
The problem of macroscopic description of gravity and commonly used approaches
to treat it are discussed. A new setting of the problem is proposed. A full geometric
theory of macroscopic gravity is presented and described.
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The idea of macroscopic gravity can be considered as an extension of Lorentz' idea (1895,
1916), formulated first for electrodynamics, about the existence of two levels, microscopic and
macroscopic, of understanding classical physical phenomena. Lorentz showed that Maxwell's
electrodynamics is a macroscopic theory of electromagnetism, and the Maxwell equations
can be derived from a system of microscopic field equations called now the Maxwell-Lorentz
ones, by averaging them out over space-time regions (see de Groot and Suttorp (1972), No­
vacu (1955) for details and references). Of great physical importance is the motivation for
formulating such a macroscopic theory. Indeed, a space-time averaging means a measure­
ment procedure by means of a measurement system having a defined finite space size and
a measurement time and the averaging is therefore carried out over space regions and time
intervals physically small (Lorentz 1895, 1916) compared with macroscopic distances and
times characteristic of the process under consideration. Thus a macroscopic theory has a
direct observational status and answers the questions of principle of which objects can be
observed in classical measurements of fields and matter characteristics (recall, as an example,
induction in electrodynamics).

The problem of macroscopic description of gravitation is a long-standing problem which
has been posed by a number of authors (Shirokov and Fisher 1962, Sciama 1971, Ellis 1984;
see Zalaletdinov (1993a) for a review). The motivation of a settin~lem within
general relativity came from cosmology where one is usually solving the Einstein equations
with a continuously distributed stress tensor when looking for a cosmological solution. It
implies that a space-time (or, ensemble) averaging of a real discrete matter distribution
(stars, galaxies, etc.) has been carried out. A correct statement of the problem requires
one to average out both a microscopic matter distribution and the Einstein field operator.
It should be pointed out that taking Einstein's equations as the microscopic ones is well­
grounded, for it is these equations that provide an exact solution for the gravitational field
of an isolated point mass (Schwarzschild's solution).

Unlike electrodynamics, however, where the linear field operator of Maxwell's equations
is known to be easily averaged out and the problem to be solved consists in constructing
an electromagnetic medium model (Lorentz 1916), a realization of the programme within
general relativity does require one to overcome severe troubles of both geometrical and
statistical nature. Indeed, apart from the problem of a macroscopic gravitating matter
description, a space-time (or, ensemble) averaging out of Einstein's field operator itself is a
highly non-trivial problem arising due to a non-flat geometry underlying general relativity.
This non-linear character of gravitational field raises, in particular, the question of how to
treat consistently the field's correlations.

All attempts to formulate a macroscopic theory of gravity have been made mainly in the
framework of linearized theory and no results have in fact been achived for a full theory
(see Ellis (1984), Zalaletdinov (1992b, 1993a,c) for a review and references). All the papers
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followed the generally adopted way, evoked by Lorentz's approach to electrodynamics, of
an averaging of Einstein's equations to arrive at the macroscopic field equations and to
construct thereby a macroscopic theory of gravity. Such an approach, however, failed to
give and cannot in fact give a satisfactory solution to the problem since no proposal has
been made about the correlation functions which should inevitably emerge in averaging a
non-linear theory. The Einstein equations itself cannot provide us with a definition of the
correlation functions and they together with the differential equations to find them must be
defined in addition to the averaged field equations.

A new setting of the problem of formulating a full theory of macroscopic gravity has
been proposed in Zalaletdinov (1992a,b,c, 1993a,b,c). Due to this statement one should
study, first of all, the problem of how to average out a (pseudo-)Riemannian space-time
itself, i.e Cartan's structure equations describing the structure of a Riemannian geometry.
While doing this it is necessary to understand which averaged geometrical object - metric,
connection, or curvature - can characterize an averaged space-time. Another important topic
is the splitting of the the averages of products of the objects, being found in averaging out
Cartan's structure equations. This is the problem of introducing the correlation functions.
Upon deriving the structure equations for the averaged manifold, the Einstein equations
which are Riemannian in their geometrical sense and are known to be additional conditions
to Cartan's equations, can successfully be averaged out.

