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Abstract

Jens V. Villumsen t

The development of a new Smoothed Particle Hydrodynamics (SPH) method, called
Adaptive Smoothed Particle Hydrodynamics (ASPH), generalized for cosmology and
coupled to the Particle Mesh (PM) method for solving the Poisson Equation, for the
simulation of galaxy and large-scale structure formation, will be described. The ac
curate numerical simulation of the highly nonlinear phenomena of shocks and caustics
which occur generically in the process of structure formation requires enormous dy
namic range and resolution. Previously existing numerical methods require substantial
modification in order to achieve the required resolution with current computer tech
nology. The ASPH method incorporates new, adaptive, anisotropic smoothing and
shock-tracking algorithms, which significantly enhance the resolving power of the· SPH
method. We describe tests of ASPH versus SPH against the difficult cosmological pan
cake collapse problem. All cosmological hydro methods should be required to reproduce
this test. High resolution 2D simulations of galaxy and large-scale structure formation
in the Hot Dark Matter (HDM) model are presented using ASPH, showing that ASPH
can resolve pancake shocks with fewer than 40 particles per pancake per dimension.

1. Introduction

What must the capabilities of a successful cosmological hydro method be? Most
theories of gala.xy formation assume that structure formed when initially small amplitude,
primordial density fluctuations grew by gravitational instability to nonlinear amplitude l .

Such primordial density fluctuations and gravitational instability lead to gravitational col
lapse, strong shocks, and radiative cooling, occurring over an enormous range of mass and
length scales. Shocks, in fact, are the principal mechanism by which gravitational motions
are dissipated so as to make formation of bound, star forming objects possible.

Nearly 1D, plane-symmetric collapse to form structures known as cosmological pancakes is a
generic feature of the nonlinear growth of a 3D spectrum of density fluctuations. While more
complicated structures also arise, the pancakes provide us with an example of a minimally
complicated flow which all cosmological hydro methods must be capable of reproducing.
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1D pancake calculations2 show that, in the absence of radiative cooling, a dynamic range
of more than 103 in density and in length scale is required to resolve even a single pancake.
With radiative cooling, the dynamic range increases to more than 105 .

Are existing numerical hydro methods adequate? No. In order to achieve the
dynamic range described above, necessary to follow randomly oriented pancake collapse,
a 3-D, Eulerian grid (Le. fixed spatial grid, uniformly spaced, nonadaptive mesh) must
have more than 103 cells per dimension, or 109 cells, per pancake for simulations without
radiative cooling and more than 105 cells per dimension, or 1015 cells, per pancake with
radiative cooling! Current Eulerian methods are limited by existing hardware to ~ 102

cells per dimension.

Existing Lagrangian hydro methods such as SPH would seem to be a more promIsIng
alternative, since they, in principle, adjust their resolution dynamically to follow the flow.
Cosmology simulations with SPH have typically used a nurnber of particles Ngas rv 323 or
less, however. (Simulations with Ngas =643 have recently been reported, but with dynamic
range limited by imposing a minimum smoothing length.) As we shall demonstrate, this
limitation and the requirement that artificial viscosity be used to treat shocks has kept the
capabilities of this method below the level required.

In what follows, we describe the development of a new version of SPH called Adaptive SPH
(ASPH) which greatly enhances the dynamic range and resolving power of SPH to levels
which promise to resolve the shocks which are generic to galaxy and large-scale structure
formation flows.

2. Standard Smoothed Particle Hydrodynamics (SPH)

The SPH method3 is a Lagrangian numerical hydrodynamics method which replaces the
continuous baryon-electron fluid by a set of discrete gas "particles" which carry mass and
thermal energy and move with the local flow velocity. The particles are essentially moving
centers of interpolation for representing the continuous flow variables. As such, they elimi
nate the need for a numerical grid or the interpolation back and forth between particles and
grid. The principal virtue of this method is that, as a Lagrangian method, it has numer
ical resolution which dynamically adjusts so as to follow the compression, expansion, and
distortion of the flow. It has demonstrated great success in a wide variety of astrophysical
flow applications.

