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'I1lfi clustering algorithms wed for COWlting hadronic je'ts map a continuwn of final states into the discrete set of
integer numbers and, therefoce,8.{C discontinuous and cannot be stable for all multiparticle co~~tions with
respect to data and rounding errors, changes in the geometry of detector cells, and-on the theoretical slde-small
corrections in general. Stability ofobsevables is ensured by their continuity with respect to an appropriate
"calorimetric" topology in the' continuum of final states, which is seen to be a stronger, requirement than
perturbative IR. safety. A sequence of shape observables (jet discriminators) are derived tha~: (1) are continuous in
the calorimetric topology; (2Y effectively measure the qualitative feature of final states popularly known as the
"number ofjets"; (3) have a fonn ofmultiparticle cOrrelators that is natural in 'the context of quantwn field theory.
Within the formalism ofjet discriminators, the issue of Sudakov corrections becomes marginal, while taking into
account hadronization is reduced to studying logarithmic and power corrections which can be done within the
formalism ofasymptotic operation similarly to the case of total cross sections. '.

1. Jet counting as the problem of measurement

TIris talk is about the problem that is central in
physics-eentral because of its role as a bridge be
tween raw experimental data and abstract
theoretical fonnalisms. It is the problem of
MEASUREMENT. Concretely, I would like to
present a sununary of a logical analysis of the
measurement process that takes place in
calorimeter-based detectors that are Used in high
energy experiments.. In such experiments the
problem of measurement takes a new twist. Indeed,
the average multiplicity hadronicfinal states at
supercolliders is 0(100) with a wide dispersion SO'

that events with as many as 400 particles in the
final state are not uncommon. In such a situation it
is impossible to keep track of the particles
individually and one uses calorinieter cells to mea
sure the "energy flow" resulting from the collision.
However, a collection of raw data from such a dete
ctor that tells one what is the energy deposited in
each calorimeter cell, cannot be really considered to
be a result of a physically meaningful measure
ment-at least to no higher degree than a digitized
photograph can be regarded a measurement. Indeed,
the amount of data for each event is quite large.

Therefore, the measurement process is incomplete
without an additional-and absolutely essential
-step that can be characterized as reduction of
information. This step is needed in order to obtain a
few numbers that could both be meaningfully used
to characterize the essential qualitative features of
the final states and be amenable to a theoretical
analysis.

A physical basis for such a reduction is provided
. by two considerations. First, it is the experimental

evidence that hadrons in a majority of final states
are clustered so that particles in each cluster (jet) go
roughly in the same direction [3]. Second, it
is the QCD-based picture of hadronic energy flow
inheriting main features of the partonic energy flow
in the underlying hard process, with each jet
associated with an underlying hard parton [7].

At present the jet paradigm forms the basis of
practically all high-energy physics [24].. ~ut the "

problem of adequate numerical ~.,scrip§?n 0'1 ..
~ult~jel structure of multihadron fin les \.-~hal\:~::.\.
IS a Jet?" [38,43]) proved to be theor ly ~e, .(
~ts ap~arent simpli:ity tum~ out dec .ve, ~le \:0)
Its satisfactory solution, elUSIve. ~ :~'/ ~\.

The currently prevailing practice (whic ncems "
a lot of interesting physics both about QC d the

\).<>
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Standard !vlodel) is to study cross sections for a
fixed number ofjets in final states (cf. e.g. [38,39]).
The number of jets is usually found using the so
called cluster algorithms (the JADE algorithm and
its derivatives-fora review and comparison see
e.g. [28,29]), wherein one attempts to reconstruct
the pattern of underlying partons' momenta by, .in
effect, inverting the hadronization process.
The latter is non-perturbative in nature, is ill
inderstood, and presents a fascinating fieid of
study.#3 Complex formalisms loaded with physical
meanings have a hypnotizing effect, and there exists
a point of view that the problem of adequate
description of mutlijet structure is a "physics issue"
that concerns the "underlying jet dynamics" rather
than "kinematics" and "geometry" (which have, of
course, nothing to do with The Profound Physics)
and that "the main point is that one would like to
identify a class of <...> observables that are in
closer correspondence with the underlying j~t

dynamics" [1]. Such a point of view, however
-despite the indisputable importance of understan
ding hadronization.!.-makes hardly more sense than
choosing rulers and clocks to reflect "the underlying
dynamics" of gravity when studying the laws
governing the trajectories of falling bodies. Instead,
one prefers one's rulers to be straight, and clocks,
precise. Therefore, it makes a lot of sense to
examine the jet counting as a problem of measure
ment, and to try-instead of attempting to solve the
mathematically ill-posed problem of inverting the
hadronization process-to find "straight rulers" for
measuring the multijet structure of multihadron
final states.