Such an approach to formulate a macroscopic theory of gravity is essentially non-pertur­
bative and provides us with the geometry underlying the macroscopic gravitational phe­
nomena. The geometry of the averaged (macroscopic) space-time is characterized by two
curvature tensors, Mo.(3/o and R°(3/o, being Riemannian and non-Riemannian, respectively,
(the notation and averaging scheme hereafter follow these in Zalaletdinov (1992b); see also
Zalaletdinov (1993c)). The curvature tensor MO(3/0 is the induction tensor and corresponds
to the average symmetric connection j"0(3/. The second one is the average field tensor,
RO{3/6 = f O

(3/6, for another symmetric connection no.{3/. There is a remarkable relation
between the two tensors, which results from averaging the second Cartan equation

Mo. (3ptT = RO {3pu + Qo. {3pu •

The relation is of the form of a constitutive relation between the induction and average field
and the origin of this geometric relation lies in the simple, but non-trivial, geometric fact of
the non-linear definition of the affine curvature in terms of connection, which results in the
curvature determined by the average connection not being equal to the average curvature.
This difference

QO (3pu = 2 < :P(3[pr~u] > - 2P(3[pp~u]

is the field polarization tensor of the form of a correlation tensor with the polarization
potential Ao.(3"1 = po/3/ - n°fh that is an affine deformation tensor in its geometrical meaning.
The equations for A°.B-y

AO Ae AO 1QO/3[pllu] - (3[p ~u] = -"2 /3pu

are shown to be always integrable on an arbitrary averaged manifold and the tensor A 0:{3-y
does therefore exist.

A metric tensor GO /3 compatible with the connection j"0.B/, Go.BII/ = 0, (I and II denote
the covariant derivatives with respect to the connections n° (3"1 and j"o./3/, respectively) and
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thus corresponding to the Riemannian curvature tensor Ma f3'Y1i is considered to be the metric
tensor of the averaged space. The average field tensor Ra /3'YO is non-Riemannian due to the
metric G a /3 is incompatible with the connection na /3'Y' Ga /3I'Y = Na {3'Y where Na /3'Y is the non­
metricity object. The averaged metric tensors Ya/3 i- Ga /3 and ya /3 i= Ga{3 in general and
they are not metric tensors any more, i.e. ga/3grh i- 8;, although the averaging keeps them

covariantly constant, Ya.8I1'Y = 0, g~~ = o. Nevertheless, one can always put (Zalaletdinov
1992c, 1993b,c)

9a(3 = Ga (3.

The covariantly constant symmetric tensor ga{3 is then an object of the theory, the pres­
ence of which makes the macroscopic space-time be reducible due to a theorem proved in
Zalaletdinov (1992b, 1993c). The theorem gives a classification of all possible macroscopic
space-times according to Petrov's types of the induction tensor and kinds of the macroscopic
metric tensor reducibility.

In a 4-dimensional space-time there are three correlation tensors, the correlation 2-form

with Qa{3'Y>' = 2Zli f3ba ~>.], and the correlation 3-form ya (3blJ1!.O' (}~7t'] and 4-form x a f3bJ.l1!.O' ()~7t' r cpt/l]

which are defined similarily (Zalaletdinov 1992b,c, 1993b,c). It is a remarkable fact that the
number of the tensors is finite due to a finite space-time dimension. These tensors are
constructed from the connection coefficients and are the functions of a space-time point
x (it means that the theory proposed is that of the equilibrium macroscopic gravitational
processes; for a non-equilibrium theory (Zalaletdinov 1993e) it is necessary to introduce the
many-points correlation functions, which become the correlation functions presented here in
the case of all agruments coincidence). In their geometrical sense the correlation functions
are non-trivial generalizations of the concept of the affine curvature tensor and there are the
structure equation for the 2-form za,8[/'~D']

1 a:F1J 1Ra :F-P 1 lJ:Fa 1RIJ :F-a+"2 < r f3bD' 1!.>'] > -"2 f3["(0' ~>'] - "2 < r vbu ~>'] > +'2 vbu ~>']

and the structure equation for the 3-form ya f3b
lJ1!.O'(}~7t'] (Zalaletdinov 1992b,c, 1993b,c),

both of them being integrable on an arbitary averaged manifold. It is the structure equa­
tion for za /3blJ1!.D'] that is simultaneously a splitting rule for the average of the product
< r a (3bu.r1J1!.>'] >, to enable one to average the differential Bianchi identities out. Given the
correlation 4-form x a .8bJ.'1!.D' ()~7t' T cpt/l] and the correlators in the right-hand side of the structure
equations (see Zalaletdinov (1992c, 1993b,c) for details), these are the differential equations
to find them.

