 73 € Hom(Ry ® Ry, U(l)), Thus the monoidal
category determined by Ry is trivial. If we set R = R in Lemma 8.1.7, iii) we
 infer from equations (8.1.161) and (8.1.162), using that p = #2 [RoxR,= 1 and
grad(n(j) = 1, for all j € J, that there is a choice of H’s such that 75 = 79
and By = 13"2 are invariant under the action of Rb" . As described in the proof of
Proposition 8.1.4, this implies the existence of a braided category, ", with objects
Obj" = Obj/R{ and a functor

(xf,F.C) = c—c",

i.é., Cis indﬁced by C" and “Eo' In C" we have that R = Ro/Ry, so that, for
‘ g # 1, we conclude that Ry = Zj, where Ry is generated by a fermionic object o,

with £"(0,0) = -1

Since ¢ [‘Ro is an invariant, we conclude that C is induced by a category on Obj'

onlyif¢=1on Ry, i.e., Rp= Rg’. If this is the ca;se the previous argument shows,

in particular, that C is induced by 7, and a category on Obj’'. This proves part

ii) of the lemma.

(iii) Suppose that C is induced by C and wR'and that both, C and C, are equipped

with a braided structure. We then have a collection of isomorphisms, H[‘,’j :

Mory(k,i 0 j) = Mora([k], [i] o {7]), such that (8.1.75) holds. We may consider

the category C', with objects Obj’, which is induced by C and g A choice of -

R-invariant structure matrices, 13'2’, can be found for any collection

HIOY Mo ({8, (Y0 15) 3 Mora(1{E, HiH 0 [,
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by use of (8.1.85). Setting
.. s -1 .. |
By o= (B T Mory(kyioj) » Morh({Bh Yo Ui)), (81195

we obviously have a sélution to eq. (8.1.75), relating the structure matrices Fy

and ﬁ; of C and C'. By the Rg-invariance of the f‘é-matrices, it follows from

(8.1.174) that, for 7y defined by (8.1.76) in terms of the r{-m’atriﬁes, one has that

s (”{i}{j},{k}vl‘) = 1. Hence, in particular, we conclude that

dogyn ) = 1- (8.1.196)
However, (8.1.147), (8.1.193) and (8.1.196) imply that
i = q(n°G)) (8.1.197)

i

is a Zp-grading on Obj. By definition of Ry, this has to be trivial oﬁ Rp. This

means that ¢ | R°=\1, i.e;-, the subcategory Ra" of Ry is trivial as a braided category,
as well. Thus, there exists a unique braided monoidal category C' with objects

Ob;' such that C is induced, as a braided category, by C' and mg,. This proves

(8.1.183), with (v, F,C) a functor compatible with the associativity constraint

and constructed from the isomorphisms H, i{:]}{j}. K

If we assume that C is induced by C, as a braided category, then we find structure-
matrices for C , C' and C such that, for suitable isomorphisms H [',':i , the data (ry, Fy)
of C and the data (72, F3) of C are related by (8.1.75) and (8.1.76). Furthermore,
for suitable isomorphisms H;'kj}, the aata (r1,Fy) of C are related to the data
(F'z,ﬁ‘é) by the same equations. It follows immediately that the isomorphisgis
H[{,j]}{f} defined by (8.1.195) provide a solution to eqs. (8.1.75) and (8.1.76) if
we insert the structure matrices of the categories C' and C. Using the arguments

of Proposition 8.1.4, this is seen to imply that we can choose (n, F,C) to be

compatible with the commutativity constraint. ]
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If we assume that Ry does not contain a fermionic object, i.e, Ry = Ro"' , then Lemma

8.1.8 shows that it is suffiicient to study graded fuison-rule algebra homomorphisms

(Rg = 1), in order to get a complete characterization of induced categories. In fact, in’

most applications, we will have graded fusion rule algebra homomorphisms right from
the beginning.

The advantage gained from a graded action of R on J ist that, for a convenient

choice of v, and by use of (8.1.29), the structure constants 73 and £}, as presented

in (8.1.161) and (8.1.162), will be proportional to 7 and f‘z, and the corresponding
factors of proportionality do not depend on the arguments of 72 and £ but only on
their gradings. Let us recall some basic facts on graded fusion rule algebras and present
simplified versions of eqs. (8.1.161) and (8.1.162). If R has a graded action (8.1.144)

reduces to a pair of short exact sequences:

84
| ! . | 4
0—— R« J B .7 0
=] grad grad (8.1.198)
grad , ""# =
0 —— R<—2—— Grad(Obj) Grad(Obj) ——0
[ _ |
¥

where the squares in the middle commute. Here we also require a section 9 : Grad(0bj5)

< Grad(Obj), with wﬁ o9 = id. With any such ¥ we can associate a symmetric cocycle

¢ € 2%(Grad(0F)),1; R),

_ by setting

w

grad (£(g, k) = ¥(g) (g - h)~! ¥(h), (8.1.199)

where we use exactness of the lower row in (8.1.198). The ambiguity in choosing 1/;,
correspondmg to mulhphcatnon by a function X : Grad(Obj) — R, implies that ¢ is
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only given up to boundaries §A. As expla.med in the ana.lysxs followmg (7.287), the

" possible £'s correspond to the classes

I
i

6] € Ext(Grad(0F),R) C H? (Grad (0F), 1; R) (8.1.200)

which describe the possible extensions of R over Grad(0bj), given by Grad(ObJ) and.
the short exact sequence in (8.1.198). 7

* The circumstance that, from two groups, R and Grad(Obj), and an extension [€], one
finds 2 new group, Grad(0bj), containing R and Grad(Obj)/R = Grad(0%}) motivates
the following generalization, where the gradation groups are feplaced by fusion rule
algebrés. We assume that Obj is a fusion rule algebra, R an abelian groﬁp and [£] €
Ext(Grad(O%;), R). Then the algebra Obj ©)¢) R is defined as follows: The objects are
of the form 3= e p(Xy, 1), with (X +Y, ) = (X, p) + (Y, p), for X, X,Y € Obj. Thus
the irreducible objects are given by J = {(j, ")}je 7,uer- The tensor product is defined
by

(m)o (i) = (ios,movoe(gradi),grad(s))), (8:1.201)

where we have chosen some representative ¢ € [¢].

Up to isomorphism, this fusion rule algebra is independent of the particular choice
of a representative in the class [£], because (j,p) = (j,po0 A(grad(j))) provides an
isomorphism from the algebra defined with the help of ¢ - ) to the algebra defined with
the help of £.

" The universal grading is given by the group Grad(Obj) associated to the extension

[¢] of R over Grad(Obj). An injection R — Grad(Obj) and a choice of some section
¥ : Grad(Obj) — Grad(Obj) satisfying mgod = id and eq. (é.l'.199) determines the

bgrading to be given by

grad((j,u)) = (grad(i)) op. . (8.1.202)

The algebra Obj Qé] R contains R as a subgroup of invertible objects with a free, graded
action on J. The quotient of Obj ©[ﬂ R by R is precisely Obj, with a homomorphism
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TR given by
wr((G,p) = 3. (8.1.203)
In fact, these properties determine the algebra Obj @[ﬂ R completely.

LEMMA 8.1.9

Assume that R C Obj is a subgroup of invertible objects with a free, graded action on

J. Let Obj := Obj/R be the Perron-Frobenius quotient by R, and denote by [{] €
Ezi(Grad(Obj), R) the eztension of gradation groups induced by (8.1.182). Then the
following siatements hold true: ‘

(i) For any § € {Grad(Dkj) — Grad(Obj)}, with 1% o = id, there is o unique

choice of e map v: J — J, with “”R oy =1d, such that

¥(grad([j])) = grad(+(li])), (8.1.204)

ie., the right, outer square in (8.1.198) commutes. The corresponding map 7 :

J — R, and the group elements, 7).k ore given by

grad(n(j)) = grad(j)(t/?(g_m—d(li])))—l, (8.1.205)
e = €(grad(il), grad(li]), (8.1.206)

where £ € (€] is the representiative obtained from P.
(i) Furthermore,
Obj = 0bj @ R ’ (8.1.207)
as a fusion rule algebrs, i.c., Obj, R end [¢] determine Obj completely. If, for

some £ € [€], the tensor product 0bj @[ﬂ R is given by (8.1.201) then an ezplicit

isomorphism of fusion rule algebras is given by

(1 #) — wox(li])
i — (L)), (8.1.208)

_ with inverse

where v and 7 are the maps associated with § and some section ¥ by (8.1.204)
and (8.1.205).
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Proof. i) We first consider the expression on the right hand side of (8.1.205). Using = 4,

that 7"11# o ¥ = id, it follows that the expression lies in the ketn;el of wﬁ. Hence, by the
exactness of the lower sequence in (8.1.198), we find a functioP n:J — R such that
(81.205) holds. The covariance condition (0 © j) = o o () is iobvious from (8.1.205).
Hence the map 7([j]) is well defined by setting j = 5(j) o 7([)]) Inserting v([7]) in
(8.1.205), we arrive at (8.1.204). Equation (8.1.206) is found by combining (8.1.29),
(8.1.199) and (8.1.204). , ' ‘

Part ii) of the lemma can be veriﬁeci directly by using the rc;ults of part i).

(m]

We remark that the map 7 from J to R can be expressed in terms of the function

7 : Grad(Obj) —» R, g — g(Fonh(g) ™} (8.1.209)

as 7
n =nograd. (8.1.210)

In the next lemma we evaluate the expressions for the structure matrices found in
Lemma 8.1.7, using the special forms of 4,7 and TL5). k) given above. The problem of
extracting a braided tensor category with object set Ob5 from a category on Obj can

then be translated into a problem of group cohomoloéy. !

LEMMA 8.1.10

Suppose that R C Obj is as above and that C is a braided, monoidal catcjory, with -

objects Obj, whick is trivial on R as a monoidal caiegory.
" Let § : Grad(Obj) — Grad(Obj) be an arbitrary section and { € 22 (Grad(0%5),1;R)

the associated, symmetric cocycle. Then the following statements hold irue:

(i) There exzist vecior spaces Mora([k],[i] o (J]! =3 CN[-'IUMH, and isomorphisms H{i{,

as in (8.1.79), such that the matrices 72 and Fy, defined by (8.1.121), cah be " .

ezpressed by the phase factors p iniroduced in (8.1.160) and by matrices ﬁ'z ‘and.
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f9, in the following way:

FZ(i»jy kv [I]) =

= p(€(@rad(lil) o grad((s]), grad((K)) - € (sred(Li]), srad([k)) ", n(3))
Fa(f, 3], 161, 1)

(8.1.211)

"12(].’ k, [I]) =
= p(n(),n(k))p (€ arad(liD), rad([k])), n(k) - n(i) ™) m(grad(n(i)); b (arad((s])))
7='2([j]» [k]: [l])’ - (8'13212)

where 1 is given in (8.1.205) and 7 in (8.1.150).

(i) We define w € A%(Grad(O%;),2; M) (with M = C or U(1), and A*(G,n; M) as
in Chapter 7.8) by the following formulae:

w(lor 1921 931 94)) = w(91,92,93,94) :=

= p(¢(91- 92 93, 94)€(92 - 93,94) ", €(92,93))

(8.1.213)
w(lg1 | g2llgs)) = w*(g1,92 | 93) =

— . ™ , , A -1

= p(é(91 - 92.93), €(91,92)) ™ (£(91, 92), P(93)) (81.214)
w([gsllgr | g2]) = w™ (91,92 | 93) =
= p(é(91 - 92,93), €(91,92)) " - (8.1.215)
Thenw is a cocygle, ie.,

w € 2% (Grad(0F7),2; M) . (8.1.216)

(iii) The reduced structure matrices obey the following modified categorial equations.
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= w*(gi,95 | 98)~ Fa([k), 6, U1, [)(ED) T, @ Fo((0, 81, [6) P, )
) 4 ;

(iv) For any X € A*(Grad(Ob5),2; M), we set |

Pentagonal equations: ‘
(D Fa, ) (61 o) © T,) (D T, ® Folll ish 0 [)
[s] , [¢] ;:
(@ PZ([J]: Ué]v UNB)E: nN-‘.,x)
[s]
= w%9i,9j,90.9) (P 1n,, ® Fa(ls), 61, 11, 1)) To(P 1w,
[4] o s}
® Fa(il, 4], s1, 1)
: (8.1.217)
Hexagonal, +: :

(€D A1, [k, 1) @ T, Fa(l, (8], L, ) (D) (Uil [, 1) © )

1 1

[, [1])
| (8.1.218)
Hexagonal, -: |

(€D #2((], 4, 1) © T, ,) Fa(li, 81, 11, 1) (ED) Aallk), 1), ()" @ Tx,,)
M Ul

= w (g gs | 9k Ea((R), ], 50 1) (D T, @ £20R), 1, [6)~) (il i, L 1) ! )
BT :

i
(8.1.219

Here we are using the abbreviations g; = grad([i]), etc..

I
t

Fy([il, 141, (61, 10) = Mo | 95 1 aa)) Pl 13, 6, 1),

ra(li], [3), (K1) = Algillgs])72(13), 131, [k]) - ; (8.1.220)

Then the matrices Fy and ry salisfy the modified categorial relations (8.1.217),
(8.1.218) and (8.1.219), where w is replaced by l
o

CW = w(n)t. (8.1.221)

Hence, the obstruction against finding o solution to the usual categorial equations

!
by rescalings, as in (8.1.280), Lies in

H%(Grad(0bj),2; M) . (8.1.222)
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Proof.
The assertions made in Lemma 8.1.10 are verified by straightforward computations
which we will not reproduce here. Nevertheless, we shall assist the readers’ task with

the following remarks and formulae.

i} In order to obtain (8.1.211) and (8.1.212) we insert (8.1.206) into the relations (8.1.161)
and (8.1.162). Since o515} (x) only depends on the grading of its indices, and since the
grading of the summation indices in (8.1.162) is fixed by g;,g; and g;, the diagonal
matrices in (8.1.162) are, in fact, multiples of the identity which combine to the factor
in (8.1.211).

ii) The cocycle condition (8.1.216) is given by the following five equations:
W € 2%(Grad(0%j),1; M) , (8.1.223)
and

(g1, 92,93, 94)w°(92, 91, 93, 94) "1w%(92, 93, 91, 94)w° (92, 93,94, 91) 1. =

= w7 (93,94 | 91) W (9293, 94 | 1) (92,9394 | 91) " w (92,93 | 91)
: (8.1.224)

w%(g1, 92, 93, 94)%(91, 92, 94, 93) 'w®(91, 94, 92, 93)w%(94, 91, 92, 93) ! =

1

= wh(g1,92 | 9a)w* (91,9293 | 9a)  w (9192, 93 | 94)w (92,93 | 94)”
' (8.1.225)

w¥(g1,92 1 93)wt (92,91 | 93) ™ = v (93,021 91)w (92,93 1 91)"F ~ (8.1.226)

wo(ghg2xg3:g4)“"0(91)93192194)—1w0(g3’91192:g4) :

- w91, 93,94, 92)0%(93, 91, 94, 92) " w093, 94, 91, 92)

= w¥(g1,92 | 93) " wH(g1,02 | 94)! -

- w7 (g3,94 | g2)w (93,94 | 9192) w (93,94 | 91) -
(8.1.227)
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For the verification of (8.1.216) it is useful to observe that the special function w,

given in (8.1.213) - (8.1.215), has the symmetry properties |

wt(g1,92 | g3) = wE(g2,01193) - i

w*(91,92,93,91) = w’(91,93,92,94) = w%(94,92,93,91) - (8.1.228)

Parts iii) and iv) siﬁply follow by inserting formulae (8.1.211) and (8.1.212) into the
usual categorial equations and formulae (8.1.220) into the modified categorial equations
(8.1.217) - (8.1.219). The expressions for 6 are given by (7.290:), (7.293) and (7.294).
. | j o
The strategy we are pursuing here for expressing categories with graded subgroups by
smaller ones involves the concept of induced categories, combined with the operation
C—C%forge H om(I‘4 (Grad(0b;)), U(l)), described at ‘the 7beginning of this chap-
ter. In the examples we are interested in, the categories associated with the subgroups of
invertible elements can be. converted into categories with permutation statistics. Thus,
the remaining obstruction to trivialize such a category is the extendability of the rel-
evant quadratic forms, i.e., the signatures, to the entire universal grading group. As
a starting point to a more detailed analysis of this situation we makerthe following
definition: (

Consider the map ) ;

iz : R/2R — Grad(0b})/2 Grad(Obj) (8.1.229)

defined by requiring commutativity of the diagram

0 2R« R P R/2R 0

L

0 ——2 Grad(Obj) —— Grad(Obj) —F— Grad(0b;)/2 Grad(Obj) ——0

|
i
|
|

ig
1
]

'

(8.1.230)
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The groups in (8.1.229) contain only elements of prime order two and thus give rise
to vector spaces over the field Z5, (with scalar multiplication (¢, g) — g%,& € Zp). We
can therefore find a space complementary to the kernel, (R N 2Grad(Obj5)) /2R, of 4.