Let me emphasize once again: the problem of an
adequate quantitative description of mu/tijet struc
ture is the problem ofmeasurement-first and fore
most. It thus deals more with kinematics than
dvnamics, and measurements of the multijet
structure must be done in such a way as to avoid
assumptions on the underlying dynamics. The clean
data thus obtained would be neutral with respect to
the physics of jets and thus not distorted by any
artefacts due to an incomplete understanding of the
latter.

Such clean measurements are theoretically.
possible. The possibility is based on a computation
from data of the so-called jet discriminators J m ,

m =2,3...cc, that are shape observables given by
explicit formulae \vith rather regular structure
(ex-plained below). For a given multiparticle final

#3 Among the issues that plague the standard approach are
e.g. the ambiguities due to the arbitrary order in which the
h;drons are clustered. Also, the notion of jets' 4-momenta is
fully meaningful only in the leading order of perturbation
theory~ the more important are the radiative corrections, the
less satisfactory is assigning particles to a particular jet with a
well-defined 4-momentum. .

state P, the m-th jet discriminator Jm (P) gives a

value between 0 and I, which is interpreted, by
construction, as follows (cf. Fig. 1). The crosses are
the values of jet discriminators for a final state
which can be described as having 3 jets with a 4th
jet about to branch off. Conventional jet counting is
equivalent to replacing the continuous jet
discriminators with dichotomic functions taking

. values 0 or 1 (shown as blobs). While the values of
jet discriminators change a little when the final
state configuration is deformed a little, the number
of jets may jump and, therefore, is unstable \\ith
respect to data errors or small corrections for som"e
final states and some values of Ycut. If its value is
close to 0 then there are less than m clusters of
almost collinear hadrons~ if its values differ from 0
appreciably then there are no less than m such
cluster.
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Fig. I. Jet discriminators vs. jet counting.

The jet discriminators pro"ide a logically precise
quantitative characterization of the qualitative
feature of multiparticle final states popularly known
as the number ofjets.

The jet discriminators are derived from first
principles with very few assumptions which I tried
to formulate explicitly below~ The arbitrariness in
their form corresponds, basically, to a different
parametrization of the interval (0.1) and is, thus.
inessential.

Although it is possible to use jet discriminators
for jet counting in the naive sense (using a cutoff as
shown in Fig. I ~ such a procedure was called
"Moscow sieve" in the preliminary publication
[45]), I emphasize that, logically, a more sound
approach seems to be simply to compute values
of jet discriminators for each event, and then
compute their average values for each process.
Indeed, the m-the jet discriminator is interpreted
as a measure of events that have no less than m jets.
Its average value, therefore, is interpreted

m jets + m+l jets + ~m+2 jets.... so that theas (j tot (j tot v tot . "',

sequence of jet discriminators provides no less
information than the sequence of conventional cross
sections for a fixed number of jets. In fact, the
information from jet discriminators is more
detailed, as should be clear from Fig. 1. In
particular, the tail of the distribution-the values of
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the discriminators for m larger than the 'perceived
number of jets-provides a quantitative description
of the width of~ts.

But most important of all, the jet discriminators
are continuous (in the sense appropriate for
calorimetric measurements-see below) functions of
the mOltiparticle states. .

This should be conttastC:d with the fundamental
~thology inherent in the naive jet 'counting wherein

.one attempts to 'assignan integer "nUmber of jets"
. to. each event:The pathology is that such. an
assignment (epICSents a dIscontinuous mapping ofa
contiDuum of multiparticle final states into a
discrete set. of integer' nlimbers. Such' a mapping
cannot be stable with respect to data errors, small
coiTections etc. forallvatues of its arguments. As a

'. lesuIt. there occurs a randomized smearing betWeen
cross sections for adjacent numbers of jetr-a
smearing that is hard to controi. Although this
pathology is Somewhat masked off by the averaging
over events, the issue is of a. m,ost ~ental
nature and ·as such-irrespective of immediate
numerical' significance for the specific applications
that are currently discussed-m~be elucidated.

2. Measurements an~ continuity

Although Sterman and Weinberg [7,11,12]
suggested a theoretical explanation of jets within
the framework of perturbative QCD, the connection
of their criterion of IR finiteness of observables with
calorimetric measurements remained eclipsed by the
calculations-related prGblems of IR .. finiteness,:.: .
[11,12;14,15]. .~ . .

In order to understand the issue, recall first the
basic model of measurement as represented by
simpleSt measurements of length (in the model
considered here statistical errors are neglected). One
chooses a. unit of length (say, metre), and then
constructs rulers graduated with marks indicating
parts of the metre. The measurement pro~r consists
in matching, say, a stick against a ruler,
detennining which marks of the ruler the stick's
length falls between, and counting the number of·
marks on the ruler. The result thus obtained is a
pair of rational numbers expressing the length in
terms of fractions' of the unit of length. An
important point is that using different rulers results
in different pairs, of rational numbers. But the
corresponding intervals overlap (or are embedded),
and can be made (at least in principle) as small as
needed for practical purposes. The latter fact allows
one to introduce an abstract notion of the stick's
"length" represented by a real number-a limit of
pairs of rational numbers obtained in measurements
with finite-prec~ion rulers.