It should be pointed out that the geometry of averaged space-time with a metric, two
curvature tensors, two connections, and three correlations tensors (for a 4-dimensional space­
time) is a new geometry being a non-trivial generalization of the metric affine connection
geometries and it is the geometry that underlies the macroscopic theory of gravity.

To average out the metric structure equations and the Einstein equations it is necessary
(Zalaletdinov 1992b,c, 1993b,c) to assume the following splitting rule for the average of a
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covariantly constant tensor Ct.::· times the connection coefficients:

<:FOI Cit... >=]:01 Cit .
f3; v... /3; v .

< r Ol f3;>.ge p > -Ra /3i>.ge
p = -2Za

f3(-Y e~>'Jgc5p - 2Z
a

/3hP~>'Jgec5

(and there is similar one of course for the covariant metric tensor). This rule is of great
physical importance, for it is the only rule needed for the Einstein equations to be averaged
out. The result is the macroscopic field equations

which is always true due to the error done being less than that of averaging. Then the
rule for splitting the average of metric times curvature can be derived (Zalaletdinov 1992b,c,

1993b,c)

GaeM _! "aQltvM __ Ta(macro)
e{3 2u/3 ltv - K, (3

where the macroscopic stress tensor T;(macro) is of the form

T a(macro) _ < tOl(micro) > _(za +! "aQ )-ItV + uaeM _ !caUltv M
K, {3 - It {3 J-lv/3 2°/3 ltv 9 e{3 2 (3 ltV,

the stress tensor being conserved with respect to the connection j:a /3i

Ta(macro) - 0
f3l1a -.

Here za Itv{3 = 2Za It[e e!!,B] is a Ricci-tensor like object for the correlation tensor, Q IlV = QeItve,

and < t~(micro) > is the averaged energy-momentum tensor. The covariantly constant tensor
U a {3 = ga{3 - Ga{3 is determined due to a theorem (Zalaletdinov 1993c). Though somewhat
unexpected, the result is natural: a space-time averaging out of the Einstein equations brings
the Einstein equations again for the induction Ricci tensor defined through the macroscopic
metric, and a macroscopic stress tensor includes, in addition to the averaged matter, the
correlation tensor terms for the geometric correction of the averaged matter. It is remarkable
that the macroscopic Einstein equations can be put (Zalaletdinov 1993d) in the form of
Hooke'law

with Ma Itv{3 - zaItvf3 and oa/3 being as the tensor of elastic moduli and the deformation tensor
of the macroscopic space-time, respectively.

The correspondence principle for the theory has been formulated in Zalaletdinov
(1993a,b,c). It reads that the macrovacuum equations

M a /3 = Qa{3 -aeQ za -J1.V
9 {3e = J1.v{39

become Isaacson's equations (Isaacson 1968)

M - T(GW)
a{3 - -It a{3
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in the high-frequency limit. As a result, the correlation tensor QIJv = 2Zo IJ[v e:~e:b which serves

as the macrovacuum source and is equal to _~T~~M-r) in the high-frequency limit, has been
established to describe the energy momentum of the macrovacuum gravitational field. Thus,
in the macroscopic theory of gravity there is the tensor object for the energy momentum of
macroscopic gravitation

_ TOI.(grav) _ (ZOI. + ~ COI.Q )-IJV
K, (3 - IJv(3 2 u(3 IJV 9 ,

due to the conservation of the macroscopic stress tensor T;(macro) the following equation of
motion for the averaged matter holding

tOl.(micro) (Ze: 1Q )-tW
~ < (3 >1101.= /Jv(3lle: + 2" IJvll(3 9 .

Indeed, a simple consideration shows that after being summed up in averaging out over a
space-time region the gravitational field energy becomes localizable and can be treated, as a
consequence, by a tensor object. As a matter of principle, this fact has first been established
by Isaacson (1968) within the high frequency approximation for general relativity. The full
macroscopic theory proposed has provided a general solution for the problem.

Thus, a solution for the problem of the macroscopic description of gravitation has been
found only along the geometric line of consideration. A rich geometric structure turned out
to govern the field correlations and a new geometry which generalizes the Riemannian geom­
etry of the space-times in general relativity has been established to underlie the macroscopic
gravitational phenomena and describe thereby the structure of macroscopic space-times. The
role of the correlation tensors in the evolution of Universe and in the large-scale structure
formation is under study.
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