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Abstract

We study the phase diagram of an isotropic six-state chiral Potts model
on a square lattice by means of both exact and numerical methods. The
phase diagram of this model presents many similaritics with the phase dia-
grams of the Ashkin-Teller model or the models studied by Zamolodchikov
and Monarstirskii. A remarkable line globally invariant under a transforma-
tion generalizing the Kramers-Wanuier duality seems to correspond to a first
order transition line up to a bifurcation point where this line splits into two
second order lines. All the numerical calculatious are compared with exact
results which can be performed using a canonical elliptic parametrization of
this model. The bifurcation point is found to correspond to the intersection
of a generalized self-dual line with an algebraic curve. This curve corresponds
to the set of points of the phase diagram for which a non-trivial infinite sym-
metry group of the model degenerates into a finite group of order six. The
agreement between numerical and analytical results is very good.
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I. INTRODUCTION

For a long time the chiral Potts model was seen as a good toy model to understand
inportant physical issucs such as cormmensurate-incommensurate transitions, floating phascs
or the occurence of very rich phase diagrams even for two dimensional systems. The physics
emerging from chirality is far to be understood. This interest materialized with the discovery
of new solutions of the Yang-Baxter equations [or the chiral Potts models [1,2]. These
integrability cascs happened to be the first genus grealer than onc solutions of the Yang-
Baxter equations [3,4]. In the last years particular efforts have been devoted specifically to
the three-state chiral Potts model [5]. Despite its smaller number of pararueters, this model
already exhibits a rich phase diagram and many subtleties [6].

All the known chiral solutions of the Yang-Baxter equations concern models with cyclic
Boltzmann weight matrices. One may ask if any exact result can be obtained for more
general nearest neighbor spin models when one does mot impose this cyclicity condition
anymore. Irom the analysis of the infinite discrete syrametry group generated by inversion
relations such a non cyclic, non symmetric six-state model has been proposed ! [7-9]. This
model, when isotropic, depends only on two independent parameters. An explicit elliptic
paramettization compatible with the symmetries of the model was given [7,8]. The exact
calculation of the partition function using this elliptic foliation remains an open qucstion:
this model is not Yang-Baxter intcgrable, but one may hope getting the partition function
using the so-called “inversion trick” together with this parametrization {10-13].

1I. THE MODEL

We study the two dimensional six-state model, denoted Py in [7], defined by the following
Boltzmann weight matrix:

T Yy z Yy z z
2 Yy z Yy z
w=|¥ 2% =2V (2.1)
¥y 2 2z r z Y
z Yy z ¥y T z
z z Yy z Yy

Parameters z, y and z arc homogeneous Boltzmann weights. From now on we will use
two independent parameters u = y/z and v = z/z. This form (2.1) of the matrix W has a
number of remarkable properties. It is invariant under two involutions. The first one is the
usual matrix inversion I, while the second one is the clement by clement inversion J. These
two transformations [ and J generate an infinite discrete group of symmetries of the model.

Huversion relations have been shown to be powerful tools to analyze the phase diagram of lattice
models and, in particular, to get the critical manifolds of these models when they are algebraic
varieties {10,11,14-19].
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The Boltzmann matrices can be cxpressed as W(x,y,z) = z1 + yA + zB. They belong to
a six-dimensional representation of an abclian subalgebra of the algebra of the non-abelian
group S3 of permutations of three elements. We have the following product laws in this
subalgebra:

A*=1+B, B*=2424+8B, AB=DBA=1+A+B.

The group 53 is known to be the semi-direct product of the groups 7, and Z;. This suggests
that the model could be seen as a non-trivial coupling of an Ising model and of a three-
state Potls model. This can directly be seen on the block structure of the 6 x 6 matrix
W. This phenomenological approach needs to be investigated. In particular, the regions of
the parameter space where Ising behaviour and three-state Potts model behaviour dominate
have to be specified.