Its preimage, R, in R is characterized by the properties

2RcRCR ,
R/2R = (R N 2Grad(0b;))/2R © R/2R. (8.1.231)

Definition.

We shall call a subgroup R C R satisfying (8.1.231) a maximal, signature-extendable

subgroup (for reasons that become clear below).

LEMMA 8.1.11

Let C be a braided, monoidal category with objects Obj, R C Obj a subgroup of invertible

elements with a free, graded action on Obj, and R C R a mazimal, signature-eztendable

subgroup thereof. ' ,
Assume that i € Hom(R ® Grad(Obj),U(1)) (see (8.1.150)) has e symmetric ez-

tension o Grad(Obj)®2, i.c., the class (), as in (8.1.151), is trivial: [] = 0.

Then we have the following results:

(i) There ezists a quadratic function g € Hom(l‘.,(Grad(Obj)),U(l)) such that CY
is tnduced, as a braided category, by some category 5, with objects 67:3 = Ob]/}'i
and homomorphism, m 5.

(ii) The subgroup R : m5(R) R/R, of invertible elements in 61;3 obeys
R c 2(4(Grad(0F)) . (8.1.232)

Here, the quadratic form q can be chosen such that the subcategory of C associated
with R is trivial, as a monoidal category, and has permutation statistics. This

enables us to find, for some gauge, an element

p € Hom(R® R, 7)) . . (8.1.233)
347 .

§
Moreover, we have that

m=0onC. _ (8.1.234)

Proof.

(i) We take it from Lemma 8.1.6 that there exists a quadratic function §° €
Hom (n (Grad(Ob3)), U(l)) such that

2 =1, ‘ (8.1.235)

as defined in (8.1.152). In particular, the monodromies on R vanish, and hence

the qhadratic function ¢°, given by 4%g) := p(9,9), g € R, satisfies

¢® € Hom(R, 7). f (8.1.236)

The quadratic function §° can always be multiplied by an expression of the form

(8.1.154) without changing (8.1.235). Hence gg can always be replaced by

g=gq¢", (8.1.237)

with

e (Hom (Grad(0b5), 7)),

(i.e., € is extendable to Grad(Obj)). Next, we show that, for any given subgroup

i
i

R C R satisfying (8.1.231), we can find an ¢ such that }.2 is in the kernel of the

quadratic form g.
Since the map i3 in (8.1.229) gives rise to a linear map between vector spaces over

the field 75, we can find a homomorphism '
¥ : Grad(Obj)/2 Grad(Obj) — R/2R (8.1.238]

such that 4 013 is the projection onto the summand R/2R in the decompositior

© (8.1.231), i.e., : |

$oizlg,p=id. (8.1.239
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Clearly, ¢° = §° 0 p®, for some ¢° € H mn(R/ZR,U(l)).
Setting

e =¢"o¢op, (8.1.240)
it fouows from the equation ¢ 0§ = g0 o ¢ 0p%0i = g0 ¢ 0ip0pF and from

(8.1.239) that € o | . Inserting this choice of £ into (8.1.237) we obtain that

glzg=1, ' (8.1.241)
in the category €Y, with § = §%~1.

Thus, we can find a gauge in which

pi=falga=1, : | (8.1.242)

where the 75-matrices are the ones computed for C9. Together with (8.1.235), this

shows that the Fy- and #5-matrices in (8.1.161) and (8.1.162) are R-invariant, and -

hence €7 is induced by some category € with objects 5?_7 .

(ii) We remark that the direct sum decomposition in (8.1.231) is equivalent to the

conditions,

R n 2 Grad(Obj) = 2R

and R C R + 2Grad(O%j) . (8.1.243)

If we take (8.1.243) modulo R and use the fact that Grad(Ob;) = wk(Grad(Obj))
we find that R C 2Grad(Ob;). However, 2R C R also implies that 2R = {1}.
This, in summary, yields the inclusion (8.1.232). Of course, we still have that
7 = 0 for the categofy C, so that (8.1.233) follows by the same arguments as in

part i).

(u]
The special situation to which the study of braided, monoidal categories is reducea in
Lemma 8.1.11 allows us to find particularly simple representatives in the cohomology
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class of the cocycle introduced in Lemma 8.1.10 ii). To this eﬁd, we propose to make
choices v, as in (8.1.198), such that the associated extension (sei:e (8.1.199)) factorizes.

The relevant group-theoretical lemma in this context is the follcf»wing one.
!

LEMMA 8.1.12

Let G be a finite, abelian group, and let R be a w&group with
R C 2(40) C 1G. | (8.1.244)

Define « and G by the short ezact sequence

0 R ,G—T .Gd——0. (8.1.245)

- ] '
Then there ezists a section ¢ : G — G and presentations of the groups R and G |

R = z3(c1) @ - @ Z(ck) - (8-1.246)

G

I

Zpi(b1) © - © Zom (Be) © H _ (8:1.247)

with. generators ¢y,-+ ,cx € R,by, by € G, and H C G, such that the eztension
¢ € Ezt(G,R) C HY(G,1; R) is given by '

.
E(RB B, B By = [ plom) (8.1.248)
=1 ?
. Here
0, 0Ly +p; < 2%
7](”’”) - {1 , Vj + ”’J > 21!,': (8'1'249)

Proof. . i

The first step is to present G as a sum of cyclic groups, 7, whose orders are powers
of primes. It is clear that any element of order two lies entirely in the direct sum of the
7gn-subgroups. Hence we can write i '
T ()@ 0 7am () @ H° -.
(™) @ @ m (™)
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for generators b3, - ,b? € G, and my < my < --- < my. The subgroup 2(4G) is given
by the direct sum of cyclic subgroups with m; > 2. Given the generators bg, we can
define characters. a; € Hom(2G,Z;) by setting a;((bg)z(mi—l)) = (-=1)%. Their pull
backs are given by i*(a;j) € Hom(R,Z3). Let j;,1 < j; <1, be vthc smallest integer

such that *(a;,) # 1, and let ¢; € R be such that i*(aj, )(c1) = —1. It follows that
0 2("‘;1“) 0 2(ml—1)
R c z(3)"" ) e--en(@) ),

and that
2("‘” -1)
)

i(ey) = (bjx)
where bj, is of the form
0 ‘ 0yz:-2™ ™)
bjl = bJ] H (bl) ’
1>
for some z; € N. In particular, b;, has order 2™i1, and we can replace ng by bj; asa

generator of G. Since R can be seen as a vector space over Z;, we can write
R = Z3(c1) @ ker(*(aj,)) .

The image of R' := ker(i*(a;,)) under i lies entirely in the subgroup of G generated by
bgl PP ,b?. Repeating the above argument for‘ the inclusion of R' in this subgroup
we obtain generators cy, bj,, and so forth. If we add the cyclic groups with i*(e;) = 1
to H® and use that mj > 2 we find that the groups R and G of (8.1.244) have the

following presentations:

G = 7.2(,.‘+1)(b1) ®---0 7.2(,.”1)((%) @ H, (81250)

and R has the form (8.1.246), with the property that the inclusion i : R — G is given
by
. ony
i(ej) = b5 7. (8.1.251)
The presentation (8.1.247) of G follows immediately, and the projection 7 : G — G is
given by setting #(b;) = b; and w(h) = h,for h € H.
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We now define a section ¥ : G — G, with 7o ¢ = id, by setting
BBy = )l (8.1.252)

where fj : Zynj — Zynj+1 is the function f;(v) = v, forv =0, «,2% —1. In analogy

with eq. (7.235) for the quantities given in (7.233) and (7.234), we have that

Cbf; = 2. ‘ (8.1.253)
Hence the extension defined by |
i(€(ab) = () 9 Fa- B (81.254)
is.the one given in (8.1.248)
]

In the special situation described in Lemma 8.1.11. ii) it is possible to eliminate the
prefactors w? and wt in equations (8.1.217) and (8.1.218) by a substitution of the form
(8.1.220). Moreover, one can find a simple, factorized form of w™ in (8.1.219). This,

however, requires some basic knowledge of the group Hs(G, 2) which has been computed

in [57]. The cycle
1 .
¢lg) = 5 0lglglglsdl 1
=-lglglglgl + lsllglsl — [g]gla], (8.1.255)
for g € 4G, i.e., g2 =1, plays a crucial role in this analysis, since the homomorphism
A =Ty4(2G) — Hs(G,2) : {g} — ¢(9) (8.1.256)
describes the torsion-free part of the homology group. Furthermore, using that
Hom(Hs(G,2), M) = HYG,2;M), for M = U(1), ¢,
¢ induces the dual homomorphism

A* 1 HG,2%;M) — Hom(T4(2G); M), _(8.1.257)
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defined, for a cocycle w € Z%(G, 2; M), by

A*(w)(g) = w%9,9.9,9) v (g.919)wt(g.919)7" (8.1.258)

We easily check that, for g € 3G, the expression (8.1.258) depends, in fact, only on the
cohomology class of w. Since, with the help of Lemma 8.1.12, we can find a decompo-
sition of G into cyclic groupé for which the cocycle considered here factorizes, we only
need to know the groups Hg(Zsn, M). It has been shown in (57] that, for these groups
the map A defined in (8.1.256) is onto, and the kernel is generated by {gh} — {g} — {h}.
This shows that A*, as defined in (8.1.257), is injectivc, and its image is Hom(2G, M).

Hence
H%(zpn, ;M) — 12y,
w - AMw)(2™Y), (8.1.259)
is an isomorphism. The non-trivial c_:ohomology class can, for example, be represented
by the cocycle

O =1 , w

WGk 1D = eop (35 MGKY), (8.1.260)

T =1,

where j,k,l € Zgn, and v is as in (8.1.249), with n = n;. For the special cocycle in

Lemma 8.1.19, ii), the invariant
A*w) € Hom(T4(2(Grad(0%}))), 22)
is given by ,
8%(w)(g) = p(E(s:9):E(5,9.) " M(E(s,9) 9(9)), (8.1.261)

for g € 2Grad(0—bj). In the case where 2R = 1 (i.e., R = 3R), we easily see that
2Grad(Obj) — R : g — £(g,g) is a homomorphism. If we assume, furthermore, that

m = 0, it follows that

A*(w) € Hom(,Grad(OF7), 73) . ,, (8.1.262)
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The results on H 5(G,2; M) cited above, together with the normal form for extensions
given in ‘Lemma 8.1.12, allow us to find a particularly simpig representative in the
cohomology class of the cocycle w in Lemma 8.1.10 ii), assumfng that the conditions .
(8.1.232), (8.1.233) and (8.1.234) in Lemma 8.1.11, ii), hold. I;Iore precisely, we have
the following result: ' k ‘

LEMMA 8.1.18

Let C be a quantum category and R C Obj e graded subgroup of invertible objects with
R ¢ 2(4(Grad(05}))) - f (8.1.263)

Assume that all monodromies with objects in R vanish, i.e.,

|

i

m=1. , (8.1.264)
7

Suppose that R and Grad(Obj) = Grad(Obj)/R are presented as in egs. (8.1.245) and
(8.1.247) of Lemma 8.1.12, and let { € Ezt(Grad(Obj),R) be the extension given
in (8.1.248). ict w € Zs(Gfad(O_lﬁ),2; M) be the cocycle defined in terms of { as
in Lemma 8.1.10, ii), for a choice of gauge of H['ﬁ for which I:"é(a, w1y, (1]) = 1, for
o,u,v € R, so that p € Hom(R® R,U(1)). Let €j € Zy be the invarianis given by

&5 = AW ()™ ) = plejres) - |  (8.1.265)

. Then:

(i) The cocycle w is cohomologous o the cocycle & given by

w =1,
ot =1,
@ (e,blc) = ezp(27ri Z 27" mj(c) 7_.,-(1rj(a),1rj(b))) ,

i =~1 77 (8.1.266)

where the w;'s are the projections onto the cyclic factors in (8.1.847), i.e., 7

7 : Grad(0bj) — 7pn;(};),
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and vj is as in (8.1.249).

(ii) The F3- and r;-matﬁc;s defined in (8.1.220), where A € A% (Grad(O_l:vj),2;M) is
such that & = w(6X)~1, satisfy the usual pentagonal equations end also one of the
hezagonal equations. The only categorial equation that is modified is the second
hezagonal equation: -

(D) 2141 0, 1) © 1) Py (5, 41 1, ) (D o143, 1) @ 1)
U] L
= &(gi,95 | gr)Fa (K], i, 51, [6)(ED T ® ra(([k1, 10, [~ Fa (6, L [RD, 1) -
T (8.1.267)

(iii) Let R* be the subgroup generated by {c; : ¢; = 1}. Tﬂen C is induced as a
braided, monoidal category by some calegory C, with object set Obj := Obj/R™,

and projection Tp+.

Proof -/

Ifm =0it follows that the quadratic function in Hom(T'4(R),U(1)) characterizing
the category Cp associated to R has values in Z3, so that Cp is trivial as a monoidal
cateéory. Hence there exists a gauge in which Fy(o, 1,1, (1]) = 1, for o,u,v € R, and,
as R ® R has only elements of order two, with p € Hom(R ® R,Z3). Let ¢y, ¢ bg
the generators of R in the presentation (8.1.246) that are used for the factorized form,
eq. (8.1.248), of the extension. We define § € Hom(R ® R,Z;) C Z2(R,1;U(1)) by

setting

oy _ [ Aleieg) , for i<, ’
Bleires) = {1 . otherwise . (8.1.268)

If we perform a gauge transformation with

A = B(aG) 0 €(91,95),10)) B(n(3), E(gi,97)), (8.1.269)

as in eq. (8.1.159), the braid matrix on R, p' := 8!8~ !p, defined as in eq. (8.1.162a), is

diagonal in the generators c;, i.e.,

Pleircs) = €9, (8.1.270)
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as follows by using that ppt = m = 1. We have that p' g+, p+= 1. By using that
m =1, we find from Lemma 8.1.7, iii), that, in this gauge, the By and 75-matrices are
independent of the R¥-action. This implies part iii) of Lemn;a 8.1.13. The'cocycle
w' constructed from p' and ¢ differs from w, as determined by p and £, by a cobound-
ary. This can be seen from (8.1.162b) and (8.1.162c), where the gauge-transformation

(8.1.269) corresponds to rescaling the #g- and }‘71‘ 2-matrices By some ), with

M(slB) = 1,

_ B(&lg,h), &(gh, k)
Mgl hlE]) = Bl W0, € E) | (8.1.211)
We therefore have that
W= w(é). (8.1.212)

Inserting expression (8.1.248) for £ into the formulae for the cocycle w’ in Lemma 8.1.10,

ii), and using the special form (8.1.270) of p, we find that

k
w®(91,92,93,94) = [] w}(m;(91),7i(92), mj(g5), 7;(g4)),

i=1
with
Wk, Lm,n) = ¢ ’['y:'(‘m) (s (ke t+mm) =55 (4mm)) | (8.1.273)
k
wt(g1,92193) = [[ i (rs(01),75(02) [ mj(g3)) ,
j=1 .
and

wh(k, 1| m) = ej[”'("*""‘)""(”)]. . (8.1.274)

Thus w factorizes completely into cocycles over the cyclic subgroups, Zyn;, each of which
is cohomologous to the cocycle given in eqs. (8.1.260) if £; = —1 and o the trivial cocycle

if £j = 1. Therefore w ~ w' ~ @, as defined in (8.1.266). This proves part i) of Lemma

' 8.1.13. The statement in part ii) is a direct consequence of Lemma 8.1.10, iv).

G

We already found that A*(w), as defined in eq. (8.1.261), is independent of the par-

ticular choice of gauge we have made. It is straightforward to check that A*(w) is alsc
356 1

|
'



independent of the particular section ¥ : Grad(0b;) — Grad(Obj), with n# o § = id,
we use to define the extension ¢{. Thus A*(w) is & true invariant of the category C.
Furthermore, one easily verifies that A*(w) does not change if C is replaced by C9, for
some ¢ € Hom(I‘4 (Grad(0Ob;5)), U(l)). In particular, if C is of the form C 2 (9, where
€ is induced by some category on Obj, the obstruction A*(w) has to vanish.

We conclude this section with a summary of results for a cyclic grading group.

COROLLARY 8.1.14

" Let C be a quentum category with objects Obj, and let R C Obj be a graded subgroup.
Assume that Grad(Obj) is cyclic, ;m that, for some numbers n,m € N, Grad(Obj) =
Znm(g) and R = Zm(o), and grad : R — Gred(Obj) : 0 — g™.

