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Abstract.

We study the low-energy part of the specﬁ'um of a version of the t — J — V — V' model with
a strongly anisotropic antiferromagnetic exchange term. We perturb around the half filled state
and work in the large {- limit. We argue that one‘can suppress phase separation by tuning the
parameters in such a way as tb exactly balance the attractive. part of the exchange interaction
and to escape the conclusions of Kivelson, Emery and Lin. We rigorously show that in the
ehergetically most favoured states, two holes of opposite spin form a bound state. The binding
mechanism is dynamical and relies on the interplay between the kinetic and magnetic terms
in the Hamiltonian. Phase separation is sixppressed because the leading effective interaction
between holes depends on the hopping term and attraction is enhanced by delocalization. We
also propose a model of a valence bond solid for which the attractive part of the exchange |
interaction is not balanced, holes bind in pairs and phase separatidn is suppressed for purely
geometrical reasons. Our mathematical results are proven by explicitly block diagonalizing the

'Hamiltonians by means of a rigorously controlled cluster expansion algorithm not yet used in

this context. ' <




Contents.

1. Introduction.

2. The Ising Limit

3. Dressing Transformation for the ¢ — J model
4, The VBS Model and the Sign Problem |

- Appendix A. Numerical Implementations

Appen}dix B. Phase Separation: a Heuristic Discuss‘on
1. Introduction.

‘The discovery of high-T, superconductors triggered renewéd interést in the problem of the
motion of holes in an antiferromagnetic Backgmund. Of the models retaining the physically
significant features of the general problem, the ¢ — J model and its varianté have beén singled
out [1], [2] as among the most basic models describing the behaviour of hard core elecﬁ‘ons on
a lattice. The Hamiltonian we choose has the following form:

' r1
H,00 = Y meny[5(og0y + V) + (o0 +o70))]
lz—yl=1

= Y tekgepw +he) + VDT memy. (L)
o||lz—ylli=1 llz—ylh=2

The plain ¢ — J model corresponds to the case V = —J and V' = 0 and can be obtained by
extrapolating to arbitrary ratios of :‘, a Hamiltonian directly derived from the Hubbard model
at strong coupling. Eipansions around the classical limit ¢ = A = 0 are particularly appealing
because of the apparent simplicity of this c#se. Howgver, this approach requires a careful tuning
of the parameters in the Hamiltonian in order to avoid the phase separation of the ground state
into hole rich and hole poor regions which can occur even in the dilute limit. The difficulty of
the problem is well illustrated in the paper [3] of Kivelson, Emery and Lin, who show, by means
of a perturbative calculation truncated at the leading order; thatif ¢ and A 4are small enough and
if V! = 0 then various kinds of phase separation occur. These authors consider all values of V
With the exception of the critical value V' = J. Their result gave rise to an as yet unresolved

controversy with various other groups performing numerical work with high temperature cluster



expansions and with cxﬁct diagonalizations, and whbse” results suggest the existence of both a
phase separated and a superconducting regime for {- < 1; see Putikka et al. [5], Dagotto et
al. [6], Prelovsek and Zotos [7]. The last group also observcs an mtermcdlate kind of phase
separation which occurs in a precursor phase to superconducnvny and in which holes hnc up
and form domain walls. Both kinds of phase separation have been experimentally observed [8],
[9]. -
The main body of this paper contains a technical discussion of a cluster expansion algorithm
 which is well suited tO‘i.l rigorous as well as to a numerical analysis of this class of problems and
allows one to systematically block diagonalize the Hamiltonian. Each block can be interpreted
as the effective Hamiltonian controlling the interaction between a certain sct. of quasiparticles.
This allows us to cdmpute properties of exéited states and of holes such as the dispersion
laws for isolated quasiparticles and to study the interaction between quasi-holes and spin-wave
excitations. We illustrate this formalism by studying the problem of deriving the reduced
Hamiltonian for a pair of holes and proving the existence of a bound state. Although the
analysis of this algorithm is our main concern, we cannot avoid a heuristic discussion of the
problem of phase séparation. In fact, if the effective interaction betwecn holes is of a kind that
favours phase separation, then bubbles of holes form even in the diluted limit, and a two-particle
calculation is not sufficient to describe the relevant physical properties. Since we are not able
to substantiate our arguments on phase separation with rigorous proofs, 'yct, IWe present our
discussion of this question in Appendix B. Our conclusion is that if one chooses the coupling
V' to lie within a cusp in parameter space such that [V — J| < O(2), then the occurrence of
phase separation is decided by the next neighbour coupling V'; see Fig. 2 in Appendix B. In
the limit of small ¢ and small A we can distinguish four different phases. In the first and in
the fourth phase, holes phase separate in bubbles, in the second one domain walls appear, and
in the third phase a balance of opposite effects is reached which stabilizes a supcrﬂuid state of
tightly bound hole pairs. Phase separation in bubbles occurs because the leading 'mteracﬁon
between holes is static, i.e. velocity independent, and, as a consequence, holes are expelled

from the antiferromagnetic insulator. In our scenario, bubbles and kdomain walls evaporate in
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the superconducting phase because the leading interaction term in the.effectivc Hamiltonian
depends on the hopping and binding between two holes is enhancéd by the delocalization of
the pair. This is the “dynamic binding mechanism” referred to in the title of this article. The
superconducting phase is located near the crossover region between two phases corresponding
to two different types of long range orderin the phase separated bubble. The resulting frustration
effect makes the otherwise subleading interaction term giving rise to dynamic binding become
the dominant term. An aitemativc mechanism to escape phase separation which has been
proposed in [10] involves long range interactions. Long range Coulomb interactions caﬁnof be
neglected in a model that is designed to give a reélistic account of the physical situation and they
certainly might play a major role m the problem. quever, an explanation of high temperature
superconductivity based on the frustration of 'phase separation due to long range interactions
is problematic because of the competition between supérconducting and charge density wave
instabilities [11]. We‘ thus think that it is worth investigating whether the superfluid phase we
find at large {- and large % and which is controlled by dynamic binding, can be continued to the
physically relevant parameter region. We are presently investigating thiS question nﬁmerically
 with the help of the algorithm described in this aﬁcle and plan to discuss the results in [12].
A second direction worth exploring‘ is illustrated by a Valence Bond Solid (VBS) model of
strongly correlated electrons that‘ we also study in this article. In this model, phase separation
is suppreséed by the special geometry of the lattice. This model is also interesting from the
technical point of view because it givesusa chatice to illustrate our zero temperature expansion
at work in a situation with a “bulk” sign problem. That holes bind in spin-singlet pairs in models
of this type has been argued previously in [22].

The model Hamiltonian in (1.1) is defined on a large cube A C Z2 with periodic boundary
conditions. The Hilbert space is 'H:, = Ps®zea C3, where P 5 is the projection onto the
subspace which is invariant with respect to global spin flips. As a basis for C3 we choose
1), 1), le ), where e means “empty”. Doubly occupied sites are thus excluded. Fixing the
energy units in such a way that J = 1, the parameter region we explore has both the transverse

coupling A and the hopping amplitude ¢ small compared to J. The number of electrons is taken
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to be equal to |A| minus one or two, i.c., we study the problem of the propagation of one hole
in the background of a half-filled antiferromagnetic ihsulator and the interaction between two
holes. For a system with two holes, the results depend on whether the spins of the two holes are
opposite or parallel. For holes with antiparallel kspins we show that binding occurs.

Because we choose V' = J, there is no explicit attractive potential of order J. Hence, even in
the limit of small A and t, binding is due to an interplay between the kinetic and the magnetic
terms. The reason why holes tend to bind is related to the obstruction of independént motioné

by an antiferromagnetic background. In fact, as a single hole moves it leaves behind a trace
of frustrated spins unless it performs rather compliéatcd péihs to reshuffle the disturbed spins
back into plage; see for instance [19]. Within a small ¢ expansion, the amplitude for hopping
of an i§olated hole is of order 5. However, a pair of holes khas an amplitude for hopping of
“order 2, provided the two holes simply follow each other. The understémding of these string
effects and the construction of mathematical algorithms for their analysis are important for
the development of qﬁanﬁtativc methods to study such magnetic systems. The Brinkman-Rice
approximation [13] in which one sums up only self-retracing paths and extrapolates to J = 0,
and variations of it [14], have been instrumental in approximately computing Green’s functions
_in closed form. The numerical evaluation of the exact series expansions would be useful to
validate the conclusions of these approxiniatc treatmehts. It would also be interesting to be
Aab‘le to gather information on the quasiparticle structure that can be used to enhance the signal
of Quantum Montecarlo calculations which suffér from the infamous “sign problem” and from
the smallness of the wave function renormalization factor; see for instance [15]. In this paper,
we develop a cluster expansion whose convergence can be proven rigorously and whiéh gives
.a method for constructing the effective reduced Hamiltonians for any finite number of holes by -
integrating out the spin degrees of freedom. With the same method, we can also produce an
expansion for the exact creation operator of dressed quasiparticles. A rigorous analysis of such
methods is p;escnted in this article. We explicitly compuic the series expansions to leading
order, prove their cohvergence and show that, in the two-holes-sector, these ’quasiparticlcs are

bound in the ground state.