Isotropic Smoothing Length. The resolving power of the SPH method is related to the
"smoothing length" h used for its interpolations, which defines a spherical "zone of influ
ence" centered on each particle. Initially, this h = ha, the mean interparticle spacing (or
twice this). In order for the resolution to adjust dynamically to accommodate a changing
gas density, the smoothing length must vary in time and space as a function of that density.
Ideally, the variations of h should be such as to maintain a constant number of "nearest
neighbor" particles, those within a distance of only a few smoothing lengths or less from a
given particle. The interpolations which SPH performs in order to evaluate fluid quantities
and their gradients anywhere within the computational volume involve sums over the values
of those quantities known at the irregularly spaced positions of these "nearest neighbor"
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particles, weighted by a kernel function W, an isotropic function of the smoothing length,
or its gradient. For an isotropic Gaussian kernel W in 3D,

where h is a scalar which varies in space and time according to one of two choices,

(1)

p = i or j , (2)

where Pi and Pj are the density evaluated at the location ri = (Xi, Yi, Zi) of particle i and
the location rj = (Xj, Yj, Zj) of particle j, respectively, rij = Iri - rjl, and Po is the initial
mean density. The "nearest neighbor" particles are taken to be all those within a distance
rij ~ 3h of particle i.

Artificial Viscosity. Artificial viscosity must be introduced in the standard SPH equations
in order to prevent particle trajectory crossing and allow shocks to form.

3. Adaptive Smoothed Particle Hydrodynamics (ASPH)

Standard SPH suffers from the following two limitations which become particularly serious
in the generic flows which occur in the formation of galaxies and large-scale structure,
involving gravitational collapse through orders of magnitude of compression and strong
shock waves:

1) The isotropic variable smoothing length is valid for nearly isotropic compressions or
expansions, but breaks down in the presence of strongly anisotropic compression such as in
pancake collapse.

2) Shocks require artificial viscosity, but gravitational collapse then results in false "preheat
ing" of supersonically infalling gas, far outside of the actual shock location. This artificially
spreads out the shock-heating and can be disastrous for calculations which include radiative
cooling, for example.

We solve these problems by (1) replacing the isotropic kernel and smoothing length by a
fully adaptive, anisotropic kernel and tensor smoothing length H which tracks the anisotropy
of fluid motions; and (2) tracking the shock and restricting the viscous heating to particles
at the shock, as described below.

Anisotropic smoothing tensor H. In standard SPH, the zone of influence of a given particle
is a sphere centered on that particle, with a radius of order a few smoothing lengths. The
spatial resolution in this region of the fluid is given by the smoothing length, and is therefore
isotropic. However, in situations involving strong anisotropy, such as ID or 2D collapses, the
resolution required in order to adequately describe the physical system strongly depends on
direction. To solve this problem, we introduce the concept of anisotropic smoothing tensor
H. In this new formalisnl, the spherical zone of influence of a given particle is replaced by
a triaxial ellipsoid. Each ellipsoid is defined by a triad of mutually perpendicular vectors,
the semimajor axes of the ellipsoid, which have three components each. We refer to this
ensemble of nine components as the H-tensor of the particle. The H-tensors are dynamically
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evolved by the ASPH code using the components of the deformation tensor 8Vi / ax j to follow
the local deformation and vorticity of the flow. In ASPH, the 3D Gaussian kernel is given
by

(3)

where rij = ri - rj, WI and W 3 are the ID and 3D Gaussian kernels, respectively, hI = IhII,
h2 = Ih 2 1, and h3 = Ih 3 1are the semimajor axes of the ellipsoid, and x', y', and z' are the
projections of rij along each of these axes. This technique has three strong advantages over
standard SPH:

1) The resolving power of the SPH equations in regions with strong anisotropy can be
increased by orders of magnitudes.

2) The H-tensors track the motion of the flow, and consequently each particle keeps roughly
the same set of neighbors for many timesteps. This implies that the usually costly nearest
neighbor search need be done only occasionally instead of at every time step, resulting in a
large speed-up of the algorithm.

3) Caustics and shocks in the flow can be predicted to occur whenever a particle's H-tensor
ellipsoid shrinks along one of its axes enough to make the volume go to zero. This forms
the basis for our shock tracking algorithm described below.

