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Abstract.

We study the_low-energy pan of the spectrum of a version of the t - J - V - V' model with

a strongly anisotropic antifenomagnetic exchange term. We perturb around the half filled state

and work in the large f limit. We argue that one can suppress phase separation by·tuning the

parameters in such a way as to exactly balance the attractive. part of the exchange interaction

and to escape the conclu~ons of Kivelson, Emery and Lin. We rigorously show that in the

energetically most favoured states, two holes of opposite spin form a bound state. The binding

mechanism is dynamical and relies on the interplay between the kiitetic and magnetic terms

in the HaIniltonian. Phase separation is suppressed because the leading effective interaction

between holes depends on the hopping term and attraction is enhanced by delocalization. We

.also propose a model of a valence bond solid for which the attractive part of the exchange

interaction is. not balanced, holes bind in pairs and phase separation is suppressed for purely

geometrical reasons. Our mathematical results are proven by explicitly block diagonalizing the

.Hamiltonians by means of a rigorously controlled cluster expansion algorithm not yet used in

this context.
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1. Introduction.

-The discovery of high-Tc superconductors triggered-renewed interest in the problem of the

motion of holes in an antiferromagnetic background. Of the models retaining the- physically

significant features of the general problem, the t - J model and its variants have been singled

out [1], [2] as among the most basic models describing the behaviour of hard core electrons on

a lattice. The Hamiltonian we choose has the following form:

L t(c:u Cyo- + h.c.) + Vi L nzny·
(1,IIZ-IIII1=1 liz-yilt=2

(1.1)

The plain t - J model cOlTesponds to the case V =- J and Vi =0 and can be obtained by

extrapolating to arbitrary ratios of j- a Hamiltonian directly derived from the Hubbard model
,

at strong coupling. Expansions around the classical limit t == ~ =0 are particularly appealing

because of the apparent simplicity of this case. However, this approach requires a careful tuning

of the parameters in the Hamiltonian in order to avoid the-phase separation of the ground state

into hole rich and-hole poor regions which can occur even in the dilute limit. The difficulty of

the problem is well illustrated in the paper [3] ofKivelson, Emery and Lin, who show, by means

of a perturbative calcUlation truncated at the leading order, that if t and l are small enough and

if Vi = 0 then various kinds of phase separation occur. These authors consider all values of V,

with the exception of the critical'value V = J. Their result gave rise to an as yet unresolved

controversy with various other groupsperf~ngnumerical work with high temperature cluster
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expansions and with exact diagonalizations, and whose results suggest the existence of both a

phase separated and a superconducting 'regime for f < 1; see Putikka et al. [5], Dagotto et

al. [6], Prelovsek and ~tos '[7]. The last group also observes an intermediate kind of. phase

separation which occurs in a precursqr phase to superconductivity and in which holes lineup

and form domain walls.. Both kinds ofphase separation have been experimentally observed [8],

[9].

The main body of this paper contains Ii technical discussion of a cluster expansion algorithm

which is well suited to a rigorous as well as to a numerical analysis of this class of problems and

allows one to systematically block diagonalize the Hamiltonian. Each block can be interpreted

as the effective Hamiltonian controlling the interaction between a certain set of quasiparticles.

This allows us to compute properties of excited states ,and of holes such as the dispersion

laws for isolated quasiparticles and to study the interaction between quasi-holes and spin-wave

excitations. We illustrate this formalism by studying the problem of deriving the reduced

Hamiltonian for a pair of holes and proving the existence of a bound state. Although the

analysis of this algorithm is our main concern, we cannot avoid a heuristic discussion of the

problem of phase separation. In fact, if the effective interaction between holes is of a kind that

favours phase separation, then bubbles ofholes fonn even in the diluted limit, and a two-particle

calculation is not sufficient to describe the relevant physical properties. Since we are not able

to substantiate our arguments on phase separation with rigorous proofs, yet, we present our

discussion of this question in Appendix B. Our conclusion is that if one chooses the coupling

V to lie within a cusp in parameter space such that IV - JI :5 0(t2), then the occurrenc~of

~hase separation is decided by the next neighbour coupling V'; see Fig. 2 in Appendix B. In

the limit of small t and small'~ we can distinguish four different phases. In the first and in

the fourth phase, holes phase separate in bubbles, in the second one domain walls appear, and

in the third phase a balance ~f opposite effects is reached which stabilizes a superfluid .state of

tightly bound hole pairs. , Phase separation in bubbles occurs because the l~ading interaction

between holes is static, i.e. velocity independent, and, as a consequence, holes are e~pelled

from the antiferromagneticinsulator. In our scenario, bubbles and domain walls evaporate in
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the superconducting phase because the leading interaction term in the effective Hamiltonian

depends on the hopping and binding between two holes is enhanced by the delocalization of

the pair. This is the "dyn~c binding mechanism" referred to in the title of this article. The

superconducting phase is located near the crossover region between two phases corresponding

to two different types of long range order in the phase separated bubble. The resulting frustration

effect makes the otherwise sublead.jng interaction teon giving rise to dynamic binding become

the dominant term. An alternative mechanism to escape phase separation which has been

proposed in [10] involves long range interactions. Long range Coulomb interactions cannot be

neglected in a model that is designed to give a realistic accountof the physical situation and they

certainly might playa major role in the problem. However, an explanation of high temperature

superconductivity based on the frustration of phase separation due to long range interactions

is problematic because of the competition ,between superconducting and charge density wave

instabilities [11]. We thus think that it is wonh investigating whether the superftuid phase we

find at large f and large f, and which is controlled by dynamic binding, can be continued to the

physically relevant parameter region. We are presently investigating this question numerically

with the help of the algorithm described in this article and plan to discuss the results in [12].

A second direction worth exploring is illustrated by a Valence Bond Solid (VBS) model of

strongly correlated electrons that we also study in thisatticle. In this model, phase separation

is suppressed by the special geometry of the lattice. This model is also interesting from the

technical point of view because it gives us a chance to illustrate our zero temperature expansion

at work in a situation with a "bulk" sign problem. That holes bin" in spin-singlet pairs in models

of this type has been argued previously in [22].

The model Hamiltonian ,in (1.1) is defined on a large cube A C Z2 with periodic boundary

conditions. The Hilbert space is rt:J = P S .~zEA c3,. where Psis the projection onto the

subspace which is invariant with respect to global spin flips. As a basis for C3 we choose

I1 }, I ! }, Ie}, where e means "empty". Doubly occupied sites are thus excluded. Fixing the

energy units in such a way that J = 1, the parameter region we explore has both the transverse

coupling ,\ and the hopping amplinide t small compared to J. The number of electrons is taken
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to be equal to IAI minus one or two, i.e., we study the problem of the propagation of one hole

in the background of a half-filled antiferromagnetic insulator and the interaction betw~n two

holes. For a system with two holes, the results depend on whether the spins of the two hqlesare

opposite or parallel. For holes with antiparallel spins we show that binding occurs.

Because we choose V ~ J, there is noexplicit attractive potential of order J. Hence, even in

the limit of small ,\ and t, binding is due to an interplay between the kinetic and the magnetic

terms. The reason why holes tend to Qind is related to the obstruction of independent motions

by an antiferromagnetic background. In fact, as a single hole moves it leaves behind a trace

of frustrated spins unless it performs rather complicated paths to reshuffle the disturbed spins

back into place; see for instance [19]. Within a small t expansion, the amplitude for hopping

of an i~olated hole is of order t6• However, a pair of holes has an amplitude for hopping of

. order t2, provided the two holes simply follow each other. The understanding of these string

effects and the construction of mathematical algorithrils for their analysis are important for

the development of quantitative methods to study such magnetic systems. The Brinkman-Rice

approximation [13] in which one sums up only self-retracing paths and extrapolates to J =0,

and variations of it [14], have been instrumental in approximately computing Green's functions

in closed form. The numerical evaluation of the exact series expansions would be useful to

validate.the conclusions of these approximate treatments. It would also be interesting to be

able to gather information on the quasiparticle structure that can be used to enhance the signal

of Quantum Monteearlo calculations which suffer from the infamous "sign problem" and from

the smallness of the wave function renormalization factor; see for instance [15]. In this paper,

w~ develop a cluster expansion whose convergence can be proven rigorously and which gives

,a method for constructing the effective reduced Hamiltonians for any finite number of holes by

integrating out the spin degrees of freedom. With the same method, we can also produce an

expansion for the exact creation operator of dressed quasiparticles. A rigorous analysis of such

methods is presented in this article. We explicitly compute the series expansions to leading

order, prove their convergence and show that, in the two-holes-sector, these quasiparticles are

bound in the ground state.
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Dressing transformations [16],[17] are the technical tool we use to carry out ourprogram. This

technique is also useful in the study ofquantum spin systems such as the doped t- J - V - V''

model for which there is a sign problem,'Le. for which the ground state wavefunction 'PO and

the statistical weights in the partition furiction are not positive. In such a,situation, one cannot

write 'Po as exp(-h), where h ~ -In 'Po can be interpreted as the short ranged Hamiltonian of

a statistical physics problem, in order to unravel the clustering properties of 'Po. A more general

[16] way ofrepresenting the ground statewavefunction is to write it in the form 'Po = exp(R)10},

where 10} is the unpenurbed ground state, the Neel state in the case of the Heisenberg model,

and IR is an operator which is short ranged and is translation invariant if so is the Hamiltonian.