Dressing transformations [16],[17] are the technical tool we use to carry out our program. This
technique is also useful in the study of quantum spin systems such as the dopedt — J —V — V' Y
model for which there is a sign problem, i.e. for which the ground state wavefunction ¥ and
the statistical wcigh;s in the partition function are not positive. In such a situation, one cannot
write '¥q as exp(—k), where A = —In'¥¢ can be interpreted as the short ranged Hamiltonian of
a statistical physics problem, in order to unravel the clustering properties of ¥(. A more general
[16] way of representing the ground state wavefunction is to write it in the form Yo = exp(R)|0),
where |0) is the unperturbed ground state, the Néel state in the case of the Heisenberg model,
and R is an operator which is short rangcd and is translation if;vaﬁant if so is the Hamiltonian.

In a sense, R plays the role of the logarithm of the ground state wavefunction, but the added
degree of flexibility deriving from the use of operator-valued, rather then c—valued, functions
allows one to accomodate the troublesome negative signs. Refining this idea [17], one can allow
the operator R to be skewsymmetric, so that thé resulting ground state wavefunction does not
require normalization factors, and a natural basis for finite energy cicitations orthogonal to the
ground state is readily available. In this papér, we present a new streamlined derivation of some
of the methods of [16] and [17] and also show how to incorporate a finite number of holes in
this scheme and how to compute the reduced Hamiltonian in the sectors with one and two holes.

This paper is organized as follows: In the rest of this intfoductory section 'we give precise
statements of our results. In section 2 we consider the ¢ - J — V — V! Hamiltonian in the Ising
limit and compute the reduced Hamiltonians. We then incorporate spin fluctuations, in section
3, by means of dressing transformations. In section 4 we considera Maﬁon of the VBS model
in which holes have an attfactive interaction of order J, due to the exchange term, but which
nonetheless does not appear to suffer from the patholégy of phase separation in the large {— limit.
In Appendix A We discuss the relation of our cluster ekpansion to the one used by Gelfand,
Singh and Huse in their numerical investigationé. Fina.lly, in Appendix B we comment on the
problem of phase separation. We attempt to determine the region of parameters (¢ > A, V, V')
for which one obtains pairing of holes withoﬁt phase separation. A numerical implementation

of our algorithm will be discussed in [12].



REMARK: All constants appearing in the estimates throughout this paper are independent of
A. From now on, we fix an arbitrary bounded square A and drop subscripts ‘A. Although
our methods and results are valid in any number of dimensions, we specialize to d = 2 which
is the physically relevant c‘;a.se and is also technically the simplest case to carry out explicit
calculations.

Ift=2A = 0, the spcctmm of the ¢ — J Hamiltonian consists of even and positive integers > 4.
If one or two holes are present, the ground state is infinitely degenerate. As we turn ontand ),

the lowest energy band remains isolated from the rest of the spectrum. In fact, we have

THEOREM 1. (LOWEST ENERGY BAND). Letus suppose that there are n. = 0, 1, 2 holes.
There are constants cy, ¢ > 0 such that if [t| < ¢, |A| < ¢, then the eigcnvalucé of H,,
bifurcating off zero energy do not cross the other eigenvalues from the bands of highc_r energy.
Moreover, there is a projection operator P_(], t) analytic int and X in a small double disc, such

that P, (0,0) js the eigenprojection onto the zcrb-cnergy eigenspace of H,,(0,0), and we have
[H, (2,0, PaA,8)] = 0. (1.2)

If E,,(})is the ground state energy of H,, (A, t) in the half-filled sector then the restriction of

the Hamiltonian to the lowest energy band can be defined as follows:

'

ha,8) = (H,008 — E,00) Pal, 0 o ad

on the reduced Hilbert space
Hn(M\t) = Pa(A, O H,,. : - (1.4

We remark that one must subtract the ground state energy E, ; (,.\), in order to produce an operator
hn(A,t) which is well defined and whose spectrum is bounded from below, uniformly in the
volume |A] of the region A. In fact, the \}acuum energy is an extensive qﬁantity proportional
to the volume |A| and thus diverges in the thermodynamic limit. The restricted Hamiltonians
h,,‘()«, t), n =0,1,2 commute with translations 7z, z € A. Hence, the reduced Hilbert space

Hn(A, £) can be written as the direct sum of generalized eigenspaces Hp (A, ¢, k) such that

Ha\8) = O HaAt,k) 15
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where the direct sum indexed by k ranges over the points in the first Brillouin zone which are
allowed by the finite volume cutoff, and Hn(A, ¢, k) is given by

Ha(\ 1, k) = span{ [$) € Hn: T l¥) = €*= [y), Vz € A}. (1.6)

Let us denote by |z ) the state obtained from the Néel state by removing an electron from the

-~ site z; similarly, we define |2,y). We introduce the mutually orthonormal states

W) =) P ’(z ) PLLD I2!) € HiO0)
W) = Y Py i@ ne,y) B Ie,y) € Hah b .7)
. z’y’ .

where Pj(z;y) and Py(z,z'; y,y') are the following matrices:

(3'?1(), t)lz’)a

Pz

Py(z,y;2',y)

(z, 9P\, DI, y'). (1.8)

The fiber Hi(A,t, k) is aone dimensional Hilbert space along the vector

¥ = ; MZ e [$() w9
while | |
Hy(k) = span { W(k: 2)), z € A} (1.10)
where | _
ki 2)) = | AIZ '“w(y,zw» | (1.11)

The reduced Hamiltonian hj (A, ) restncted to ‘H] (A, ¢, k) is the operator of muluphcauon by

the constant _ }

0L B) = () | BB [HCR), (112
while h()\, t) restricted to the fiber Hp(A, ¢, k) =~ lz(A) is given by tﬁe one body operator with
matrix elements | '

Otk = (P2 | B | k). (1.13)

We have



THEOREM 2 (PAIRING).‘ If || and |t| are smaller than a certain constant ¢ > 0, then, in the
two dimensional case, we have the following results:

| )] Thé dispersion law for one isolated hole is given by

158 |
ea0,4,k) = (- 22+ 0(t4)) * gt Y, (osk-y — D, (116
3 34.5
' lyl=v2
and
e10 8, k) — 10,4, k) = OO?). N (BY)
(ii) The reduced Hamiltonian for two holes has the form
8, 5. /1 2V'+3V?
hZ(O)trk; z, y) == '3't 5zy -1 621[[(— - _"—'—)6(”2” - l)

3 @2+V"H?

, 8V v’
+ (V= sa—m) el = 2) + g pdliell = 3)
1

+ 5ot = Sa8(llzll - D&yl - D1 - = —e tlw]

(1.18)

and

hy\ ks 2,y) — hp(0,t,k;2,y) = O(@NlE—¥ll 4 Bllz—2li 6y (1 19)

where a U b = max(a, b).

(iii) For all k small enough, the ground stétc of the operator hy(A, t, k) is a symmetric (i.e.
o o _ —14-7V'48V? 2 4, 2 : -
s-wave”) bound state of energy B, = Spwvy Pt O@* + t*)). In particular, if

V! is smaller then a constant =~ 2, a bound state exists for small t and X < t.

The s-wave symmetry of the lowest energy bound state is probably due to the fact that in our
hand-made leading order calculaﬁon we can only consider the limit -_tT < 1. As the ratio :tr |
increases, there might be level crossing in favour of d—wave pairing, as Shraiman and Siggia
[20] predict on the basis of the Brinkman-Rice approximation. 4

Next, we consider the valence bond solid (VBS) model described by the followingll-lamilt‘o-
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nian:

I I o
Hyps(®) = Zz("mw + "y<yz>) + D Utga(ey) Moaey)

(zy) A o,z,(zy)
"X Xty @ catan)(@ = 33 ¢ (@ cyey@ + b )
? (en)H(zv)o (zy) © (1.20)

Here, the sum is oiler bonds on a large square A C Z2 to which the system is restricted, with
periodic boundary conditions. For each site z € A there are 2d orbitals available; they are
oriented in the direction of all the bonds (zy) intersecting z. Doubly océupied sites are ailowed,
although double occupancy is sﬁpprcssed by the U —term. Lét us denote the Hilbert space with
H, ps- For this model, too; it is convenient to fix the energy units by setting J = 1. We also
assume that the Hubbard repulsion term is large. To fix the ideas, wesetU=1andt=1. We
are interested in the kinetic properﬁesof an isolated hole and in the interaction of pairs of holes
in the small ¢ limit.

