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GENERAL SOLUTIONS FOR SC~:;ENSOR COSMOLOGIES 1 Here we present a

--rP/?-TA/T- 7--1 --._f -;/

sim~ procedure which gives the general vacuum l!i"
John D Barrow

PACS numbers: 98.80.Hw. 12.10.Gq, 04.SO.+h, 04.6O.+n

A simple representation of scalar-tensor gravity theories is presented which permits

the general solution of the vacuum and radiation-dominated Friedman universes after the

gravity theory is specif"aed. A range of theories are solved explicitly.
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where op is a scalar field coupled to the space-time 4-curvature. R. by loJ(op) and Lm is

the lagrangian of the remaining mailer fields. The theory of Brans and Dicke Is the

special case w = constant. The generalised Einstein equations and the wave equation for op

are

radiation-dominated Friedman cosmological solutions to scalar-tensor gravity theories in a

manner that faCilitates understanding of the range of behaviour that are possible at small

and large times.

Scalar-tensor gravity theories have lagrangians of the formu.S (}..f.S e)C
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where Tab is the covariantly conserved energy-momentum tensor of the mailer content of

the theory. If Its trace, T. vanishes, and 'I' is a constant, then (I )-(2) reduce to the

standard Einstein equations with gravitational constant G = '1'-'. Hence any exact solution

of Einstein's equations with a tracefree mailer source will also be' a particular. exact

solution of the scalar-tensor theory with ~~, and hence loJ(IP), constant. In what follows we

shall seek the general solutions of the isotropic and homogeneous models when neither 'I'

nor "l(¢') is constant.

r G~~\ \."',: 'ea'~ider Friedman cosmologies with metric (c • I)
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~\eP Where a('I) is the expansion scale factor, 'I is the conformal

production of gravitons [12J.

Until recently very few cosmological solutions to scalar-tensor theories of gravity have

been found. Attention has focused upon the simplest case of the Brans-Dicke theory [13J.

There are now many situations in which it is advantageous to have simple exact

cosmological models in scalar-tensor theories of gravitation. They permit rigorous

quantification of the allowed deviations from the general theory of relativity through

confrontation with standard solar system tests [1]. primordial nucleosynthesis [2] and

astronomical observations of the binary pulsar [3J. They arise in studies of dimensional

reduction in the early universe (4). In studies of varying 3-dimenslonal constants Induced

by the variation in mean size of extra dimensions [SJ. in the study of extended

inflationary universe models [6J.(7). In some proposed resolutions of the dark matter

problem (8) and possible modifications to primordial black hole formation and evaporation

[9J. Studies of 'oscillating physics' [10J and Its possible connection with quasi-periodicity of

large-scale structure in redshift space [11] also need exact cosmological models which

permit variation of Newton'S gravitational 'constant' in order to to compute other

observational consequences of this Idea. Information Is also potentially available about the

scalar-tensor nature of gravitation in the very early Universe from the super-adlabatic



metric curvature parameter is k = 0 or ± 1. We shall assume that the material content of

the universe is black-body radiation so the density p is given by 8T:p = 3fa- 4 where f L

o is a constant. The case r = 0 will define the vacuum model. Introduce a function Ylc< '1)

defined by

.")

then (4) integrates to give, in vacuum,

{

'I + '10 for k - 0

f(IIl)/fo - tanhl" + Vol for k - -1

tan{" + '10) for k - +1

with fo constant; the corresponding radiation solutions are,

(8)

where k parametrizes the curvature, and (1) and (2) become

Yk = ~2,

~'a2 _ 3!Al2w(~)+31-i : A constant.