Shock Tracking and Artificial Viscosity. The evolving H-tensors track the local deformation
of the fluid. Without artificial viscosity, particle crossing would occur whenever a particle
encounters a shock, and this would result in an "inversion" of the H-tensor for this particle,
with the shortest axis shrinking to negative values. The ASPH method makes use of this
phenomenon by turning artificial viscosity on only for particles whose H-tensor is about to
undergo this inversion. This automatically restricts artificial viscosity to just those fluid
particles which are actually encountering a shock.

4. The Pancake Collapse Test Problem

We focus in what follows on a tough test problem, that of the gravitational collapse of a 1D,
plane wave density fluctuation in a universe comprised of baryons and collisionless dark
matter. This is the cosmological pancake problem, in which an initially linear amplitude
density fluctuation grows to nonlinear amplitude, forms a caustic in the dark matter distri
bution located in the plane of symmetry of the pancake and strong accretion shocks, one
on each side of this central plane, followed by continued infall, phase-mixing of the dark
matter, and radiative cooling of the shocked baryon-electron plasma. Detailed, ID numeri
cal solutions for this problem already exist2,4,5, as do approximate analytical solutions, for
comparison.

The initial condition is just that of the growing mode of a I-D, sinusoidal, adiabatic, plane
wave, cosmological density fluctuation of comoving wavelength Ap in an Einstein-de Sitter
universe. The perturbed comoving position x of the mass element whose unperturbed
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position is q is given by
b(ti) , . 27rq

X =q - --.1\ sIn-
27r p Ap

at initial time t = ti at which the amplitude b(ti) ~ 1. The initial density is given by

and initial peculiar velocity is given by

H (a.) -3/2 27rq
Vx = -~Ap ~ b(td sin --;-,

27r ao .l\p

(4)

(5)

(6)

where a is the cosmic scale factor, ai = a(ti), ao = apresent = 1, Ho is the Hubble constant,
and p(td is the mean density at ti. The perturbation is given to both the baryonic and
dark matter components. A dark matter caustic forms at x = q = 0 and shocks form just
outside the center, at time tc and a = ac = adb(td]-l For the pancake test runs, we have
taken f!tot = 1 = f!VM + f!b, with f!VM = f!b = 0.5, hO = 0.5, ai = 1/28, ac / ai = 4, and
units in which Ap = 1. Radiative cooling is neglected.

4.1. ID Results: ASPH vs. Standard SPH

We begin with a 1D, plane-symmetric version of both the ASPH and the standard SPH
methods, in which the particles may be thought of as plane sheets, and gas and dark
matter particles are of equal mass. These 1D calculations are pseudo-3D, in the sense that
the smoothing length for standard SPH varies according to h <X p-l/3, while the ASPH
tensor H component along the collapse direction (evolved using 8v / 8x) varies as hx ex: p-l.
We consider a range of gas particle numbers, Ngas (Le. resolutions), distributed across one
period Ap , in a sequence of independent runs.

Figure 1 shows a comparison of the ID SPH and ASPH results plotted against the analytical
solution for a time-slice a/ac = 1.5, well past the time of shock and caustic formation. This
figure shows how the two flaws of SPH described above (inability to track a I-D planar
collapse with an isotropic h ex: p-l/3, and artificial viscosity preheating) force the method
to require an enormous value of N gas to match the analytical solution while ASPH does
better with very much smaller N gas .

4.2. 2D Results: ASPH vs. Standard SPH

Our ASPH method, in principle, can automatically identify and adjust to accommodate
a pancake collapse and shocks along any direction, not known a priori. Testing this fully
requires at least a. 2D calculation (i.e. in this case (x,y) Cartesian coordinates). We,
therefore, reconsider the pancake problem, except we solve it using a 2D version of the
SPH and ASPH methods, respectively, and solve the gravitational force problem by using
a standard Particle-Mesh (PM) method6,7. For 2D SPH, the smoothing length hex: p-l/2.
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Figure 1. Gas temperature (in computational units) for ID pancake test at ajac = 1.5. Numerical
results (open circles) and exact ID solution (solid line).
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Figure 3. 2D HDM results at z = 0: ASPH gas particle positions. Small box is enlarged in Fig. 4.