The ground state of H;, ;5(0) at half filling has a fairly simple structure as it can be constructed
by placing one éicctron on each available orbital and forming a spin singlet out of éach pair of
electrons on the same bond. In this séctor, the model clearly has a spin gap of order J . If the
| kinetic energy termis turned on, i.e. ¢ > 0, élecnfons can hpp and qﬁantum fluctuations arise all
over the lattice. By using the dressing transformation technique described in section 3, one can
extend Theorem 1 also to this model. In particular, if there are n = 1,2 holes, we can define the
~ eigenprojection Py(t) on the lowest band of the reduced Hilbert space and inn'oducc a reduced

Hamiltonian

hﬂ(t) = (]H[vgs(t) - EvBs(t)) Pﬂ(t), (1-21)

where E,, ;¢ (%) is the ground state energy in the sector corresponding to half ﬁllmg The 6perator
hy(t) is defined on the reduced Hilbert space

Pairing of holes of opposite spin also occurs for the VBS Hamiltonian in (1.20), albeit for a
different reason than in the anisotropic ¢ — J model considered abofre. In fact, in this case the

10



reduced Hilbert space Hy(2) is spanned by all wavefunctions of the form

S P2y P oY), (123
z'y

where |zy) is the state obtained by pulling both electrons out of the same bond (zy) from the
¢t = 0 ground state of H, 5 (t) and P, is an operator defined by a matrix similar to the one in
/(1.8). If ¢ = 0, this follows from the fact that if we p’uli two electrons out of different bonds, then
we loose twice an exchange energy of at least J. If ¢ > 0, the prqof is based on a perturbative
argument and on random walk cxpanéions that we discuss in Sect. 4. The precise statenicpt of

the result we prove is given in the following theorem:

THEOREM 3 (VALENCE BOND SoLID). The lowest energy band in the two holes sector of
the VBS Hamiltonian, for |t| small enough, is spanned by the states of the form (1.20) and the

pairing energy of twoholesis E .., = —J + J 0((;‘,)2)..

~ Theorems 2 and 3 are proven in sections 3 and 4. Our proof makes use of dressing trans-
formations of a type introduced by one of the authdrs‘ in [16] and [17]. As we explain in
Appendix A, the perturbation series of the type described in [4] are generated by applying a
Rayleigh-Schroedinger expansion to a family of restricted Hamiltonians; with such techniques,
one can recover, at least in principle, the same series we obtain. However, as one attempts to
establish the convergence of such series and to find rigorous bounds on the error terms, one
meets a serious difficulty. The problem is that the number of diagrams one has to add to obtain
the n—th coefficient for the expectation value of 5. local observable grows as n! and thcfe isno
| compensating factor ;lr allowing one to control the convergencé of the series. The generation
of a number of diagrams larger than is strictly needed also negatively affects the speed and the
memory requirements of the numerical implementation of the algorithm. This is a version of the

“large field problem” for Fermi systems that one also encounters in quantum field theory models.
To find a remedy there are two possibilities. Either one understands the mechanism control-
ling the cancellations among the various diagrams originating from the Rayleigh-Schroedinger

expansion, as is possible in the case of weakly interacting Fermi systems. Or one performs a
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unitary dressing transformation, in the spirit of [16] and [17], on the Hamiltonian before using
Rayleigh-Schroedinger expansions, in such a way that the resummea geometric series generated
in this way are not affected by the large field paﬁology anymore. In this paper, we adopt the
second technique which provides quite an elementary solution to this problem. Knowledge of
the previous papers [16] and [17] is ndt required, as we providg the proofs in full detail and also
give a streamlined version of the original arguments and constructions. In Appendix A we also
review some of the salient features of the method of dressing transformations for quantum spin

systems. Finally, in Appendix B we discuss the issue of phase separation.
2. The Ising Limit.
The proof of the first two results in section 1 is particularly simple in the Ising limit A = 0. In

this case, the eigenprojection P'»(0, t) can be expanded in a geometric series as follows:

dz 1 N\d
Pn(0,2) = f 271 z — IHL,(O t) Z( t)J ]{ 2mi z — s Tz - s) 2

where

77]
]
|
S
8
5y
P
uq
<
+
[o
N
+
<
S
8
5y
N
N

and

T = Yo ) G o (2.4)
z,yEA o ,
lz -yl =1 |
Here, we fix the energy units by setting J = 1. Since the relative bound of the operator ¢ - T with
respect to S is & ¢ - t, the constant being uniform in |A| as usual, the random walk expansion
~ (2.1) is assured to converge if ¢ is small enough. If A > O this is not true anymore because of
the extra terms that arise in this case, and, to generate the random walk exéansidn, one has to

perform a dressing transformation first. Refering to the next section for these developments, we

shall first focus our attention on the X = 0 case.
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NoOTATION: Forz,2' € Z2, letw = (wp = 2, wy,...ry Wy| = z'): z - 2/ beapathin 72

from z to z' such that ||w; — w;_1]l; = 1. An operator Ty, is then defined by

'Tw"‘= H '(Z(cz‘.a'cwi_l-a- + hec. )) | | (2.5)

=l,..|lw| ©

‘The situation with only one hole was first discussed by Brinkman and Rice [13] in the context

of semiconductor physics. In this case we have that

PO0R =Y X Y - fam( T ¢ - sime) ™) Tale)
26)

z wiz—z' j=jw| , =1,...,|w]|

where we set

mw = (2, wy, ..., w;) ‘ 2.7

for any path w = (2, wq, ...w|w|) starting at z and S (m;w) is the eigenvalue of S corresponding

to the eigenvccior Txuwlz), ie.
S Tﬂ-iw |z) =’ Sl("l'i(-l)) Tr’»w lz). (2.8)

The subscript 1 stands for “one hole”. As the hole moves under the action of the operator T,
it leaves behind a string of frustrated spins which can be eliminated iny if the path intersects
itself in a suitable way. A possibility is that the path is self retracing, i.e., that the hole pésses
through each site an even numBer of times, thus ending up at the same site it started from. The
length of such paths is > 2. The paths w of lowest order in ¢ for which Tylz) = |y) with
z # y are those for which the hole performs one and a half turns around a plaquette. Such paths
have length 6.We retairi only termé yelding contributions of order at ﬁxost O(#2) to the diagonal
matrix elemcnfs of the reduced Hamiltonian hj and terms corresponding to contributions of
order not higher than O(t6) to the off diagonal terms. In our formulas, the order in ¢ of the
remainder terms we neglect varies with the nature of the terms involved. i.e. it depends on

whether the term is diagonal or off diagonal or whether it involves a frustrated spin. To have a
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unified notation, we use suspensibn dots to denote all these higher order terms.

P10,1) |20) = co®leo) + Y { eatt)oll) )

|31 —o|=1 ‘
T D [ 2 P c4<t)a‘1’ o) lzg) + es)oly)lyr)
2 —wml=1 |
ly2 = 2ol = V2 |
te®im) + Y etelodol) 1) }
ly3 — | =1 |
ly3 — 2zo| = 1
S , 29
where
_ 2 fdz 1 1 . 4, 4
co® =1+ 4(-1) 2m'z2z—3—1' 9t + O(Y),
, dz 1 3
= (- t)fm” = 5+ 06,
=D P e - 13O0
—( 3 dz 1 _ _t_3_ . 5
e3(®) = (-1) variz(z—?’)(z—S)(z-—G) T 90 + 0@,
_ 4 dz 1 _ 1 4 6
a®= (0 ¢ TG ne—6 2.3 o)
_ s fdz 1 I P
cs®) = (-1) me 23Nz -6 =235t Yo,
_ (6 dz 1 _ 37 6 8
cs(t) = (=1) f Imiz2(z -3z —5)z—6) 2.3 53( -5 + 0. 2.10)
We have | '

Pi(z;y) = (=|P©,dly) = (1—-;—:2 + 0th) 6(z—y) + 0S4l (162 —y)) (2.11)
and | |

P @y = A+ 22400 6@ —y) + 0B s —y). @12

nge,aub = max(a, b). 'IhelHilbert space is spanned by the othonormal basis {|#(z)) z € A}

defined in (1.7). The vector {1/:(&:)} has an cxpansion‘ of the form (2.9) with coefficients
ch®) = 1- -t2 + Oth, 2.13)
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- while c’i(t) = (1+ O(t?)) c;(t), for i > 0. The diagonal terms of the reduced Hamilforgian are
easy to compute. We obtain
($@)|h[$(@) = (@IS ~ tT[H(=) _ |
=4.3. -;- 2 +2.4. (—t)%t + 0@h = —§t2 s oY, @14
The off—dxagonal terms fulﬁll the bound |
(a0, 0) = O(SSlmml) e
" and the leading wﬁn describes next neighbour hopping between sites with I:cd —ywh=v2. In
this case, we find that