In a sense, IR plays the role of the logarithm of the,ground state wavefunction, but the added

degree of flexibility deriving from the use of operator-valued, rather then c,.-valued, functions

allows one to accomodate the troublesome negative signs. Refining this idea [17], one can allow

the operator R to be skewsymmetric, so that the resulting ground state wavefunction does not

require normalization factors, and a natural basis for finite energy excitations orthogonal to the

ground state is readily available. In this paper, we present a new streamlined derivation of some

of the methods of [16] and [17] and also sho~ how to incorporate a finite number of holes in

this scheme and how to compute the reduced Hamiltonian in the sectors with one and two holes.

This paper is organized as follows: In the rest of this introd.u~tory section we give precise

statements of our results. In section 2 we consider the t - J - V ..:... V' Hamiltonian in the Ising

limit and compute the reduced Hamiltonians. We then incorporate spin fluctuations, in section

3, -by means of dressing transformations. In section 4 we consider a variation of the VBS model
"

in which holes have an attractive interaction of order J, due to the exchange term, but which

nonetheless does not appear to suffer from the pathology ofphase separation in the large f limit.

In Appendix A we discuss the retation of our cluster expansion to the one used by Gelfand,

Singh and Huse in their numerical investigations. Finally, in Appendix B we comment on the

problem of phase separation. _We attempt to determine the region of parameters (t > .\, V, V')

for which one obtains pairing of holes without phase separation. A numerical implementation

of our algorithm will be discussed in [12].
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REMARK: All constants appearing in the estimates throughout this p~per are independent of

A. From now on, we fix an arbitrary bounded square A and drop subscripts 'A. Although

our methods and results are valid in any number of dimensions, we specialize to d = 2 which

is the physically relevant case and is also teehriically the simplest case to carry out explicit

calculations.

If t =.,\ =0, the spectrum of the t ~ J Hamiltonian consists ofeven and positive integers ~ 4.

If one or two holes are present, the ground state is infinitely degenerate. As we tum on t and A,

the lowest energy band remains isolated from the rest of the spectrum. In fact, we have

THEOREM 1. (LOWEST ENERGY BAND). Let us suppose that there are n = 0, ~, 2 holes.

There are constants CI, C2 ~ 0 such that if ItI :5 CI, IAI :5 C2, then the eigenvalues of~J

bifurcating offzero energy do not cross the other eigenvalues from the bands ofhigher energy.

Moreover, there is a projection operatorPfa(A, t) analytic in t and Ain a small double disc, such

that IP'fa(0,0) is the eigenprojection onto the zero-energy eigenspace of~J (0, 0), and we have

[lEla (A, t), Pn(A, t)] = O. (1.2)

If EtJ(.,\) is the gro~nd state energy of IHltJ ('\, t) in the half-filled sector then the restriction of

the Hamiltonian to the lowest energy band can be defined as follows:

(1.3)

on the reduced Hilbert space

(1.4)

We remark that one must subtract the ground state energyEtJ (A), in order to produce an operator

hn ("\, t) which is well defined and whose spectrum is bounded from below, uniformly in the

volume IAI of the region A. In fact, the vacuum energy is. an extensive quantity proportional

to the volume IAI and thus diverges in the thermodynamic limit. The restricted Hamiltonians

h~("\, t), n =0,1,2 commute with translations Tz, z E A. Hence, the reduced Hilbert space

'H.n('\, t) can be written as the direct sum of generalized eigenspaces 1tn (A, t, k) such that

(1.5)
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where the direct sum indexed by 1: ran$es over the points in the 'first Brillouin zone which are

allowed by the finite volume cutoff, and 1f.n(>., t, Ie) is given by

Let us denote by l:c } the state obtained frOID theNeel state, by removing an electron from the

site z; similarly, we define Iz,1/}. We introduce the mutually orthonormal state~

1 '

l.,p(z)} = L P;-~(z; Z')Pl (A, t) Iz'} E 1f.l (A, t)
Zl

;1

"
•

1 ,.

1

- ~ - ~ ." 'I' '}1.,p(:C,1/») = L..J P2 (:c, 1/,:C ,1/) P2(>', t) z, 1/ E 1f.2(A, t)
Z/y'

where PI (:c; 1/) and .P2(z., z'; 1/,1/') are the following matrices:

The fiber 1l}('\, t, Ie) is a one dimensional Hilbert space along the vector

11/>(1':») =1~1:t eu.·z l1/>(z»)
:II

while

where

(1.7)

(1.8)

(1.9)

(1.10)

11/>(1':; z») = I~IL eU.·1I 11/>(y, z + y»). (1.11)
11

The reduced Hamiltonian hI ('\, t) restricted to 1l} (A, t, Ie) is the operator of multiplication by

the constant

£1('\, t, k) = (.,p(Ie) I hl(A, t) 1.,p(Ie»), (1.12)

while h2('\, t) restricted to the fiber 'H.2('\, t, Ie) ~ l2(A) is given by the one body operator with

matrix elements

We have

h2('\, t, k; z, 1/) = {.,p(k;:c) 1~(>., t) I .,p(Ie; 1/) ).

8
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THEOREM 2 (PAIRING). lfl~1 and ItIare smaller than a certain constant c > 0, then, in the

two dimensional case, we have the following results:

(i) The dispersion law for one isolated hole is given by

&1 (0, t, k) = ( - ~t2 + O(t») + 3:~~3 t6 L (cos k 0 y - 1), (1.16)

\yI2=v'2

and

. 2
El (~, t, Ie) - £1 (0, t, Ie) = O(~t ).

(ii) The reduced Hamiltonian for two holes has the form

(1.17)

8 l' 2V' + 3V,2
hz(O, t, k; 1olO, y) = - 3t26"'l1 - t26"f/ [(3 - (2 + y/)2 ) 6(111olO11 - 1)

8~ Va]
+ (yl '- 3(3 _ y/)2 )6(11 1olO 11-;- 2) + 3(3 + YI)2 6(11 1olO11- 3)

+ 2 +lYI t2(l - 6"f/)6(1I 1olO II ~ 1)6( lIyll - 1) [1 - eu,o.. - e-u,of/]

(1.18)

and

where a U b= max(a, b).

(iii) For all Ie small enough, the ground state of the operator h2(~, t, Ie) is a symmetric (i.e..
\

"s-wave'? bound state ofenergy Ebindin, = -1~(2~i~VI2 ·t2 + O(t4 + t2~). In particular, if

Vi is smaller then a constant~ 2, a bound state exists for small t and .-\ ~ t.

The 8-wave symmetry of the lowest energy bound state is probably due to the fact that in our

hand-made leading order calculation we can only consider the limit t <: 1. As the ratio j
increases, there might be level crossing in favour of d-wave pairing, as Shraiman and Siggia

[20] predict on the basis of the Brinkman-Rice approximation.

Next, we consider the valence bond solid (VBS) model described by the following Hamilto-
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nian:

1iV BS (t) = L ~ (q>Z(ZlI) + q>11(liz) )
2

+ L U J:&."z(ZlI} n."z(ZlI}
(zy) O',z,(zy)

- L L tc:(ZY)(u) Cz(zy')(u) - L L t'(c:(ZY)(u), Cy(yz)(u) +
z (zy)~(zy'),u (zy) u

h.c. ~
(1.20)

t

•

Here, the sum, is over bonds on a large square A C Z2 to which the- system is restricted, with

periodic boundary conditions. For each site z E A there are 2d orbitals available; they are

oriented in the direction of all the bonds (zy) intersecting z.· Doubly occupied sites are allowed,

although double occupancy is suppressed by the U-term. Let us denote the Hilbert space with

1iv BS. For this model, too; it is convenient to fix the energy units by setting J = 1. We also

assume that the Hubbard repulsion term is large.·' To fix the ideas, we set U =1 and t =t'. We

are interested in the kinetic properties of an isolated hole and in the interaction ofpairs of holes

in the small t limit.

