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ABSTRACT. We describe a new version of t.he Smoot.hed Particle Hydrodynamics (SPH) method,
called Adaptive Smoothed Particle Hydrodynamics (ASPH). The ASPH met.hod is characterized by:
(1) an anisotropic tensor smoothing lengt.h H and smoothing kernel which replace the standard scalar
smoothing length h and isotropic kernel, and (2) the use of H to t.rack shocks by predicting caustics, and
thence to suppress spurious heating by artificial viscosit.y away from shocks. The resulting algorithm
performs significantly better than the st.andard SPH method in situations involving highly anisotropic
volume changes and strong shocks. which are common in cosmological simulations where the growth of
density fluctuations leads t.o anisotropic gravit,ational collapse and supersonic infall. As a test, we have
reproduced the cosmological pancake collapse solution over 4.8, and 10 orders of magnitude in length,
temperature, and pressure, with only'" 30 part.icles per dimension per pancake. As furt,her illustration,
we apply ASPH in 2D to simulate structure format.ion in a Hot, Dark Mat.t.er Universe.

1. Introduction

Most theories of galaxy formation assume that structure formed when initially small
amplitude primordial density fluctuations grew by gravitational instability to nonlinear
amplitude. Such primordial density fluctuations and gravitational instability lead to
gravitational collapse, strong shocks, and radiative cooling, occurring over an enormous
range of mass and length scales. Shocks, in fact, are the principal mechanism by which
gravitational motions are dissipated so as to make formation of bound, star forming
objects possible.

Motivated by this problem, we have developed a new version of the SPH method,
called Adaptive SPH (ASPH), with substantially improved numerical resolving power
and treatment of shocks compared to the original method (Shapiro et a/1994). Standard
SPH (cf. Monaghan 1992 and references therein) suffers from t.wo limitations which are
particularly acute in simulations of cosmological structure formation by gravitational
growth of density fluctuations, as follows: (1) the smoothing is isotropic, while gravita
tional collapse leads to highly anisotropic volume changes, and (2) supersonic collapse
leads to strong shocks, requiring that artificial viscosity be introduced, but this results
in widespread, spurious viscous heating of gas far from t.he shocks. ASPH solves these
problems by: (1) introducing an anisotropic smoothing tensor and kernel which adjust
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dynamically to follow anisotropic volume changes and vorticity, and (2) using this to
track shocks by predicting the occurrence of caustics, and, thereby, to limit artificial
viscous heating to those particles actually encountering a shock. In what follows, we de
scribe our new version of SPH and show how and why it great.ly enhances the dynamic
range and resolving power of SPH to levels which promise to resolve the shocks which
are generic to flows which form galaxies and large-scale structure.

2. Standard SPH

2.1. Isotropic Smoothing

SPH is a Lagrangian numerical hydrodynamics method which represents the fluid by
a set of discrete gas "particles" which carry mass and thermal energy and move with
the local flow velocity. These particles are essentially moving centers of interpolation
for discretely representing the continuous flow variables and their variation in space.
In standard SPH, the underlying continuous variation of each dependent variable /(1')
with position l' is replaced by a spatially filtered, or smoothed, field ](1'),

j(1') = Jf(1')lV(1' - 1", h)d3r' , (1)

where W is a smoothing kernel function whose width is defined by the smoothing length
h. For a Gaussian kernel in 3D, for example,

-I1'-1'T:llh 2

Hl(1'-r',h)= e 3J'> 3
1r -h

(2)

In practice, /(1') is actually known only at a finite set of irregularly spaced data points
- the particle positions - so the integral is replaced by a finite sum over the particles.

The resolving power of SPH is, therefore, related to the smoothing length h, which
defines the "zone of influence" of each particle. It is' critical to adjust h for each particle
so that it is comparable to the mean interparticle spacing ~:r in the vicinity of that
particle. If h <t: .6.x , particles lose contact and the method breaks down. If, instead,
h~ .6.x, SPH cannot resolve the underlying structure of the flow on the scale .6.x.