Such an abstraction has two aspects. First. one
now has to deal with a single abstract object (length

as a real number) that can ,be ,manipulated
according to'the rules 'derived from itsde6n.ition

which '.twn out t~ be'vel)' si~jI.!U~,;~::~~
governIng the rational numbers, iindthe issUe ~of

measurement 'errors ,is .,~···Jrolil"the·
fundamental theories 'based onsUthjl·.nOtion·of
length. The second asPect is' the OOtio~~cantinrittY '
with respect to which the pairs of rational numbers
obtained in measurements can be .. regarded as
approximations for the underlying "exac:t"" length.

I emphasize that the two aspects. are intimately
and insep3rably related. This is'best seen from the
mathematical construction of the space of real
numberS as a completion of the space of rational
numbers with respect to the topology#4 that is
natural to (in fact. historically derived from) the
measuremerits of length etc. ODe can See that 'the
crucial element here is the notion of closeness (the
topologyr--without it. constrbcting abstract objects
to represent "length" is meaningless.
Not~ that pairs of rational numbers are interpreted

as "neighbourhoods" in the space of ratiorulI and
real numberS that define the corresponding
topology.

It is also important to understand that the
usefulness of such abstractions as real numbers
representing length etc. is determined, in the final .
respect, by practice-but via the measuring instru
ments one chooses to use.

Let us apply the same logic to calorimeter-based
jet measurements. It is often said that calorimetric
detectors measure "energy flow". What is the preci
se nature .of the corresponding abstract objects
(analogous to real numbers in the case of the length
measurements)? And, first ofall, what is the corres
ponding "Calorimetric topology"?

3. Calorimetric (C-) topology and mathematical
nature ofenergy flow

It is important to follow the general pattern
exhibited above for the length measurements in as
straightforward manner as possible, in order to
formalize wIi AT 1S as precisely as possible#5.

A Calorimetric detector D consists of a finite
number of calorimeter cells Di . The only important
thing about such a cell is which part of the unit
sphere around the collision point it covers. So, Di
can be thought of simply as a part (subset) of the
unit sphere. It is convenient (but not necessary) to
assume that the cells cover the entire unit sphere.
Whether or not they are non-intersecting is
inessentiaL

#4 Topology in the mathematical sense is a logically self·
consistent description of the usual notion of closeness of
rational numbers-or other objects.
#5 because otherwise one would simply end up with a
fonnalization ofone's prejudices!
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Each calorimeter cell measures the total energy
deposited in it by the final state particles that passed
through it. The measured energy ought to be
represented as a pair of (non-negative) numbers
similarly to the case of length measurements. So, a
data record obtained by a calorimetric detector is

{Di ,(Ei ,Et)h where the uidex i takes a finite

number of values while Et > Ei ~ 0 describe the
measured energy. As in the case of length
measurements, this is a sufficient foundation to
construct the abstract objects corresponding to the
notion of "energy flow", and this automatically
defines a topology in the collection of all Such
objects. Without going into tedious but essentially
simple details, I summarize the results.

The deposited energy is a function that is additive
on disjoint subsets (cells), and it is almost a
tautology to say that the abstract objects describing
"energy flow" are, in the mathematical sense,
measures#6 (for a, general mathematical background

. on measures see the fine textbook '[2]; an excellent
complementary source is [10]; the abstract theory of
measure is also discussed in any advanced textbook
on the theory of probability).

However, the topology in 'the space of
measures-as in any functional space--ean be
introduced in different ways (cf. e.g. [2]). The
calorimetric topology (C-topology everywhere
below) turns out to be the weak topology which can

be described as follows. Let E(n) be a sequence of

such measures (=energy flows) and let E(n) (D) be
their values on any subset D of the unit sphere (i.e.
the energies deposited in the detector cell D). Then

E(n.) converges in the C-topology if and only if the

numerical sequences E(n) (D) converge for any D,
no correlation being necessary between rates of
convergence for different D. (An important tech
nical point here is the compactness of the unit
sphere and the finite number of the detector' cells in
any detector as described in the preceding
paragraph.) .