The ground state of IHlv BS (0) at half filling has a fairly simple structure as it can be constructed

by placing one electron on each available orbital and forming a spin singlet out of each pair of

electrons on the same bond. In this sector, the model clearly has a spin gap of order J . If the
, "

kinetic energy term is turned on, i.e~ t > 0, electrons can hop and quantum fluctuations arise all

over the lattice. By using the dressing transformation technique described in section 3, one can

extend Theorem 1 also to this model. In particular, if there are n =1, 2 holes, we can define the

. eigenprojection lPn(t) on the lowest band of the reduced Hilbert space and introduce a reduced

Hamiltonian

hn(t) = (OvBS(t) - EVBS(t» Pn(t), (1.21)

where Ev BS (t) is the ground state energy in the sector corresponding to half filling. The operator

hn(t) is defined on the reduced Hilbert space

(1.22)

Pairing of holes of opposite spin also occurs for the VBS Hamiltonian in (1.20), albeit for a

different reason, than in the anisotropic t - J model considered above. In fact, in this case the
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reduced Hilbert space 1i2(t) is spanned by all wavefunctions of the form

(1.23)

where Izy} is the state obtained by pulling.both electrons out of the same bond {zy} from the

t = 0 ground state of 1i
VBS

(t) and P2 is an operator defined by a matrix similar to the one in

(1.8). If t =0, this follows from the fact that if we puli two electrons out ofdifferent bonds, then

we loose twice an exchange energy of at least J. If t > 0, the proof is based on a perturbative

argument and on random walk expansions that we discuss in Sect. 4. The precise state~e~t of

,the result we prove is given in the following theorem:

THEOREM 3 (VALENCE BOND SOLID). The lowest energy band in the two holes sector of

the VBS Hamiltonian, for ItI small e~ough, is spanned by the states of the form (1.20) and the

pairing energy of two holes isEpairinl ~ -J + J O«j)2).

Theorems 2 and 3 are proven in sections 3 and 4. Our proof makes use of dressing trans

fonnations of a type introduced by one of the authors in [16] and [17]. As we explain in

Appendix A, the perturbation series of the type described in [4] are generated by applying a

Rayleigh-Schroedinger expansion to a family of restricted Hamiltonians; with such techniques,

one can recover, at least in principle, the same series we obtain. However, as one attempts to

establish the convergence of such series and to find rigorous bounds on the error terms, one

meets a serious difficulty. The problem is that the number of diagrams one has to add to obtain

the n-th coefficient for the expectation value of a local observable grows as n! and there is no

compensating factor ,h allowing one to control the convergence of the series. The generation

of a number of diagrams larger than is strictly needed also negatively affects the speed and the

memory requirements of the numerical implementation of the algorithm. This is a version of the

Ularge field problem',' for Fermi systems'that one also encounters in quantum field theory models.

To find a remedy there are two possibilities. Either one understands the mechanism control-

ling the cancellations among the various diagrams originating from the Rayleigh-Schroedinger

expansion, as is possible in the case of weakly interacting FeImi systems. Or one performs a
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unitary dressing transfonnation, in the spirit of [16] 'and [17]~ on the Hamntonian before using

Rayleigh-Schroedingerexpansions, in such a way that.the resummed geometric series generated

in this way are not affected by, the large field pathology anymore. In this paper, we adopt the

second technique which provides quite an elementary sOlution to this problem. Knowledge of

the previous papers [16] and [17] is not reqUired, as we provide the proofs in full detail and also

give a streamlined version.of the original arguments and constructions. In Appendix A we also
, .

review some of the salient features of the method of dressing transformations for, quantum spin

systems. Finally, in Appendix B we discuss the issue of phase separation.

2. The Ising' Limit.

The proofof the first two results in section,I is particularly simple in the Ising limit ~ =O. In

this case, the eigenprojection Pn(O, t) can ~" expanded in a geometric series as follows:

00 ,".

lFn(O, t) = Ie dz 1 =L (-t}i 1 ~. 1 (T 1 )' (2.1)1. 21ri z - H.J (0, t) j=O ,lc 2m z - S z - S

where

•

and

L
z,y EA:

liz - yllI = 1

T= L
z,y E A

liz - yllI =1

(2.2)

(2.3)

(2.4)

Here, we fix the energy units by setting J == 1. Since the relative bound of the operator t . 'f with

respect to S is ~ c . t, the constant being uniform in IAI as usual, the random walk expansion

(2.1) is assured to converge.if t is small enough. If~ > 0 this is not true anymore because of
I

the extra terms that arise in this case, and, to generate the random walk expansion, one has to

perform a dressing t:ransformation first. Refering to the next section for these developments, we

shall first focus our attention on the ~ == 0 caSe.
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NOTATION: For z, z' 'E Z2, let W =Cwo =z, WI, •••• , wlwl =z'): z -+,' Z, be a path in Z2

from:c to z' such that Ilwi - Wi-llli = 1. An operator Tw is then defined by

"']['w = II -(L (C~icr Cwi-lU + -h.c. ) ) .
i=1,... lwl tr

(2.5)

The situation with only one hole was first discussed by Brinkman and Rice [13] in the context

of semiconductor physics. In this case we have that

11"1(0, t) 1:1:) =~ Lit (-t); . Ie 2~i(II (z
Z w:z--+z 3=lwl 1=1,...,lwl

where we set

81 (1l"iW» -1 ) Twlz )

(2.6)

(2.7)

for any path W =(z, wI, ...Wlwl) starting at z and 51 (1l"iW) is the eigenvalue of Scorresponding

to the eigenvector TWiW Iz), Le.

(2.8)

The subscript 1 stands for "one hole". As the hole moves under the action of the operator "r,

it leaves behind a string of frustrated spins which can be eliminated only if the path intersects

itself in a suitable way. A possibility is that the path is self retracing, Le., that the hole passes

through each site an even number of times, thus ending up at the same site it started from. The

length of such paths is .~ 2. The paths W of lowest order int for which "rwlz) :::;: Iy} with

z 1 y are those for which the hole performs one and a half turns around a plaquette. Such paths

have length 6.We retain only terms yelding contributions oforder at most 0(t2) to the diagonal

matrix elements of the reduced Hamiltonian. hI and terms corresponding to contributions of

order not higher than O(t6) to the off diagonal tenns. In our formulas, the order in t of the

remainder terms we neglect varies with the nature of the terms involved. i.e. it depends on

whether the term is diagonal or off diagonal or whether it involves a frustrated spin. To have a
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unified notation, we use suspension dots to denote all these higher order terms.

lFl(O, t) l:eo) = co(t)lzo) +. E '{ Cl(t)ag> 111l}
, 1!l1 -zol=l

+ :. L{c2(t)a~O'g>·IY2) .+ c4(t)ag>ag> l:eo} + cs(t)ag>1111}
IY2-Yll =l

1112 ...:. zol =v'2
+ ~(t) 1Y2} + L c3(t)a~a~~>ag> 11I3}] }

1113 - 1121 =1
1113- zol =1

+ , (2.9)

where

2/ dz 1 1 4 2 4CO(t) =1 + 4(-t) -. 2-- = 1- -t + O(t ),
21rl z Z - 3 9

. /dZll t 3'Cl(t) =(-t) -.--- = - + O(t ),
21rl z Z - 3 3

2/ dz 1 .' P 4
C2(t) =(-t) 21ri z(z _ 3)z _ 5) = 15 + O(t ),

3/ dz ,I t3 . S
C3(t) =(-t) 21ri z(z _ 3)(z _ 5)(z _ 6) = 90 + O(t ),

4/ dz 1 1 4 6C4(t) = (-t) .. = t + O(t ),
21rl z(z - 3)(z - 5)(z - 6) 2 . 32 . 52

/

d 1 I'-
c (t) = (_t)5 z .' = t S + O(t7)
5 21ri z(z - 3)(z - 5)2(z - 6) 2 . 33 . 5 '

C6(t) = (_t)6/ dz 1. =.' 37 (_t)6 + O(t8).
21ri z2(z - 3)2(z - 5)2(z - 6) . 22 . 34 .53 . (2.10)

We have

and

p;!(z, y) = (l + ~t2 + O(f» 5(z - y) + O(t6U3I1z-31I1)(l_ 5(z - y». (2.12)

Here, aU b = max(a, b). The,Hilbert space is sPanned by the oth6normal basis {11/1(:e» z EA}

defined in (1.7). The vector {1/J(z)} has an expansion of the form (2.9) with coefficients

..

cO(t) = 1 - ijp + o(f),

14
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while c~(t) = (1 + 0(t2»Ci(t), for i ~ O. The diagonal terms of the reduced Hamiltonian are

easy to compute. We obtain

. ('f/J(Z)lhll1/J(z») = (1/J(z)JS - tTI1/J(z»)

=4.3 . ! t2 + 2·4·' (-t)!t + 0(t4) = _~t2 + 0(t4). (2.14)
9 3 3

The off-diagonal terms fulfill the bound

(2.15)

. and the leading term describes next neighbour hopping between sites with Izo - YO 12 == Vi. In

this case, we find that

and

Hence

(2.18)

(2.20) .