() If A*(w) # 1, then m and n are even, i.e., m = 2m’' and n = 2n'. In this case,

we conclude that

(2) there exists a quadratic form g € Hmn(P4(Crad(Obj)),U(1)), and, defin-
ing R := Z(0®) C Zm(0) = R, & quantum-category, C, on the objects
Obj = Obj/R' such that C = €9, where C is the category induced by C and
wg, and the monodromy m vanishes on C. The subgroup, R = wg(R) =
Z(5), of invertiile e?emeﬁts in Obj is embedded into Grad(Obj) = Z,(§)
by grad(7) = g*. |

(b) There ezists a gauge for the structure constants of C such that.

By(i,5,k,[l]) =
- (_l)ﬂ'(;r:d(i)) [’Y(ﬂi+ﬂ:’:9k)"‘Y(9i-§t)] 15-2([,'], 1], [K], 1)

Fali, b, [1) =
= (~1)7(orad(3)) ' (orad(k) (_yyr(as.on) [ (srad(k)) ' (radi) &5(13), 8], 1])-
(8.1.275)

Here v € 2%(75,1;73) is as in eq. (7.284), and

@) = {5

, for n < v < 2n,
, for 0< v <.
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We denote by [j] € Obj = Obj /R the R-orbit of order two of j € Obj and
by 9, = grad([j]) the grading in Grad(08;) = Zn(g), with § := 7% (3).

(¢) The F and #-matrices satisfy the modified categor;ial equations (8.1.217)
. (8.1.219), where the cocycle w € Z5(Zn,2;U(1)) is of the form given in
(8.1.273) and (8.1.874), with ~; replaced by 7 and &j = —1. There ezists
o function X € A*(Grad(0bj),2; U(1)) so that the rg- and Fy-matrices
7 defined by (8.1.220) satisfy the ordinary pentagonal equations for a monoidal
category on Obj and the hezagonal equations )

(D (1, 1k, 1) @ T) Fo( ), [k, L), [0)(ED ma (L), [E), e
U] ’ 1

= F2([k]) [']r b]) M)(@ I® 72([11: [k], [t]))F2([1]: [-7]: [k]) [t])
U

Y]

= exn(22 vl 05)) Fallkl, . 3, 1) (€D T @ ra((K] 1, 1))
: U]
Pyl 31 16, 4

(€D 241, i, 1)~ © T) (), [k1 ], (1) (€D w241, i), 1) © )
U]

(8.1.276)
(i) If A*(w) = 1, then C = éq, where C is induced by some category with objects

- Obj = Obj/R and projection =g.

Proof.

We first remark that / always has a symmetric extension, since, for a pair of cyclic

- groups H C G, the induced map H®G — G®G = GQ, G is injective and all extensions

over U(1) are tivial. If the integer m is odd we have that R = 2R, and if n is odd we
find that i3, as defined in (8.1.229) and (8.1.230), is an isomorphism. In both cases
it follows that R is a maximal signature-extendable group. By Lemma 8.1.11, ii), the

category C is of the form described in part ii) of the corollary. In particular, we have

that A*(w) =1 _
In the case where both integers, n and m, are even one finds that i3 = 0, and the
maximal signature-extendable group is R’ = 2R. Using Lemma 8.1.11, i), we can
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describe C as C = (9, where € is induced by a category € with objects Obj = Obj/R’, and
projection mg. If 5 € Hom(R ® R, Z3) is the basic braid matrix of C, see eq. (8.1.160),
and 5 € Hom(2(5) ® Z2(5),Z2) the braid matrix of C then, since 2 = 0 in both

categories,
A¥(w)s (3™)
ﬁ(a'nl ) ”m')

&,5) = A*(w)E(g”') . (8.1.277)

A*(w)e (7™)

Il

Hence if A*(w)¢ = 1 the same equation holds for A*(w)z. It then follows from Lemma
8.1.13, iii’) that R* C R, i.c., G is induced by some category C on Ofj = Obj /R = Obj/R
and 7 7 This implies that C is induced by C and that mp = w0 %, proving part ii) of
Corollary 8.1.14. If A%(w)(7") = A?’é(w)(g"') = —1, then the formulae for the structure

constants, egs. (8.1.275) and (8.1.276), immediately follow from Lemma 8.1.10 and the

fact that w is cohomologous to the cocycle.(8.1.260), where 2™ is replaced by n. The
section ¢ : Grad(Ob;) = Zn(3) — Grad(al;'j ) = Zgpn(§) for which the expressions in
{8.1.275) have been computed, is defined by

¥@) = &, with v =0, ,n-1. (8.1.278)

This completes the proof of the corollary. -
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8.2 The A, - Categories and Main Results

In the first part of this section we present a classification of semisimple, monoidal as well
as quanium categories with A,- fusionrules. In particular, we show that the monoidal

categories are uniquely determined by the statistical dimension of the generating object, p,

and, for braided categories, by the eigenvalues of €(p,p). In both cases they are realized
by the category Rep(Uy(sly)), as described in Chapter 7.1.

We show that in the case of Obj; = A, fusionrules the H*(Grad(Objs), 2; Z,)-
obstruction discussed at the end of the previous chapter vanishes. This is used to show
that the quantum categories with Z, x Azn_y - and Z, * A, - fusionrules are isomorphic to
subcategories of a product of a 6- category with group Z, end @ W- category. The
quantum categories with 7,(Z,* Agn-1) - fusionrules are described in terms of the categories

they induce by the graded homomorphism f* t Zgy % Agpey —» TalZr * Agnr) -

Combining these resultes with the restrictions on fusion rule algebras and statistical
dimensions obtained in Proposition 7.4.11 we arrive at the classification of C* - quantum

categories which are generated by an object of statistical dimension less than two.

In this section we shall be concerned with proofs of uniqueness of some simple
categories. Together with the existence guaranteed by the explicit constructions based
on quantum groups and f-categories, this allows us to give a classification of quantum

categories with a generator of dimension less than two.

We begin with a proof of existence and uniqueness for monoidal categories with
A,-fusion rules, disregarding any braided structure. For this purpose, we need to gather

some basic facts concerning these categories.
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Suppose that C is a semi-simple, rigid, monoidal category with A i-fusion rules, for
k > 1. We denote the objects of C by pp = 1,p1,... , 0%, as in Lemma 7.3.2. i), We

choose a pair of morphisms ¥; € Mor(1,p; 0 p;) and 19! € Mor(pl © p1,1) such that
(@1 o Da(pr, pr,p1)(1 081) = (1o8])alpy,p1,01) " (B101) = 1. (8.2.1)
We define a sequence of numbers d;,5 =0,1,...:

dy = 1, dy

oty ,

and dit1 + djoy = did;. ‘ (82:2)
For a given 191, we introduce two bilinear forms on one-dimensional spaces, as follows:

pj : Mor(pjy1,pj0p1)® Mor(pj,pjt10p1) = C

187 - (1o08Y)alpj,p1,p1) (T 0 1)J (8.2.3)
- and

gj : Mor(p;j, pjiy 0 p1) ® Mor(pjt1,p0p1) = C
187 - (1o8))alpjs1,p1,0) H(I 1), (8:2.4)

where j =0,1,... ,k-1.
 We have the following results concerning these quantities.
LEMMA 8.2.1
Let C'be a semi-simple, rigid, monoidal category with Agq-fusion rules.
(i) The number dy (end thus every d;) is an invariant of C independent of the choice

- of ¥y end 191. There ezists some | € Zy(y 49y with (I, k +2) =1 such that

d = 2cos( ) = (2)q, (8.2.5)

inl

k+3

with g = e"*°. Firthermore,

= (J+1)q # 0) .
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forj=0,...,k, and

diy1 = 0. . i

(i) Forj=0,1,... ,k—1, the bilinear forms in (8.£.5) and (8.2.4) are non-degenerate

and related by

B

d; ) .

P = :,“ gt. & (8.2.6)
(iii) IfCis a C'-éaicgory, then '
|

I =%1 mod(k+2). L (8.2.7)

Proof.

From the pentagon equation
a(pj o p1,p1,p1) a(pj, P1,P10p1) = (é(pj,pl,px) o1) a(pj, p1 °p1,;x)~(1 oa(m,m,m))
and (8.2.i) we immediately derive the identity

1=((150 1i) o#}) a(p; 0 Pl.bx.m)'l(a(ﬂj,m.m) o)((1ody)o1). (3-2;3)

From the isomorphism p(P"m)P‘ as defined in equ. (8.72), we find sequences of mor-
phisms IF € Mor(pji¢,pjop1) and JT € Mor(p;j, pjreop1), € = il forj = k-1
whene=1,and j =1,...k when ¢ = —1, such that

a(PpPl’ Pl) 1 ° ‘91) Z(Ic ° 1) : (829)

where we sum over € = {+1} whenever the morphisms are defined. Inserting (828) we

find that ‘ ; «
ljoy = ZI‘ (1o8!)alprte, p1,1)” 1(Jfo1) (8.2.10)

which is just the partition of 15,1 € End(pjop;) into the minimal projections associated

to the channels Pj+e- Since I; is the corresponding injection, we obtain that

1j+5 = (1Ot’l)a(Pj-}nPllpl)—l(JJ‘:01) I; ‘
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In terms of the forms defined in (8.2.3) and (8.2.4) this is expressed as
1= (1 1}) = pilU5n T5h1) (8.2.11)

for j =0,...,k — 1. This equation already implies that none of the g;’s is degenerate
and that J; ® I; # 0, whenever defined. For the map

i : Mor(pj1,p50p1) = Mor(pj,pir10p1)" = Mor(pjs © p1,p1),
I Pj(Ir ) = (1 °01)0(leplapl)ﬁ1(l° l)a
the inverse is explicitly given by
;1) = (To1)alpjs1,p1,p1)(1091). (8212)
Similarly, the inverse of
gD = gi(1,) = (et alpirr,pr,e) (To1)
is given by
i(H = (Folalppre)(1ody). (8.2.13)
If we apply (10 19{)&(pj,ﬁ1,p1)°1 to (8.2.9) from the left we obtain that
dy = pi(I},7}) + aj1(17,95) s (82.14)
forj=1,...,k -1, and, in addition, that
dy = po(IF,Jg), i = e (I, J05). (8.2.15)

_ Since both forms, p; and qg-, are non-zero and lie in the same one-dimensional space,
there exist {5 € C*, j =0,... ,k ~ 1, such that p; = §; ¢}. From (8.2.11), (8.2.14) and
(8.2.15) we find that

d =& = &),
and d = & + &, ' (8.2.16)
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so that, by (8.2.2), ;
d] = fJ_lfo i

The existence of a solution to (8.2.16) thus implies that ‘;

dj # 0, for j =0,..,k, and dyy = 0. (8.2.17)

It is straightforward to véﬁfy that (8.2.17) holds if and only if d; is of the form stated in
(8.2.5). The fact that d; is an invariant follows from (8.2.1) which constrains rescalings
to be of the form §; = At’l,ﬂ = ;-191, so that d; in (8.2.2) is unchianged. We therefore
have proven that p; and q;- are invariantly related to each other as in (8.2.6), with a
factor only depending on dj.

If we are considering a C*-category we can choose ¥; and 191 such that

¥

9] = sgn(d)) 1.9{ .
With this normalization, we find that
gG(I') = agn(dr) 5 1(I°) - (8.2.17a)

For I € Mor(pj,pj+1 0 p1), we find from (8.2.17) :
t
i

pi (7ML D) = &4;(1871(IM)

& agn(dy) (1) g;(I)",

o< rr

and hence

_ 3gn(dj41)

sgn(d1) = sgn(¢;) = wn(dy) $§.2.18)

Using the explicit expressions for d;, i.e., dj = (j +1)q, we see that (8.2.18) holds if and

only if ! satisfies the constraint (8.2.7). ( ‘
' a
The relations found in Lemma 8.2.1, how serve (us as a tool to consistently define

isomorphisms between the Mor(k,i o j)-spaces and the Mor'(k,i o j)-spaces, of two
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ategories C and C' of this type, providing an equivalence of the F-matrices of C and

. In our next lemma we derive this equivalence for a certain type of associativity

ronstraint. This will be sufficient to prove the equivalence of the monoidal categories C
ind C'.

LEMMA 8.8.2
Suppose that C and C' are two monoidal categories with Ajy1-fusion rules and with the

same value, dy, for the invarient dimension of the generator.
(i) For any sequence of isomorphisms
j 1P
HEAY © Mor(pj1,pj0p) — Mor'(pjs1,050p1),s

with j =0,...,k—1, and H;;P‘(ll) = 1;, there ezists a unique sequence of

isomorphisms
HpI*W# . Mor(pj,pi10p1) — Mor'(pj,pisn 0 p1),
with j=0,... ,k—1, such that, ai'muliangously,
Pi(HEE © HE™) = p; (8:2.19)

Pits

and

i

g (HE" © HER) = g5 (8.2.20)

For these, we have that H{#(9;) = ¥},
(i) For any given choice of isomorphisms H;’P‘, as in i), and with H}’l(lj) =1,

there ezists a unique completion of the choice of isomorphisms -
HY : Mor(k,ioj) — Mor'(kioj)

such that the diagram
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. |
@ Mor(s,j 0 p1) ® Mor(k,io s) M@Mar(a,i 03;) ® Mor(k,s0 p1)

He? H®?

@ Mor'(s,5 0 p1) 8 Mor'(k,i 0 5) ML@ Mor'(s,i 0§) ® Mor'(k,3 0 p1)
’ ! (8.2.21)

[
[
|
i
|
i
i
i
i
,

commautes, for alli,j k€ J.

Proof.

It is clear that, by the non-degeneracy of p; and p;-, there exists a unique sequence of

H:,’f”’m such tl@t (8.2.19) holds. Since d; = d'l’ and thus d; = d;,'!wc immediately find

: . |
from (8.2.6) in Lemma 8.2.1 that (8.2.20) is automatically fulfilled. From (8.2.20),

- 90(‘91v1) =1 ) (8.2.21&)

and HLP (1) = 1, we obtain that H1(9;) = #}.

For a given choice of H, : "#1 e now show part ii) of the lemma. The proof will proceed

by induction in n. Assuming that we have defined ‘ i
H;"p" : Mor(lLiop;) = Mor'(Liop;),

forall j =0,...,n, and that

’ . F '1 iy )I .
@Mor(a,pj 0p1) ®Mar(l,ios)M@Mar(a,i 0 p;)® Mor(l,5 0 p1)
s s k

H®? H®?

Fl(i,p;5,p1,1) } :
@Mar'(a,pj 0p1)® Mor'(L,ios) Mo@ Mor'(s,i0p;) ® Mor'(l,8 0 py)
. . s

(8.2.22) °
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e

. commutes, for j =0,... ,n — 1, we can find unique isomorphisms, H:‘p"“, fori,le J,
such that (8.2.22) commutes for j = n.
To this end, we have to show that, independently of the choice of H;:'P"“, the diagram

for the restrictions to one summand on the left hand side:

F(i, pr.p1, 1) Dizs1Mor(ptie,i o pn)
®Mor(ptie,pt 0 p1)

Mor(pn_1,pn 0 p1)
®M°"(Pt:i' o Pn—l)

H®? : H®? . (82.23)

Mor'(pp—1,pn © p1)
®Mor'(pt,i 0 pn-1)

F'(s, pn, 1, pt) Peet1Mor' (prse,i 0 pn)
®Mor' (pi—c, pi 0 p1)

commutes, whenever I = p; € 10 pp_1,t = 0,...,k. We show this by expressing

the matrix elements of these maps by matrix elements of F(i,p,—1,p1,pt) and the

isomorphisms §; and $; ’frbm Lemma 8.2.1 (which are mapped, under the action of H,

into qf, and i",) In order to derive a useful relation, we consider the pentagonal equation

a(i»PmPI ° Pl)(li o Q(Pﬂv P1, Pl)-l) a(i, Pn o Pl)pl)—l

= a(iopn,p1,p1) "} (ali, pn,p1) 0 11) . (8.2.24)

* Now, choose I € Mor(pt,i0pp_1), J € Mor(p,,_l,p,, op1), L' € Mor(ptye,pi 0 p1),
and K € Mor(i o pn,pr4c), and multiply (8.2.24) with (((1; 0 J)1) o 1;) L' from the
right and with K o 9] from the left. This yields

K(tio[(1o8d)alen, p1,p1)"1(J 0 11)]) @i, pn1,p1) "1 (T 0 11)L'

= (lpu.. 0 ”D Q(Pi+¢r P1, pl)_1 ([(K o 11) a(ivpnr Pl)(li o J)I] o 11)L"(8,2.25)

using only the isotropy (8.1.38). The term in square brackets on the left hand side is

found to be §,—1(J) € Mor(pn © p3,pn—1), and the right hand side is identified with

one of the bilinear forms (8.2.3), or (8.2.4) between L' and the term in square brackets,
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" depending on € = +1. With an appropriate substitution of L', and using identity (8.2.6),

we obtain the following explicit formula: Fore =1, i
' |
L(K o 1)) a(i,pn,p1)(1 0 J) =
d; - . 1y
= 2 K(10g.-1(9)) ali,pno1,01) " (T 0 )57 HE)
& (8.2.26)

with L € Mor(pH,l o p1, pt), identifying, with 1; — 1 € C, both s:des of (8 2.26) with