Model (2.1) does not show any geometrical “Kramers-Wannier-like duality” [20]. How-
ever this duality is replaced by a set of 24 infinite order collineations intertwining the two
nversions / and J, as the Kramers-Wannier duality does for a usual ncarest neighbor iater-
aciion spin model [7,8]. The phase diagram of a large number of spin models for which the
spins belong to solvablc groups (i.e. Zy o Zp) [22] have been analyzed in the literature
using extensively the Kramers-Wannier duality {20]. Most of this analysis relics on the prej-
udice that the lines invariant under this duality arc critical, at least on an interval, up to
a bilurcation point where it splits into two critical curves. The Ashkin-Teller model can be
seen as a paradigm of this situation [12,23,24]. Tt is tempting, for the six-state chiral Polts
model of this paper, to ask if one could have such an “Ashkin-Teller scenatio”, the Kramers-
Wannier duality being replaced by collineations. The explicit elliptic parametrization can
also help to answer this question.

IIl. EXACT RESULTS

Introducing for this model the variables u = y/z, v = z/z, the explicit formulae for the
inversion [ arc

1: (u,v)—+(

) ) .
—u? —u+ W vu—vi—v

T+u+420—u?—2uv —02" 1 +u+ 20 —u?—2uv 172) ’ (31)

and the involution J reads
) 11
I (u,v) — ——,—) . (3.2)
u’v
The two invqlut'ioxxs I and J generate an infinite discrete group of birational transforma-
tions [7-9]. Noticcably the algebraic expression
(207 4+ 2ou — u? — 2u% — 2uu? 4 viu)(u — v?)?

Alu,v) = (v +u)t(l —u)(1 - v)?

(3.3)

is invariant under this infinite set of birational tranformations. The curves Afu,v) = 6,
where § is some constant, are all elliptic curves. Two remarkable situations occur: for a

finite number of values of the constant § the elliptic curve degencratcs into rational curves
{7,9) and for an infinite number of values of § the curve A{u, v) = § corresponds to points for
which the previous group generated by I and J degenerates into a finilc order group (details
arc given in {7-9]). Among these values of §, two arc of special interest for this paper.
Firstly, § = 5/2 corresponds to the standard Potts line u = v for which one can introduce a
rational paramctrization together with a curve of higher degree that we will not write here.
Secondly, & = 0 corresponds to two branches: u = v?, for which (1J)*(u,v) = (u,v) and
which is obviously a rational curve, and the curve given by the equation
207 + 2vu —u? — 2u® — 20wt +vPu = 0 {3.1)
for which (1.J)%(u,v) = (u,v). Remarkably this last curve is also a rational curve (25). Let
us give here a rational parametrization of this curve:
2+2t—12 242t~
U= —or——— = — (3.5)
22+ 201 (2 +20—1)
Converscly, eliminating t in (3.3), one gets back only to (3.4). Using this rational
paramelrization the two involutions / and J take the very simple form:
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IIt—*;—l, P IZ—*;, (3{))
and an infinite generator J{ reads:
(-1
JI .t —_—.
EFY
It is then suitable to introduce the variable x :
t+1/r
z = —,
t4r
where r = L44. -\4—3 is a sixth root of unity. In terms of the well-suited variable = and the
sixth root r, transformations I and J take a simple multiplicative form:
1 1
[izo5—, J:zrx>5—. (3.7)
re riz )

Let us also recall that the standard six-state Potts line u = v (6 = 5/2), has a ferromagnetic
first order transition point localized at v = v = 1 /(1 + V/6) [12].

On another hand, when a Kramers-Wannier duality exists on an edge spin model, it is
possible to show that this duality, denoted D, actually intertwins [ and J (i.e. I = D=V.J- D),
D being an involution or a transformation of order four [4]. In the case of the chiral Potts
model studied here, it is not possible to find such a geometrical “Kramers-Wannier-like
duality”. Howcever I and J being two birational involutions of two variables, a theorem by
Noether [27] staies ? that [ can be expressed as a product of collineations and J. Actually

2In CP,, the Noether theorem proves that cvery birational automorphism of the plane can be
represented as a praduct of quadratic transformations and a projective transformation. This is
very specific to CP3, the birational transformations in CP,, n > 2, arc much more complicated.
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there exists a scl of collincations (; intertwining the two involutions [ and J (T = C71-J-C;).
This situation gencralizes the one encountered with standard dualities. it turns out that
there arc 24 such collinealions, but the collineation

C ( ) ( 1 —u 1—-w >
o0 (u,v) —
0 B T42u+30" 142u+3v

plays a special rolc. Indced all the 24 collineations C; can be deduced from Cp using 24
different collineations X;q as follows:

C; = Xig-Co .