The energy flows corresponding to the multi
particle .states with a finite number of particles (this
is the most important case if one studies hadronic
final states) are described as finite linear combi
nations of t5 -functions on the unit sphere, the
coefficients and positions being the energies and the

#6 An abstract measure is a function on subsets of the unit
sphere whose value on a subset which is a union of two non
intersecting subsets is the sum of its values on the two subsets,
The name reflects the fact that, say, the surface of a part of the
unit sphere is precisely such a function which, thus. "measu
res" the surface. Then an energy flow "measures" how much
energy passed through the part of the unit sphere covered by a
detector cell. Therefore. strictly speaking. a calorimetric detec
tor measures measures called energy flows that measure the
flow of energy through detector cells.

directions of the particles. If the state contained
collinear particles then their energies are summed
in the energy flow. This is discussed in more detail
below.

4. Reduction of infonnation in physical
measurements

Unlike real numbers that quantify length, abstract
measures that represent energy flows of multi
particle states are elements of an infinitely-dimen
sionaI functional space and are much less tangible
objects than real numbers, and they are also some
what amorphous for practical purpo,ses. Therefore,
the information from hundreds of calorimeter cells
-although providing an approximate description of
energy flows---can only be regarded as raw data but
not as the final result of a' physically meaningful
measurement.

This is similar to a situation where one cannot use
rulers to measure some kind of special sticks direct
1y but rather has to photograph those sticks first. An
intermediate representation in. the form of a
digitized photograph would be crucial for precision
measurements but it does not by itself give one the
length or \\'idth or volume of the stick. First one has
to decide what one wishes to measure, and what the
length (width, volume) of such sticks is, exactly.
Only after that one will be able to measure#7 the
needed parameter by performing its calculation
from the digitized photograph.

Therefore, the following axiom suggests itself:

Axiom of reduction of information. For such
measurements to be physically .meaningful they
must include the step ofa reductAm of information,
i.e. a transition from raw data to afew numbers that
quantify the physicalfeatures ofthe objects studied.

More formally, one would like to have numeric
valued functions that map the abstract objects that
our measurement devices measure, into numbers
that reflect the features of those objects that one
wishes to study. Specifically, we would like to have
functions on the collection of energy flows (abstract
measures) that quantuf). the feature of multi
hadronic states called the number ofjets.

Another aspect of the same problem is that it is a
typical problem of algebraization-i.e. how to
express in numbers the qualitative feature (the

#7 It appears that the confusion with jet counting is partly due
to the fact that measurement here takes the fonn of a com
putation-and is. thus, not perceived as measurement which it
essentially is. The counting of marks on the ruler when measu
ring sticks is an integral part of the m~surement process and
cannot be excluded from the latter on the grounds that it is a
··computation". Appearences are misleading.
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6. C-continuous functions on abstract measures

where the c5 -functions on the unit sphere are
defined as

where rp( qJ is continuous on S. More general-tn

linear-functionals are as follows:

(1)

(~)

(3)

Fm(E) = f~dq1 ...dqm E(Q1)···E(qm) rp(Q!1···,Qm)

(2)

where rp(q1," . ,qm) is a continuous function on a
direct product of m copies of the unit sphere.
C-continuity of such functionals is a trivial con
sequence of the general theory of measure [2].

Functions defined on functional spaces are traditi
onally called functionals in mathematics. Although
there seems to exist no formal studies of general
non-linear continuous functionals on the space of
abstract measures, it is not difficult to describe a
family of such functionals. Let q denote a generic
element of the unit sphere S around the collision
point (q can be regarded as a unit vector). Let dq
denote the standard integration over S, so that
Idq = 41T. Let E(q) be an energy flow (=abstract

measure on the sphere), so that its value on the
subset peS (=the energy deposited in the
calorimeter cell D) is E(D) = JDdq E(q).

A simplest-linear-functional is

precise whenever needed (not-so-good~ light green
etc.)-very much as in the case of length
measurements. One can view the continuous jet
discriminators as a construction that allows one to
formalize notions like ·'a final state with two and a
halfjets".

The two immediate general questions are:
What are the C-continuous functions?

- How IR-safety relates to C-continuity?

7. C-continuous functions
on multiparticle final states

Let Ei be the energy of the i-th particle and Pi,
its direction (a unit 3-vector). Then a multiparticle
state consisting of n particles can be described as

Idq c5(q,p) rp(q) = cp(p),
s

for any continuous rp. The functionals (2) on such

energy flows can be regarded as functions on
multiparticle states:

The energy flow for such a state is

E(q) = E1 c5(q,Pl)+.. ·+En o(q,pn ),

number of jets in our case) that one wishes to study
quantitatively.#8

#8 Such an algebr~ization may require highly non-trivial
mathematical means, as is the case e.g. with the characteriza
tion of manifolds in terms of cohomology groups etc. The case
ofjet counting, however. is not that diffi~ult. .

5. Physical ob~rvables and C-continuity

One wishes to deal with {lUmeric-valued functions
on a topological space of abstract measures. Where
the topology enters the game? A natural answer is
that the functions have to be continuous with
respect to that topology (C-continuous in the case of
C-topology in the space of energy flows). Let us
understand why.