(B(50)[SI(@0)) = 4 - ca(t) + 4 - Jer(Des(t) +4 - SexB)eca() +2 - 6e3®) + OGE®),  (2.16)

and
(¥ [(—tT)|Y(z0)) = —4 - tes(t) — dtey(D)ey(t) — 4 - tea(B)e3(?). 2.17)
Hence | |
158 ¢ 8
(¢(yo)lhll¢(zo))— 5 5zt +O(t°). \ (2.18)

The dispersion law is thus given by

eakit,0= 3 by, 0) V=32 - 13 T kv
y

3 34.53
Iylz—f
4
= (—-t2 + 0(t4)) 158 16 D (osk-y —1)+....
3 34.53 : 2.19
[yl2=v2 ; (2.19)

- where the suspension points stand for k-independent terms of order O(t*) and k-dependent
terms of order O(t8). '
Let us pass to the case of two holes. Let us fix a bond (zg yp) and let |2g yg) be the state with |

two holes on such a bond. Expanding in a geometric series, we find

% 1 las0) = lzom)
27t z—-S+1T Zo¥o) = %030

d 1 , -
—t fZ:z z2(z -2 - V)( z ag’)lz w)+ Z ”g)lzo y))

lz — zoll =1 ly — woll = 1
| \ z¥Y yF¥zo
dz 1 : ‘
+ 2 j( R S (6]::0 w+ Y Lzy)) + o - @220)
2w 24(z—-2-V") (24 (o)A
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where the remainder contains terms of order,O(tz) which are orthogonal to all states |z y)

together with terms of order O(t3). Hence

6 o
Pa(t) |zoyo) = (1 — GV tz)lzoyo)_
t ) .
ey (D DI (" D DR ¥y
lz — =zl =1 ly —wol =1
= 4% y 720
1 Y |2y) + o..... o @21

S22V T 79
(ey)  {zou0)

We have

Py(z0,%0; 20, %) = 1 2 + 0@t%). (2.22)

_ 6
Q+VH2
Moreover, if (zy) N (zoyo) # 0 and (zy) # (zoyo), we have

1 : ’
Py(zg,y0: z,y) = —mtz + Q(i4)- v(2.23)

By expanding in a binomial series, we find

3

2 4 O
toTypt toeh, e

-1
Py (20, Y03 20,%0) = 1

=1
Py *(20,30:2,Y) = 2 + o). (2.25)

1
22+ Vh2

- Hence, if |29 — yg| = 1, we have

| N 3 .
Y P, (=0, w0 2,y) Po®) |zy) = (1 - mtz) |zovo)
< | |

t A 1)
s Y Rew+ Y ol lw0w)
24V llz—=0ll=1,270 | ly —wll =1

‘ y#zo

2 \
L M
- 22+VO% ) 1 (zow0) 79
(zy) # (zowo)

Hence, the leading order terms of the effective Hamiltonian (2o, yo; , ) for ||lzo — 30|l = 1

lzy) +.o (2.26)

are non zero only if the sites z, y are on neighbouring bond and in this case we have
122

TV , if zéZO,yé‘yo,‘
ha(z0, yo; =, ) = 2 " { (zy) # (=0 %0) @27
v ,

{2,) N (=030 79
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Next we consider a state of two holes with ||zg — yp||; = 2. We have that

: _ 8 M), o
Palao,30) = (1~ 55— 77 ) lzow0) + 3 "'(uy-\{inﬂ% 'y)'+||=_zzou=1"’° =)
+ e , (2.28)

| g |
Py(z0,%0:20,%0) = 1 - (3—_—Wt2 +0(th). (2.29)

|¢(zo,yo))=( 3 4V,)2 )I zoy0) + (3_tV,)( > owlsoy)+ Y ag,)lzyo))

lly—woll=1 [lz—zol|=1
+ ey (2.30)
so that ‘
| L 833 -2V 2
. _ !
hZ(ZO)yO’ zO)yO) =V - —('3——“";,)—2"t | (231)

- Finally, if ||zg — yo|l1 = 3 we have

—[2+ 2252 i =
ha(z0, Y03 20, %0) = { £ Gy ] =0 = 3oll (2.32)
-3¢ if floo— 01> 4
Passing to the center of mass frame, we find
ho(k; z,y) = Z etz hy(0, z; 2 y+z)
= __.8_ 26.., — 128 [(_1. — M)g(l | - 1)
=73 ey = ey (3~ vy ) 20l
)% 2
!
+(V'-352 V,)zs(llzn D + 3 yyrdlel - 3)
iz —y)) [l — etz _ e"ik'”]
‘ (2.33)

which proves (1.18) in case A = 0.

Due to the Perron-Frobenius theorem and to the negative sign of the third term at the bottom
of the band, i.e. for k =0, and at A = 0, the ground state of the reduced two-hole Hamiltonian
is a stricly positive function and has s-symmetry. As we show in the next section, for A small
the situation does not‘change, while, for A near one and larger values of ¢, there might be a

crossover to d-wave pairing, as one would expect bl_l the basis of the calculation in '[20].
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3. Dressing Transformation for the tJ Model.

The Heisenberg Hamiltonian is invariant with respect to global spin flips. To deal with this
degeneracy there are two al;ematives: Either we choose to express the dressing transformation
through spin flip operators invblving only the matrices o(1), as was done in [16], and, in this
case, we respect the symmétry but give up unitarity; or‘we promote the global spin flip symmetry
to a local gauge symmetry by extending the Hamiltonian to a bigger Hilbert space 7 and then
use techniques of [17] of which we give a new, streamlined présentation in this paper, i.e. we
follow the second alternative which is mathematically simpler. However, the reader should be
warned that in order to optimize the algorithm fdr numerical calculations, the artificial increase
in the number of degrees of freedom resulting from the second strategy should be avoided,
and alternative setups will be more convenient. The point made in this paper is that local
gauge invariance is useful in order to control large local deviations from the Isirig ground state
consisting of large bubbles surrounded by Peierls contours. Such large deviations show up oniy
‘atv orders of perturbation theory as large as ~ c - A1 |

On the extended Hilbert space, a state is described by a configuration of happy and frustrated
bonds, and it turns out that unitarity of the dressing lransformatidn c;an be enforced in such a

way that the local symmetry is preserved. We set
H = Op(ay)cze G oG, (3.1)

where the fiber corresponding to a bond b is the direct sum of two spaces, C% and Cg A basis
for Cf consiS;s of two vectors, |h) and |f), where h stands for “happy” and f for “frustrated”.
The basis for Cg is{le 1), lel),|1e)|le), |ee)}, where the first argument refers to the
left site for horizontal bonds and to the top site for vertical bonds. There is a natural injection
H, — H,, and:therev is a canonical extension of the ¢J Hamiltonian H,, (A, ) to the larger
Hilbert space H,, of the form | | | |

H,, (A,t)‘: = Z (éb + A l'c,, +t 3,,) » (3.2)
b . .

It is sufficient to restrict our attention to a subspace 1:{‘ ; of H,, containing the physical space

H,, and invariant under the action of the extended Hamiltonian. Such an invariant space must
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share with the physical subspace the property that, for any given site, the states of the bonds
meeting in that site agree on whether the site is empty or océupied. Thus zonly doubly occupied
bonds can be chosen in a nqnphysical wéy, that is, in su‘ch' a way that the Peierls contours are
| ~notall clqsed; this provides the extra degree of freedom required to construct the kind of unitary
dressing transformation we shall make use of. The diagonal operator &, is defined as follows: &,
has eigenvalues 0 and 1; it annihilates states over a bond b for which the bond b is either happy
or not doubly occupied, and its eigenspace of eigenvalue one is spanned by those states for
which the bond b is frustrated, thus penalizing éuch cdnﬁgurations. The action of the operators
ky, and 8, is illustrated in Fig.1, below. If the bond b is either frustrated or partially empty,
then &, annihilates the state. Otherwise, if b is happy it \le’aves it happy and changes the state
of the neighbouring bonds cNb # 0 in sﬁch a way that if ¢ was happy it becomes frustrated
and viceversa, moreover, if ¢ was occupied by just one spin on the bond b, then this spin gets
flipped. Finally, 4, acts nontrivially only on states for which one and only one site of b is empty
while the other site is occupied; if this is the case 35 oniy changes the state of thé bonds b and
cif bN ¢ # 0, and its action is uniquely determined by the requirement that the Hamiltonian in
(3.2) is an extension of the ¢J Hamiltonian in (1.1). See Fig.1 for a graphic description of the

action of ky and 8.
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= happy bond

= frustrated bond

(a)

(b)

Fig. 1




To define the dressing transformation, let us first consider the model with a half filled band,
i.e. without any em'ptyb'sitcs; In the half filled sector, an excitation is described by a function

v : A — {0, 1}, where A is the set of bonds of A. Let o1, i07 be the matrices
w _ (01 .2 _ (0 1 '
o = (] ¢)@0s, W@ = (D g)eos. 63

on the vector space C? @ ©, where Qs is the zero operator on the subspace CS of the fiber
over b. Here, we identify |h) with () and £ with (). The state |h) carries the label 0, the
state |f) the label 1. Let agl) , iagz)'be the corresponding operators on the fiber C% &) Cg We

introduce the real skewsymmetric operator

Ty = -l-l— Z ‘ia'gz) H a'¢(;1),' (34)
d bey  c#b | —
cey
where || is the volume | ,
=) 2®). (3.5)
3 .