C-numbers. In terms of F-matrices, this equation can be rewntten as

i

1

(K®L, F(i,pn,p1,pt) I ®I) =

= % (@n1(7) ® K, Flipnt,p1,0040) TR (DN ,
’ T (82.27)

where we view K € Mor(pi41,i 0 pn)* and L € Mor(p1, p141 0 p1)‘

Similarly, we find, for ¢ = -1,
(K®La F(i:PnyPl:Pt) J®I) =

diy ,_ . C =1 -1
= n—-1{J ®K, F(i,pn-1,p1,Pt— I® (L ’
4 {Gn-1(J) (i,pn-1,P1 »Pt 1) g-1(L) (8.2.28)

with K € Mor(pi—1,i 0 pn)*.and L € Mor{ps,pt—1 © p1)*. Note that the equations
(8.2.19) and (8.2.20) can also be expressed as

L SO ——

(HA™)' 85 = 5 (BT (8.2.29)
and : !
]

(BELY 3 = & (13",

(8.2.30)
and that (8.2.22) commutes for j = n — 1, by our induction hypothesis. This allows
us to relate the matrix elements of F(i, pn, p1,pt) to the ones of F'(i, Pn, P1,pt); using -
formulae (8.2.27) and (8.2.28), and to prove commutativity of (é.z.za) whenever the
morphism spaces are non-empty ’ ;

Next, we assume that py € t0p,41 and derive a second set of relahons among F-matrix

elements. For this purpose we consider the pentagon equation | )

. - < . ; —
ali, pn-1,p1° p1)(1i © &(pn-1,p1,p1)"}) @i, pn_1 ©p1,p1) 1=

= a(iopn-1,p1,p1) " (ali,pn1,p1) 0 1;) (8.2.31)
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We choose I € Mor(pi+e,i © pn), J' € Mor(pn, pn—10 pt), and we multiply (8.2.31) by
K o9} from the left, and by (((1; o JNI)o 11)L from the right.
This yields

K (1i0[(1n-1 0 })alpn-1,1,£1) "1 (J 0 11)]) ali, pn, p1) " (T 0 1)L

= (10 9%)alpt,p1,p1)~2 ([(K 0 11)ali, o1, p1)(1s 0 )] 0 14) fs'.z.sz)

Substituting J = fp-1(J') € Mor(pn ©p1,Pp-1) = Mor(pp_1,pn0p1)*, we obtain from
(8.2.32), in F-matrix language, the equation

(J&K, F(i,pn,p1,pt) I® L) =

= dt—d“:l (K ®qt(L):F(£xPn—1xP11Pt+l)f;.l.1(J)® I), fore=1,
= 421 K By (L), Fliy bt pn, e () 1), for £ = —1,
& (82.33)

for JQ K € Mor(pp—1,pn0p1)* ® Mor(py,i0py-1)* and I,L arbitr#ry. By similar

arguments as for (8.2.23), we see that (8.2.33) implies the commutativity of

Mor(pn_1,pn0p1) —
8Mor(pt,io0 pp1)"

(F(i, mel:Pt)-l). @,Mor(a,i o pj)'t

®Mor(pt,s 0 p1)"
HQH H* @ H* (8.2.34)
Mor'(pn_,pmo p)" Lo lePr o))
®Mor'(Pt:i °Pn-1)' )

@,Mor'(.s,i op;)*
®Mor'(pi,5 0 p1)*
- Since the space B, Mor(s,iop;)® Mor(py, s0p;) is at most two-dimensional, the image

of Mor(pp41,pn ©p1) ® Mor(pt,i © ppy1) in it may be expressed as follows

@n = F(i,pn,p1,p1)(Mor(pat1,pn 0 p1) ® Mor(pt,i © pny1))
= ,F(i,ﬁn,m,m)((Mor(pnq 1Pnop1)’ ® Mor(py,io pr._1)')J‘)

= [(F(ixPH»PI:Pt)-l)‘(MC"'(Pn—l:Pn 0p1)* ® Mor(py,io Pn-l)‘)]l

(8.2.35)
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From (8.2.35) and (8.2.34) we conclude that H®2 maps Qn ontof_ Q% We may then

consider the following &iagram:
‘ : F i’ [14%)
Mor(pn+1,pn © p1) ® Mor(pt,i 0 pnt1) L’?@*Qn
i

HEb ®H:;Pn+l :-_-‘: H®% . (8.2.36)

: 'Fl .l 3 ‘) '
Mor'(put1,pn 0 p1) @ Mar'(pri 0 pyr) - CoPRPLP). o

Since, for 1 < n < k and p; € 10 pp4y, all other isomorphisms bétv;cen one-dimensional
spaces are already determined, there exists a uniqpe H:;’,”"“ sucl'l that (8.2.36) com-
mutes. Combining the commutativity of (8.2.23) and (8.2.36), wJX obtain the commu-
tativity of (8.2.22), with j = n. Since F(3,1,p1,p1) = id, and sinlLe the isomorphisms
H: 1 ,m already defined, the claim for n = 1 is clear. Forn = k, the commutativity
of (8.2.22) is identical to that of (8.2.23), since p; 0 p; = pj_1, and the induction can
be terminated without any furﬂ;ér definitions of H's . This completes the proof of the
lemma. ’ :
| . o °
Incidentally, the uniqueness of the isomorphisms in Lemma 8.2‘.2., ii) allows us to
show that all natural transformations that leave the F-matrices ‘<]>{ an A, -category

invariant have to be trivial. More precisely, a natural transformation is defined by a set

of isomorphisms, h;’j, of the spaces Mor(k,i0j),1,5,k € J, whicH, for Ap-fusion rules

with Nj; i € {0,1}, can be given by C-numbers. A natural transformation leaves the

F-matrices invariant if

h®2F(i,5,k,1) = F(i,5, k1) h®%, . (8.2.37)

and a family of natural transformations obeying (8.2.37), called tﬂﬁal, is given by

Bl = D5 (8.2.38)
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l'»’

Ay

for some function A : J — €. (We use the conventions h::'l = h}'i =1id, A\; =1). To
show that (8.2.38) holds in our example, we first find A, such that Af"" = X2 . We
then define

2
Mo = [ By for m=2.. k. (8.2.39)
J=1 Pn |

This implies equation (8.2.38), for i = py, j = él and k = pn43. Since the maps
p;j and g; also represent F-matrix elements, we have to satisfy (8.2.19) and (8.2.20)
with g, = A52ps and ¢ = N32qn, yielding h225% K21 = )2 and hence equation
(8.2.39), for i = pp41, j = p1 and k = pp. By Lemma 8.2.2, the completion of the
h;"’ *'s compatible with (8.2.37) is unique, and hence the expression (8.2.38) is the only
one possible. This observation, made on the level of structural data, can be put into

the formal language of categories as follows:

C(X,Y) € End(X oY), with

(C(X,Y)01)C(X oY, Z)a(X,Y,Z) = a(X,Y,Z)C(X,Y o Z)(10C(Y,2)),

and C(X', Y)oJ

IoJC(X,Y), (8.2.40)

with I € Mor(X,X') and'J € Mor(Y,Y'), can be epxressed by a collection of iso-
morphisms, A(X) € End(X), which are isotropic, i.e., A(X')] = JA(X), for all I €
Mor(X,X"): ‘

C(X,Y) = AX oY) HA(X) o A(Y)) . (8.2.41)

For a monoidal An-category, there exist exactly two solutions to (8.2.41) diﬂ'eri‘ng by
the 7-grading of the Ay-fusion rules. We can interprei the expressions in (8.2.40) and
(8.2.41) as non-commutative generalizations of cocycle-’ and coboundary conditions, i.e.,
we can interpret (8.2.40) and (8.2.41) as triviality of a generalized second cohomology
group.

Lemma 8.2.1 and Lemma 8.2.2 now put us in a position to prove the first result on
the classification of categbries.

3n

PROPOSITION 8.2.3

|

For everyl=1,... ,k+1, with (Lk+1)=1, there ezists a semisimple, rigid, monoi

caiegory, unique up to natural equivalence, with Ap1-fusion ru‘cs, such that’

dy = -—2cos( [

— 2) . (8.2.4

i

It is given by the semisimple quotient of the representation category ‘of Uqg(slz), w
ixl

g=e *** . It is isomorphic to a C*-category if and only if E
3

le{l,k+1}. ' (8.2.4¢
|
This is the compleie list of monoidal categories with Ag.y-fusion rules. Categorie

|
corresponding to different values of | (i.e., different dy) are inequivalent.

Remark: This result is generalized in [63], using the representation theory of Heck
algebras. More precisely, it is s-hown that the monoidal categories with Ug(sla) - fu
sionrules, with n > 2, are precisely the Uq(sly) - categories and that they are uniquel,
determined by the statistical dimension of the fundamental representation.

|
The first step in the proof of Proposition 8.2.3 is to extend the commutativity of (8.2.2]
to arbitrary representations and use this to prove uniqueness of an A -category, i

a given dj. For this purpose, we define

F"(i,5k,1) = (H®%)™! F(i, 3.k, NH®?

: @Mor(a,jok)@Mor(l,ioa) — @Mar(a,ioj)@Mor(l,"aok),
L . | 7 (8.2.44

- 3
where the F- and F'-matrices are the structural data of two categories C and'C’ wi
the same dj, and H;‘j are the isomorphisms specified in Lemma; 8.2.2. To show that

372



F(il j’

@Mar(a,j ok)®Mor(l,i53)——?i»@Mor(a,i 05) @ Mor(l,s 0 k)

H®? : H®?

@Mor'(a,j ok)®Mor'(l,ioa)M—.@Mor’(s,ioj)@Mor'(l,a ok)
8 s

(8.2.45)

ommutes is equivalent to showing F = F", by (8.2.44). By assumption, we have that

soth maps, F and F", satisfy the pentagon equation, and, by Lemma 8.2.2, that
- F'lgenl) = Fgenl), (8.2.46)
for all 45,1 € J. Substituting (8.2.46) into a pentagonal equation for F" , we obtain

@ I ®F"(’:prn+nt) =

e=+1

Tl2(@ ]I ®F(8 PmPl:t) l)(@ﬁl('h];l’m‘)®n)

(@ I ® F(i, a,m,t))(@ F(3,pn,p1,8) ® 1) .
(8.2.47)

From (8.2.47) and the pentagonal equation for F we see that if
‘F”(i: 3y Pm, 1) = F("IJ, mel) (8248)
holds, form = 1,... , n, it also holds for m = n+1. Hence (8.2.48) follows by induction
which proves (8.2.45).
In order to construct the explicit functor of equivalence, (id, F,C) : ¢ — C', we

proceed in the same fashion as in similar constructions in section 8.1. We first fix an

arbitrary set ‘of isomorphisms
F : Mor(i,X) — Mor'(i, X). (8.2.49)

Chis extends by functoriality and, since Mor(X, Y)= @, Hom(Mor(i, X), Mor(i,Y ),
© a unique functor of abelian categories. Using that Mor(k,X oY) = @i Mor(i, X)®
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Mor(j,Y)® Mor(k,icj), as specified in (8.2.42), we can define C(X,Y) € End'(X oY) i
uniquely by the formula ‘ B
(X, Y)(F(hyo F(N)BY(K) = F((fo N)R), (8.2.50)
where I € Mor(i,X),J € Mor(j,Y) and K € Mor(k,i 0 j). The compatibility with
tensor products of morphisms in (8.2.33) follows immediately from the form of (8.2.50),
. !
using the fact that, by semisimplicity, it suffices to check (8.2.33) when it is multiplied
by some (F(f)o f(j))H;’J(I? ) from the right. The verification of (8.2.43) is done
similarly, multiplying 7 ‘
(F(D) o (F(h o FU) HEHS) ) B (F) (8.2.51).
from the right, with [ € Mor(i, X),J € Mor(j,Y), K € Mor(k,Z), § € Mor(s,j o k),
and T € Mor(t,i 0 8). Here we ‘need to employ isotropy, eq. (8;.1.38), of both a and o'
and, furthermore, commutativity of (8.2.45). ‘ '
We may now consider the monoidal iepresentation category of Ug(sly), with ¢ =

%l

e *+’,1=1,...;k+1,(1,k+2j=1. 7

We restrict the set of ob jects to those generated by the two-dimensional fundamental
repre#entation with highest weight A = 1, i.e., to all integral highest weight representa-
ﬁons, Va+1> A =0,1,... ,k, and to the indecomposable projective modules W;,i € z,
as defined in section 5.3. N

We pass from this category to its semi-simple quotient. Hence we have exactly k+1
irreducible objects left over, and, by Theorem 5.3.1, these satisfy the A j-fusion fulcs.
If we use {vg,v1}, as a basis for the representation space V3 of highest weight A =1, as
in Proposition 5.2.1, and let {ly,l;} be its dual basis in vy, withll,-v_,- = §;j, the invaﬁ@t

tensors ¥; and 19{ are of the form

¥ = a(v®vi—gvi®w) € Homy (,1,)(1,V28 1),
<
and
g

9 = Blhol-g Thoeh) € Homy, ) (V;€12,1),

' (8.2.52)
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From the equation
@ed)w el = (e 1) = of1
we see that (8.2.1) is satisfied iff a= 871, s0 that
dy = 08} = —(a+q7!) = —(2). (8-2.53)

Comparing (8.2.53) to (8.2.5) in Lemma 8.2.1 (with dj — —dy, for I = k+2 1), we

see that, for all admissible values of dj, there exists a realization of an Aj.)-category

obtained from the representation category of some Uq(alé). Having proven uniqueness,
for each value of dy, this completes the classification of monoidal A;.1-categories.
Finally, we wish to prove the result concerning a C*-structure. In Lemma 8.2.1 we
already found that | = 1 or k + 1 are the only compatible values. In order to see
that we can implenient a C*-structure in both cases, we first show that there exists
an inner product on the Mor(k,i o j)-spaces such that the F-matrices define unitary
maps. We have proven in Lemma 6.3.3 that, for I = 1, there existsAan inner product
such that the braid matrices are unitary. From the hexagonal equations, as expressed
in Lemma 6.2.1, we sce that the F-matrices can be written as products of unitary braid
matrices and are therefore unitary with repsect to the given inner product, too. This
system of F-matrices can be multiplied by the trivial 3-cocycle f € 23(Zy,1;R/Z), as
described in (8.2.8), preserving the pentagonal equation and unitarity. For the invariant

dy associated with these ‘data, we find

1

— = @S2 Fpip1, 01,010} = =~ Flor,p1,o1.21)F = -

1 -
z - -5 (8.2.54)

where a = grad(p;) is the non-trivial element in 73, so that dj is precisely the invariant

for I = k + 1, and the resulting structural data are equivalent to those of Ug(slp), with

P
g=-e "

Once we have unitary F-matrices, we can implement a C*-structure as {ollows: We

define a positive definite inner product on each of the basic spaces, Mor(k, X'), with
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k € J and X € Obj, and denote by *, with
* : Mor(k,X) — Mor(k,X)* = Mor(X,k), (8.2.5¢

the associated involution. This involution extends uniquely to * : Mor(X,Y) -
Mor(Y,X), by (IJ)* = J*I*, yielding a C*-structure on C. , We consider the ma;
P(X,Y) € End(X oY) defined by the equation |

'

PX,Y)YIoJ)K = (K*(I*oJ*)", ' (8.2.56

for I € Mor(s,X), J € Mor(j,Y) and K € Mor(k,i 0 ). It is immediate from
(8.2.56) that P(i,j) = I, for i,j € J. For I € Mor(i",X), J € Mor(j",Y), and
K € Mor(K',i' 0 j'), we obtain the relation }

((FoH)o R)'P(X,Y)Io 1)K = Subipbua(T, )T, VR, K),  (8.257)

so that P(X,Y) > 0 as an element of the C*-algebra End(X oY). Hence there are

"isomorphisms C(X,Y) € End(X,Y), with P(X,Y) = C(X,Y)*C(X,Y) and C(,j) =

T;o5, for 4,5 € J. If we apply the natural transformation (id, I, C) to this category we

. find that (8.2.56) holds with P = 1, and, by semi-simplicity, we ‘conclude that

(AoB)* = A"oB*, (8.2.58)

for any A € Mor(X,X') and B € Mor(Y,Y"). Since C(i,j) = 1, the F-matrices do

not change under this change of tensor product. Thus, if the inner product chosen on

R
Mor(k, X) coincides, for X = ioj, with the one determined previously, the F-matrices

are also unitary in the new category, based on (8.2.58). With these two ingredients, it
is now easy to show that a(X,Y, Z) is unitary, too. !
From the explicit formula (5.23) for highest weight vectors in tensor products we .r:ee
that, for j; = jp and-j = 0,
T9) = (g71@1)9,, (8.2.59)
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ith g = (—¢)7*, $%(a) = gag™',9) € Homy, (,1,)(1, Va41 ® Va41) and T @ w) =
1 ®v. For the element 191 € Horng'(,,z)(V,\H ® Vy41,1), with

aedshmel) = @wlenues,) = 1,, (8.2.60)
we find from (8.2.59) that
dy = 8Ly = try (97 = (F12O+1)g = (A +1),. (8.2.61)