Recall that there are data errors due to replace
ment of measured energy intervals with a single

. number, and there are rounding errors due to non
ideal nature of computers. One can also, in prin
ciple, measure the same event using detectors with
different geometry of cells. Nevertheless, we would
like that results of our measurements always rema
ined approximate descriptions of the measured ob
jects-within the precision of measuring devices, of
course. One half of this goal was achieved when the
C-topology was identified as a natural topology in
the space of the objects one measures. The second
half will be achieved if one ensures that the reduc
tion of information is' performed using functions
that are C-continuous. This would ensure stability
of the measured nwnbers with respect to data and
rounding errors, change of the detector's geometry,
and small corrections ~n theoretical calculations.

It should be emphasized that whenever such a
stability is lacking (e.g. at the points of disconti
nuity of the would-be observables), then one some
times is likely to measures data errors enhanced by
the instability rather than the characteristics of the
objects one studies. This, bf course, should be
avoided, whence the following

A.·dom of continuity. Physical observables-the
functions used for reduction of information in
physical measurements-must be continuous with
respect to the topology determined by the
measuring devices in order to be stahle against
small variations ofthe input (data errors etc).

The role of the observables continuous in the
above sense may be said to consist in replacing the
rather complex (although, I stress, completely
physical) topology in the functional space of
abstract measures/energy flows with the familiar
continuity of real numbers.

One may argue that in real life one often recurs to
descriptions in terms of discrete values (good and
bad; green, red and blue; etc). But one should not
forget that one can make those descriptions more
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Fm(P) = Fm(EI,PI;···:En.Pn)

= L ... L E il ••. E im fPm(Pil "'"Pim )' (6)
l~ll ~n l~imS;n

It is easy to recognize here an m-particle correlator,
especially if it is rewritten in the following form
with combinatoric coefficients that are immediately
reminiscent of the Bose-Einstein statistics:

additional particles are \\ithin that neighbourhood.
the observable will deviate from its value before
fragmentation by no more than t5 , i.e.
IF(P) - F(P') 1< t5. Note that there is no restriction
on the number ~f particles in the fragmented state
p' . This means that C-continuity imposes a sort of
uniformity bounds on the rate of change (on the
derivatives in the case of smooth functions) of the
component functions Fn -for all n simultaneously.
One can see that by making successive Fn vary
arbitrarily fast while maintaining fragmentation
invariance, one can make impossible existence of
such a neighbourhood for some small t5 .

Problem. If the C-continuity is more stringent
than the perturbative JR safety, what would be a
purely quantum-field-theoretic interpretation of the
C-continuity? (Calorimeters, in the final respect,
are described by quantum field theory, too/).

Note that abstract measures of the form (4) are
dense in the space of all abstract measures, i.e. any
abstract measure can be approximated in the C
topology by discrete measures of the form (4).
Therefore, any C-eontinuous function on Ihulti
particle states can be extended by C-continuity to a
(non-linear) functional defined on all abstract
measures. It is not clear, however, whether there
exist convenient fOnTIS of such generalized C-con
tinuous functionals other than (2), and whether such
general functionals can be useful in applications.
For the purposes of counting jets, it will be suffi
cient to consider functionals of the fonn of multi
particle correlators (6) on energy flows correspon
ding to states with a finite number of particles, (4).

9. Discriminating purely, m-jet states

Once an appropriate notion of closeness has been
found, we can use it to compare multiparticle states
\\lth regard to similarity of their structure. To reem
phasize: using the notion of C-closeness for this
purpose ensures that the comparison 'will be stable
against data errors and rounding errors, variations
in the geometry of detector cells, and small
corrections in theoretical calculations.

We describe a state as having m jets if it is simi-
lar to a state that contains exactly m particles such
that none of them is soft, and such that no pair has
almost collinear momenta. A straightforward at
tempt to count jets this way (based on C-eontinuity)
\vould result in prescriptions similar to the SnO\\
~ass Accord (see e.g. [431). But a naive counting of
jets, as discussed abo\'e, is unsatisfactory in
principle. and we would like to find (C-) 'continuous

(9)

(7)

(8)

E
... ...

xE; ... ; tpm(Pi. "'"Pi ),I m '1 m

For such an observable to be IR safe it should, as a
minimum, be invariant \\ith respect to fragmen
tations (replacement of a particle with two collinear
particles with the same total energy):

Fn(E1, PI;"'; En ,Pn)

= Fn+ 1(E1, PI;" .;zEn,Pn; (1- z)En,Pn)'

Os z S I,

as well as some natural regularity conditions at the
points where the fragmentation invariance is impo
sed [14]. Eq. (9) is, in fact, a boundary condition for
construction of Fn+ 1 once Fn is defined. Fn +1 is
otherwise arbitrary.