(3)

(4)

[
2r'l + 2f"g - A ] k _ 0

2f" +2f'1o + A

[
ftan('1+'g) + (r2+A2)t - A J k - +1

ftan('1+'1o)+ (r 2+A2)i + A

radiation cases respectively, since,

The scale factor a(,,) is obtained from (3), (6) or (7) and (8) or (9) in the vacuum and

Yk'2 =4fYk + A2 - 4kYk 2•

Equation (5) integrates to give, in vacuum,

Yo('!) =A('1 + '10)'

Y-l('l) = iAsinh{2("+,,o)},

Y,('1) = i Asin{2('1+'l0)}

(5)

(6)

f(~)/fo -
[

ftanh('1+'o) - A + (A2-r2)t ]

A + ftanh(,,+'1o) + (A2-r2)i

[
Atanh('1+'o) - f + (f2-A2)i

-r - Atanh('1+l'/o) + (r2-A2)%

- r exp{-2("+,,o»)

(9)
k - -I,
A2 > f2

k - -1,
f2 > A2

k - -I,
A2 _ f2

and, for radiation,

Yo('l) = f('l + 710)2 - AZ/4f,

Y-l(71) = -if + i(A2 - r 2)i sinh{2('1+'1o)} if A2 > f2

y-l('1) = -if + iexp[2h,+'1o)] if A2 =f2 (7)

Y-l('1) =-if + Hf2 - A2)t cosh{2(,,+'10)} if f2 > A2

y,(l'/) = ir + HP + A2)sin{2('1+"o)}

If the scalar-tensor theory is defmed by the specification of a scalar function f('P) via

2w('P) + 3 = 311l2f' 2/f2

a 2 (,,) _

where r 1 is the inverse function of f obtained by inverting (8) or (9) in the vacuum or

radiation cases respectively. In the k ~ 0 radiation-dominated case f(lIl) approaches a

constant as " .. Q) and the general relativistic solutions are approached. In the vacuum

case f('P) approaches a constant in the k = -1 universes as 'I .. co because solutions

asymptote to the Milne vacuum model of general relativity (a ex exp(,,». When k ~ 0

there are no vacuum Friedman models to approach and the asymptotic behaviour is

sensitive to the functional form of f(\O). Five different forms for f(lIl) are given below to

indicate the range of behaviours for a( 'I) and ~ fJ). We give only the k = 0 solutions but

the alsebraically cumbersome k to 0 models are easily obtained if reqUired. We have



defined the zero of " time by setting "0 = O. The vacuum models are as follows:

:;

f(W) - (gl2nmf",)

(",) - (gtanh(>.w)

a 2 (,,) _ >,-' coth [ 2r" - A] x [r,,2 _ 1A2r-t}
2r,., + A

(op)/fo ope,,) a 2 (,,)

opP "lIp A,,'-'/p

exp(~opn) ),-l/n en'/n(,,) A>.,/n " en1/ n(,,)

Qnm{op} exp(",/mj A" exp(-,,'/m]

tanh- 1 (>'op) >.-ltanh(,,) Akq coth(,,)

tanh(>'op) >.-ttanh- l ('1) A>." (tanh-t(,,)}-t

op(,.,> _ exp [ 2r'1 - A ]'
/

m

2r" + A

a 2 (,.,) _ exp [-[ 2r" - A ] tIm]
2r" + A

f - fgtanh-t(),W)

op(,,> _ >.-ttanh[ 2r" - A ]
2r" + A

x [r,,2 - 1A2r- 11

The f =opP case includes the Brans-Dicke theory since w(1O) Hp 2 - 1) = constant. The

.,0('1> - ),-' t anh-'( 2r" - A]
2r" + A

k =0 radiation models, are given as follows:

fC..,,) =fgL"P

a'('1> -
>. [ri7 2 - 1A 'r- 1 J

tanh[ 2r" - A ]
2r'1 + A

op(,.,) -

8'(") -

[
2r71 _ A ] t/p

zr" + A
1r-1 [2r" - A}(p+l)/p

[2r" - A} (p-t)/p

The method presented is not restricted to the forms of f(op) displayed here. It enables

us to evaluate the physical consequences of scalar-tensor cosmological models for the

radiation-dominated phase of the early universe. Baryosynthesis. nucleosynthesis and

graviton production can be studied in detail. This will enable observational bounds to be

placed upon the allowed deviations from general relativity and then can be compared with

f - fgexp(>.",n)

ope,,) _ >.-I/n l2n1/n[ 2r" - A ]
2r" + A

those derived from local solar-system tests.
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