Hence these quantities coincide with the ones defined by the recursion (8.2.2). This
could also be derived from the existence of a balanced, braided structure, and thus of
cyclic traces, compatible with the tensor product. It is of special interest to observe
that ’ .

dj = (1) g5, (8.2.62)

inl

If we denote by Cj; the category obtained from Ug(sly), withg=e Hl=1,..., ‘

k+1, (l, k +2) =1, the uniqueness assertion shows that there exists an isomorphism
(id,F,C) : Cog — Cpy

only if k = k' and I = I'. However, in order to prove that all Cy; are inequivalent, we

have to consider isomorphisms
1

(&, F,C) : Coy — Cpp (8.2.63)

where ( is an arbitrary fusion rule algebra isomorphism. Clearly, this is only possible
for k = k'. Also we need to have that d; = ‘fC(J')' So if {(1) = 1 we also have
that d) = d}, and hence [ = I'. The isomorphism ( also has to preserve the Perron-
Frobenius eigenvalue, df -F. of the fusion rule matrix, i.e., df Fo— d&f)‘ This implies
that {(j) € {j, k—j}. Moreover,  has to preserve the gradation, i.e., {(j) = j mod2. For
odd k, {(j) = j is therefore the only possibility. For even k, we also have {(p;) = p{opj,
as fusion rule algebra isomorphism. In the last case, [ has to be odd. Hence, by (8.2.62),
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4 =‘4=-1 =d'c(1

d} = dy, and thus [ = I'. This proves that all categories for different pairs (k,10),

- Since the existence of (8.2.63) implies that d,C( ;) = dj» we find that

are m_ggun'ggm.
(]

Next, we supplement the classification of monoidal categories with An-fusion rules by
an investigation of the possible braided structures for these cat;égories. More precisely,
we show that if the fusion rule algebra Obj is generated by an iréeducible object, p, with
pop =1+ ¥, ¥ € J, then the obstruction possibly present in :the modified hexagonal
equations and described by H 5(Grad(0%;),2; U(1)) vanishes. | Furthermore, we show

that the possible fusion- and braid matrices fof the fundamental object p can all be

obtained from Ug(slz). A general argument,v often referred to as “cabeling”, then shows
|

. : i
that the entire braided category is isomorphic to the semisimple category obtained from

Uy(slz). The first result is obtained by solving a set of simple, ﬂgebrg.ic equat’ions.

LEMMA 8.8.
Suppose C is a semisimple, monoidal category with objects Obj, and let p € J C Obj be

an irreducible object with

pop = 1+ ‘¢, (8264)

- where ¢ € J. Denote by

1

i
F(p,p,p,p) : @ Mor(a,pop)@Mor(p,;‘zoa) - @ Mor(s,pop)® Mor{p,s0p)

=19 =19 ‘
: " (8.2.65)
the fundamental fusion matriz. Consider the modified heza_qona:l equations: :
(D rp.p,8) @) Flp,p,p,0) (D rops)@T) = 1V
=19 =19 o
= F(p,p,p.0) (D 1®7(s,0,0)) Flp,p,0,p),
=19 i (8.2.66)
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(D re.p.2) ' ®1) Flp,p,0.0) (D tlppe) 1 01) =

- =19 =19

=‘_F)ll ][T,,—IF,,,o
@ (PPPP)('S.;’ ®r(p,8,p) ) (pppé) (8.2.66a)

These equations have a solution with r(p,p,s) € End(Mor(s,p o p)), with r(s,p,p),

r(p,s,p)"! € Hom(Mor(p,s 0 p), Mor(p,p o)), and #(1,p,p)(1p) = 7(p,1,p)(1p) = 1,
if and only if
o~ =1, (8.2.67)
Up to natural gauge iransformations, the soluti;)n is uniquely determined by the invarient
t € C* defined by
(p,0s%) =t 171 Tpgor(p,pop) - (8.2.68)
A aaluti_qn to the modified hezagonal equations ezists fqrt € C* iff t # —1. There exists

a gauge and ¢ choice of basis in the morphism spaces such that the matriz elements of

the r's and F's are given by the following formulas: r(p,p,¥) is given by (8.£.68), and

rp,p,1) = 83,
r(¥,0,0) =r(p,¥,p) = —t,
1 _ v _ _ 1
F(P;P:P»P)l = F(P:P:P:P)‘ﬁ = ' (2)t’ ’
F(p,p,p.p)y =1,
(3)e2 '
and Flo,p,p,0)! = ——t . (8.2.69)
P (@)

Proof.

We begin by recalling some properties of the linear transformation F(p, p,p, p) given

" in (8.2.65). As before, we may use the canonical element 1, € End(p) to associate to

the matrix block (F(p,p,p,p)): a unique element in End(Mor(1,p o p)) and thus a
C-number. Rigidity, eq. (8.2.1), implies that this number is non-zero. Hence we can

define an invariant d, € C* of the category C by the equation '

5 U pfon(1,00p) = (F(p,p.0,p))} = (F(p,p,p,p)'l)}, (8.2.70)
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where the second equality in (8.2.70) follows from (8.2.1). Concérning the bilinear form
p1, defined by ‘

P1 ¢ Mor(,p0p) ® Mor(p$0p) — €
187 = (189}) F(p,p,0,0) (1@ ),
’ ' (8.2.711)
as in (8.2.3), we know from the proof of lemma 8.2.1 that it is nfon-degenerate, with an
explicit inverse given by (8.2.12). This shows that the matrix blc;ck (F(p,p,p, p)”l); #
: ' '

f‘(p,p,p,p)b : Mor(Y,pop) @ Mor(p,p o) i,'MM(i,p o p)® End(p) ,
' (8.2.72)

0, and hence the linear transformation

i
does not vanish. Furthermore, the isomorphism F{p, p, p, p) is constrained by the pen-

tagonal equation

(Flp,p,p.0) @ I)( €D 18 F(p,5,0,1))(Flp,p,p,p) @ T) =

. =19
= ]I@F() ) 71) T n®F(, ,3,1) f
(:§¢ Flepre 1) T (.§¢ per)) (8.2.73)

which, incidentally, also implies (8.2.70). We define isomorphisms §, : Mor(p,s0p) —
i

Mor(p, p o s) by setting i
]
1 ,
F(p,s,p, 1) =&¢ ]IMor(l,pop) y (8274)
sothat ;=1 End(p)- Furthermore, we define an isomorphism Fe End(@,M or(s,po

p)® Mor(p,s 0 p)) by

=1y

F = F(p,p.0,0)(P1®%,) . © (8.2.75)
s .
From the pentagonal equation (8.2.73) we conclude that ’
i
F? = A1 | - (82
D »1, | (8.2.76)

is diagonal with respect to the one-dimensional subspaces corr}esponding to ihc chan-

nels s = 1,9. Clearly we have that \; = 1, since F(l,p;p,l) = F(p,1,p,1) =
i .
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F(p,p,1,1) = 1. Of course, the diagonal matrix (8.2.76) has to commute with the
F-matrix which by (8.2.72) is non-diagonal. We conclude that (8.2.76) has to be a

multiple of the identity, i.e., since A; = 1, we have that F2=1 or
F(p,p, Plp)—l = (@ I Q') F(PrP:P:P)(@ I® q") . (8:2.77)
’ .

Inverting eq. (8.2.66) and inserting (8.2.77) yields:

(@r(p,p,a)._l ® ]I) F(P)PrP:P)(@’(P)Pr‘)—I ® ]I)

= F(p.p,0,0)(ED 1 & (8, 7(s,0,0)"'2,)) F(p,p.p,p) -

If we compare this to (8.2.66a), we find that

& 7(8,0,0) = B57(p,5,p) B . (8.2.78)

For s = 1, (8.2.78) implies (8.2.67), i.e., triviality of the H®(Grad(O%;),2;U(1))-

obstruction if p generates Obj. Conversely, for &~ = 1, and with egs. (8.2.77) and
(8.2.78), any solution to (8.2.66) turns out to also be a solution o (8.2.66a). Besides

the invariants #(p, p, 8) and d,, we introduce a fourth invariant, y € C*, by setting

yﬂMar(,;ﬂpop) i= o5 r(¥,0,0) = r(p,¥%,p) By . (8.2.79)

With the diagonal matrices D,Q € End(@, Mor(s,p o p) @ Mor(p,s o p)) given by

D := diag(r(p,p,1), r(k,p,xb)) and Q@ := diag(1l,y), we can write the hexagonal

equation as an equation between endomorphisms:
DFD = FQF. (8.2.80)

Using that F2? = 1, we infer from this equation that DQ commutes with F, and since

F is non-diagonal, DQ is a multiple of the identity, i.e.,

*(p,p,1) = yr(p,p,¥). : ) (8.2.81)
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Using that F # +1, we also find that ’ : Al
det(F) = =1 and tr(F) = 0. (8.2.82)
Hence, from (8.2.80),

det(D)?

—de(Q),

or v = —r(pp,1)? r(p,é,vﬁ)’ . (8.283)

The general solution to (8.2.81) and (8.2.83) can be parametrized by a number ¢ G‘C"

with the property that

r(P)pil) = tsi v r(P,P,"l’) = _t—lo

'("ﬁ.PaP) = _t4q>\b: T(Pn"pap) = -i4Q;1' . (8284)
From (8.2.70) and (8.2.82) we find that
Fiy=-Fyy = 5. . " (8.2.85)

If we take the trace on both sides of (8.2.80) we obtain, with (8.2.85) and F2 =1, the

relation
1 .
d—P (T(p,p,l)z - T(p,p,‘l/))z) =14+ v, (8286)
which, by (8.2.84), yields the expression : J
. 'y R ) .t
dp = —(2)12 . - (8.2.87)

For arbitrary 4, € Mor(1, pop) and 9 € Mor(1,40¢), we next determine basis vectors

I € Mor(p,¥ 0p), J € Mor(p,rhoo ) and K € Mor(},p o p) such that F{p,p, p,p)

has the matrix elements given in eq. (8.2.69), and, in addition, that ‘

F(¥,p,0,1)} = F(p,%,p,1)5 = Flp,p,9,1)5 = 1. (8.2.88)
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The morphisms I,J and K are unique up to a change of sign, I, JJK - -I,-J,-K.

We first determine K and I from the equations

’F('an:Psl)(K ®i,¢) =187,
FK®l) = -7 KoI+9,81,. (8289)
P.
These equations have unique solutions K and I, up to a sign. The last matrix element
of F in the basis {§,®1,, K® I},

X, (8.2.90)

F¢1=l—d"2

is obtained from det(F) = —1. The condition that F(p,%,p,1); =1 means that

J = &y(D), (8.2.91)

which, together with (8.2.75), yields the formulas for the matrix elements of F(p, p, p, p)

given in the lemma. Using (8.2.91) in (8.2.84), we also find the formulas for the -
matrices. Finally, the equation F(p,p, ¥, 1); = 1 follows from (8.2.88). The fact ti:at
these matrices provide a solution to the hexagonal equation (8.2.66) can be verified by
direct computation or by the observation that these data are identical to the ones.for

Ug(sla),a = 12,

o

The observation, made in Lemma 8.2.4, that the braid- and fusion ma.tricés of the
fundamental representation p coincide with those of Ug(sl2) is, in fact, sufficient to infer
that the entire category is isomorphic to the one obtained from Uy(slz). This insight is
based on the following cabeling argument which is an easy consequcﬁce of the hexagonal

equation.

LEMMA 8.2.5

Suppose C and C' are braided tensor categories for which there ezists an isomorphism

(¢.FC:¢c - (8.2.92)
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between monoidal categories. Assume that T C J is a set of itreducible objects which
1

generate Obj and for which the equation ) i

}-(e(ta‘)) = C(‘ni) EI(C(t)sC(‘)) C(tx ‘)—1) Vi,s € T, ’ (8.2.93)
holds.

Then (8.2.92) is also an isomorphism between braided ca.iegor;ies.

Proof. ;
|
In order to prove Lemma 8.2.5, we need to verify that - ;

F(e(X,Y)) = O¥,X) ' (¢(X),¢(Y)) C(X,Y)™ (8.2.94)

holds for each pair, (X,Y), of objects. Since both isomorphismsi, £ and ¢/, are isotropic,
it follows that, for subobjects X C X and ¥ C Y, (8.2.94) holds for (X, ¥) whenever it
is true for (X, ¥). Conversely, if W = X @ ¥ and (8.2.04) holds for (2, X) and (2,Y)
it also holds for (Z, W). If we apply F to the hexagonal equation

(X oY, 2) =

= a(Z,X,Y) Y(e(X,2)01) a(X,2,Y)(1 0 (Y, Z)) a(X, Y, 2)]
' T (8.2.94)

and use the fact that ({,F,C) is a monoidal functor, so that ¢ satisfies an equation
analogous to (8.2.94), we find that (8.2.94) holds for the paiii (X o0Y,2) if,if holds
for (X,Z) and (Y, Z). Similarly, the pairs solving (8.2.94) cloge under taking tensor
p}oducts in the second arguments. Thus, if by assumption (t,s) is admissible, for
t,s € T, then we can build any object- X from s € T by a succession of steps which
preserve the validity of (8.2.94). Hence (2,Y) is admissible, for every t € T and Y € Ob;j.
Applying the same argument to the first argument, we can pro{re' (8.2.94) for all pairs.
Thi§ completes the proof of the lemma.

!

' 0
Combining Proposition 8.2.3, Lemma 8.2.4 and Lemma 8.2.5, we ;rrive at thel follow-

ing result on braided tensor categories with An-fusion rules.
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PROPOSITION 8.2.6

For every l € Zy(p43), with (I,k +2) = 1, there ezists a unigue quanium category Cp

with Aj,1-fusion rules (k > 1), and satisfying

). ' (8.2.95)

1
r(p1,P1,p2) = ezp (—27”' 12

It is isomorphic to the semi-simple category obtained from Ug(sly), with g/? =
.
exp (2 w1 m)
Two categories, Cp g ond Cy p, are isomorphic s braided categories iff | = I'. They

are isomorphic as monoidal categories iff

' = £1 mod2(k+2). (8.2.96)
The category Cp g 1s isomorfhic to a C*-category iff
l=+1 mod(k+2).  (8.2.97)

This is the complete list of quantum categories with Ak+1—fusfon rules,

The category Cp 1 has the invariants
r(p;,p;,1) = ezp (ﬂ . j(j+2)) = ¥ (8.2.98)
AFIF) 4(k+ ) 3
for j =0,... k. The 8;’s are balancing phases for Ci1- The only further balancing

structure is given by the phases

¢ =6 + % mod1. (8.2.99)

Proof.
From Lemma 8.2.4 (with p = py and ¥ = pp) we know that, for some given r(py, p1, p2)
= —1t~1, the matrices F(py,p1,01,p1) and r{p1,p1,1) are uniquely determined up to

natural equivalence. In particular, for the invariant dj of Lemma 8.2.1, we have that

dp = - (2)p.
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The restriction on d; given in eq. (8.2.5) of that lemma is equivalent to the condition

(8.2.95) for the value of ¢. Hence, for any of these values of ¢, we find, according to

Proposition 8.2.3, a unique monoidal category. With given eigenvalues, #(p;, p1,1) and

r(p1,P1,P2), of e(p1,p1) € End(py 0 p1) = C1 @ C1, we see that (8.2.93) holds for -

T = {p1}. Since p; generates all objects of the category we conclude ﬁom Lemma 8.2.5
that, for a given value of ¢, one can find at most one braided structure on the given
monoidal category. Thus, for a given r(p1,p1,p2) as in (8.2.95), there exists at most
one braided tensor category. Each of these possible categories does in fact exist and
can be obtained from the representation category of Uy(slz), for the given value of ql/2.
This is easily verified by applying the transformation TR, (where R is the universal

R-matrix of Ug(slz)) to the highest weight vector ff 12® ff 12 € Vi ® V; corresponding

to the eigenvalue g1/2, i..e., t = —g!/2. This proves existence and uniqueness of the .
g . q

categories Cp ;. In order-to compute the invariants r(p;,pj,1) we simply compute the

eigenvalue of TR for the invariant vector f& € V; ®Vj, given by

‘ if2 . . "
1,] ‘= &1) = E (_q)(J/z"m) &’:’1 ®€J_';} H . (82100)
m=— /2 '

(compare to (5.23) for highest weight vectors). Using the equation (a®1)J; = 185} ae)
and eq. (8.2.59) for an element g satisfying (6.94), we see that

TRY; = TAQu)d; = (ug '@ Ip;, - .

where u is as in the definition of a ribbon-graph Hopf-algebra; see (6.92) and (6.93).
It follows that the special central element v = ug~! acts on Vj like r(pj,pj,1)1. By
(6.93), this implies that the phases 6; given in (8.2.94) are indeed balancing, i.e., that

| R .