Since no confusion can arise with spin % particles, we also denote by - the support of the
excitation 4. Let d(v) be the number of bonds of the smallest connected set containing . The
vectors '

define an excitation basis on H in which we can expand all wave functions as follows:
>= dyly>. 3.7
4 :

We define the I1-norm of |+) by ;
Wl = D Il N X )
‘ Y . .

We also denote by || - || the corresponding operator norm.
Our goal is to construct a unitary operator U() on H analytic in a disc {|)\| 15 Aok A0 >0, |
such that the ‘ground state of H,, ()«, t) in the half filled sector is U(A)|0 > and that U())|0)

20




belongs to the subspace‘of ‘H identified with H. To detefmine U())in a unique way, we restrict

its form as follows:

UQ) = lim cxp(kl(A))...exp(R”(A)) | (3.9)
where ‘
m .

R'()) = ) A"Rp | (3.10)

, n=1 o

and ' v
Ry = Y tny 7y N (3.11)

l7l=v

This prescription gives rise to a cluster expansion for the coefficients i-mz As one ‘can easily
see, we have that 7y = 0in cé_ise d(v) > 6n. |
One can show that Theorem 1 of Sect. 1 is a straightforward consequence of the following

result:

LEMMA 3.1 (DRESSING TRANSFORMATION). Thereisa constant Ay > 0 such that a unique

operator U(X) of the form (3.9) exists, is analylic inthedisc {|A\| < Ap} and solves the conjugagy

problem | |
UDTH, UM = 8+ VO +E), (1)
S=)Y 4§ B (3.13)

and " | |
V[0 > = 0. - (3.14)

The ground state of H,, (A, t) in the half filled sector is UN)|0 > and ,beIoizgs to H, its energy

being the constant Eg()) in (3.12). The operator V() is relatively form bounded with respect

to S in the following sense: ' | 7 '
(FIVOI¥) < c-[A| (FISI¥), 61y

for all ¥ € ‘H. Finally, we have that rn(y) = 0 if d(y) > 6n, and that, for some positive

constant c,

Th = Sup Y eyl < ™. (.16
' b ybey - ‘ :
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PROOF: Let us consider the conjugacy problem
UL HQ) UW) [0 > = Eo(\) [0 >, (3.17)

where Ep(]) is a constant and U(A) is a unitary operator on H of the form (3.10). Expanding
both sides of (3.12) in powers of A, we find the followihg recurrence relations for the operators

R3:

> Rjj0>

v
. | 1 ;
=— Z{ Z Z ————S_IP_L [ [éb»"'il'n""n] ""rik'YkT'Yk] IO)
| b k22 || < < I EY)) |

31+...+ik=n

, ) . - ‘
+ Z Z —_—S P_L [ [kb""i1117"71] ""'Tih'YkT'Yb] IO >} ,
n y - 17ED
k20 |y| <. <l (nl, -l 3.18)
11+...+1k=n—1
where S is defined in (3.12), P = I — |0){0| and we set
00 o _
a(ml, D = J] @& il = v30. (3.19)
v=0

Equation (3.18) generates a cluster expansion. When n = 1 then 714 = 0, unless |y| = 1,
while, at the n-th order of perturbation theory, only clusters of at most n + 1 bonds are present.
Forn = 1, we have | |

rt=sup || Y S7kJO)); =1 (3.20)
b |
Next, suppose that n > 2. Let us call (connected) k-polymer a family of clusters p =

{b,m,.. 7} suchthatb€ A, 11 Nb#0, 7 N(bU...Uy_1) ¥ 0. We also introduce a space
P of k-polymers given by [p] = {Tzp; z € A, p € P} where T is the operator of translation by

z. Therc is a state |[y(p)) such that
[[& rammn]sram] 0) = fia@ G, 3.21)

for some coefficient f;, . ;, (p). This function is obviously translation invariant, because the £ — J

Hamiltonian is. (In case H; 7 had a similar form but lacked this symmetry, we would consider
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sup,, | f(7zp)| and all thé arguments below would apply as well). The contribution to r;, coming
from all connected k-polymers [pp] € P is bounded from above by /

sp Y firan(CooD) IS A CCRODI
% pelpl -
@) 3 bo | » |
= 5@ |fir..sx(PoD| [8™! F@EN1 = |fiy...5(mOD]-
o (3.22

where p(r) is a representative of the equivalence class 7. Hence, the contribution to ¥ coming

from the first sumin (3.18) is

. |
<Y XY X ) | Fiy...e ()|

k>2 14 'lj...'H.»g=ﬂ [po]
‘ 1

< su S
P D a(ml, 17D

P22 Iy <...lml

n+.+p=n

| fiy i By 115 78|
» (3.23)

where if pg = {b, 71, ... 7%} we set n{([pg]) = n(71, ..-7&). We have that

. : Ifix;.ig(b)7l) '°7k)|
T i e NGU...Ue_1) #0
[kl = vi

<2 [k + (Il + -1l —E+1) vy 1] | fiyinoa By 715 - R=1)]

- Sup Z Irisml-
cEA EX:
[kl = vie
(3.24)

The first term, k in the factor within square brakets, originates from the & centers of noncom-
mutativity of U ;... U 741, while the second term is due to the center of noncommutativity

in 7, The factor v} ! is inherited fromi (3.4). Since the volumes are ordered, we have

(ml+ -+ 1l —k+Dvg! < k. | (3.25)
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Iterating this bound, we find

v

1 _
. Sup — Ifl'l..ig(b171’°"7k)|
n(vy,..vE)
b ml=v1, el = 1,2 ‘
1+t =n
E>2 : .
S@k-@G-Gk-1)4 J] swp D Iryyl
, | j=1,..k b h’jl =vj
vi Db
< 22k [ H 5y ‘ (3.26)
J+l,..k
where
rfj,,j = sup Z LR (3.27)
EY .
l7j| =Yy

Similarly, we find that the second term in (3.18) gives a contribution to ry, which is
<62k [ - (3.28)
j=1,...k

The extra factor 6 is due to the fact that the operator k;, has support on 6 bonds rather than on
just one as in the previous case.

For all n > 2, we thus have

. ‘ _ . ’22k,k! k .
ns(y X ey Y oy (.

22 v <. <y k21 vy <..< j=
i1+t =n +..+ig=n—1
: 2k *
< . -
(X % +eX X )24 029
22+ .. +4=n k>14+..+ip=n—1 =1

Introducing the formal power series

VD PP (3.30)

n=1

we find

A <A +6-A[a -4t -1 + [a _ a1 - 1-4*W)]. 63D
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Since the equation
a*() = A+8(1—4a* V)73 Aa*(V) + 2a* (V)] (3.32)

has a solution a*() analytic for |A| < Ag for some constant Ay > 0 and since a*() majorizes
the series (3.30), we conclude that also r*(A) converges, and hénée; U(A) is analytic in A, for
|A] < Ag. Itis irixpdrtant to remark that the constant Ag above depends on d but is uniform in
the volume. A straightforward calculation gives AO, = 3—'23/3 which is much smaller than the
cxpecied radius of convergence, nz{mely X = 1. The quality of our bound on Ag can however
bé improved by explicitly computing the dressing opérator up to sorhcwhat‘ higher orders of
perturbation theory, not stqpping at the ﬁrst order as we have done here.