The Xig's commute with J (Xig-J = J - Xip) and form a group of 24 elements (the C: do
not form a group). This group is isomorphic to the semi-direct product of S5 with Z; x Z,. A
complete list of these collineations C; and X o, as well as a detailed analysis of the structure
of this 24 element group, will be given elsewhere. It is important to note that nonc of the
24 collineations C; is of finile order. However, in the standard Potts imit (u = v) the
collineation Cp reduces to the known involutive dualily transformation [20,21,28]:

l—u
u — .
145u

Thus Cp can be scen as a generalization of the standard duality transformation. The lines
globelly invariant under Cy are the standard Polts line v = v together with the line 2u +
3uv + A = 0 where A is one of the roots of the quadratic polynomial 5 424 — A% = 0.
‘The line corresponding to the negative root (A = —1.449489743) is:

2u+3v=vV6—1. (3.8)

It has an interval belonging to the ferromagnetic physical region of the paramcter space and
intersects the standard Potts model line u = » at the first order transition point. Thus
this line, which is invariant under a generalized duality transformation, can be seen as a
generalized self-dual line. Moreover it can be shown (detailed caleulations will be given
clsewhere) that an argument due to Kardar [26] can be generalized to the Polts model
studied here. This argument shows that the ferromagnetic first order transition point of
the standard Potls model is not an isolated transition point. It also shows that the critical
curve passing by this point has the same slope as line (3.8), and that the transition in the
ncighborhood of the ferromagnetic poiut of the standard model is first order,

Finally it is worth noting that line (3.8) intersects curve (3.4) at a point B where the
symmetry group degenerates into a finite group of order 6. It is likely that point B is a
point of enhanced symmetry and plays a special role in the phase diagram. The location of
this point can easily be found using parametrization (3.5). The value of ¢ corresponding to
the point I is one of the roots of

241% 44865 — 9" — 785 — 1114 —108¢ - 36 = 0.
Using the correct root Ly = 1.580846966 one finds Lthe location of point B:

(up,vp) = (0.3718817401,0.2352420875) . (3.9)

IV. THE PHASE DIAGRAM

In order to determine the phase diagram in the ferromagnetic region of the model defined
by the Bolizmann weight matrix (2.1) we have performed extensive Monte-Carlo simulations.
We always worked on a square lattice with periodic boundary conditions. We found it
convepient for numecrical calculations to use the following parametrization of the (u, v)-plane:

—p 1
wmew(2), v=ew (o).

"The square 0 < u,v < 1 (p > 0) is the ferromagnetic region where the ground-state is
ordered with one single color. The value p = 1 corresponds to the standard six-state Potts
model. In the phase diagram on Fig. | some iso-p curves are presented. On these curves
the energy is well defined as a function of temperature (J, = 0, J, = —p, J, = —1); this
enables us to use different criteria to check equilibrium. Using the Hluctuation-dissipation
theorem 1t 1s straightforward to relate the fluctuation of the energy per spin and a numerical
derivative of this encrgy with respect to the temperature: we systematically discarded all
our results where this relation was not verified with a good accuracy and kept only thosc for
which the complete energy distribution P(F) was reliable. From this distribution at a given
temperatiure and a given asymmetry p, we arc able to exirapolate the energy distribution
in the ncighborhood of a point of simulation using the histogram method in two dimensions
129,30] adapted to our case. Comparison of extrapolations [rom different. simulation points
provides another independent test of equilibrium. When error bars are drawn on a figure they
are calculated as the mean square deviation of the average of fifty independent measurements.
The sizes analyzed in this work are L = 32, L = 64 and L = 128. All calculations were
performed on a paralle! computer of twelve i860 processors. Altogether it rcpresents 3 x 1012
updates.