7(pi»pjr 1) (s> Pis PR

’ : - k3

If the braided category Cy; is a C*-category then the corresponding monoidal category
is a C*-category, too, and hence condition (8.2.43) of Proposition 8.2.3 must hold. If
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) = e2l’i(0.‘+9,‘-93). CoLr ‘» .
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Ci, is a C*-category, as a monoidal category, then the projections in End(p; o p1)
have to be seliconjugate, and, using that | #(p1,p1,1) |=| r(p1,p1,p2) |= 1, it follows
that £(p1, p1) is unitary. From the iterative construction of all the other isomorphisms
e(X,Y) obtained from the cabeling formula (8.2.94) and orthogonal decompositi.ons of
objects, we find that all £(X,Y) are automatically unitary. Thus, for the values of !

given in (8.2.97), which is consistent with {8.2.7) of Lemma 8.2.1, the category Cyjis a

C*-category as a braided tensor category. This completes the proof of the proposition.
4 0

The exampl‘e k = 1 has already been studied in section 7.4 by observing that the

Aj-algebra is just a Zp-fusion rule algebra and by noting that -categories are classified

by Hom(T'4(Z2), U(1)) 2 Z4. A Z-algebra is also contained in i, for a general

k > 1, which contains the invertible object pi. The structural data of the corresponding

subcategory are given by

’

6 = gmodl,

and F \ Pk Pk» = d-l =(~'1)hl'
| (PksPRs PE:PE) = di (8.2.101)

The results stated in Proposition 8.2.3 and Proposition 8.2.6 can be used to find all
the categories with Ap-fusion rules. To this end, we observe that As, = A, x Zp. The
corresponding gfaded projection {p : Agn — Ap, and the injection i : A, < Agy,, with
(noi=id, are given in Lemma 7.3.4, ii). We have that ker({s) = {1, p2n~1}. Suppose
now that C is a (braided) monoidal category with Ap-fusion rules. Then there is a unique
number {,l =1,... ,2n (lve Z4(2n+1)> With (1,20 +1) = 1), respectively, such that ¢

and , induce Ci,) as a (braided) monoidal category, for k = 2n—1. The 7;-subcategory

of the induced category has to be trivial. Having the explicit data (8.2.101), and with

k = 2n — 1, this property can be expressed in terms of [ as follows:

Il =0 mod2, for monoidal categories ;
1l =0 mod4, for braided categoriés . (8.2.102)
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Conversely, if, for Cp,_1 1, the Zp-subcategory is trivial as a monoidal category, then we
can use formulae (8.2.11) and (8.2.12) for the dependence of the r- and F-matrices on
the Zj-action. Since Grad(}(,.) =1, we aléo have that ¢ =1, f‘E 1, and 7: 4, — Ag,
is precisely the injection i of fusion rule algebras, and, finally, 7(j) = pir ad(j). It
follows immediately from equ. (8.2.11) that Con—1,1 is induced, as a monoidal category,
By some category with Ap-fusion rules and (. If, in additioni, the Z-subcategory of
Cén_l'g is trivial as a braided category it follows from equ. (8.2.12) that Can—1, is also
induced as a braided category by some category € with Zn-fus#on rules. We thus have
established a one-to-one correspondence between categories ¢ with Ap-fusion rules and
categories Cyp_1) With Azp-fusion rules, where [ is constrained by (8.2.102). Clearly,
every category Cy,_y contains a subcategory C with Ap-fusion rules, as A, C Agn. If
Can-1,1 is also induced by some ', i.e., if there is a functor (Zn, F,C):C — ', then,
since the restrictién of {n to A, C Ay, is the iaentify, the restriction of the functor to
C yields an isomorphism € 2 ¢'. Hence the Ap-category assoeiated to Con—1,1, where
l‘obeys (8.2.102), can be identified with the corresponding subcategory. We denote by
fn'[ the i)ra.ided caiegory with Ap-fusion rules which induces C2n—l,4fv ‘with I € Zgny1,
(L2n+1)=1andn=1, 2,... . The relation between En,f and Czn_l,,g can be written
compactly as

Conoral = Coy @ Coygmos (8.2.103)
where the functor yielding (8.2.103) extends the isomorphism Az, = Ay x Zy. Any
monoidal category € with Ap-fusion rules induces a monoidal category Cy,_j g with
Aop-fusion rules, where, by‘ eq. (8.2.102), I = 27 mod4(2n + 1), with 7 € 73(3n+1)-
Following eq. (8.2.96) of Proposition 8.2.6, this category (viewed as a monoidal catégory)
is equivalent to.the one with | = 2(7 +(2n+1)), so that ! may always be chosen to be a
multiple of four, i.e., I = 4I. However, the category CZn—1,4I is induced by C-n,';‘als,o asa
monoidal category. By the uniqueness of inducing categories, this implies that =] fn,[.
Hence all monoidal categories with A,-fusion rules can be obtained from a braided
monoidal category by omission of the braided structure. It is obvious from (8.2.103)
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that (fn',- = Cn_p, as (braided) monoidal categories, if and only if Con—1,4I = Cony gf-

Proposition 8.2.6 implies that this is the case if and only if I = I, for the braided 7

situation, and I = £F mod(2n+1) if we consider only the monoidal structure. Moreover,
(8.2.103) shows that én,[ is a C*-category iff czu—l,d is one. Finally, we remark that,

by the invariance of the Z3-action, the invariants of Cop_1 4f satisfy
T(Pj: Pjypl)' = r(pZD—l—j)PZn—l—j:Pl)) for = 0,2,...2min(j,2n-1-j).

In particular, (py, p1) has the same spectrum as £(P2(n-1) P2(n-1))» Where py(n_y) is
the generator of Ap with Perron-Frobenius dimension less than two. We summarize

these conclusions, derived from Proposition 8.2.6, in the following corollary.

COROLLARY 8.8.7

Let p be the canonical generator of the Ap-fusion rules, with pop =1+,

(i) Foreveryl € Zonyy, with (I[,2n +1) = 1, there ezists a unigue quantum categary,

én']', such that

I
T 1) . (8.2.104)

r(p.p,¥) = ezp (- 2mi
This gives the complete list of quantum categories with Ay-fusion rules. They are
-C*-categories iff

[

For each Cn,l! there 1s a unique set of balancing phases, 8, given by
2xif, _ .
e = r(a,a,1); . (8.2.105a)

e.g., e2¥% — ezp(6xil/(2n + 1)).
(ii) Every rigid, monoidal calegory with Apn-fusion rules is obtained from a guan-
tum category by omission of the braided structure. We have that én,f = C.'n’p, as

monoidal categories, iff

I'=xl mod(2n+1). ' (8.2.106)
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+n?,  mod(2n+1). (8.2.105)

They are C*-categories iff (8.2.105) holds. ' '
(iii) The category én'( is isomorphic to the subcategory of the ;aemisimple quotient of
: . o
the representation category of Ug(sly), g'/2 = ezp(2mil/(2n + 1)), generated by

the (2n — 1)-dimensional representation p = Vy(,_1).

At this point we have all the technical insights that allow us to classify all possible
quantum categories with untwisted fusion rule algebras given byrz, *Ap and Zy * Aoy
as subcategories of products of Ug(sl3)-categories and 8-categories of cyclic groups. The

simplest result is the following theorem.

THEOREM 8.2.8
Let Zp % Ap = 2, x Ay, with r,n > 1, be the fusion rule algebra specified in eq. (7.187)
of Theorem 7.3.11.

For every I € Zanyy with (I,2n + 1) = 1 and every ¢ € Hom(Ty(2,),U(1)), we ca.n

define a quanium calegory

Corl(lg) == Cr, g ®Cp 1 (8.2.107)

with the fusion rules specified in the hypothesis.

(i) The categorie;s Car(I,q) constitute the complete list of quanium categories with

Zp * Ap-fusion rules. If there is an isomarphim; of quantum categories
. F.C) : Cop(liq) » Crup(Td) | - (8.2.108)

then { is uniquely determined by ils restriction, (o : Z, 3 Zy, to the subgroup of
invertible objects. Furthermore,

I =17

and 9 =G S (82109)

(ii) There ezists an isomorphism of the form given in (8.£.108) between monoidal

categories if and only if | ‘1

I'=%T  mod(2n+1),
and S*o (74'1)'(q) =S (7;1)'(q') . (8.2.110)
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where S and 44 are as in section 7.4, and the monoidal siructures,
im S* = 3(H(zr,1;R/2)) = Z3,),

of the two categories are identified by the unique isomorphism between them.

(iii) The category Cnr(l,q) is C* iff
I=+n? mod(2n+1). ; (8.2.111)

It is always balanced, and the possible balancing phases are given by Zp-gradings,
¢ € Hom(2Z,,Zy), of the group of invertible elements. For an irreducible object

i € An and a 0 € Z,, they are given by

ezp(2mi 6, ;) = (3,3,1) g(o) £(0) - (8.2.112)

Proof. .

For the graded subgroup, R = Z,, of invertible objects we have that grad: R —
Grad(Obj) is an isomorphism, i.c., Grad(Obj) = 1. In particular, we have that the
obstruction A*(w) from equ. (8.2.61) is always tnvza.l Thus, if C is a category with
2, * Ap-fusion rules it follows from Corollary 8.1.14, ii) that there exists a quadratic
function g € Hom(T'4(2,), U(1)) such that C = (9, and C is induced by a category Cal

with objects Obj = Obj/R = Ay, and a homomorphism 7g : Z * Ap = Apn : (0,5) — J.

‘From formulae (8.2.4) and (8.2.5) for the structure constants of a product of categories

we see that the r- and F-matrices of Cn(I,q = 1) are invariant under the Z,-action.
Hence Cnr(,1) is also induced by 7p and a category on Ay which, by comparison
of structural data, e.g., of r(p,p,?¥), has to be én,l" By the uniqueness of induced

categories, it follows that € = Gy »([,1). Clearly, we have that
C',.,r(I, 91)" = Cn,r(i, q1-92) - (8.2.113)

Hence, in particular, C is of the form (8.2.107). An isomorphism ¢ : 7, X Ap — 7 X Aq
has to map the ungraded subalgebras A, onto each other. Since all objects in Ay
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have different Perron-Frobenius dimensions, this map from A, ;lo Ap, denoted by f, is
uniquely determined. Moreover, { has to map invertible objects to invertible objects.
Hence its restriction to Z,, {o : Z» — Z,, is a well defined group isomorphsm. It follows
that, for j € Ap and ¢ € Zy, ¢((9,7)) = (Co(e), £(3)), i.e., { is unique for a given (p.
For the canonical generator p of the ungraded Ap-subalgebra satisfying pop =1+,

 the fact that ({, F,C) is an isomorphism of braided categories i%npﬁes that #(p,p, %) =

' (f(p), £(p), F(¥)) (see (8.2.104)), and hence that I =17 Furthe;more, the isomorphism
(8.2.108) imposes on the quadratic, invariant functions ¢ and ;1’ the equation g(0) =
q'(¢o(0)), for all invertible objects o, i.e., ¢ = ¢{(¢"). Converseiy, if (8.2.109) holds we
have (according to section 7.4} an isomorphism ({g, F9, Co) : Cz,,g — Cz, o Which, when
tensored with the identity on fn,r, yields the isomorphism (8._2.108) for the product
categories. ‘ .

For the proof of part ii) of the theorem it is sufficient, as ‘in the case of braided
categories, to show that there exist isomorphisms for the categories associated to the
trivially graded objects and for the caiegories associated to the invertible objects. Asa
first condition we obtain eq. (8.2.106) of Corollary 8.2.7. If {3 : Z, — Z, is the restrictién
of { to the invertible objects it induces an isomorphism, (# :im S*o 74‘1(f‘4(z,)) -
im S* oy 1'(I“"‘g(z,')), and the two categories are isomorphic iiﬁ' (# (s* 0‘7;i(q)) =
S ‘074'1(q'). Since the group on which Cf is defined, is either {1} or Zy, it is independent
of (o. Hence the requirement in (8.2.110) is also independent of (.

To prove part (iii) we remark that Cn r(l,g) is a C*-category if and only if C}J ahd
Cz, o are C*-categories. Since 6-categories always carry a C*-structure, we are left with
condition (8.2.111), as in eq. (8.2.105) of Corollary 8.2.7, i). A set of balancing phases
of a product category is given by the product of balancing phases of the individual
categories, e.g., by the phases given in eq. (8.2.105a) of Corollary 8.2.7, 1), for the Cn,f'
factor, and the quadratic function (7.296), for the Cz, g-factor. Taking into account that
distinct sets of balancing phases can ohly differ l;y 7-gradings, we arrive at (8.2‘112). ‘

i D
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Notice that the fusion rule algebra isomorphism
(:2ZaxAn = Az i (64) » phoj (h=2a-1)
extend; to an isomorphism of braided categories,
(¢, F,0) : Capllig) = Can-12,
if and only if
I = a2 mod(2n+1),

P (B ), jen

wnd ) (8.2.114)

The basic strategy to describe the categories associated to the Zy * Ag,_1-fusion rules

relies on‘the fact that

f 1 ZpxAgpo1 > Zoe(g) X Agp—y

(ki) = (orad((kp)r) s (82115)

is an inclusion of fusion rule algebras, see (7.255). Here grad((k,p)) = g?**¢, where
€ = 1if p is graded non-trivially, and € = 0 otherwise. A large class of braided tensor
categories with Z, x Ay, - fusion rules is therefore provided by the subcategories of
the product categoriés Ciar g ® Cy(n—1)y - Foragiven ¢ € Hom(T4(Za,), U(1)), and
l € Zg, with (,2n) = 1, we denote this subcategory by Cnr (I, ¢) . It is obvious from
the definitions that ’

Cor(b, @)? = Cnr(hg1-92), (8.2.116)

for any pair q;, g2 € Hom(T'3(73,.), U(1)). The subcategory associated to the
graded fusion rule subalgebra, Z C 7, * Ay, is characterized by the restriction,
i*(g) € Hom(T4(7,), U(1)), of the qudratic function g, where i : 7, — 7, is the
monomorphism obtained from (8.2.115).

Notice that, for a quadratic function w € Hom(T4(7y), U(1)), given by

w(j) = ezp(2mis?) (h=2n-2), (8:2.117)
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for some T € Zg , we have by composition with the invariant (8.2.95)

w ;
()" = Cirqueny s (E=20-2)1 (8.2.118)
This isomorphism can be used to generate an equivalence of the higher graded categories.
To this end, we consider the following commutative diagram of inclusions, where we only

assign the fusion rule algebra monomorphisms to the arrows :

ia ® (grad®,id)

Coarig ® Craw ® Con-1)l Crarg @ Cofn-1)

16 ®id =

Cra,gxr(w) © Can-1)1 Crara ® Cofno1) (i-2nr)  (8:2:119)

¢

i = (grad,pz) i.!= ‘(9"“:1”2)

» Cnr(l; g 7*(w)) ) = + Cpr(l—2n7,9q)
Here, i is as in (8.2.115), with py((k,p)) = p . Furthermore, the projection map,

T Zgp —» Zg , yields‘thé ;;uotient by 2(22,) = 7., and we use the notation
5(g) == g ®n(g) . Using that = o grad = grad® o p; , we see that this diagram
commutes for the fusion rule algebra homomorphisms, and all but the bottom line can
be extended to inclusion functors of braided categories. Therefore, the two vcatcgories
in the bottom line are isomorphic tothe same subcategory and thus isémorphic to each

1
other.

Further equivalences of categories can be obtained from ‘the automorphisms of
7p * Agn—1. The only non-trivial fusion rule algebra antomorpiﬂsm of Agp—y is given

by yn which, in Lemma 7.3.4,1)a), is defined by

i

m(p;) = Pj°(P2(n—1))j o ‘(8.2.120).

) |
We denote by ay, : g — g¥, with (1,27) = 1, the automorphgsms of 73, . The group

of automorphisms of 7 » A2, is then generated by Jn and &, which can be uniquely
defined by the commutative diagram
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Zgp X A2n-1
ay x5 | = (8.2.121)
ZreAgpoy——35— Zp X Agnoy

with ¢ = 0,1 and (v,2r) = 1. More explicitly, & and Jy are defined by

d ; 1).rn'aal((k,ﬂj)) , Pj) ,

(k, m(p5)) , | (8.2.122)

a(() = (k+(

for k € Zy, pj € Agp1 .