Tilted, Shifted Pancake We consider a square box with periodic boundary conditions and
one edge-on pancake of wavelength Ap = Lbox/V2, oriented with .its symmetry plane (i.e.
density maximum) at 450 with respect to the walls of the computational box, and shifted
away from the box center. We take Ngas = NDM = 64 x 64 = 4096 particles of each
type (equal mass particles) with initial positions displaced by the perturbation away from
the same square uniform lattice. This is designed to test that ASPH can adjust to follow
the anisotropic collapse of the pancake regardless of its orientation. (NOTE: In this case,
given the 450 angle of tilt, there are now only 22 gas particles per row perpendicular to the
pancake to resolve the flow for each side of the pancake central plane.) The PM calculation
uses a square lattice grid with 128 x 128 = 16,384 cells per box.

Results are shown at time-slice a/ac = 1.5, along with the exact solution, in Figure 2. The
ability of ASPH to match the analytical solution with no preheating and with the slope of the
postshock profiles in agreenlent over orders of magnitude of position and density variation
is in contrast to the standard SPH results which show preheating, shock spreading, and
poor postshock profile fitting.
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HDM (small dots), gas (other symbols) with temperature bin indicated [computational units=

T(O ]()/2.57 X 109]. (Lower panel) H-tensor ellipses (axes scaled by 0.15)
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Figure 5. Line "cut" thru pancake in Figs. 3 and 4, with gas particles (open circles) and analytical
pancake solution (line), for one side of pancake central plane only. Distance units have Lbox = 1.

5. 2D, Cosmological Hydro Simulation Using ASPH/PM: HDM Uni
verse

We apply our ASPH method in 2D to simulate the growth of large-scale structure in a
universe dominated by HDM, with density fluctuations given by Gaussian random noise
based upon a Harrison-Zel'dovich primordial power spectrum (n = 1) with amplitude fixed
by the COBE satellite detection of CMB anisotropy. The HDM power spectrum we use
is P(k) = < b~ > = Akn +1 10-1.5(k/kD ), where kD = 27r/AD, AD = damping length ~

13 Mpc(!1h2)-1 (i.e. 2D power spectrum is same as 3D, but multiplied by 2k-equal rms
bpip for equal fluctuation scale length).

We take h = 0.5,!1 = 1, !1DM = 0.9375,!1b = 0.0625, Nparticles = 512x512 = 262,144 total,
N gas = 128 X 128 = 16,384 particles, with initial positions perturbed away from a uniform
square lattice in a simulation box of side Lbox = 200 Mpc with 1024 X 1024 PM cells and
periodic boundary conditions, at initial redshift Zi =24. The initial density fluctuations are
represented as the superposition of plane wave perturbations with random phases including
all wavevectors which satisfy periodic boundary conditions with dimensionless wavenumber
k = Lbox I A in the range 1 :S k :S 256. Radiative cooling is neglected.
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5.1. Results: ASPH resolves Pancakes

We show gas particle positions at z = 0 in Figure 3, indicating the prevalence of pancake
like structure (in 2D, lines are edge-on pancakes), along with edge-on filaments and clusters
at pancake intersections. The small box in the upper left corner, centered on one such
edge-on pancake, is enlarged in Figure 4, showing both dark matter and gas particles in
the top panel and the anisotropic smoothing tensor ellipses surrounding each gas particle in
the lower panel. The temperature sylnbols for the gas indicate that the two pancake shocks
are sharply resolved with a separation of order 10-2 times Lbox with the hottest immediate
postshock particles forming two plane layers between which are cooler, previously shocked
gas particles, as expected for pancake collapse. To show how well the ASPH results resolve
pancake shocks like this, including the postshock profiles, we have plotted in Figure 5
the temperature and density for particles located in a '"cut" thru the pancake, in a band
centered on the line segment shown inside the small box in Figure 3, drawn perpendicular
to the pancake central plane, versus logarithmic distance measured perpendicular to that
plane. We use the gas velocity profile in the numerical data to identify the location of the
shock, the pancake wavelength, and the bulk peculiar drift velocity of the entire pancake,
and plot the exact ID solution for such a pancake against the numerical results. The
numerical results provide a remarkably good match to this idealized ID pancake solution,
indicating that ASPH succeeds in resolving pancake shocks on scales of order 10-3 times
Lbox! This required fewer than 40 gas particles per dimension per pancake. Our simulation
took approximately 10 hours of Cray Y-MP time running at 153 Megaflops.
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