Current versions of SPH adjust h both in time and space according to

h(1'. t) <X p(1', t)-l/D , (3)

where p(r, t) is the density and D is the dimensionality of the calculation (Le. D =1,2, or
3 for ID, 2D, or 3D, respectively, in Cartesian coordinates). This is intended to make h "'oJ

Ax(r, t), the local interparticle spacing. everywhere at all times. This is strictly valid only
for isotropic volume changes, however. The spacing Ax at a given location at a given time
can vary in direction, as a result of anisotropic contraction or expansion. Equation (3)
only ensures that. the smoothing length of any given particle will be of the order the
mean distance to its neighbors, at leraged over all directions. In anisotropic compression,
however, this h does Hot shrlukfa:st elloughin the direction ufnraxil1lumcontractioll,
leading to a loss of resolution. while in the direction transverse to this contraction, h
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shrinks even if there is no contraction in this direction, and particles can eventually lose
contact. Anisotropic contraction or expansion is very common in astrophysical problems,
especially those involving gravitational collapse and strong shocks, so it is desirable to
developed a version of SPH which is not limited to this isotropic smoothing approach.

2.2. Artificial Viscosity

Artificial viscosity must be introduced in the SPH equations for momentum and energy
conservation in order to handle shocks and prevent particle interpenetration, or tra
jectory crossing. Supersonic compression such as that generic to gravitational collapse
on scales A > AJ (the Jeans length), which occurs commonly in galaxy and large-scale
structure formation, then leads to widespread, spurious viscous heating of gas far from
the shock. This "preheating" can be particularly devastating in flows involving radiative
cooling. It is desirable, therefore, to find a way to restrict the effects of artificial viscosity
in SPH to the actual shock transition.

3. The Adaptive SUloothed Particle HydrodYllaluics (ASPH) Method

3.1. Anisotropic Smoothing

We have developed a new version of SPH, called Adaptive SPH, which is designed to
handle situations involving anisotropic volume changes. \Ve introduce the concept of
anisotropic smoothing tensor H, a smoothing length which varies with time, space, and
direction. In this new formalism, the spherical zone of influence of a given particle is
replaced by a triaxial ellipsoid. Each ellipsoid is defined by a triad of mutually per
pendicular vectors, the semimajor axes of the ellipsoid, which have three components
each. We refer to this ensemble of nine components as the H-tensor of the particle. The
length of each semimajor axis is determined by the local interparticle spacing along the
direction of that axis. The H-tensors are dynamically evolved by the ASPH code using
the components of the deformation tensor aVi / axj .to follow the local deformation and
vorticity of the flow. For flows with no vorticity, the H-tensor triad of axes h k are just
the principal axes of the deformation tensor, with lengths that change in a time 6t in
proportion to (1 + Ak6t), where the Ak'S are the eigenvalues of avi/aXj and the hk's
point along the eigenvectors. 'V'ith vorticity, the axes h k must rotate to take account of
the anti-symmetric part of 8vi/8xj. In ASPH, the 3D Gaussian kernel of particle i and
position ri, evaluated at position rj, is given by

where rij = ri - rj, WI and ~ll3 are the ID and 3D Gaussian kernels, respectively,
hI = IhI L h2 = 111.2 1, h3 = Ih3 1are the semimajor axes of the ellipsoid, and x', y', and
z' are the projections of rij along each of these axes.

This technique has three strong advantages over standard SPH: (1) The resolving
power of the SPH equations in regions with strong anisotropy can be increased by orders
of magnitude. (2) The H-tensors track the Lagrangian deformation of the flow, and con
sequently each particle keeps roughly the same set of neighbors for many timesteps. This
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(5)

implies that the usually costly nearest-neighbor search need be done only occasionally
instead of at every timestep, resulting in a large speed-up of the algorithm. (3) Caustics
and shocks in the flow can be predicted to occur whenever a particle's H-tensor ellipsoid
shrinks along one or more of its axes enough to make the volume go to zero. This forms
the basis for our shock-tracking algorithm below.