Generalizing formulae (8.2.104) we find, for j = 1,2,... ,k — 1, the values for the

- invariants of Cp; (k= 2(n - 1))

1

) (2+2i-4))  (82129)

r(pj,pj:p2) = —ezp(‘m'

from explicit computations of the spectrum of R = TR on Ug(slz)-representations. In

particular, for k = 2(n — 1), we have that

) : B Lenl
(pr—1,Pk-1,P2) = —ezp(—2mi sLn)’ (8.2.124)

where €, € Zgn, with eﬁ = 1, is given by

{ 1 if n is even
€&n =

1+4n ifnisodd . (8.2125)

This shows that there exist functors of braided categories extending -y, between precisely
the following pairs :
, o
(1, F,C) : Cypn1)t — Co(n-1),ent - (8.2.126)

From the functors in (8.2.126) we obtain canonical isomorphisms between the categories
Czq ® Ca(n-1),1 and Cz, ,¢®Cy(y_1), €nl, for fixed g, and thus, by completing the square
in (8.2.121), the isomorphisms .

(A, F,C) : Cnyr(l,9q) ——— Cnrlen-1,9). (8.2.127)
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THEOREM 8.2.9

In the same way we obtain the isomorphisms ‘
i

. o~ |
(&, F,C) : Cnyr(l,q) — Cnr(la3(g)) - (8.2.12¢

With the definition of the Cp #(l, ¢)-categories at our disposal,.we are in a position t
describe the classification of categories which have the second type of untwisted A-fusio

rules, namely the Z, * As,_1 fusion rule algebras.

i

Let Zp % Agp_1, withr > 1,n > 2, be the fusion rule algebras specified in (7.130) ani

(7.134) of Theorem 7.8.11. Denote by p the canonical generator with pop = o+

where o is the invertible object of order r.

(i) All quantum categories with Zp x Aoy, -fusion rules are i;samorphic 1o Cnr(l,q).
, )

for some l € Zgy,, with (I,2n) = 1, and some ¢ € Homgl‘q(zz,.), U(1)). For ¢

given p, l and g are determined - up 1o the equivalence described in (8.2.119) - by

the formulae

. 1 . .
rp,p,¥) = —exp(-2mi g)q(yrad(p)),

r(0,0,0%) = q(grad(p))*. (8.2.129)

i
I
i

The only isomorphisms between these categories are com;giw.!itiona of those given

in (8.£.119), (8.2.127) and (8.8.128), and, for n = 2 and r even, one furthes
Sunctor.

(ii) The category is a C* - cailegory if and only if
I = 1 mod(2n). (8.2.130
There are two possible sets of balancing phases for Cnr(l,q):
. -
ezp(Zwio(x'Pj)) = ezp(2mi El;z-j(j +2)) ¢(grad(s, pj)) ¢ . (8.2.131

viths € 7y, p; € Agn—1,§ = 0,1,...,2(n—1), end € = +1.
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'roof.
“he fusion rule algebra Z, * Az, has a graded subgroup, R := Z.(0), with generator
r = (1,1), which is included in Grad(Obj) = Z3.(g) (with generator g := grad(p) )

5y the map o — g2* . It defines the graded fusion rule algebra homomorphism

xR : Obj = Zpy'» Az —» Obj = Obj/R = Agn_y,

(8,p5) — pj (8.2.132)

so that Grad(0Obj) = z,.

We consider a braided tensor category C with Z, ¥ Ay, 1 - fusion rules and compute
the invariant (depending on R) A*(w) € H om(zGrad(mJT), Z3) . Corollary 8.1.14,i)
states that if A*(w) is non-trivial then r = 2¢' is even, and we can find a monoidal
category on Ag,_; and braid matrices r(i,j,k) such that the modified hexagonal
equations (8.2.76) hold. If we identify all representation labels in (8.2.76) with the
fixed Ag,- generator py,ie,[i] = [f] = [k =[] = p1, We arrive at the equations
(8.2.66) and (8.2.66a) given in Lemma 8.2.4. Forn =.2,g; = g; = g; = grad(p) = 1
(in additive writing), and 1gi,95) = ‘ 1, we obtain for the prefactor in (8.2.66a) the

equation

Aw) =1 , (8.2.133)

for all braided tensor categories with 7y x Ag,_1- fusion rules. Hence, by Corollary
8.1.14, ii), there exists a quadratic function ¢ € Hom(T'4(Grad(Obj)), U(1)) such
that C = (9, and C is induced by some category Co(n—1)4 With Azn_)-fusion rules
‘and by 7mp. For the category, Cz,, ¢=0 ® C2(n—l),l! with 7o, X Agn—1- fusion rules,
the subgroup G = {(0,1)}0ez,, = 72, of invertible objects fullfills the hypotheses
of Proposition 8.1.4, since the braid matrices of tensor product of categories have no
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mixed terms, i.e., the monodromy, M € H om(R ® Grad(0bj), U(1)), as defined in
Lemma 8.1.6, is trivial : = = 1. There therefore exists a category, ¢, with Agp—1-
fusion rules such that Cyy, =0 ® Cz(n-l),l is induced by ¢ and by the graded fusion
rule aigebra homomorphism % : Zg, X Agp_1 — Agp_1 : g®ﬁj + pj. By virtue
of the inclusion ig : A2p—1 — Zar x Azn-1 : pj = 1®pj, (1 = neutral dement)
of fusion rule algebras, Cz(,,_l)" is a subcategory of Cz,, ¢=0 ® Cy(5_1),;, and since
rgoig = id A;n—l , the composition of the corfesponding functors yields ¢ Cz(n_l),, .

The inclusion i : Zg, * Agp—; —* Zgy X A2pn—1, given in (8.2.115), then extends to an

inclusion of the braided tensor category Cn,r(l, ¢ =1) into Czs,,¢=0 ® Cy(n—1),- Since

np = wg o, we find that, by composition of this inclusion with the functor onto

cz(n—l),h Cnsr(l,1) is induced, as a braided tensor category, by Cz(n_l)', and 7g.

From the uniqueness of induced categories we conclude that ¢ = Cnr(l,1), and finally,
e

with (8.2.116), we find that
' C = Carllig)

proving the first assertion of the theorem. The invariants in (8.2.129) are simply those
inherited from Cy,,,q ® Cy(p—1)1- If we denote by 7y and ro the braid matrices of the

two factors, then (8.2.5) implies that

T(p, P "l’) = 'rq(grad(p),grad(p),grad('«/))) ro(‘"R(f)r"R(P))”R('l’)) )

gnd r(0,0,0%) = 1, (grad(o), gr\ad(a),’grad(a)z) .

Hence, setting py = 7g(p), p2 = nr(¥), grad(c) = grad(y) = grad(p)?, and with
the help of formula (8.2.95), we obtain (8.2.129). ‘ '

A generator p of the 7, % A, - algebra, in the sehsc of Theorem 7.3.11, is character-

ized by the facts that grad(p) is invertible in (i.c., a generator of) Grad(Obj) = 7,

and that d, = 2coa(21"). Hn # 2 the only aﬁtomorphismof 7y % Agn—1 which maps

such a generator to itself is the identity, since tensor products with p have at most two
[
irreducible summands and the equation pop = ¢+ implies that, since ¥ is not invert-

ible, o is mapped to itself. The only exception from this implication occurs for n = 2

398

N



T

and r even. In this case, p2 € Ajs isinvertible, and an automorphism ¢ on Z,* As,_;
can be defined from the equations {((s,p;1)) = (2,p1) and (((s,a)) = (s,p204a), for
8 € Zy and a € {1,p2}. This fusion rule algebra homomorphism extends to a functor

(€, F.C) : Copllig) ——s Con(~1,d), C (8.2.134)
with
q' (grad(p)) = - e::p(2m' %) q(grad(p)) ,

for any even r,any odd ! € Z)¢ and any ¢ € Hom(I'4(Grad(0b5)), U(1)).
Thus, a general automorphism { on Z, * Asq_3 is, for n # 2, uniquely determined
by the image, ¢(p), of the generator p. Since the group {& : v € Zap, (v,2r) =1} of

automorphisms on Z, » Ag,,_; acts transitively on the invertible elements in the ring,

-Grad(0bj) = Zj,, and each graded component contains at most two objects with

dimension 2cos(21n) which are mapped onto each other by F,, we see that the group
of automorphisms, defined in (8.2.121), acts transitively on the set of generators. This
proves that every automorphism on Z * Agn_1 is of the form (8.2.121) and, for n = 2

and r even, can also be composed with the special automorphism { defined above.

The categoﬁes Cnyr(l,q) are those with a generator p and an invertible object o,

with pop = 0 4+ 9. Let us assume that there is an isomorphism
((:}'x c) : c_n,r(lxq) o Cn,r(l',q')

beftween two such categories. We can always write such a functor as a composition of
the functors given in equations (8.2.127), (8.2.128) and, for n = 27, (8.2.134) with a
further functor for which ¢ maps the objects p and ¢ - and thereby all elements of
7y * Aoy generated by p a.nd'.a - onto each other. For the latter, it follows from
(8.2.129) that (9)* = (¢')*. A quadratic function § on ihe cyclic group Grad(Obj),
with §* = 1, is always of the form § = 7*(w), where w € Hom(I'y(72), U(1)) is as
in (8.2.117), and 7 : Zy, —» 7 is the quotient by 2(7’2,) Hence, for ¢ = g-7*(w), we
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find from the first equation in (8.2.129) that I = I+ 2n7 mod(8n). Forany 7 € 24

we have already costructed the corresponding functors in (8.2.119). This completes the
!

proof of part i) of the theorem. i

The proof of the second part of Theorem 8.2.9 uses the facts that an induced category
is a C*-category if and only if the inducing category is C* nn\d that §-categories are
always C*-categories. This shows that it is sufficient to verify ‘the existence of a C*-

structure on the Ap,_j- category. Condition (8.2.130) is thus t;he same as (8.2.97).

The balancing phases recorded in (8.2.131) are simply those inherited from the cate-
gory Cz,.,q ® Cz(n—l),l: multiplied with a Z;- grading, (s,p;) — ¢/ , which accounts
for the only ambiguity in choosing the phases 0(2, pi) for a given ibra.ided tensor category

The remaining Ay - categories we want to delermine are those with
Ta (Zr * Azn—l) fusion rules, (see Sect. 3 for definition). The group R of invertible

elements for this algebra is Zy, and the induced grading, grad: R —Grad(Obj), has

oR as a kernel .Thus, contrary to the previous cases, only the subgroups of R of odd
i

~ order are graded, and hence, for r = 2P-¢', with ' odd, the order of Grad(ﬁb?), where

Obj is the image of a graded homomorphism on Obj, is always a multiple of 2(P+1},
Fortunately, there is a second way to treat this situation: »
)

We shall use the fact that there exists a graded homomorphism from an untwisted
fusioﬁ rule algebra with a higher grading onto the twisted algebra under consideration.
Before constructing this homomorphism, we must briefly recapitulate the definition of
Ta (Z', * Obj) and the composition laws described in Definition 3.3.1. To tHis end we
recall some notations used to describe extensions ::f cyclic groups. We consider the short
exact sequence k
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im,r

l (8.2.135)
0

0 Zm(1) « Zme () e wz,(5)

of cylic groups with specified generators, homomorphisms im r(x) = v" and Tm,r(v) =
7, and where B » is the section given by
| Bs 7o = Tom  F rvh, § = 0,17,...',,-— 1, (8.2.136)
with 7t r 0 By = 3d. Further, we define the map A
Xmyr : Zmr — Zm

by . im,r (xm'r(g)) = g (ﬂm.r(ﬂ'rn,r(g)))-l (8 2 137)

When there is no confusion about the choice of generators we use an additive notation

with generator 1; e.g., eqﬁatibn (8.2.137) can be written as
ji= ﬁm,r("fm,r(]')) + 1:m,r(Xm,r(J')) © mod(mr),

for j = 0,..., mr —1. We also define the cocycle 7, € z’(za(g), Z) by

alit+j<2a,

) L. . . '1, .
 %6(,3) = va(d",9") = { 0, 0<itj<a, (8.2.138)
with 4, = 0,1,...,a—1. Then '
5Pfma = ava  mod(am), (8.2.139)

(compare to (7.234) and (7.235)). For a fusion rule algebra (Obj,0), the composition,
o, of 74(0bj) is given by : .

20y = avl(rad@)erads)) o 5 oy (8.2.140)

where 7, is defined with respect to a given generator, g, of Grad(Obj) = 74(g), and
a € Ry, = {ab: ocooY =1, grad(o) = 0}. The composition, oy, of the fusion rule

algebra 7, x Obj is given by

(k1,21) oy (k2,23) = (kl + k2 + 1a(grad(z, ), grad(z2)), 21 0 nu2) y  (8.2.141)
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for kj € zr md\zj € Obj. We cﬁoose a generator, g, of Ggad(z,- * Obj) = Zar(§) o

. such that ;
grad((k,z)) = gleb+Brulorede)) (8.2.142)
The product, oy,g, for 7a (zr + Obj) is therefore given by
(k1,21) oq,a (k2,22) = (8.2.143)

= (kl +hy+ 7¢(grad(zl),grad(zg)), aTer (grod(ky,21),grad(ks23)) zy0 ,;2) .
Using the identity

7 Yar (grad(ky, z1), grad(ke, z2)) = ' ‘; (8.2.144)
= Boor(k1) + Boo,r(k2) + va(grad(z1), grad(z2))

~ Boo,r (kx +hk+ 'ra(g"ard(zl)»grafi(zz)))
we showed in (3.48) that
Zr * 7a(0b]) — Tar (z;;ébj) : (kyz) — (k, a~Peir(®) o z) (8.2.145)
is'a fusion rule algebra homomorphism. Furthermore, we have fhe isomorphism
Zen * (Zr * Obf) — Zmy = bbj 2 (kL)) — (rk+ ﬁ,’,i,,,(l),z) , (8.2.146)

for k € Zm, 1 € Zr, z € Obj, which preserves the generators of the grading groups.

Suppose that a € mRo, (i.e., aca” = 1, grad(a) = 0 and a™ = 1). Then we

may consider the composition of homomorphisms

»

£ 5 Zane % Obj 73, (7 * Ob;) Tam (7,,,,,, (70 + Ob,-)) |
— 7m + (ra (7 + Obj)) e 7a(7  Obj) (8.2.147)
(3,=) (7, (35), aXmr) 0 2)
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L Here we use that the inverse of (8.2.146) maps (j,‘z) to (Xm'r(j), (ﬂm',.(j),z)) and

that the last epimorphism in (8.2.147) maps (k,I) to z. The fusion rule algebra

homomorphism f* is irreducible and graded, and its kernel is given by
ker f* = {(rha™}eq, = Zm. © (8.2.148)

The existence of a graded homomorphism f* allows us to identify a category, C, with
Ta(Zr * Obj) - fusion rules with the category C with Zmy * Obj- fusion rules, that is
induced by C and f*. The family of all balanced, braided tensor categories C which
are of this form is characterized by conditions i) and ii) of Proposition 8.1.4, where
R = ker f*.

We specialize this result to the case, where Obj = Azp-1,a = 2, a@ = py(;_;) and

m = 2,i.e., we have
f‘ t Zoy * A2n-—1 —+ Ta (zr * Azn—l)
(s, p5) — (5, p;‘(’,'.(_’i) °p;) (8.2.149)

with 3 = m3,(s), and

(o) = 0, s=0,1,...,7r-1,
X2r® =11, s=rr+1,..,2r -1,

and the kernel of f* is given by

ker f* = {1, 5} ¥ z,, (8.2.150)
with T = (r Py(n-1)) s
and grad(Z) = 2r mod(4r).

The conditions for Cy, 2-(1,¢) to be induced by some category on 7o (7r % Agn_y) are,

according to Proposition 8.1.4 :

) (551 =1 (8.2.151)

and i) fxoj = 6; modl, Vj € Zgp % Aoy . (8.2152)
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To check i), we compute, using (8.2.101),

HE,5,1) = rq(grad(E), grad(E),1) ro(lo],[B1,1) :

I

9(2r)ro(Pa(n-1) 1 P2(n-1),1) |
(-1y7 (-1l =1,

(8.2.153)

; 2 ,
where we define 7, € Zg by ¢(j) = ezp(2m' To ;—r) . Using that L o (s, p;) =
(a +r, P2(n—1)—j) , and applying formula (8.2.131) for the balancing phases, condition
(8.2.152) becomes : '

1

g(2r + grad(s, p;)) a(grad(s, Pj))—l - (_1)1(-5'4'1'") '

Expressing ¢ in terms of 7, € Zg,, this is equivalent to

1

(_I)Ta(f+j) = (__l)z(j+1—“) s fOI‘j = 0,1,, .. ,2{71-—- l),‘

which, for j = 0, is precisely the equation (8.2.153). Hence, with (1,2n) = 1, i.e,
I = 1mod2, (8.2.151) and (8.2.152) are equvalent to '

1) =1 mod2

and i) r=n+l mod2. | (8.2.154)
|

1
It is remarkable that ii) of (8.2.154) is a condition on the fusion rule algebra only. The

first constraint is equivalent to the requirement that § € H omgzh ® Zgp, U(l)) does
not degenerate on 2(24,) ,i.e., that §g(2r,1) = —1. In particuiat, 1) is independent of
the choice of generators and the natural 7Z5- ambiguity of the ciua.dratic form. A form

with this property shall be called an odd quadratic form on 7'4,;.