1be dispersion law is thus given by

J_ ~ ilc 11 4 2 158 ~ 6 ilc·1I
el(Ai;t, O) =~ hl(Y,O) e . =-3t .... 34 .53 LJ t e

II IYI2=.v2

(
4 2 4) 158 6 ~= - 3t + O(t) + 34 . 53 t L-, (cos Ie· y - 1) + .....

IYI2=v'2 (2.19)

- where the suspension points stand for k-independent terms of order 0(t4) and k-dependent

terms of order 0(t8).

Let us pass to the caSe of two holes. Let us fix a bond (Zo yo) and letl~o yo) be the state with

two holes on such a bond. Expanding in a geometric series, we find

/

dz 1
2'1ri z .... S+ t'lr Izoyo) = Izoyo)

/
dz 1 ( ~ (1) ~ (1) )

- t 211'i z(z _ 2 -V') L...., Uzo Iz YO) + 'L..." u1Jo Izo Y)
liz - 2:011 =1 Ity -YO" =1

. z#w y#~

2/ dz 1 ( . ')+ t 21ri %2(% .... 2 _ V') 61zo1/0) + , ~ Izy) + .....
(zy)n(ZOMl)7'0

15



where the remainder contains terms of order O(t2) which are orthogonal to all states I~ y}

together with terms of order O(t3). Hence·

,
•

We have

}>z(zo,~; ZO,~) = 1 - 6
V1

2 t2 + 0(t4).
(2+. ) I

Moreover, if (zy) n {zoyo} =10 and (~y) =I (~oyo), we have

1 2 ·4
2(2+ V/)t + OCt ).

By expanding in a binomial series, we find

1 3 2 4
P2-2(~O, 1/0; ~o, 1/0) = 1 + I 2 t + OCt ),

(2+ V)

1 1 2 4
P;2(ZO, w;~,y) = I 2 t + OCt ).

2(2+ V)

. Hence, if Izo -1/01 =1, we have

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

1 (3 2)L P;2 (zo, yo; ~,y) lP2(t) Izy} = 1 - (2 + V/)2 t · . Izoyo)
zy

t ( ~ (1)· ~
+ (2 + V/)L...J O"zo Izyo) + L...J'

IIz-zoll=l,z~ . 1111 - 1/011 =1
y =I~o

O"~) Izo y»)

.(2.26)
t2

. 2 :E I~y) + .....
2(2 + V') {zy} n (zoyo) =10

{zy} ;'(ZOW)

Hence, the leading order terms of the effective Hamiltonian hi (ZO, 1/0; ~,y) for llzo - 1/0 II =1

if z = zO, Y =YO .

if { (~y) =I (~o YO) ,
(~, 1/) n (~o YO) =10

are non zero only if the sites ~, y are on neighbouring bond and in this case we have

{

12t2
. (2+V')z

h2(ZO, yo;~, y) = t 2

-2+V7

16
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Next we consider a state of two holes with IIzo - YO II 1 =2. We have that

1P21zo, yo) = (1 - (3 _8V ')2 t2)lzoyo) + 3 ~V' ( :E u~)IY)+ :E u£/Iz))
- . IlY-JA) 11=1 IIz-zoll=l

+ , (2.28)

(2.29)

(
4 2)' t ( ,,(1) ,,(I»)11/J(zo, YO») = 1 - (3 _ V')2 ~ Izoyo) + (3 _ V') LJ lTJA) I:eOY) + LJ lTzo l:eyo)

lIy-~ 11=1 IIz- zoll=1
+ , (2.30)

so that
, 8(3 - 2V') 2

h2(ZO, YO; zO, YO) = V - (3 _ V')2 t .

, Finally, if IIzo - yollt ~ 3 we have

(2.31)

{
- [2 + 3+2V'] t2 if IIzo - YO lit = 3

h2(:eO, yo; :eo, yo) = _!.? (3+V')2 (2.32)
.;) r if II zo - 110 1 ~ 4

Passing to the center of mass frame, we find

h2(1c; 2:, y) = :E ei1c•z h2(O, z;' z, y 4- z)
z

8 1 2V' +3V,2
=-3 t

2
5z, - t

2
5z , [(3 - (2 + VI)2 ) 5(lIz ll - 1)

8V' V,2
+ (V' - 3(3 -V')2 5(lIzll- 2) + 3(3 + V I )25(lIz ll- 3)]

+ 2:V' t25(11z II - 1)5(IIYII - 1)(1 - 5(z - y» [1 - eil:.z - e-il:·v]
(2.33)

which proves (1.18) in case ~ =O.

Due to the Perron-Frobenius theorem and to the negative sign of the third term at the bottom

of the band, i.e. for Ie =0, and at ~ =0, the ground state of the reduced two-hole Hamiltonian

is a stricly positive function and has s-symmetry. As we show in the next section, for ~ small

the situation does not change, while, for ~ near one and larger values of t, there might be a

crossover to d-wave pairing, as one would expect on the basis of the calculation in [20].

17



3. Dressing Transformation for the tJ Model•.

The Heis~nbergHamiltonian is invariant with respect to global spin flips. To deal with this

degeneracy there are two alternatives:· Either we choose to express the dressing transformation

through spin flip operators involving only the matrices 00(1), as was done in [16], and, in this

case, we respect the symmetry but give up unitarity; or we promote the global spin flip symmetry

to a local gauge symmetry by extending the Hamiltonian to a bigger Hilbert space 'H and then

use techniques of [171 of which we give a new, streamlined presentation in this paper, i.e. we

follow the second alternative which is mathematically simpler. However, the reader should be

warned that in order to optimize the algorithm for numerical calculations, ~e artificial increase

in the number of degrees of freedom resulting from the second strategy should be avoided,

and alternative setups will be more convenient. ~e 'point made in this paper is that local

gauge invariance is useful in order to control large local deviations from the Ising ground state

consisting of large bubbles surrounded by Peierls contours. Such large deviations show up only

at orders of perturbation theory as large as ~ c . ~-1.

On the extended Hilbert space, a state is described by a configuration ofhappy and frustrated

bonds, and it turns out that unitarity of the dressing transformation can be enforced in such a

way that the local symmetry is preserved. We set

(3.1)

where the fiber corresponding to a bond b is the direct sum of two spaces, C~ and q. A basis

for q consists of two vectors, Ih} and If}, where h stands. for "happy" and f for "frustrated".