We first checked the whole procedure on the standard Polts model (p = 1) for which
many quantitics arc exactly known at the transition point in the thermodynarnical limit
[12,28]. Tt provides a comparison for other values of p. For p = 0.8 we found a very similar
behaviour, locating a first order transition very close to the line (3.8). Fig. 2 shows the
energy distribution at the transition point and at a different temperature slightly below
the transition. The bimodal form of this distribution leaves no doubt about the first order
character of the transition.

The situation is very differcnt for a value of the asymmetry like p = 0.5, Tig. 3 presents
the specific heat for different values of I, deduced from the fluctuations. The points are the
results of the simulation, and the lines arc obtained by extrapolation using the histogram
method [29]. The presence of two maxima is clear. The sizc behaviour of the amplitude of
these maxima indicates two transitions. 1t is then necessary to determine what are the order
parameters for these two transitions. The form of the Boltzmann matrix (2.1) together with
the fact that u > v suggest to define the two following order parameters m, and ms:

1
my = 5~

4’12 ;

7

(641.,0 + 60,,1 + 60{.2) - (60‘,3 + 60u4 + 501.5)1 3 (4-1)

1 '
ma = 73 3|0+ Boi2) = (r,2 + bis)] - (4.2)
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" “Parameter m; amounts to identify colors 0, 1 and 2 and colors 3, 4 and 5. Paramcter
m, amounts to identify colors with a difference of 3. The intuitive idea behind these two
parameters is the following. At high temperature the system is invariant under permutation
of arbitrary colors, this is a paramagnetic phase. For inlermediate temperature the full
symmetry is broken and only the exchange of two colors of difference three (0-3, 1-4 or 2-5)
leaves the system invariant, this is a Lwo-color phase. Eventually for low temperature one
recovers a ferromagnetic phase with one dominating color. Fig. 4 presents the two parameters
my and my for p = 0.5 as functions of the temperature T' for L = 64. The order parameter
behaviour is clearly seen and the temperatures for which these parameters almost vanish
coincide with the two maxima of the specific heat. We then performed finite size scaling
analysis to determine the universality class of these two second order phase transitions. The
results are surnmarized on Fig 5. Fig. 5a) shows the raw data i.c. parameter m; as a function
of the temperalure T for differcnt values of L. Fig. 5b) presents the same data using the
reduced variables y = m(T) - L?/* and = = (T — T,) - L/*. The best fit is obtained for the
values # = 0.12, v = 1 and T, = 0.553. Our data for p = 0.5 are thus compatible with
a second order phasc transition of the Ising type (8 = 1/8 and v = 1). T'he question (o
know if Lhe critical exponenis arc fixed along this lower branch B; will be adressed in a
forthcoming publication. Moreover we want to dctermine the universality class of the upper
branch B, that one could expect to be that of the three-state standard Potts universality
class (8 = 1/9 and v = 5/6).

We performed other simulations for intermediary values of p in order to understand
the region betwcen p = 0.8, for which one has a first order transition, and p = 0.5, for
which two second order transitions occur. We used different methods to locate precisely
the “bifurcation” point B wherc the first order transition line splits into two second order
critical lines B; and B,;. The most simple one was to consider the number of maxima
of the specific heat for different values of p. The presence of two maxima indicates two
transitions, while a single maximum indicates only one transition. To address the question
of the order of the transition, we considered the probability distribution of the internal
energy per spin for different values of p and at the temperature where the maxima occur.
Fig. 6 shows thesc distribulions for p = 0.66 and T = 0.6810, for p = 0.70 and T = 0.6967,
for p = 0.74 and T = 0.7132 and finally for p = 0.80 and T = 0.7372 on a lattice of lincar
size I, = 64. These distributions arc obtained by transforming the histogram with respect
to temperature, keeping the asymmetry p constant. Kventually we used a more refined
technique. We measured the fluctuations of the three quantities n., n, and n, which are
the numbers of bonds with Boltzmann weight z, y and z (see (2.1)). For the standard Potts
model the fluctuations of thesc three quantities n,., n, and n, are proportional and exhibit
a sharp maximum at the same temperature. We recovered this behaviour when wc have a
single transition. On the other hand, for cxample for p = 0.5, the fluctuations of n, are
maximurn at the lowest critical point T, while the fluctuations of n, are only maximumn at
the higher transition T, The coincidence of these maxima of the fluctuations of n,, ny or
n, give a criterion to locate the bifurcation point B. Using these methods we found p = 0.68
and T = 0.69 giving u = 0.373 and » = 0.235. This is in good agrecment with the exact
prediction (3.9).