To compare this with C-continuity, consider the
states pI whose first n particles are the same as on
the l.h.s. of (9), and that contain additional particles
that are almost collinear to Pn and whose total
energy is (1- z)En . C-continuity implies that for
any 6 > 0 there should exist a small neighbourhood
of Pn on the unit sphere such that as long as all the

where ml, ... ,mk are the numbers of elements in
groups of ide.ntical indices among ~ ,'" ,im (k S m
and ml +.. .+mk = m). Recall that such correlators
are a standard instrument of the formalism of
second quantization (for a systematic exposition see
e.g. [23]) that has been specifically developed for
studying multiparticle systems with a varying
number of particles, which is exactly what is needed
in the case of multihadron final states.

. 8. C-continuity vs IR safety

IR safety within perturbation theory was estab
lished for a wide class of functions on m~ltiparticle

states [14,15]. It turns out that C-continuity is a
more stringent restriction on the form of the obser
vables than the perturbative IR safety.

In general, a function F(P) on multiparticle states
P is as series of component functions Fn --one for
each n, the number of particles in P:

F(P) = F(E1,PI; ... ;En,Pn)

== Fn(EJ,PI;···;En.Pn)·
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numeric·valued observables to characterize the
"number ofjets".#9 .

The starting point of jet counting is the above
identification of the "clearly m-jet states". The
essence of the problem is that one would like to
discriminate between those states and other states in
the continuum with C-topology which is not a
particularly simple object to deal with-there is no
simple and natural norm or distance or other single
valued measure of closeness for the C-topology.
Therefore, we should first consider what are the
most general options available to us.

The wisdom of general topology (see e.g. [4]) tells
us that the single most general option for discri
minating elements of a topological space is to watch
values of continuous functions that take special
values (e.g., 0) on the chosen elements. Therefore,
let Us try to construct C-continuous functions that
are exactly zero on the "clearly m·jet states". A little
further . thought reveals that such states are,
essentially, the states with exactly m particles, and
it should be technically easier to construct a
function that is exactly zero on such states
irrespective of whether they have exactly m jets or
some of the m particles are soft or almost collinear
etc. Automatic fragmentation invariance of C
continuous functions di~tes that such a
discriminator function will be zero on all states with
less than m particles because any such state can be
turned by fragmentations into a state \\-lth m
particles. The conclusion is that a reasonable goal is
to construct, for each m. a C-continuous jet
discriminator J m (P) that is exactly zero on any

state with less than m particles. Then one will be
able to say that if Jm (P) - 0 then P should have

less than m jets. Note that one should then also
expect that J M (P) - 0 for all AI > m .

Another restriction is that one 'would prefer to
look for jet discriminators among the· observables
that have the form of multiparticle correlators (6).
This \-"ould leave open the option of their possible
study by field·theoretic methods.

\Ve are all set up for a decisive step.
Consider a function of the form (6) that is exactly

zero on all states with less than m particles or the
states that can be obtained from those by
fragmentations. It is sufficient to ensure that such a
function is exactly zero on any state with m
particles two of which are exactly collinear. This is
achieved if rp m is zero whenever any pair of its

#9 One should not, of course, expect a priory that there exists,
say, a single function whose values would be close to an
integer n on multiparticle states that are close to those with
eXactly 11 particles. Such implicit assumptions may be very
misleading-in dealing with such an unusual and subtle
problem as jet counting it is essential that one should keep all
options open by trying t() understand and follow the internal
;. .... ,:.:"'" ~J;. .... ,''''' ~ .• "-'~,._.~:..

arguments (that are particles' directions) coincides.
General theorems of analysis [2] tell· one that a
'sufficiently smooth function that has such a
property can be usually represented as a product of
a· factor (a polynomial) that describes the geometry
of zeros and a non·zero function. In our case,
rpm(P,P, .. ·)=O implies that rpm(i'!,P2,''')
= (1- PI' 1'1) x fPm(PbP2.···) where the form of
the nullifying factor is chosen from considerations
of rotational invariance. Since rpm is symmetric in
its arguments. there is a factor of this form for each·
pair of particles. Taking rpm to be a product of

only such factors, one arrives at the following .
expression for the m -th jet discriminator
(J1(P) == 1):

Jm(P) = Jfh{El.,.ih~.·.;E12,Pn) = NmE~':'

x L Eil· .. E im jm(P~ "",Pim)' (10)
I~il <. ..<imsn

where

Jm(Pb···,Pm) = n (1- Pi· Pj)
lSi<js:m

= IT (I-cos8y), (11)
lS:i<js.m

and N m is a normalization. The power of the total

energy of the multiparticle state, E tot = L lsi~n. Ei ,

is introduced to make the discriminators dimension
less. Note that the total energy is C-continuous, and

. the ratio of two C-continuous functions is again C
continuous. The combinatoric coefficients are gone
because the corresponding terms in the sum are
automatically zero due to the properties of rpm'

10. Properties of the jet discriminators

It turns out that the jet discriminators exhibit a
behaviour that seems to make them an adequate tool
for studying multijet structure.