The basis for q is {Ie i}, Ie!} ,I i e}, I ! e}, lee}}, where ~e first argument refers to the

left site for horiwntal bonds and to the top site for vertical bonds. There is a natural injection

?-it] -+ 'HiJ , and there is a canonical extension of the tJ Hamiltonian ~J (~, t) to the larger

Hilbert space 'Flu of the form

~J (~, t)' = L (Ell + ~ kll + t Gil) . (3.2)
II

It is sufficient to restrict our attention to a subspace ilu of 'Flu containing the physical space

1{,t] and invariant under the action of the extellded H8miItonian. Such an invariant space must

18
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share with the physical subspace the propeny that, for any given site, the states of the bonds

meeting in that site agree on whether the site is empty or occupied. Thus only doubly occupied

bonds can be chosen in a nonphysical way, that is, in such a way that the Peierls contours are

not all closed; this provides the extra degree of freedom required to construct the kind of unitary

dressing transfomlation we shall make use of. The diagonal operator £6 is defined as follows: f6

has eigenvalues 0 and 1; it ~nihilates states over a bond b for which the bond b is either happy

or not doubly occupied, and its eigenspace of eigenvalue one is spanned by those states for

which the bond b is frustrated, thus·Penalizing such configurations. The action of the operators

kb and 6b is illustrated in·Fig.l, below. If the bond b is either frustrated or partially empty,

then kb annihilates the state. Otherwise, if b is happy it leaves it happy and changes the state

of the neighbouring bonds c n b· =I 0 in such a way that if c was happy it becomes frustrated

and viceversa; moreover, if c was occupied by just one spin on the bond b, then this spin gets

flipped. Finally, 56 acts nontrivially only on states for which one and only one site of b is empty

while the other site is occupied; if this is· the case 66 only changes the state of the bonds b and

c.if b n c =10, and its action is uniquely determined by the requirement that the Hamiltonian in

(3.2) is an extension of the tJ Hamiltonian in (1.1). See Fig.l for a graphic description of the

action of k6 and 66'
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To define the dressing transformation, let us first consider the model with a half filled band,

Le. without any empty 'sites, In the half filled sector, an excitation is described by a function

/ : A --. {O, I}, where Ais the set of bonds of A. Let UI, iU2 be the matrices

(1) (0' 1)
u = 1. ° EaOs,

. (2) _ (0 1) ~ /flI_
IU - -lOw"') . (3.3)

I on the vector space Cl Ea cS, where Os is the zero operator on the subspace cS of the fiber

over b. Here, we identify Ih)'with .(~) and f with (?). The state Ih) carries the label 0, the

state If) the label!. Let u~I), iu12)be the corresponding operators on the fiber Ci Ea q.' We

introduce the real skewsymmetric operator
. ;' .

(3.4)

(3.5)

where 1/1 is the volume

11'1 = E feb).
II

Since no confusion can arise with spin ~ particles, we also denote by l' the support of the

exCitation /. Let d(/) be the number of bonds of the smallest connected set containing /. The

,vectors

(3.6)

define an excitation basis on it in which we can expand all wave functions as follows:

(3.7)

(3.8)

We define the II-norm pf 11/1) by

111/1111 = E It/J,.I·,.
We also denote by II . III the corresponding operator norm.

Our goal is to construct a unitary operator U(~)on it analytic in a disc {I~I < ,\o}, ~ > 0,

such that the ground state of ~J(~' t) in the half filled sector is U(~)IO > and that U(~)IO)

20
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belongs to the subspace of it identified with?t. To determine U(.-\) in a unique way, we restrict

its fonn as follows:

where

and

U(.-\) = lim exp(R1(.-\»... exp(Rl1(~»
. 11--+00

00

Rl1(~) = L ~n a:
n=1

(3.9)

(3.10)

R: = L rn7 77· (3.11)

171=11
This prescription giyes rise to a cluster expansion for the coefficients rn7: As one 'can easily

see, we have that rn7 =0 in case d(7) > 00.

One can show that Theorem 1 of Sect. 1 is a, straightforward consequence of the following

result:

LEMMA 3.1 (DRESSING. TRANSFORMATION). Thereisaconstant~> Osuch that a unique

operatorU(.-\) ofthe form (3.9) exists, is analytic in the disc {I.-\1< ~} and solves the conjugagy

problem

with

and

U(~)-lmr.J V\)U(.-\) = S + v(.-\)'+ Eo(~),

S = L til
II

V(~)IO> = O.

(3.12)

(3.13)

(3.14)

The ground sUJte of]8[tJ(~, t) in the half tilled sector isU(~)IO > and ,belongs to 1l, its energy

being the consUJnt Eo(~) in (3.12). The operator v(~) is relatively fonn bounded with respect

to S in the following sense:

~

{'PIV(~)I'P} ~ e· I~I {'PISI'P}, (3.15) .

for all 'P E 'H. Finally, we have that rn(7) .~ 0 if d(7) > 00, and that, for some positive

constante,

r: == sup L. Irft71 < en'.
II "Y: lle"Y

21
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PROOF: Let us consider the conjugacy problem

U(~)-1 JH[(~) U(l) 10 > = Eo(~) 10 >, (3.17)

where EO(~) is a constant and U(~) is a unitary operator on it of the form (3.10). Expanding

both sides of (3.12) in powers of ~, we find the following recurrence relations for the operators

lD>V.
~n'

L: lR~IO >
v

- 1 -
=-L:{L: L: (I I. I I>g-II1'.l [... [eb, ril'Yl1'11] ,•.•ri~'Y~ T'Y~] 10)

b k~2 1711 ~ ... ~ 11k 1n 11 , ... 11c I

it + ... +ik = n

+' L: L:. <I 11 I I>S-lp.l [ .•. [kb' riI'Y1 1'11] ,..•.ri~'Y~ Tn] 10 >\
k~O 1111 ~ ... ~ 17lcl n 11 , .. 1), (3J8)

il + ... + ik =n - 1

where S is defined in (3.12), P .L = I - 10} (01 and we set

00

n(1711, ..b'k I> = IT (#{i :17il = v}!).
v=O

(3.19)

(3.20)

Equation (3.18) generates a cluster expansion. When n = 1 then rt7 = 0, unless 111 = 1,

while, at the n-th order of perturbation theory, only clusters of at most n + 1 bonds are present.

For n = 1, we have

ri = sup II L: S-lkc IO)IIl =1.
b c(l0;l0

Next, suppose that n ~ 2. Let us cal) (connected) k-polymer a family of clusters p =

{b, 11, ·.·11c} such that b E A, 71 n b =10, 'ric n (b U ... u7k-l) =I 0. We also introduce a space

'P of k-polymers given by [P] ={1;,p; z ,E A,p E P} where Tz is the operator of translation by

:z:. There is a state l;YeP)} such that

(3.21)

for some coefficient fil ...il: (P). This function is obviously translation invariant, because the t - J

Hamiltonian is. (In case HtJ had a similar form but lacked this symmetry, we would consider

22



sUP:c If(1;,p)1 and all the arguments below would apply as well). The contribution to r: coming

from all connected k-palymers (POl E 'P is bounded from above by

f

(3.22)

where p(7t') is a representative of the equivalence class 'Ir. Hence, the contribution to r: coming

from the first sum in (3.18) is

where if PO ={6, '11, ...'1k} we set n([poD =n('1I, ...'1k). We have that

L Ifi1 ..iJ: (6, '11, ··'1i)1
'1k : '1k n (6 U ... U'1k-l) ::/0

l'1kl = Vk

< 2 [k + (1711 + ..1710-11- k+ 1)'1I~1] Ifi, ..i._,(b,Y1, ...710-1)1

. sup
cEA

(3.24)

The first term, k in the factor within square brakets, originates from the k centers of noncom

mutativity of 6 U '11 ... U '1k-l, while the second term is due to the ecnter of noncommutativity

in T7A:' The factor vi"I is inhentedfroui (3.4). Since the volumes are, ordered, we have

(1'111 + .. + 17k-JI-1c + 1) viI ~ k.

23
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Iterating this bound, we find

. sup
b

< (4· Ie) . (4 . (Ie - 1»...4· II sUPL Irij"j1
, I, j=l,...1c b 17jl = Vj

7j 3 b

*riov. = sup
'J J b

< 22k Ie! II *rijvj'
j+l,•.•k

where

L
73b

17;1 = Vj

Similarly, we find that the second term in (3.18) gives a contribution to r:' which is

II r;'vo'
'J J

j=l,...k

(3.26)

(3.27)

(3.28)

The extra factor 6 is due to the fact that the operator lcb has support on 6 bonds rather than on .

just one as in the previous case.

For all n > 2, we thus have

r: ~ (L
1c~2 VI ~ ... ,~ vic

il + ... +ij: = n ,

Introducing the formal power series

we find

00

r*(l)'~ Llnr:,
n=1

(3.29)

(3.30)

r*(..\) ~ ..\ + 6· l [(1 - 4,.*(..\»-1 - 1] + [(1 - 4,.*(..\»-1 - 1 - 4,.*(..\)]. (3.31)
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Since the equation

,

(3.32)

has a solution a·(~) analytic for I~I ~ "0 for some constant~ > 0 and since a·(~) majorizes

the series (3.30), we conclude that also r*(~) converges, and hence, U(~) is analytic in ~,for

1,\I < ~. It is important to remark that the constant ~ above depends on d but is uniform in

the volume. A straightforward calculation gives ~. = 3zi8 which is much smaller than the,

expected radius of convergence, namely ~ = 1. The quality of our boUnd on ~ 'can however

be improved by explicitly computing the dressing operator up to somewhat higher orders of

perturbation theory, not stopping at the first order as we have done here.