. Next we pass to the proof that V() is relatively bounded with respect to S. We have the

following expression for V(X):

V) = Z Xl{ Z Z Z n—(v-l—,l—v—ks [...[fb, R;’:] ,Rr:]
VE »

j=1 k>1 'vl <.
Q¥ tip = | :
1 " Ta . ,
| — [...|kp, R, ... R } — Eg(A
+i§) - sgs - n(vy, ..vg) [ [ ,b '1] ‘k]} . Eo( )(3.33)

W+ +ip=3—1
Expanding V()\)in series of operators v(7) of support ¥ C A and using the fact that V(A)|0) =

we see that

REEDY v(‘v)é > o), | ;3.34)
yCA - 7CA
where adv(7) is the operator such that
i ) = oy ) = i, 7] 0. 339
Let us fix a vector |u) € H and let us expand it in the excitation basis

=Y uh). (3.36)
v :
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One then derives from (3.33) and (3.34) that

(WIVOOR) < Y P IV + 2 30 fuyuy| [(FIVOOR)]
| T T ¢ | < fuy|
o Fy
<23l D16 IVOI)
v v
<2) it Y Y lladv()lh. (3.37)
| 7 bey 7:bey’ , ' ‘
The relative boundedness estimate in (3.15) follows from the inequality
sup Y Jlade(r)lly < c- || (3.38).
- ybey - ‘ ’
which is a direct consequence of the bounds on the operators R}, in the first part of the proof.
Q.E.D..
The proof of theorem 2 for A # 0 follows from a combination of the expansion in section 2 and

- of the relative boundedness estimate for V() we just derived. In fact, the dressed Hamiltonian

in the one and two holes sectors acquires an extra term tT'(A) such that
U™IH,U = S + V() + {T()) + Ep(). (3.39)

As long as there is a finite number of holes and ¢ is small enough, tT(A) is relatively bounded
with respect to S. Working in the dressed representation, a geometric series expansion in 't’][‘(,\)
- analogous to the one in section 2 converges for A small, and the conclusions concerning binding

are preserved, as long as |A| is small enough.

4. The VBS Model and the Sign Problem.

Dressing transformations are a tool flexible enough to accomodate also the VBS Hamiltoniah
in (1.19). This toy model is interesting from both the physical and the methodological points

of view. Physically, the VBS Hamiltonian shows that the attractive interactions due to pure
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- exchange which we suppress in our variation of the ¢ — J model, are able, in other contexts, to
give rise to a pairing mechanism free of vphase separatibn pathologies. Methodologically, the
VBS Hamiltonian is intercstiné because the sign problem obstructs the development of low and ‘
zero temperature polymer expansions solely on the basis of the functional integral formalism.
'\Also the ¢t — J model has a sign problem. However, since we perturb around the half filled case
and the Heisenbefg'Hamiltonian is equivalent to a model of hard core bosons, bthis problem is
rather mild. In contrast, the VBS model shows a full fledged “bulk” sign problem. Some of the
techniques which are necessary to rehdapt duf methods to fermion models with sign problem
difficulty are discussed in this paper in the context of the VBS model. In a subsequent article
[18] we discuss how to extend the analysis to models having not only a sign problem but also a
spontaneously broken discrete symmetry and to low, not necessarily zero temperature.

The Hilbert space of the VBS Hamiltonian in (1‘.19) can be identified with the tensor product

space
o~ 16 '

Hves = ®@yea Cyy - (4.1)

once an ordering for the bonds of the lattice A and for the basis vectors of the spaces C%Sy) is

fixed. The basis of Cg’y) we choose consists of the following vectors:

0 = Z5(1T Do = 11 D) My = Z5 (1 Dy *+ s Di)s-

12 ey = |15 Dieyy 3ess = [s Lienys |4)(=v) = 10, 0),,,
|5)(,y) = IO) T)(cy,’ |6>(gy) = IT) 0)(;,)7 |7 )(zy, = |0! l)(,v)a
|8 )(3,) = |l; 0)(.,): " . ‘ I9 )(g’) = I Tl) T)(.,): ,/ |110)(gv) .= I T: Tl)(gv)
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1)y = 114 Do 12)0y- = 1 4 Ty 13}y = 10, TLy

14) 0y = 1 T4 O)ieyys 15) gy = 1 T4s TL) ey “2)

These are eigenstates of the operator

1

sey) = 3(Taten) + Py 4.3)

Let us introduce operators tf(zy) o Wherez=z,y and o =T, |, by setting

tzi(zw.v = Gloyho T C2(ey)or (4.4)

Let T?‘zy) » 1= 1,...15, be the linear combinations of products of the operators above such
that

Tensl® = e -6

An excitation is given by a map v : {(zy) € A} — {0,...15} and is associated to the

skewsymmetric operator

1 _ - o<
T z T evyran H Tiey) (@) (4.6)

(ev)ey T @)y | ‘

As usual, we set 7 = supp 7. Let us call an excitation vy admissible if the state |7) is not

- orthogonal to the cyclic subspace

Hop = span{H} gg [0),72 =0,1,2....}. @.7

We notice that, in the perturbative regime (i.e. for |t] small), the ground state of Hy gg is not
orthogonal to Hy. If - is admissible then the operator 7., contains an e\}en number of Fermi
creation and annihilaﬁon operators. Hence, 1f - and 4/ are two admissible excitations of disjoint
support, we have | , | ‘

[Ty, 7] =0. (4.8)
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This property is crucial to achieve clustering. However, in casc the palfticics obey Fermi statistics,
one has to give up the kind of weak commutati\‘rity we had in section 3. Hence, in order to
enforce this property, the pljoof of éonvergence of the clﬁster expansion must be modified. As
we show in the following, it turns out that, as lbng as there is no spontaneous symmetry breaking
and _és long as the volumes are ordered, it suffices to use a stronger norm for the generators of
the dressing transformation in order to establish convergence. Since the estimates are recursive,
it is not so surprising that the optimal norm can be neither too weak nor too strong. The\beét
norm turns out to be not the ! norm that Sufﬁcés in section 3, but a weighted 1! norm instéad,
the weight of an excitation being its zeroth order gnergy.

The unitary dressing transformation is givén, also in this case, by an operator of the form

U= lim elR ®_RO - (4.10)
V—00 -
where
©0
RY(t) = Z t" RY, . @.11)
n=v+l
and
v E Tny Ty- (4.12)
rl=v - ‘

where « ranges over admissible excitations. of course, in the VBS case the operators 7 are
the ones defined above in (4.6). The recurrence relationé determining the coefficients rny are
similar to those in section 3 but will be written in a slightly different Way, ie.
. 1 "
2SR -z 2 N mh[ [s.re]. RS ] L

k>2 vl <
11+ +1k n

+'§0 v] S‘.L;Svk ;l(_'"b—P'L[ [KR ] R”*] IO)}
i1+‘...+ik=nf—l

+ Egq|0), 4.13)

‘where o
K = Hygs — S. | 4.14)
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Let us rewrite equation (4.13) as follows:

‘ 1
I i i
' 11-1}~ +1k n

+24’ y szc{)‘PL[m[K,R}’:],...R,-kvk]|0)}
(4.15)

~ where P; is the onhogonal projector onto the subspace spanned by excitations |¥) with z € 7,

PP, is the projector on the subspace ortogonal to the unperturbed ground state |0) and
co = sup{ TN, 15, 2 €A, §= 1,...15} (4.16)
As a norm for the genefators R}, we choose the following sequence:

o= sup Y cf |7l Irnyl < wp ||ch6‘SZR" 10}l @.17)
Z€EA 432
Letn > 2 and let us fix a sequence i, vj, 7j,,J = 1,...k, such thatiy +... +i = n, |v;| = v,

v] < ... £ v;. Let 4 be the excitation such that
cg [ [ 8(zy) Tim T’Yl] ) --'Tib'YkT'h] 0) = fi; ,",',,((zy), mn y oYk [TE)- (4.18)
Thanks to the translation invariance of Hy gg, we have

sup ) > g i (=y)ms el
A (zy) Im| =1 |kl = vi
- ZE€EYk
<sp D o Pkl fian (=81 =)
=) oy =i ral=ve

- 2¢0|7k-1] sup Yo Iriwl

T3z
| - \ 17kl = vie
< sup > 0" Fe-1l fsy.in () 115 - e 1))

(zy) |‘71 |=v ;'-|7g_1 |='u;._1

2c0k sup D v vyl
‘ % moz
, | 17kl = vk
' ‘ (4.19)
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where

Te-1 = (@) UmU...Une1- - (4.20)
and

M1 = il +..+ ik—-l' 7 4.21)
Here, we use the fact that volumes are ordered, so that

el < @+iml+..+lvl + 1-k) <k|nl (4.22)

To estimate the commutator with 7.y, , we also use the fact that - intersects y;_; in at most

i + 1 points. Iterating this estimate, we arrive at the following final result:

| ; O |
sup > Y forisGzwhmml < @eo* kI v Ir, I(4 23)’ |
(=) Il =v1-|vel = v =1 .
CZEM '
where v
o = S D gl 4.24)
z€EA 7 Sz
Iyl =

The proof can no§v be completed along the lines followed in the previous seétion.
Appendix A, Numerical Impleinentatiéns.— )

In our treatment of the anisotropic Heisenberg antiferromagnet in Section 3, \\}e make use
of a dressing transformation to transform the Haniilton operator to a form that can be used in
Rayleigh-Schroedinger expansions foxf the spectml projectioné. The reason why we proceed in
this way is to ay;oid the large fields problem for Fermi systems. In this sectfon, we show how this

pathology presents itself in the context of the cluster expansion algorithm first used by Gelfand,

Singh and Huse [4] to compute zero temperature cluster expansions numerically.