In order to describe.the structure matrices, we introduce the choice map, in the sense

of equ. (8.1.5),

*

i
" ,
T Ta(7'4""A2n—1) — Top* Agp1 |

(3, p;) — (B2,(3), p3), (8.2.155)
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with f*04* = id. The map % from equation (8.1.46) is then given by
N : Zyp % Agpn-y — ker f* 1 (s, p;) — Txar(2) , (8.2.156)

which is of the form (8.2.10),i.e., ¥* is the choice defined by Lemma 8.1.9 for the section

P = Ba2,2r . For an automorphism { of t‘he fusion rule algebra Zp, * Az,_1 for which
N () ==z, (8.2.157)

we can défine a unique automorphism, f ,0n Tq (L * A2ﬂ_1) by requiring the following

diagram to commute :

Zzr * Agn-1 Zor * Azn-1
o 7 ' (8.2.158)
Ta(Zr * A2n-1) ¢ Ta(Zr * Aan-1)

We easily check that (8.2.157) holds for the automorplnsms 7,, and &, defined in

(8.2.122). The corresponding maps on 7q (Z, * A2n—1) are :

n ((’:,Pj)) = (‘2 pPj° (P2(n—1))j) .’

hy (g’ad(‘)l’: )) )

and &, ((s,p5) = (afr (= (8.2.159)

1)7’2,7' (grad(s,p;)), 5 © (Pa(n-1))
where -
hy @ Zpp = Zp : g = X200 (v B2,20(9))

with (v, 2r) = (y,4r) = 1,8 € Z, and j = 0,1,...,2(n—1). Since the correspond-
ing automorphisms &# of the grading group, with &f = g¥, for g € Grad(Obj) =
73, , generate again the entire group Aut(Grad(Obj ), we ha\;e that the group of au-
‘tomorphisms generated by the elements in (8.2.159) acts transitively on the generators
of 74 (77,,. *Azn-1) . Fron'x this we conclude, by the same arguments as for the untwisted

algebras, that the automorphisms in (8.2.159) generate all automorphismsif n > 2.

For n = 2, categories exist only for odd r, in which case we find, with (3.48), that
Ta (:’L, * Ag)’ Y 7, * To(A3). However 7o(A43) = A3, since pgop; = py, so that the
fusion rule algebras 7, (7/,,. * A3) are, in fact, untwisted algebras.
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Having a one-to-one correspondence between the automorphisms of the fusion rule
algebras Zp,* Agn—1 and 74 (Z,*A2p_1) , We can establish an an:'alogous cortespbndence
between eq\.uvn.lences of categories associated to thcse fusion xule algebras. We denote
by Cnr(l g), with I € Zg,, (I,20) = 1, ¢ € Hom(T4(2Z4,), U(l)) ¢ = odd and
n = r+1mod2, the category induced by Cyp 2¢(l,¢) and I Thgre is a functor

(f*, F*, C*) = Cna2r(l,q) —» Cnir(liq). (8.2.160) .

Suppose that { is an isomorphism of the Zj, x Ay,_;- algebra which extends to a

functor

€ F,C) : Caze(lia) — Cazell'sd), (8.2.161)

for soﬁue ! and ¢'. The correspondingisomorphism ¢ defined by (8.2.158), also extends

to a functor, ({, #, €), from Cnr(l,g) to some other category Cnr(I", ") wuh ﬁxcd
generator. It follows from (8.2.158) that Cpon(l,r') is induced by Cn r(l", ", and
hence, by uniqueness of induced categories, we conclude that I' = I, ¢ = ¢", and

there is a functor (f*, 7, C') such that

Cn,2¢(1,9) G50, Ca2r(l'yq')
(f, F,0) (f, 7,0 (8.2.162)
bontta) 5O g gy | “
In particular, we have the isomorphisms ‘
(id, £,€) : Corll,g) — Copll+2n7,q 73, (W),  (82163)

where w is given in (8.2.117) and, as 6(r3, ,(w))(2r,7) = 1,V € Z4r, g- 73, (w) is

odd if ¢ is odd. Moreover, from (8.2.127) and (8.2.128), we obtain the isomorphisms

('70: F, C) Cn rllg) — Cn rlenlig), (8.2.164)

and, for (v,2r) =

<

(&, F, €) : Cap(l,g) — Cur(l, al(9)) - (8.2.165)
406

™

c:\ "‘



From the invariants r(i,i,5), with Nj;; = 1, defined for the category Cp 2r(l,q) we
obtain the corresponding invariants #(f*(i), f*(i), £*(§)) = r(i,i,5) on Cnr(l,q). K
the object p, satisfying pop = o+, deno.tes the fixed generator of 74 (Zr*A2n_1) then
p° := 7*(p) is the fixed generator of Zy, * A3,,_1, and it satisfies p®0 p°® = ¢° + ¥,
where f*(¢°) = o and f*(y°) = ¥. Hence, the invariants defined in equation
(8.2.129) of Theorem 8.2.9 for the objects, p° and ¢°, yield invariants #(p,p,¥) =
(p° p°,¥°) and #(0,0,0%) = r(0° 0 (0°)%). From this it follows, by the same

arguments as for Theorem 8.2.9, that for n > 2, the only isomorphisms among the

Cn,r(1,9)- categories are given by compositions of those given in (8.2.163), (8.2.164) and

(8.2.165). We thus obtain the following classification of categories with 7o (Z,- *Azn_.]_) -

fusion rules.

THEOREM 8.2.10

Let 1a(Zr% A2n-y), (r 2 1,n 2 2), be the fusion rule algebra specified in (7.181)

and (7.185) of Theorem 7.8.11. Denote by p the fized generator with the property that

pop = o+, where o is the invertible object of order 2r.
(i) There ezist quantum categories with TQ(Z,- * AZn-—I) - fusion rules if and only if
r=n-1 mod(2). (8.2.166)

For 1 € Zgy, with (1,2n) = 1, and every odd g € Hom(T'4(Z4,), U(1)), there

ezists ¢ quanium category, én,,(l, q),such that

rp,p,¥)

and L CYA o?)

— ezp(—2mi Sin) g(c)

g(c)‘, i ‘ (8.2.167)

where ¢ := B 9.(grad(p)) generates 74, , and q is odd iff 6q(c?", ¢) = —1. This

category is induced by the category, (fn,z,(l, g) given in Theorem 8.2.9 and f*.

Forn = 2 (r = 1mod2), we have that 7o (7% A3) = 7+ A3. Forn > 2, the

only isomorphisms between these categories are those given in (8.£.165), (8.2.164)
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and (8.8.165). None of these categories is equivalent to a category with Zp+xAgy,.. -

. i
fusion rules. |

(ii) The categbry é,.,,(l, g) is isomorphic lo a C*- calegory if!' and only if

=41 mod2n. (8.2.168)

There are two possible sets of balancing phdcs for (fn',(l, q):

ezp(21ri9(,,p,_)) =é ezp(2wi SLnJ(J +2)) q(ﬂz,g,. (gra.d(2[, pj))) (8.2.169)

with 8 € Zp, pj € An_1,3 =0,1,...,2(n—1), and € = *1.

i

If we combine the classification of categories in Theorems 8.2.é, 8.2.9 and 8./2.10 with
the description of possible fusion rule algebras given in Propoéition 7.3.25, \;:e finally
arrive at a characterization of braided, monoidal C*- categories that are generated
by a single object of statistical dimension less than two. It is remarkable to see that
the constraints imposed by the monodromies 7 € Hom(R ® Grad(0bj), U(1)), as in
(8.2.150), with m(p, p) = (p, £, are.suﬂicient to single out precisely those fusion rules

for which quantum categories exist. Moreover, a comparison of (7.2.58) with (8.2.112)

~ and (8.2.131) and of (7.2.59) with (8.2.169), concerning the possible values of I and ¢,

shows that all the statistical phases described in Proposition 7.3.25,ii), are realized in

some quantum category.

Notice that, by use of the isomorphisms (8.2.118) and (8.2.163), we may always shift
the parameter ! € 7g,, with | = +1 mod2n, labelling C* -categories with Z,* A, ;-
or 7o(7r % Agq—1) - fusion rules, such that I = 1 mod8n. According to the result on
equivalences given in Theorems 8.2.9 and 8.2.10, an equivalence between two categories
with » > 2 and the parameter [ constrained in this way, maf)ping the distinguished
generators onto each other, exists if and only if the quadratic functions are the same,
and in this case the category is unique (up to isomorphism).
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We have to formulate the main result of this work for C*- categories only, since
Proposition 7.3.25 has been proven under the assumption that a C*- structure exists.
There is, however, little doubt that our classification can easily be extended to the
general, semisimple case.

THEOREM 8.8.11
Suppose C is an abelian, mbnoidal, rigid, braided, balanced C*- cate;qory. Assume,
‘furiher, that equivalent objects in the object set, Obj, of C are equal and that Obj -

as a fusion rule algebra - is generated by a single, irreducible objeét, p. Let
d(p) = ;! e "% cr

be the statistical dimension. of the generator, where A, is the statistical parameter de-

fined by

295915 = (1p093) alp,p,p")* (e(pp) 0 1,v) alp,p,pY) (150 9p)
with ¥, € Mor(l,p opY). Let 8, be the balancing phase of the generator.

(i) The following are equivalent :

(a) ,
1 < |dp)l < 2,
®) |
d(p) = :i:2cos(%), N =4,5,... ’
(c)

pop=o0+9y ,

where o and ¢ are irreducible, m(p,p) = e(p,p)? is not ¢ multiple of the
identity, and o is invertible.

(d) (If C comes from a local quantum field theory )

pop=o+y
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where o and ¢ are irreducible; the projections in End((pop)Op) given by '

€1 ea(p,p)le )

e2 = a(p,p,p) (1p0es(p,p)) alp,p,p)"

where eg(p,p) € End(pop) is the projector corresponding to the subobject,

o, satisfy the Temperley - Lieb - equations,

Bejeze; = ¢

Bezerea = ez ,

with modulus, B, different from four (hence, § < 4).
(1) If one of the conditions in i) is fullfilled then the category C (without balancing)
is equivalent to one of tﬁe following braided categories (dé;jined with rc.ﬁpect to the
fized generator ‘p ) \

(a) For n,r € N, with n > 2, r 2 1, and ¢ € Hom(T4(2,), U(1)),

’é'n.r(inzx ),
, ' !
which is defined and described in Theorem 8.£.8 as the product Cg, g ®dn‘t,,:

. It has fusionrules \ t
ZexAn o
as in (8.117) of Theorem $.4.11.

(b) For m,r € N, with n > 2, r 2 1, and ¢ € Hom([4(72,), U(1)),

Cor(£l, 9),

defined as a subcategory of Cz g ® Ca(n-1),21 by virtue of the inclusion in
(8.2.114) and described in Theorem 8.2.9. It has the fusionrules

7y x Agp-1
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¥ }

(iif)

as in (5.120) and (3.124) of Theorem $.4.11.
(c) for n,r € Ny withn 2 3, r 21, r = n—-1mod(2), and ¢ €
Hom(r4(24,-), U(l)) , with ¢ odd,

éﬂ.f(iIr Q) 3y

defined as the category inducing Cp2-(+1,q) by the graded morphism in
(8.2.147) and described in Theorem 8.2.10. It has fusionrules

Tu(zr * A2n-—1) )

as in (5.121) and (3.125) of Theorem 3.4.11.

In o) and b) we include the possibility r = oo for a torsion free grading group,
with T4(Z) = Z. For each of these categories balancing phases ezist and are
uniquely determined up o Zp - gradings.

The categories in ii), for given n,r, q and a given sign in the l-argument, are
inequivalent as braided cﬁicgoriea with o duatiﬁguished generator p, with the .single

ezceplion of
((1 }-) c) 4: Cz,r(il, Q) ; cz,r(;lr q') 3

vhere ¢(grad(p)) = -’—j‘i'lg(gmd(p)). In any of the cases o), b) and c), the
group of the automorphisms Aut(Obj) of the fusion rules ( modulo the ezcep-
tional one ) acts freely and transitively on the set of generators, {j : dJ'P'F' =
|d(p)l, grad(j) generates Grad(Obj)}, and can be extended to equvalences of cat-
egories. For case a) we have that Aut(Obj) = Aut(Grad(Obj)) , and, for cases
b), with n > 2, and c), that Aut(Obj) = 73 @ Aut(Grad(Ob;j)) .
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Appendix A :

Undirected Graphs WithNé)rm not

Larger than Two

We give a list of all undirected, connected graphs with norm notv larger than two. We
distinguish between bicolorable and non-bicolorable graphs and indicate the possible bicol-
orations by white and black vertices. By Kronecker’s theorem, the norm of such a graph is
2cos (%), where N =3,4,...,00 is the Cozeter-number of the graph and is given below
for graphs with norm less than two. The graphs with N = co for which there ezists a pos-
itive eigenvector with eigenvalue two are included. For each graph, the components of the
Perron-Frobenius vector, ai: are given by the nurﬁbers indicated at ‘thc vertices which are
ezprc&;ed in terms of g-numbers (n), := %‘—_‘q—’:}t, with g = e%’ , and jV is the Cozeter num-
ber of the graph. The vector d is normalized such that its smallest component on the graph
is one, ezcept when all vertices have edge degree two in which case we set d:= (2,2,...).
The sites where the Perron-Frobensus vector attains its minimum are marked by a “”, and
the number, g, of such sites is indicated, (for each coloration separdtely, in the bicolorable

case).
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.1 Bicolorable, finite graphs

1) N<oo

A:n,ﬂzli

AZn-lJ n ..>_ 2:

D42

D,,.,n23:

Dyjny1, n22:

Eg:

(2)q (3)q (2n-1)q

H—O——o— —O——%
(2)q (3)q - (2n-2)q

13

—O——— e ‘2I‘(2n'|)q
(2)q (3)q (2n-2)q

1(2n-g

o %(Zn)q
—_————— ves - :
(2)q (3)q (2n-l)q:%(2n)q

*—o0 * o
(2)q(3)ql (2)q
(3)a_ (4)q-(2)q

(2)q
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N=2n+1,
go=1)gl=1 (AI)

N = 2n,
Go = éz Q= é (A2)

N =6,

9.=3,91=0 (A3)

N=4n-2,
9o =‘1: 5 = 0 (A4)

N =4n,,
go:ly 1 =0 (AS)

N=12,
g,==2, ) =0 (As)

4

£ *

_ (4)q=(8)q(2)q (6)q
g 2

b T e o PR L =(6lq-(4)q N =18,
{ q._ o
q q I (_2—)q-(7)q-(3)q %=1 a ;o (AT)

4)q

|

(2)

n

(3)q-1

(5)q=(9)q-(3)q (Ma
o o °

Ey: x o - -0 2) qz =(7)q-(5)q . N =30,
(2)a (3)g (4)q lg))q_(e,q L& =1, 020 (AS)
q
(5)
(2)1-(6)q¢(4)q -(8)q
b) N=o0
2 % 2
. .4 .
Al : £.=2 ) Aln-llnzz' 2 2 - .
. 9.=0,0.=0 (A9)
‘ 2 * e o v 2 .

p{": ; DY), n>3:
'>2< %=40=0 b—o——o— -+—d (A10)
Dy, n>2: % =2 =2 (All)
2 2 2 2 2\
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3 *
- EM. * 2 S go=3,0=0 (A12)
2 3 .
2
(1 4
EY7 . * o * O . —-o——3% g0=2 =0 (Al13)
2 3 I 3 2
2
6
EM: x gG=1 =0 (Al4)
’ 2 3 4 5 a 2 '
) 3

A.2 Bicolorable, infinite graphs (corresponding to

N = o)

A $—O——8———O0——8—— oo 9o=1,01=0 (Al5)

D, : eee go=2, 91 =0 (Al6)

9 =0, 1 =0 (Al17)

n
e
N o
N ¢
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A.3 Non-bicolorable, finite graphs

a) N<oo
y. A KD N=3g=1(a
An22: kx—o—o—o— _'—O N:2n+i’
(2)q (3)q (4)g  (n-Ngq (n)q g=1 (Al
b) N=oo :
’ > 2 2
ADn>1: (*“jz g=0 (A2
2 . 2
o0 O

A.4 Non-bicolorable, infinite graphs (.N = 00)

|

9=0 (A23)
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.5 The higher graded fusionrule algebras

i)' The fusion graph for algebra Dﬂ‘) (Asl))(n—z): .

{I,O',,0‘2,0'3}

(a-2)

i1) The fusion graph for algebra Egl? (Agl))
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(A24)

(425)

-

Appendix B

Fusion Rule Algebra

Homomorphisms

B.1 &, : Ay — ./in
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<

0P i Atn_z — Do,
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B.3

Q.m.a : \»: l.m,m
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B.4

oPE . Dyg — Ey
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