'T'o complete the phase diagram, we also performed Monte-Carlo simulations for other
valucs of p. We payed special attention to p = 0 (u = 1). In this case the ground-state is

!

not of standard ferromagnetic type anymore. Instead it consists of two colors of diflerence
threc in complete disorder. Thus the ground-state has a non zero residual contropy per sp?u.
These ground-states are of two-color type. "Therefore we expect a single transition [?o'mt
located on the upper branch B,. Indeed, we found for p = 0 a second order phase transition
point, thus locating the point A where the upper branch B, intersects the fronti(?r of the
ferromagnetic region with a “semi-ferromagnetic” region (u > 1,v < 1). 'l.‘he coor(’imateS of
this point arc ua = 1, va = 0.133. All these results are sumnmarized in Fig. | which shows
the proposed phase diagram for this model.

V. SUMMARY AND SPECULATIONS

We proposed a phase diagram for a six-stale chiral Potts model. This phase diagram
is reminiscent of the Ashkin-Teller model scenario. A line globally invariant under a trans-
formation generalizing the duality is a first order critical line up to a bifurcation point B
where it splits in two second order branches. The lower branch, at least near p = 0.5 is
compatible with the Ising universality class. Some questions remain to be confirmed and
will be addressed in forthcoming publications. We want to confirm that the two branches
B, and B, have fized critical exponents of the lsing and ¢ = 3 universality class. Kfzeping
in mind the Ashkin-Teller scenario [24] onc may have the prejudice that another bifurca-
tion point occurs in the v > u pari of the ferromagnetic region of the parameter space. A
good candidate for such a bifurcation point is the intersection of line (3.8) together with the
curve 1 = v for which the symmetry of the model is modified. Preliminary results seem
in good agreement with this hypothesis. Finally one would like to sketch the analysis of
the two “semi-antiferromagnetic’ phases v > 1, v < land uw < 1, v 2 1 as well as the
antiferromagnetic region.
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FIGURES
FIG. 1. Ferromaguetic region of the phase di

agram in variables « and . i { =
p = 0.8 and p = 0.5 are presented. o e forp =1,

i —I* 1G. 2‘. ‘Probabililvy <§i4stribution P(E) of cnergy E for p = 0.8 on a square lattice of linear size
= 128.' The curve for Ty = 0.736 is the result of a simulation. The other curve for 7. *AO 7.
was obtained transformiug the first one. ' S

FIG. 3. Specific heat ¢,(T) as a function of the temperature 7' for different
and L = 128 and for p = 0.5. The points are results of the sim
by extrapolation using the histogram method.

sizes L = 32, [ = 64
ulation, and the lines are obtained

FIG. 4. The two order parameters m3(1') and myf

L=t ot forr T) as a function of the temperature 7' for

- The lines are a guide to the oye.

FIG. 5. a) Parameter m,(T) for p = 0.5 as a function of 7 for [ = 32. [
32, 1

. = ()4 b .=
(raw data). b) Same data using reduced variables x and y with B=0.12 v= o=

1 (see text).
TIG. 6. Probability distributions P(E) of energy I for I

- L = 64 near fransiti o
The four distributions correspond to p = 0.66 and T = 0.6810, p = 0.70 and ;Silgnﬁé;{[npcmturf,
and 7' = 0.7132 and p = 0.80 and T = 0.7379. L =007, p=0.74
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