Let us consider the Hamiltonian
H=Y (P 1) + 20 + 6@oP) A
(zy) : ‘

where all the A(zy) are equal to the same small parameter A and carry a subscript only as a

bookkeeping device to distinguish the contributions to the various cluster weights coming from
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the various bonds. Let us suppose that we want to compute the ground state correlation function
(O) of the local operator O. Following [4], thg first step of the algorithm consists in finding
all connected subsets v C z4 intersecting the support of O. The calculation of the expansion
coefficients is by induction in the order n =0, 1, .... At the n-th step we compute the weight

w(p) of the clusters o with n bonds. Let n(yg) denote the number of bonds of . The weights

are such that
(©) =) wl) (A2
ayo ' N
and , ' :
woo) = Y, [T A watw). (43)
{zy) C0

Itis not Adifﬁcult to see that if w(g) # O then 4o must intersect O. Supposing that all the weights
of ;he clusters 7(’) of order n(76) < n(vp) are known, one can compute w(vyg) by restricting
the Hamiltonian to 7 and evaluating the corresponding ground state ¥,,(A) by means of a

Rayleigh-Schroedinger expansion. The weight w(7) is given by

_ (EnOION¥N) , |
w00 = S ) y%o w(71p)- (4.4)
. (1]

To compute W, (), one can use the formula

dz 1

) = § 5% g ) @S

| where C = {|z| = % }> and Sqp, Ky aretherésn'icions to g of the Z part S and the XY part K

of the Heisenberg Hamiltonian.

The idea of Gelfand, Singh and Huse of computing the ground state wavefunction of restric-
tions of the Hamiltonian to small clusters is interesting because it reduces a complex problem
to many simpler ones. However, this technidue presents some difficulties. One of the problems
is that excited state properties are harder to study than ground state correlation functions; as we
discuss above, with dressing transforﬁlations this is not the cése. A second problem is that the

value of w(7p) at the leading order in A is given by the sum of n(yq)! diagrams. However, from

3




the analyticity result in section 3 it follows that
[wir)] < (e- N (4.6)

Hence, many cancellations must be taking place among the n(yp)! diagrams contributing to
w(yp). To set up a rigorous proof one can eithpr énempt to understand the cancellation mech-
anism, as is possiblé for weakly 'intefacting Fermi systems, or one can make use of dressing
transformations, as we do in the previous sections. |

To draw some conclusions, wé would like to list some of the main prdpcrties and the general
conditions of applicability of the method of dressing transformations as they emerge from this
work and to add some remarks on which we elaborafe more in depth in the three com,panioﬁ
papers [12], [18], [21]. |
(i) The Hamiltonian is supposed to be short range and equal to the sum of a main part whose
ground state wavefunction we know and of a perturbation;
(ii) Since we don’t attempt a multiscale decompositioh, the main part is required to possess a
spectral gap which is large with respect to the size of the perturbation term, as measured by a
local norm; 4 _
(iii) Unitarity is a very convenient property of dressing transformations leadmg to a normalized
ground state wavefunctiori and to various semplifications in both the rigorous and numerical
analysis. However, one should keep in mind that for certain a;iplibations as well as for the low
temperature expansion in [18] this property is neither required nor useful.
(iv) Commutativity or weak non-commutativity, in the sense of section 3, are interesting prop-
erties; because they generate cluster expansions with the lowest number of diagrams. However,
such properties are not strictly necessary to achieve convergence. .
(v) If the generators of the dressing transformation are given by non-commutative operators,
the volumes have to be ordered as in (3.9); otherwise, cohti'ol of the convergence of the cluster
expansion is jeopardized because of the high growth rate of the number of diagrams.
(vi) If a discrete symmetry is spontaneously Brdken or, more g‘eneré]ly, if the main part of the
Hamiltonian has a finitely degenerate ground state, then special care is required to define the
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dressing transformation. In this case, only Peierls contours are associated to an energy term and
can be allowed to contain centers of non-commutativity if a formal proof of convergence of the
algorithm is an issue. o

(vii) To co’nﬁol excited states, one must require the operator V() defined as in (3.33) to be
relatively bounded with respect to the main part of the Hamiltonian. This property is fairly
automatic if the ground state is non-degenerate but requires special attention in case it has a
finite degeneracy. In the case of the anisotropic Heisenberg antiferromagnet in Sect. 3, the
desire of defining a convergent unitary dressing transformation with a relatively bounded V())
forced us to enlarge the Hilbert space. In [18] we show that if one is willing to give up unitarity,
it is possible to respect the symmetry while remaining in the original Hilbert spacc.‘ ‘

(viii) Dressing transformations can also be used to generate time dependent cluster expansions
in the adiabatic limit; a result in this direction is in [21]. -

(ix) If one wants to optimize dressing transformations as a numerical algorithm to compute
- ground state properties and reduced Hamiltonians at zero temperature, then the operators 7
- must be chosen skewsymmetric to avoid orthonormalization problems. Such problems can be
very delicate if finite precision arithmetic is used [22] because of the large dimensionality of-
the Hilbert space generated by elementary excitations. An algebraic solﬁn'on to this problem is
preferable to a brute force approach and reduces the systematic errors.

(x) If only the first few orders of a perturbation expansion are required, then the techniques
used in ;his paper to control the large order behaviour of the series expansibns in theb presence
of a spontaneously broken discrete symrhetry are not relevant. In particular, the extension of
the Hilbert space in section 3 should be avoided, because it incrcase#, rather than lowers,‘ the
number of diagrams generated at the first few orders of perturbation theory.

| , (xi)_ The best way of using the method of dressjng transformations for both vnumerical and
rigorous calculations for the £ — J and similar models is to proceed m two steps: first, one solves
the pro‘blem in the ‘ab‘sencc of holes, and then one conjugates the Hzimiltonian in the sectof with
a few holes with the dressing operator found in the first step. This procedure, block diagonalizes

the Hamiltonian. Each block can be seen as the effective Hamiltonian describing a number of
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spinless fermions corresponding to the dressed holes in interaction with bosonic quasiparticles
) cOrreépdnding to spin-wave excitations. Since thé umtary transformation is given by a pmtver
series, the applicability of this method is lumted to the parameter region on which such series
either converge or can be analytically continued by means of Pade’ approximants or a similar
technique. The leading block for small £ and A coxre#ponds to the effective Hamiltonian with
no spin-wave excitations. This i‘sthe only block we considér in this paper. Howcver,a tand A
increase, there might be a level crossing among the grouhd state energy of this block and that
of some other block. This p'henomrenon‘ typically corresponds to a first order phase transition.
We would like to emphasize that, as long as tmalyticity doesn’t fail, our method can be applied
also in the presence of level crossing and provides full information on the phase transition.
‘In [18], we show this idea at \tvo\rk on a model of strongly interacting fermions with a Mott
metal-insulator transition for tvhich, by using particlek number const:rvation, one can rigorously
prove that analyticity of the dressing ti'ansformaﬁon is not lost on at least part of coexistence
curves and one can explicetely compute both the phase boundaries and the critical behaviour of
quantities like the spectral gap.
(xii) The first step of both a rigorous and a numerical calculation must be the sblution of a
model like the anisotropic Heisenberg model with a zeroeth order gap of size one and without
quasiparticles in the ground state. To this end, itis intercsting to notice that most of the clusters |
appearing at a certain order of pcrtutbation theory have a large extergy (7/S|y) and are associated
to a small amplitude rp, the competition among the entropy and the smallness of the amplitude
being wt)n by the latter. It is thus convenient to add counterterms to the Haxpiltonian insucha -
way to set exactly at zero the amplitude ry of such exotic configurations. This introduces errors
but ultimately improves the precision because it saves memory and speeds up the algorithm,
allowing one to push the cxpansidn to ltigher orders tvhere one can find diagrams which are
more significative than the ones neglcctéd at the previous orders. The error can be measured as
in a typical exact calculation based on the Lanczos algorithm, ic by using the variance

lim—l-

6
 |Aj—oo |A]
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where ¥ = Und|0) and U ;.5 is the approximate n-th order transformation with error é. Truncation
methods have also been discussed in [23] and [24] in the context of models without vacuum
fluctuations and turned out to be very successfull. In the presence of vacuum fluctuations, if one
truncates directly the wavefunction amplitudes as in [7] the gain is not as noticeable. Our way of
truncating a many-body wavefunction might revéal itself more effective because it respects the
clustering properties of the ground state wa\\rcfunction and doesn’t introduce spurious} nonlocal
effects. | |