3.2. Shock tracking and Artificial Viscosity

The evolving H-tensors track the local deformation of the fluid. \Vithout artificial viscos
ity, particle crossing would occur whenever a particle encounters a shock, and this would
result in an "inversion" of the H-tensor for this particle, with the shortest axis shrink
ing to negative values. The ASPH method makes use of this phenomenon by turning
artificial viscosity on in the energy equation only for particles whose H-tensor is about
to undergo this inversion. This automatically restricts artificial viscous heating to just
those fluid particles which are actually encountering a shock.

4. Testing the Anisotropic H-Tensor and Sllloothing: ID and 2D Kinematic
Flows

We call kinematic flow a flow in which we impose trajectories on fluid particles, according
to some prescribed velocity field which satisfies the continuity equation. Thus, we do
not compute the forces on the particles, or if we do, then we do not use these forces
to advance the particle velocities. Such flows are particularly useful for testing the
calculation of smoothed quantities, or the evolution of the H-tensor, since inaccuracies
in these calculations do not feed back on the particle motions.

4.1. ID Flow: Plane '''ave Density Perturbation

Consider the growing mode of a I-D, sinusoidal, adiabatic, plane wave, cosmological
density fluctuation of comoving wavelength Ap in an Einstein-de Sitter universe. The
perturbed comoving position x of the mass element whose unperturbed position is q is

6(ti) . 27rq
x=q---sm--

27r Ap

at initial time t = ti at which the amplitude 6(ti) ~ 1. The initial density is given by

and initial velocity is given by

p(td
p - ------'---'-----

- 1 - 6(td cos 27rq/ Ap ,
(6)

(7)
Ho(ai ) -3/2. . 27rq

V x = - 27r ao 6(ti) sm A
p

,

where a is the scale factor, aj = a(ti), ao = apresent = 1, H o is the Hubble constant, and
p(td is the mean density at tj.
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Exact N on/inear Solution. In units with AI' = 1, the unperturbed position ranges
from q =-1/2 to q =+1/2, with a density singularit.y, or caustic, forming at x =q =0
at time t c and scale factor ac. The perturbation amplitude grows as 6(t) =6(ti)a(t)/ai =
a(t)/ac. We chose ai = 1/28 and ac/ai =4. The perturbed position, density, and peculiar
velocity are then given for all t < t c and a < ac by equations (5)-(7) with 6(ti) and
ai replaced by 6(t) and aft), respectively. This solution is exact up to the moment of
caustic formation even when f, ~ 1. Since the flow is adiabatic for t < t e , the pressure
and pressure-force acceleration are given by

and

P(t)/P(td = [p(t)/ p(td] l' , (8)

Fp =_! °oP =2ir,f,[P(td/p(td](sin 21Tq)(1 - f, cos 2irq)-(I'+1), (9)
p x

where "y =5/3 and where P(td is the mean pressure at t = ti.
The Test: 60 particles in the range -1/2 ::; q ::; 1/2 are moved with time along

trajectories given by equation (5), with velocities given by equation (7) [with 6(t) and
aft) replacing 6(td and ai]' The exact solution above also yields the values of p, P,
and OVx / ox at each particle location at all times. The smoothed values of p and Fp

are then calculated using the smoothing algorithms of ASPH and SPH, respectively,
with these exact values for x, vx , p, P, and {)vx/ox for each particle. For ASPH, the
H-tensors are evolved using oVx/ox (so hx ex P;x1act in the collapse direction), while
for SPH, h ex p;xl!c~ is assumed. The smoothed p and Fp are shown along with the
analytical solutions in Figure 1 for a/ac =0.975. The ASPH results for both p and Fp

are in excellent agreement with the exact results and are much more accurate than those
of SPH in the central region where nonlinear amplitude and gradients are large. The
smoothing length h of standard SPH did not shrink fast enough to follow the anisotropic
collapse of the system, causing oversmoothing of the central region (h ~ .6.x), which
results in a serious underestimate of both p and Fp ~

4.2. 2D Flow: Deformation and Vorticity

In order to test the method in the presence of vorticity, we consider a purely kinematical
2D flow given by Vx = Cl Y + C2x2/2, vy = C3X. For such a flow. \7 . v = C2X and
\7 x v =Cl - C3. As long as Cl 1=- C3, this flow is rotational (i.e. has vorticity). We take
Cl = 1, C2 =0.5, C3 =3, with uniform density at t.ime t =0.