(i) Numerical experimentation shows that the
jet discriminators reach their global maximal values
on the configuration with the energy uniformly

spread over the unit sphere. EpT (q) = E tot (41l')-1.

Then the normalizations can be defined so that the
discriminators vary in the interval (0,1). One finds:
,r ') ,r 27 6"'- N 36 N 93751" 2 = .... , 1. v 3 = 4 = . Ii), 4 = • 5 = 32

= 292.96875, iVa = 45i~~25 = 3559.5703125,

etc#IO. Note that this asymptotic maximum is also
reached on some highly symmetric configura
tions-but is never exceeded.

(ii) Some special values of the jet discrimi

nators are as follows. For the state p;ym consisting

#10 I thank B. B. Levtchenko for a numerical check of the
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of 3 symmetrically arranged particles. J3 (p~ym )

=;~ ~ 0.84. For the sym~etric state of 4 particles

(tetrahedron), J3 (~ym) =1 and J 4 (~ym) = ~~

~ 0.8. For the symmetric state of six particles
(octahedron) one has J3 (p:ym) =J4 (p:ym) =1. It

turns out that the jet discriminators exhibit a
threshold behaviour-their values become close to
the maximal value, I, rather fast and remain stable.

(iii) The discriminators exhibit a region of
stability with respect to almost collinear fragmenta-
tions-this is due to the O(f)2) behaviour of the
factors at small f) .

(iv) The jet discriminators exhibit a monotonic
decrease for the values of m. larger than the
perceived number of jets in the state. This is
explained as follows. # 11 Let the state P consist of
two clusters of particles, each concentrated in a
cone of a small angular diameter f). Then, as is
easily seen from the above explicit expressions,

J3 (P) =D(f)2) (because each triplet of particles
c contains a pair belonging to the same cluster),

J4 (P) =OUr), etc.

(v) The observables of the above form can be
used to study other characteristics of multijet states.
(Note e.g. that one can use one C-continuous
observable as a parameter of another-which gives
one much flexibility in constructing new observab
les.) In particular, the tail of the distribution of
values of the jet discriminators describes the width
of jets: if one insists on assigning a definite number
of jets m to a state, then the (m+ l)-th discriminator
provides a satisfactory numerical characterization of
the average angular width of jets in the state (one

should take the square root because of the O(( 2
)

beha\tiour of the basic factors in the· jet
discriminators).

(vi) The formulae and normalizations
presented above are, in principle, valid for any
process, but they are most useful for the process
e+ e- ~ hadrons. One may need to introduce
modifications in order to make them more
convenient for studying other processes. This can be
done similarly to how the clustering algorithms are
modified in such cases. (Note that it is only at this
point that one should make the assumption of
masslessness of particles in the final states and the
Lorentz-covariance is mentioned the first time.)

In various processes involving hadron beams one
would like to separate the beam jet consisting of the
remnants of the initial hadrons from the true
transverse jets (see e.g. [42,47J). This is easily

#I I f thank Bruce Straub for this important question.

achieved by introducing a factor (1- (pJJ)2) for
each particle in the m-plet in (11), where q
describes the beam direction.

For the deeply inelastic electron-nucleon scatter
ing one prefers to view the process in the Breit
reference frame (see [47] and refs. therein). To this
end it is sufficient to rewrite the above formulae in a
Lorentz<ovariant form. Let pt = (Ei , EiPi) be

each particle's 4-momentum and let P be a 4-vec
tor whose rest frame determines the coordinate sys
tem in which jets are observed (for the detector rest
frame p# =(1,0». Then it is sufficient to replace
E· ~ p.p and E·E ·(1- cosf)··) =p .. p.

~ . t J tj ~ J •

(vii) Computation of· jet discriminators from
data is, in principle, straightforward-one simply
treats each calorimeter cell as an individual particle
in eq. (10) (note e.g. that one does not even need to
determine the momentum and direction of, say, a
lr -meson that lit up a cluster of neighbouring cells).
But it can require considerably more computer
resources than clustering algorithms for final states
with - 100 - 400 particles and m - 4 - 6. How
ever, the starting point here is the well-defmed
explicit analytical expressions for jet discriminators
with a very regular structure that allows a number
of optimizations. The two important optimizations
are as follows. One is to perform the summation a la
Monte-Carlo with each particle receiving a probabi
lity equal to its share of the total energy. The second
optimization consists in a preclustering similar to
the usual clustering algorithms but with very small
Ycut-it is sufficient to reduce the number of partic
les and protojets to - 30 - 50, then further explicit
summations could be done even on a lower-end PC.
Note that preclustering here is only an auxiliary
trick at intermediate stages of the computation
which only needs to be done in defmite cases when
one expects such a preclustering not to distort the
values of the discriminators. The exact details of
such a preclustering can be determined from the
quality of the resulting approximation for jet
discriminators and, thus, are easily controlled.#12