, Next we pass to the proof that V(~) is relatively bounded with respect to S. We have the

following expression for V('\):

Expanding V(~) in series ofoperators v(7) ofsupport 7 C A and using the fact that V(~)10) =0,

we see that

V(~) = L v(7) = L adV(7),
'YcA 'YCA

where adl1(7) is the operator such that

Let us fix a vector 111.) E 1-£ and let us expand it in the excitation basis

11£) ='L 1£,.17)·,.
25

(3.34)

(3.35)

(3.36)



One then derives from (3.33) and (3.34) that

I(1£IV(;\)I1£)I ~ L 1~12 I("YIV(l)I"Y)1+ 2 L 11£'Y'U'l" 11("Y'IV(l)I"Y)1
'1 1" : 11£7' I ~ 11£'1I

. 1" =I l'

~ 2 L 11£,,12 L 1("Y'IV(l)I"Y)I
'1 7'

~ 2 L I~12 L L /ladl1(1")111· (3.37)
" be" 7':bE7'

The relative boundedriess estimate in (3.15) follows from the inequality

sup L /10011(1")111 ~ c ·Ill
b .7':bE7'

(3.38).

which is a direct consequence of the bounds on the operators 1R~ in the first part of the proof.

Q.E.D..

The proofof theorem 2 for l =I 0 follows from a combination ofthe expansion in section 2 and

, of the relative boundedness estimate for V(~) we just derived. In fact, the dressed Hamiltonian

in the one and two holes sectors acquires an extra term tl'(l) such that

U-l~JU = S + V(l) + tT(l) + Eo(~). (3.39)

As long as there is a finite number of holes and t is small enough, t1r(l) is relatively bounded

with respect to S. Working in the dressed representation, a geometric series expansion in t1r(;\)

analogous to the one in section 2 converges for oX· small, and the conclusions concerning binding

are preserved, as long as III is small enough.

4. T~e VBS Model and the Sign Problem.

Dressing transformations are a tool flexible enough to accomodate also the VBS Hamiltonian

in (1.19). This toy model is interesting from both the physical and the methodological points

of view. Physically, the VBS Hamiltonian shows that the attractive interactions. due to pure
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exchange which we suppress in our variation of the t -J model, are able, in other contexts, to

give rise to a pairing mechanism free of phase separation pathologies. Methodologically, the

VBS Hamiltonian is interesting because the,sign problem obstructs the development of low and

zero temperature polymer expansions solely on the basis of the functional integral formalism.

,Also the t ~ J model has a sign problem. However, since we perturb around the half filledcase

and the Heisenberg'Hamiltonian is equivalent to a model of hard core hosons, this problem is

rather mild. In contrast, the VBS model shows a full fledged "bulk" sign problem. Some of the

techniques which are necessary to readapt oui' methods to fermion models with sign problem

difficulty are discussed in this paper in the context of the VBS model. In,a subsequent article

[18] we discuss how to extend the analysis to models having not only a sign problem but also a

spontaneously broken discrete symmetry and to low, not necessarily zero temperature.

The Hilbert space of the VBS Hamiltonian in (1.19) can be identified with the tensor product

space

, 16
'HvBS ~ ®(ZY)EA C(zy)

once an ordering for the bonds of the lattice A and for the basis vectors of the spaces C~~y) is

'fixed. The basis of C~~y) we choose consists of the following vectors:

f

•

18 }(c,) = I!, 0) (cw) ,

16 }(cw) = I f, O}(cw)'

19 )(cw) = I l!, i) (c,) ,
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(4.2)

These are eigenstates of the operator

1 --+ --+)2
8(zy) =4( tT z(zy) + (T y(zy) .

Let us introduce operators t±( ) where z =z, y and (T =i,!, by settingz zy ,u

t± - c+ ± cz(zy),u - z(zy),u z(zy),u·

(4.3)

(4.4)

Let T±( )., i =1, ... 15, be the linear combinations of products of the operators above such
ZY,I

that

T~J/),i 10) = Ii) (zy) . (4.5)

An excitation is given by a map 7 : {(zy) E A} --+ {O, ...15} and is associated to the

skewsymmetric operator

1 " T- II ~ +
T-y = 17i LJ (zY)1'«(zy» . T (zy)-y«(zy»·

(zY)E-Y (Z'y') 't"Y
(4.6)

As usual, we set 'Y = supp 7. Let us call an excitation 'Y admissible if the state 17) is not

orthogonal to the cyclic subspace

(4.7)

We notice that, in the perturbative regime (i.e. for It1small), the ground state of lHIv BS is not

orthogonal to 'Ho. If 'Y is admissible then the operator T1' contains an even number of Fermi

creation and annihilation operators. Hence, if7 and 7' are two admissible excitations ofdisjoint

support, we have

(4.8)
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This property is crucial to achieve clustering. However, in case the particles obeyFermi statistics,

one has to give up the kind of weak commutativity we had in section 3. Hence, in order to

enforce this property, the proof of convergence of the cluster expansion must be modified. As

we show in the following, it turns out that, as long as there is no spontaneous symmetry breaking

and as long as the volumes are ordered, it suffices to use a stronger norm for the generators of

the dressing transformatio~ in order to establish convergence. Since the estimates are recursive,

it is not so surprising that the optimal norm can be· neither too weak nor too strong. The best

nonn turns out to be not the 11 norm that suffi~s in section 3, but a weighted 11 norm inst~ad,

the weight of an excitation being its zeroth order energy.

The unitary dressing transformation is given, also in this case, by an operator of the form

(4.10)

where

(4.11)

(4.12)

(ind

R: = L rn"Y T"Y.

hl=v

where 'Y ranges over admissible excitations. Of course, in the VBS case the operators T"Y are

the ones defined above in (4.6). The recurrence relations determining the coefficients,rwy are

similar to those in section 3 but will be written in ~ slightly different way, i.e.

L SR:IO)
11

where

=.-{ L L (1) II"J.[.~. [S, R~;], ....R~:] jO}
n 111, •••111

&~2 VI 5 ... < V1
il + ... +i1 = n

+L L
k~O VI 5 ... $v&

il + .... +i& = n - 1

+ Eon10),

K = BVBS ~ s.
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Let us rewrite equation (4.13) as follows:

E
l~O' VI ~ ... ~ vl

.. il + ... + il =:: ~ - 1
I
\ (4~15)

where IPz is the orthogonal projector onto the subspace spanned by excitations It) with.z E "

IFJ. is the projector on the subspace ortogonal to the unperturbed ground state 10) and

As a nonn for the generators R: we choose the following sequence: .

(4.16)

Let n ~ 2 and let us fix a sequence i; ,Vj, 7j, , j =1, ...Ie, such that il+ ...+il = n, 17;I=Vj~

VI ~ ••• ~ vl. Let 71 be the excitation such that

Thanks to the translation invariatice of BvBS, we have

sup L L cO Ifi t •••il«(zY),.7b ""l)~
zEA (zy) 1,11 =vI,' ·1,11="1

z E 71

~ sup L cO 1711Ifit •••i,«(zy), 7b ···71-1)1
(zy) hd=lIt ...h,l=lI'

. 2C()171-11 sup L
z

11 3 z
1,11 = 111

~ sup L C~'-l 171-lllfil ...i'~1«(ZY),'1,·"'l-1)1
(zy) h'1I=111~.. h,-t1=111:-1

30

·2C() Ie sup
z

L vl IriA:"Y' I,
71 3 z

1711 =111
(4.19)



where

7k-l - (zy) U 71 U ... U 7k-l·

and

Here, we use the fact that volumes· are ordered, so that

(4.20)

(4.21)

(4.22)

\ ,

To estimate the commutator with ""Yl.' we also use the fact that 7k i:ntersects 71:-1 in at most

i k +.1 points. Iterating this estimate, we arrive at the following final result:

I:

sup L L If'1 ...il«(ZY),71···71:)1 < (2CO)1: k! IT vi Ir~lI;1 '
zEA (zy) 1711 =v1 ... 171:I=vI: ;=1 (4.23)

z E 71:

where

r* = sup '" Ir· I.~~ ~ ~"Y.