For any fluid element at. initial position XQ at time t = 0, we can solve the above
equations for x(xo, t) and ovi/OXj(xo, t) by the Runge-Kutta method to arbitrarily high
accuracy. We use this x(xo, 1) to track the motion of a set of particles at initial xo's
corresponding to a square lattice grid of spacing dX, integrate the continuity equation
to solve for densities p(xo. t), and use ovi/OXj(xo, t) to evolve the H-tensors for these
particles. For standard SPH, the smoothing length h is taken to vary as p-l/2. The
results are shown on Figure 2, where we focussed on the particle located initially and
at all times at x =y =0, for which p =constant. The circles and ellipses represent the
zones of influence of that particle for standard SPH and ASPH, respectively. We mark
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Fig. 1. p and Fp versus q for ID Plane-Wave Perturbation at a/u.c = 0.975. ASPH (open circles),
SPH (crosses), exact solution (line).

the particles which are initially the nearest neighbors of this central particle (boldface
particles), all those particles within the circle of radius 3h = 6~x at t = O. For SPH, the
circle remains unchanged in t.ime, while for ASPH the circle becomes the ellipse with
axes defined by the component a.xes h k of the tensor H. Figure 2 shows how well the
anisotropic smoothing ellipse of ASPH stretches and rotates so as to track the motion
of these neighbors, while the SPH circle defined by isotropic h fa.ils badly.

5. The Coslnological Pancake Collapse Test Probleln

A difficult, fully dynamical test which all methods which are to be applied to cosmological
flows should be required to pass is that of the gravitational col/apse of a 1D, plane wave
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Fig. 3. 2D Tilted, Shifted Pancake test results at alae = 1.5. ASPH (open circles), SPH
(crosses), and exact solution (solid line). Dimensionless.computational units.

density fluctuation in a universe comprised of baryons and collisionless dark matter.
This is the cosmological pancake problem, in which an initially linear amplitude density
fluctuation grows to nonlinear amplitude, forms a caustic in the dark matter distribution
located in the plane of symmetry of the pancake and strong accretion shocks, one on each
side of this central plane, followed by continued infall, phase-mixing of the dark matter,
and radiative cooling of the shocked baryon-electron plasma. Detailed, ID numerical
solutions for this problem already exist (Shapiro, Struck-Marcell, and Melott 1983; Bond
et at 1984; Shapiro and Struck-Marcell 1985), as do approximate analytical solutions
(Struck-Marcell, Shapiro, and Martel 1994), for comparison.

The initial condition prior to caustic and shock formation is the same as for the
ID kinematic test discussed in § 4.1. VVe evolve the system from initial scale factor
ai = 1/28 (redshift z = 27) thru the epoch of shock and caustic formation at a e / ai = 4
(z = 6) to aJ /ai = 6 (z =3.6667). Radiative cooling is neglected. Our ASPH method, in
principle, can automatically identify and adjust to accommodate a pancake collapse and
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shocks along any direction, not known a priori. Testing this fully requires at least a 2D
calculation (i.e. in this case (x,y) Cartesian coordinates). \Ve therefore use a 2D version
of the SPH and ASPH methods, respectively, and solve the gravitational force problem
by using a standard Particle-Mesh (PM) method. For 2D SPH, the smoothing length
h ex: p-l/2. The computational volume is a square box with periodic boundary conditions
and one edge-on pancake of wavelength Ap = Lboxlv'2, oriented with its symmetry plane
(i. e. density maximum) at 45° with respect to the walls of the computational box, shifted
away from the box center. We take Nga8 =NDM =64 x 64 =4096 equal-mass particles
of each type (dark matter and gas) with initial positions displaced by the perturbation
away from the same square uniform lattice. This is designed to test that ASPH can
adjust to follow the anisotropic collapse of the pancake regardless of its orientation.
(NOTE: Given the 45° tilt, there are now only 22 gas particles per row perpendicular
to the pancake plane to resolve the flow on each side of the central plane.) The PM
calculation uses a square lattice grid with 128 x 128 = 16,384 cells.