(viii) Lumps vs. jets. As was discussed e.g. in
[28,29], clustering algorithms may sometimes count
"lumps" instead of jets. A lump is a group of soft
particles (Ei - 0) ""ith large relative angles but
erroneously identified as a jet by a clustering algo
rithm. The jet discriminators are insensitive to
lumps by construction because the contribution to

# 12 A study of feasibility of computation of jet discrimin3t0rs
from data is currently under \vay in collaboration with
B. B. Levtchenko (Institute of Nuclear Physics of the Moscow
State l!niversity. borist~'npi.msu.su). Members of jets-related
experimental collaborations are encouraged to contact us.
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jet discriminators from particles whose total relative
energy is 0(5), is always 0(5).

(ix) Higher-order corrections to jet discrimina
tors in the case of 4tr detectors can be computed as
in the case of the total cross sections except that one
cannot perform the Wick rotation-one has to deal
with Minkowskian diagrams and phase-space integ
rations. But this still is a simpler task than in the
case of traditional apprOach because the jet discri
minators differ from the total cross section by a
weight that has a natural, form of scalar products.
Therefore, my opinion based on an experience of
developing methods and algorithms [18-19,21,25,
26,32] that made possible the recent crop of NNL
calculations [20,27,30,31,33-37], is that it should
be possible (if hard) to calculate the NNL correc
tions to the third jet discriminator, and the 5-th
discriminator at the tree level for the process

e+ e- ~ hadrons.·

(x) The importance of small Sudakov correc
tions in the usual clustering algori~s is entirely
due to the discussed instability of clustering algo
rithms (discontinuous yes/no decisions at interme
diate steps) with respect to small corrections. With
jet discriminators, one deals with a weighted cross
section similar to the total cross section. so that the
calculations are greatly simplified as compared with
the usual jet calculations, and the corrections are
adequately resummed using the standard renorma
lization group methods. Therefore, for measuring
the number ofjets per se within the formalism ofjet
discriminators, the issue of Sudakov corrections is
marginal.

But Sudakov-type corrections remain crucial for
studying the tail of the distribution of the values of
jet discriminators (see FigJ 1 above).

(xi) Power corrections. The importance of
studying power corrections in. the context of jet
counting was discussed e.g. in [41]. Because of the
similarity of jet discriminators and total cross sec
tions pointed out above, studying power corrections
can also be done similarly to the latter case. For

instance, in the case of cr tot (e'" e- ~hadrons) the
power corrections' are governed by non-zero vacuum
condensates of local operators (cf. the method of
QCD sum rules; see e.g. [17]). Th~y can be seen
(but not computed!) within perturbation theory by
performing a correct expansion in light quark
masses [22]. The same mathematical techniques
(known as the theory of asymptotic operation [40.
~4,46D can be applied to the case of jet
discriminators to derive the structure of power
corrections. But this requires additional work.

txii) Lastly. I would like to point out that the jet
discriminators are closely related to the usual shape

observables-thrust [5], spherocity [6], acomplana
rity [9], and the non-rotationally invariant moments
and their algebraic combinations of [13, 16]-which
are all C-continuous, as well as to the series of
observabies including energy-energy correlations
[8]-which are not C-continuous. Refs. [13,16] are
particularly instructive because the failure to
construct jet finding observables was due to a few
subtle imprecisions in formalization of the problem
including an unmotivated and incorrect use of the
~ topology. in the space of energy flows

represented as continuous functions on the sphere.

Il.Summary

The formalism of jet discriminators is based on
very few assumptions (correlator-type C-continuous
observables and rotational invariance). It offers a
comprehensive alternative to the clustering appro
ach to jet counting and is devoid of the fundamental
flaws of the latter (which are all due, in the final
respect, to the discontinuous nature of the naive jet
counting and, thus, instability and sensitivity to
otherwise negligible details).

Apart from the natural inertia, and in view of the
flaws inherent to the clustering approach I see no
fundamental reason why the practice of clustering
algorithms should continue in the probiems where
the concept of jets is simply used to tag the events
(e.g. in studies of the Standard Model), except as an
intermediate preclustering optimization' trick in
approximate computation of the jet discriminators
from data, or as a means of a preliminary analysis
of data. The advantages of the formalism of jet
discriminators should be particularly non-negligible
at lower energies and whenever higher precision
and quality of data as well as a better control of
theoretical' uncertainties (due to higher order and
higher twist corrections) are needed.
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