ZEA 7 3 z
171= 111: .

,\

The proof can now be com~letedalong the· tines followed in the previous section.

(4.24)

(A.l)

Appendix A. Numerical Implementations. '

In our treatment of the anisotropic Heisenberg antiferromagnet in Section 3, we make use'

of a dressing transformation to transfmm the Hamilton operator to a form that can be used in

Rayleigh-Schroedinger expansions for the spectral projections. The reason why we proceed in

this way is to avoid the large fields problem for Fermi systems. In this section, we show how this

pathology presents itself in the context ofthe cluster expansion algorithm first used by Gelfand,

Singh and Huse [4] to compute zero temperature cluster expansions numerically.

Let us consider the Hamiltonian

H = L(u~)q~3) - 1) + l{zy)(u~l)q~l) + q~)u~2»
(zy)

where all the l{zy).are equal to the same small parameter l and carry a subscript only as a -
. . .

bookkeeping device to distinguish the contributions to the.various cluster-weights coming from
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the various bonds. Let us suppose that we want t~ compute the ground state correlation function

(0) of the local operator O. Following [4], the first step of the algorithm consists in finding

all connected subsets 'YO ~ Zd intersecting the support of O. The calculation of the expansion

coefficients is by induction in the order n =,0, 1, .... At the n-'th step we compute the weight

w( 'YO) of the clusters 'YO with n bonds. Let n('YO) denote the number of bonds of 'Yo. The weights

are such that

(A.2)

(A.3)

and

W('YO) = L, II ~~;») wQ('YO)·

Q(zy)~l (zy)c-yo
(zy) C 'YO

It is not difficult to see that ifw( 'YO) =I 0 then 'YO must intersect o. Supposing that all the weights

of the clusters 'YO of order n('YO) < n("YO) are known, one can compute w(,O) by restricting

the Hamiltonian to ,"YO and evaluating the corresponding ground state 'II70(~) .by means of a

Rayleigh-Schroedinger expansion. The weight w('YO) is given by

(A.4)

To compute '¥70(~)'one can use the formula

(A.5)

where C ={Izi =! }, and S-yo, K.ro are the respicions to 'YO of the Z part S and the XY part OC

of the Heisenberg Hamiltonian.

The idea of Gelfand, Singh and Huse of computing the ground state wavefunction of restric

tions of the H8mlltonian to small clusters is interesting because it reduces a complex problem

to many simpler ones. However, this technique presents some difficulties. One of the problems

is that excited state properties are harder to study.than ground state correlation functions; as we

discuss above, with dressing transformations this is not the case. A second problem is that the

value of w(,0) at the leading order in ~ is given by the sum of n('YO)! diagrams. However, from
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the analyticity result in section 3 it follows that

, t

(A.6)

Hence, many cancellations must be taking place among the n(70)! diagrams contributing to

w( 'YO). To' set up a rigorous proof one can eith~r attempt to understand the cancellation mech

anism, as is possible for weakly 'interacting Fermi systems, or one,can make use of dressing

transformations, as we do in the previous sections.

To,draw some conclusions, we would like to list some of the main properties an(j the general

conditions of applicability of'the method of dressing transfonnations as they emerge from this

work and to add some remarks on which we elaborate more in depth in the three co~panion

papers [12], [18], [21].

(i) The Hamiltonian is supposed to be shon range and equal to the sum of a main part whose

ground state wavefunction we know and of a penurbation;

(ii) Since we don't attempt a multiscale decomposition, the' main part is required to possess a

spectral gap which is large with respect to the size of the penurbation term, as measured by a

local norm;

(iii) Unitarity is a very convenient property of dressing transformations leading to a normalized

ground state wavefunction and to various semplifications in both the rigorous and numerical

analysis. However, one should keep in mind that for cenain applications as well as for the low,

temperature expansion in [18] this property is neither required nor useful.

(iv) Commutativity or weak non-commutativity, in the senseof section 3, are interesting prop

erties, because they generate cluster expansions with the lowest number ofdiagrams. However,

such properties are not strictly necessary to achieve convergence.

(v) If the generators of the dressing transfonnation are given by non-commutative operators,

the volumes have to be orderect as ~ (3.9); otherwise, control of the convergence ofthe cluster

expansion is jeopardized because of the high growth rate,ofthe number of diagrams.

(vi) If a discrete symmetry is spontaneously ~roken or, more generally, if the main part of the

Hamiltonian has a finitely degenerate ground state, then special care is required to define the
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dressing transformation. In this case, only Peierls eontours are associated to an energy t~rm and

can be allowed to contain centers of non-commutativity if a formal proof of convergence of the

algorithm is an issue.

(vii) To control excited states, one must requite the operator V('\) defined as in (3.33) to be

relatively bounded with respect to the main part of the Hamiltonian. This property is fairly

automatic· if the ground state is non-degenerate but requires special attention in case it has a

finite degeneracy. In the case of the anisotropic Heisenberg antiferroma,gnet in Sect~ 3, the

desire ofdefining a convergent uniiarydressing transformation with a relatively bounded V(~)

forced us to enlarge the Hilbert space. In [18] we show that ifone is .willing to give up unitarity,

it is possible to respect the symmetry while remaining in. the original Hilbert space. .

(viii) Dressing transformations can also be used' to generate time dependent cluster expansions

in the adiabatic limit; a result in this direction is in [21].

(ix) If one wants to optimize dressing transformations as a numerical algorithm to compute

ground state properties and reduced Hamiltonians at zero temperature, then the operators T 'Y

must be chosen skewsymmetric to avoid orthonormalization problems. Such problems can be .

very delicate if finite precision arithmetic is used [22] because of the large. dimensionality of·

the Hilbert space generated by elementary excitations. An algebraic solution to this problem is

preferable to a brute force approach and reduces the systematic errors.

(x) If only the first few orders.of a perturbation expansion are required, then the techniques I

used in this paper to control the large order behaviour of the series expansions in the presence

of a' spontaneously broken discrete symmetry are not relevant. In particular, the extension of

the Hilbert space in section 3 should be avoided, because it increases, rather than lowers, the

number of diagrams generated at the first few orders of perturbation theory.

(xi) The best way of using the method of dressing transformations for both numerical and

rigorous calculations for the t - J and similar models is to proceed in two steps: first, one solves

the problem in the absence of holes, and then one conjugates the Hamiltonian in the sector with

a few holes with the dressing operator found in the first step. This procedure, block diagonalizes

the Hamiltonian. Each block can be seen as the effective Hamiltonian describing a number of
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spinless fermions, corresponding to the dressed holes in interaction with bosonic quasiparticles

corresponding to spin-wave excitations. Since the unitary transformation is given by a power

series, the applicability of this method is limited to the parameter region on which such series

either converge or can be analytically continued by means of Pade' approximantsor a similar

technique. The leading block for small t and ~ corresponds to the effective Hamiltonian with

no spin-wave excitations. This'is the only block we consider in 'this paper. However, as t and ~

increase, there might be a level crossing among the ground state energy of this block and that

of some other block. This phenomenon, typically corresponds to a first order phase-transition.

We would like to emphasize that, as long as analyticity doesn't fail, our method can be applied

also in the presence of level crossing and provides full information on the phase transition.

In [18], we show this idea at work on a model of strongly interacting fermions with a Mott
\

metal-insulator transition for which, by using particle number conservation, one can rigorously

prove that analyticity of the dressing transformation is not lost on at least part of coexistence

curves and one can explicetely compute both the phase boundaries and the critical behaviour of

quantities like the spectral 'gap.

(xii) The first step of both a rigorous and a numerical calculation must be the solution of a

model like the' anisotropic Hei,senberg model with a' zeroeth order gap of size one and without

quasiparticles in the ground state. To this end, it is interesting to notice that most of the clusters 7

appearing at a certain order ofperturbation theory have a large energy (71817) and are associated

to a small amplitude rn'Y' the competition among the entropy and the smallness of the amplitude

being won by the latter. It is thus convenient to add counterterms to the Hamiltonian in such a
, I

way to set exactlyat zero the amplitude rn'Y ofsuch exotic configurations. This introduce,s errors

but ultimately improves the, precision because it Saves memory and speeds up the algorithm,

allowing one to push the expansion to higher orders where one can find diagrams which are

more significative than the ones neglected at the previous orders. The error can be measured as

in a typical exact calculation based on the L8nczos' algorithm, i.e. by using the variance

(

6 = lim -,IA111l(H - Eo)'I'lh,, IAI......oo
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where qt = UndIO} and Vn,6is the approximaten-th order transformation with error 6. Truncation

methods have also been discussed in [23] and [24] in the context of models without vacuum

fluctuations and turned out to be very successfull. In the presence ofvacuum fluctuations, ifone

truncates directly the wavefunction amplitudes as in [7] the gain is not as noticeable. Our way of

tnlncatinga many-body wavefunction might reveal itself more effective because it respects the

clustering properties of th~ ground state wavefunction and doesn't introduce spurious nOnlocal

effects.