Figure 3 shows a comparison of the SPH and ASPH results plotted against the ana
lytical solution (Struck-Marcell, Shapiro, and Martel 1994) at a.f lac = 1.5, after shock
and caustic formation. The ASPH solution matches the analytical solution over 4 orders
of magnitude in length with only 22 particles! ASPH resolves the postshock temperature
profile and achieves the required jump of 8 orders of magnitude in temperature across
the shock. Moreover, it generally does so with no more than one particle whose tem
perature is intermediate between the pre- and post-shock values, to spread the shock
transition along the direction normal to the shock. Standard SPH, on the other hand,
artificially heats a wide range of the preshock particles, spreading the shock transition
out by a spurious factor of 10 in distance and failing to resolve properly the slope of the
postshock temperature profile.

6. An Illustrative Exalnple: 2D Shnulation of a Hot Dark Matter Universe

We apply our ASPH method in 2D to simulate the growth of large-scale structure in
a universe dominated by Hot Dark Matter, with initial density fluctuations given by
Gaussian random noise based upon a Harrison-Zel'dovich primordial power spectrum
(n = 1) with amplitude fixed by the COBE satellite detection of CMB anisotropy. The
2D power spectrum is the same as in 3D, but multiplied by 2k (k = LboxlA, A =
wavelength, Lbox = size of square computational box) - i.e. equal rms bpip for equal
fluctuation scale length. We couple our ASPH method to a standard Particle Mesh
(PM) gravity solver in 2D. We take h = 0.5, n = 1, nDM = 0.9375, nb = 0.0625,
Nparticle8 =256 x 256 =65,536 of which 1/16 are gas, so that Ngas =64 x 64 =4,096,
with initial positions perturbed away from a uniform square lattice in a simulation box
of side Lbox = 200 Mpc (present units) with 512 x 512 PM cells and periodic boundary
conditions, at initial redshift Zi = 24. The initial density fluctuations are represented
as the superposition of plane wave perturbations with random phases, including all
wavevectors which satisfy periodic boundary conditions with dimensionless wavenumber
k in the range 1 :::; k :::; 32. Radiative cooling is neglected.

In Figure 4, we zoom in on a. particular region of the computational box, a square
of size 22 Mpc, containing an already-formed pancake, merging at an oblique angle with
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Fig. 4. Zoom in at z = O. Dark matter (left panel), H-tensor ellipses (right panel).

an incipient (i.e. pre-emergent) pancake. The idea is to check whether the H-tensors of
the ASPH code are "aware" of the directions and degrees of collapse of both pancakes.
Figure 4a shows the dark matter particle positions in that particular subregion, with
the two edge-on pancakes, one post- and one pre-ca~stic. Figure 4b shows the H -tensor
ellipses for the gas particles, scaled by a factor 0.15 for clarity (otherwise they would
overlap). The ASPH code successfully identified both the presence and degree of collapse
of both pancakes, and has deformed and oriented the H -tensors accordingly.

Finally, we illustrate the problem which standard SPH has simulating flows like
this, causing the widespread, spurious preheating of contracting regions of the flow
far from shocks by artificial viscosity, and show the improvement which ASPH makes.
Figure 5 shows the positions of all gas particles for the full computational box. We
identify a subset of these as numerically "shocked particles" (that is, particles that have
been shock-heated at some point during the simulation) if they are particles whose
temperature significantly exceeds their "adiabatic temperature" defined by

Tad =7i(p/Pi)1 , (10)

where Pi and Ti are the particle's initial density and temperature. These are particles
which have experienced artificial viscous heating. We have distinguished the subset of
gas particles for which T > 10Tad from the rest of the gas particles by open circles (SPH
results) and filled circles (ASPH results). In standard SPH, the viscous preheating is so
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Fig. 5. Gas Particles at z = O. Shock-heated: SPH (open circles), ASPH (filled circles).

severe that almost the entire system has been "shocked." The ASPH method, with its
shock-tracking algorithm and its switch for controlling artificial viscous heating, does
much better, limiting "shock-heating" to the pancakes and their intersections.
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