The apparent advantages of our algorithm with rrcspcct to Lanczbs’ are that finite size cor- -
rections are absent, memory reqﬁiremcnts for the ground state wavefunction are reduced by
exploiting the clustering properties of the ground state wave-function and knowledge of the
'gencrators of the transformation ié the only inforri;ation which is necessary to.compute both the
ground state expectations and the reduced Hamiltonians for quasiparticles. The disadvaﬁtage is
that we are limited by the constraints (i) and (ii) above and can’t find explicetely the ground state
of a system of several holes but can only generate the reduced Hamiltonians; see however the
next subsection. The advantages over the cluster expansion algorithm in [4] are that fewer dia-
grams are generated, one doesn’t need to recompute from scratch a new set of weights for each
local observable, memory requirements are further reduced by neglecting contributions coming(
from configurations with small amplitude and, finally, excited smés are not problematic. The
disadvantage is that fewer exact coefficients can be computed this way. To raise the order at
which one can push the cluster expansion without allowing error ferms, an approach closer to
the one developed by Gelfand, Singh and Huse is necessary. |

(xiii) Once the quantum fluctuations of the antiferromagnetic vacuum are incorporated into a
unitary dressing transformation, oné caﬁ consider the case m which holes are present ahd use
the same dressing transformation té block diagonalize the Hamiltonian, as we do in section
3. An ,esﬁmate like the one in (A.7) is also valid in the sectors with a finite number of holes,
as long as ¥ is reinterpreted as the ground state wavefunction of the effective Hamiltonian
corresponding to the lcading:block. Since also the effective Hamiltonian is symmetric and the

nonzero matrix elements are clustered near the diagonal, one can find such a ground state by
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means of a Lanczos type calculation. This two steps procedure leads to a remarkable reduction
of algorithmic complexity with respect 10 a straightforward implementation of the Lanczos
algorithni directly on the bare Hainiltonian.' By using n‘anslaﬁon.symmeu'y, one can further
decompose the effective Hamiltonian in about ]k[ blocks, each one indened by a wave vector
k. On a square-lattice, most values of k are 8-fold degenerate; hence one can decompose the
probleml into about % |A| simpler problems. The dimension d of the sector of the reduced Hilbert
space corresponding to a certain k in the first Brillouin zone has the following valueona 8 x 8
lattice withnhholeS' d=1ifny =1, d==32ifnh=2 d=651ifnp,=3,d=9928if n; =4,
d=119.133if np =5 and d=1.171.147 if n), = 6 This means that, in the parameter region in
- which the dressing transformanon converges, one can realistically plan an exact diagonalization
study for the ¢t — J-V -V modelwithupto6holesonalatticeofupto64sites. Asa
| comparison, a direct application of the Lanczos algonthm to the bare Hamiltonian would involve
an Hilbert space whose d1mens1on is greater by a factor 258 ~ 2.88 * 1017, With the Lanczos
algonthm alone, exact diagonalizations are conﬁned to lattlces of at most 18-20 sites and the
,algorithniic complexity raises so steeply with the size that ‘no forseeable progress in computer
technology can improve this limit in a signiﬁcaﬁVe way. By implementing the algorithm we
- discuss in this paper, this bottleneck can probably be bypassed. |
(xiv) Dressing transformations can be combined‘ also with quantum Montecarlo algorithms.
There are at least three reasons why this may be advantageous in certain situations. First, the
effective Hamiltoninn corresponding to .the leading block of the dressed ¢ — J Hamiltonian
describes spinless fermions; hence there are no difficulties related to the enforcement of tlie
constraint of no double occupancy. Second, as is explained in greater detailed in [18], dressing
transformations make the sign problem become milder and, in some cases, one can prove that
optimal lowef bounds on the expectation of the sign operator are satisfied. Third, dressing
transformations are useful because they tipically renormalize bare strong coupling interactions
into weak coupling intefactions among dressed quasiparticles.
Appendix B. Phase Separation: a Heuristic Discussion.

Phase separation of holes into bubbles is a physical phenomenon that has been observed
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in several copper oxides near the supérconducting phase transition [8]. Numerical studies of
the ¢ — J model also confirm the theoretical analysis of Kivelson, Emery and Lin [3] who
predict phase separation 1n the small ¢ limit. The reason why phase separation is stable is
that in slightiy doped antiferromagnetic insulators it is hard to strike a balance between the
tendency of the holes to delocalizc in order to lower the kinetic energy and the tendency of
the magnetic vacuum to relax to the antiferromagnetic ground state. As a consequence, if the

interaction among holes is of the static type, holes are expelled from the insulhtor and concentra&:
in bubbles. ‘Emcry and Kivelson suggést that high T, superconductivity is a phenomenon
related to frustrated phase separation and arises thanks to the long rangc Coulomb forces which
destabilize such bubbles. Recent numerical simulations by Troyer et al. showed that phase
separation in thc t—J-V - V! model is actually suppressed by long range repulsive forces -
and that pairing susceptibility is enhanced, but that nonetheless a charge density wave instability
appears to suppress superconductivity. Although thé problem of long_i'ange forces requires
more work to be settled, it is also worth éxploring other scenarios which can possibly lead to
superconductivity through short rahge interactions. The mechanism we propose in this paper
involves an effective interaction whose leading term is velocity dependent and is such that the
effective attraction among two holes is .slrengthcned by the delocalization of the pair. The
mechanism provided by dynamic binding, if available, would be a conccptually simpler way of
producing superconductivity than a mechanism based on long range interactions. In fact, in .thc
first case melting of the phase separated bubbles is not due to the fact that the kinetic energy
terms or long range forces are so farge that they ddminatc the cffec_:tivé attractive interaction of
magnetic origin, but to the fact that an intcrplay between magnetic forces and the hopping term
favours the binding of two holes and the delocalization of pairs of two holes. From this point of
~ view, high temperature superconductivity is also due to a kind of frustrated phése separation, but
the competition in our case is between different kinds of ordcr inside the bubbles which makes

an otherwise subleadmg interaction dommate in the crossover region.
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The physically relevant parameter region forthe t — J — V — V'modelhast ~ Jand A = J
'and can be reached only with numerical methods. Howéver, it is conceivable that by carefully
tuning the interaction parameicrs one can stabilize a phase at small £ and ) in whigh the relevant
. pairing mechanism which is responsible for high temperature Supcrconducﬁvity dominates. The

question for the numerical studies would then be to find out wheiher this phase becomes more
stable or, instead, it diéappears as we move to larger values of ¢ and A. Setting V = J in (1.1),
§vc4 neutralize the exchange interaction among holes, so that it is neither attractive nor repulsive
in the limit ¢ = A = V' = 0. The occurrence of phase separation for A << t << V depends
on the value of the next neighbouf coupling V'. If V! < 0, then at A = ¢ = 0 holes arrange
themselves in a checkerboard configuration. If ¢ and X are switched 6n, this phase is still stable
for V! < —(c;t2 + c3)2), for some constants c1, ¢y > 0 of order O(1). If V! =0and ¢ > ), the
most stable configuration appears to be a double chain of holes forming a domain wall. In fact,
virtual hoppings of the holes in and out of the double chain are not suppressed by any frustration
effect. This results in a resonance among all conﬁgurations in which one or more holes whiéh
are not neighbours of each other make oné step out of the chain. As a result, the contribution
to the ground state energy coming from the holes is proportional to (—t) times the number of
'holes. The dynamic binding mechanism in section 2 is already at work in this parameter region,
but since it gives rise to a ground state ehergy ~ —t2 per hole, it is suppressed. Double chains
are much less stable then crystals and as V’ increases they undergo an ihstability fof Vi st
There are two constants of order O(1) such iﬁat, if c3t < V' < c4J, then double .ch,a.ins are
unstable and thc‘ leading interaction mechanism is the dynamical binding in section 2. Hence in
this parameter region we cxpect the stable phase to be a superfluid of tightly bound hole pairs.
Beyond the threshold V' = ¢4J, also dynamic binding becomes unsﬁble and static interactions

dominate. We thus expect some kind of phase separation to take over again.
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