Theapp~ent advantages of our algorithm with respect to Lanczos' are that finite size· cor

rections are absent, memory requirements for the ground state wavefunction are reduced by

exploiting the clustering properties of the ground state wave-function and knowledge of the

generators of the transformation is the only information which is necessary to compute both the

ground state expectations and the reduced Hamiltonians for quasiparticles. The disadvantage is

that we are limited by the constraints (i) and (ii) above and can't find explicetely the ground state

of a system of several holes but can only generate the reduced Hamiltonians; see however the

next subsection. The advantages over the cluster expansion algorithm in [4] are that fewer dia

grams are generated,,one doesn't need to recompute from scratch a new set of weights for each

local observable, memory requirements are funher reduced by neglecting contributions coming

from configurations with small amplitude and, finally, excited states are not problematic. The

disadvantage is that fewer exact coefficients can be computed this way. To raise the order at

which one can push the cluster expansion without allowing error terms, an approach closer to

the one developed by Gelfand, Singh and Huse is necessary.

(xiii) Once the quantum fluctuations of the antiferromagnetic vacuum are incorporated into a

unitary dressing transformation, one can consider the case in which holes are preSent and use

the same dressing transformation to block diagonalize the Hamiltonian, as we do in section

3. An estimate like the one in (A.7) is also valid in the sectors with a finite number of holes,

as long as " is reinterpreted as the ground state wavefunction of the effective Hamiltonian

corresponding to the leading block. Since also the effective Hamiltonian is sYmmetric and the

nonzero matrix elements are clustered near the diagonal, one can find such a ground state by
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means of a Lanczos type calculation. This· two steps procedure leads to a remarkable reduction
- ,

of algorithmic complexity with respect toa straightforward implementation of the Lanczos
I

algorithm directly on the b~ Hamiltonian. By using .f;1'aDslation.symmetry, one can further

decompose the' effective Hamiltonian in about*bloeks, each one indexed by a wave vector

k. On a ~uare -lattice, most values of Ie are 8-fold degenerate; hence one 'can decompose the

problem into abOut klAI simpler problems. The dimension d of the sector ofthe reduced Hilbert

space corresponding to a certain Ie in the first Brillouin zone has the following value on a 8 x 8

,hittice with nh holes: d = 1 if nh = 1, d =32 ifnh =2, d = 651 ifnh =3, d =9928 ifnh = 4,

d = 119.133 if nh = 5 and d ~ 1.171.147 ifnh =-6. This means that, in the parameter region in

which the dressing transformation converges, onec~ realistically plan an exact diagonalization

study for the t - J - V - Vi model with up to 6 boles on a lattice of up to 64 sites. As a

comparison, a direct application ofthe Lanczos algorithm to the bare~tonian would involve

an Hilben space whose dimension is greater by a factor 258 ~ 2.88 * 1017. With the Lanczos

algorithm alone, exact diagonalizations are confined to lattices of at most 18-20 sites and the
, ,

algorithniic complexity raises so steeply with the size that no forseeable progress in computer

technology can improve this limit in a significative way. By implementing the algorithm we

discuss in this paper, this bottleneck can probably be bypassed.

(xiv) Dressing transformations can be combined also with quantum Montecarlo algorithms.

There are at least three reasons why' this may be advantageous in certain situations. First, the

effective Hamiltonian corresponding· to ·the leading block of the dressed. t - J Hamiltonian

describes spinless fermions; hence there are no difficulties related to the enforcement of the

constraint of no double occupancy. Second, as is explained in greater detailed in. [18], dressing

transfornlations make the sign problem become milder and, in some cases, one can prove that

optimal lower bounds on the expectation of the sign operator are satisfied. Third, dressing

transformations are useful because they tipically renormalize bare strong coupling interaCtions

into weak coupling interactions among dressed quasiparticles.

AppendixB. Phase S~parati~: a Heuristic Discussion.

Phase separation of holes into bubbles is a physical phenomenon that has been observed
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in several copper oxides near the superconducting phase transition [8]. Numerical studies of

the t - J model also confirm the theoretical analysis of Kivelson, Emery and Lin [3] who

predict phase separation in -the small t limit. The reason why phase separation is stable is

that in slightly doped antiferromagnetic insulators it is hard to strike a balance betweeR the

tendency of the holes to delocalize in order to lower the kinetic energy and the tendency of

the magnetic vacuum to relax to the antiferromagnetic ground state. As a consequence, if the

interaction among holesis ofthe static type, holes are e~pelledfrom the insulator andconcentrate

in bubbles. Emery and .Kivelson suggest that high ~c superconductivity is a phenomenon

related to frustrated phase separation and arises thanks to the long range Coulomb forces which

destabilize such bubbles. Recent numerical sinudations by Troyer et al. showed that phase

separation in the t - J - V - Vi model is actually suppressed by long range repulsive forces

and that pairing susceptibility is enhanced, but that nonetheless a charge density wave instability

appears to suppress superconductivity. Although the problem of long range forces requires

more work to be settled, it is also worth exploring other scenarios which can possibly lead to

superconductivity through short range interactions. The mechanism we propose ~ this paper

involves an effective interaction whose leading term is velocity dependent and is such that the

effective attraction among two holes is strengthened by the delocalization of the pair. The

mechanism provided by dynamic binding, if available, would be a conceptually simpler way of

producing superconductivity than a mechanism based on long range interactions. In fact, in the

first case melting of the phase separated bubbles is not due to the fact that the kinetic energy

terms or long range forces are so large that they dominate the effective attractive interaction of

magnetic origin, but to the fact that an interplay between magnetic forces and the hopping term

favours the bindingof two holes and the delocalization ofpairs of two holes. From this point of

view, high temperature superconductivity is also due to a kind of frustrated phase separation, but

~e competition in our case is between different kinds of order inside the bubbles which makes

an otherwise subleading interaction dominate in the crossover region.
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,The physically relevant parameter region for the t - J - V - Vi model has t R:: J and ..\ R:: J

andean be reached only with numerical methods. However, it is conceivable that by carefully

tuning the interaCtion parameters one can stabilize a phase at small t and ..\ in which the relevant

_pairing mechanism which is I'Cfsponsible for high temperature superconductivity dominates. The

question for the numerical studies would then be to find out whether this phase becomes more

stable or, instead, it disappears as we move to larger values of t and..\. Setting V = J in (1.1),

we- neutralize .the exchange interaction among holes, so that it is neither attractive nor repulsive

in the limit t = ..\ = Vi = O. The occurrence of phase separation for ..\ << t << V depends

on, the value of the next neighbour coupling V'. If V' < 0, then at ..\ = t = 0 holes arrange

themselves in a checkerboard configuration. If t and ..\ are switched on, this phase is still stable
l '

for V' < -(cIP + C2..\2), for some constants CI , C2 > 0 of order 0(1). IfVi = 0 and t >..\, the

most stable configuration appears to be a double chain of holes forming a domain wall. In fact,

virtual hoppings of the holes in and out of the double chain are not suppressed by any frustration

effect. This results in a resonance among a)1 configurations in which one or more holes which

are not neighbours of each other make one step out of the chain. As a result, the contribution

lo,the .ground state energy coming from the hol~s is proportional to (-t) times the number of

,holes. The dynamic binding mechanism in section 2 is already at work in this parameter region,

but since it gives rise to a ground state energy'R:: _t2 per hole~ it is suppressed. Double chains

are much less stable then crystals and as Vi increases they undergo an instability for Vi R:: t.

There are two cons~ts of order 0(1) such that, if c3t < Vi < C4J, then double c1~ains are

unstable and the leading interaction mechanism is the dynamical binding in section 2. Hence in

this parameter region we expect the stable phase to be a superfluid of tightly bound hole pairs.

Beyond the threshold Vi = C4J. also dynamic binding becomes unstable and static interactions

dominate. We thus expec~ some kind of phase separation to take over again.
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