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Does there exist a purely quantum mechanical characterization of gravitation? To
thia end the fundamental results of Fulling, Davies, and Unruh are incorporated into a
framework which is qualitatively dilferent from Einstein's starting point. Instantaneous
pairs of achronal Rindler frames together with the concomitant set of Minkowski-Bessel
modes replace Einstein's instantaneous inertial frames and hia concomitant set of plane
wave modes. Because of thia replacement, a particle, which is governed by its relativistic
wave equation, acquires a set of internal quantum states at each event of spacetime.
These states are organized by means of the spinor group SU(I,I) into a geometrical
picture of an entity with achronal spin at each event. A unique and natural law
of parallel transport of quantum states between di1ferent events is identified. This
parallel transport (a) is compatible with the inner product on the space of quantum
states at each event, (b) baa zero curvature, and (c) determines a conserved achronal
spin operator. The orientation of the axis of rotations generated by this operator is
given by Planck's thermal spectrum together with the associated r.m.s. fluctuation
spectrum. A purely wave mechanical line of reasoning leads to the heuristic conclusion
that gravitation is to be identified with the gauge geometry of the group [SU(I, 1»)00.
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ACCELERATION INDUCED SPIN
AND ITS GAUGE GEOMETRY

The line of reasoning which lies at the base of Einstein's gravitation theory and
points towards hiS field equations is purely classical and is well known. It consists of
pitting two simple ideas against each other:

(1) Consider the straight line paths of freely floating particles. Relative to a curvi
linear coordinate frame, e.g. accelerating or rotating, the governing equations are the
geodesic equations of motion with their metric coefficients.

(2) Consider particles falling freely in a gravitational field. The governing equations
are Newton's equations of motion. The inertial and gravitational mass on each side
of the equation cancel: They are equal. What do the resulting equations tell us?
Comparing it with the geodesic equations obtained in (1), one finds that

gravitational potential = metric coefficient

From these and similar considerations [1) one c. nc!c.0.es that
gravitation = geomdry.

This is the key conclusion. It inevitably leads to :;~tein's field eql13tions.

This line of reasoning is purely classical. It is based OU clas&-i.cal meer''';' ,: • ..~

world lines, the classical equations they satisfy, and so on. This line of reasoning is also
purely local; The equations as well as the accelerated frames in the above gedanken
experiments are local in space and in time.

Classical mechanics is expressed in terms of world lines. Events are intersections
of world lines. A vector is an infinitesimal world line segment. A tangent space is a
collection of vectors. A metric is a structure imposed on a tangent space. A covariant
derivative relates dilferent tangent spaces. Riemann curvature characterizes a covariant
derivative. To summarize: General relativity is based on world lines, i.e. on classical
physics.

The actual world rests however on a quantum framework and quantum mechanical
reasoning. Uclike classical mechanics, quantum mechanics is cha.racterized by infinite
dimensions, noncommutativity, and global considerations.

Quantum mechanical reasoning is as dilferent from classical reasoning as day is
from night. Nevert.heless it does contain all of classical mechanics. The classical anal
ysis of the above free-float·free-fall gedanken experiments is at the root of Einstein's
gravitation theory. If quantum mechanics is to be incorporated in a natural way with
gravitation, then it must be merged at the roots and not at the trunk of gravitation.
In other words, 3 purely quantum mechanical analysis of these gedanken experiments
is necessary.
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But these Einstein-Podolski-Rosen correlations do not account for the specifically
Planckian (or Fermionic, if the quanta are fermions) nature of the intensity spectrum.
Even though there are a number of different ways [8,9,10,11] of establishing the exis
tence of the thermal ambience , at the end one always obtains the same mathematical
result: Relative to an accelerated frame, globally empty spacetime is characterized (for
bosons) by the Planckian spectral function!

Why does nature favor this function over all the others available to it?

This question is related to a peculiar problem associated with the spacetime of a

pair of accelerated frames

Such a pair of achronal frames has the undesirable property that it singles out the
preferred base event (to, xo), the intersection of the future and past event horizons of

the frames.

Classically one can remove this arbitrary preference: One relates events (= inter
sections of particle world lines) and vectors (= infinitesimal world line segments) mea,.
sured and described in one frame at, say, (to, xo) to the ones measured and described
in another accelerated frame based at (t~, z~). The mathematical implementation of
this procedure is parallel transport ("connection") which is compatible with the inner

product in each accelerated frame.

Quantum mechanics does not permit such a procedure. There are no deterministic
world lines: At best, one has smeared out strips or tubes that only resemble world lines.
In general, there are only probability or charge densities as determined by a wave
function. Thus we have two opposing requirements: need for a quantum description
VB. need for equal status of all accelerated frames.

In addition, there is a third problem: part of the wave function disappears behind
the event horizons of imy one accelerated frame.

# ..

Put differently: How different would Einstein's formulation of gravitation have
been, had quantum mechanics been available to him already in 1907 [2}?

Fundamental to Einstein's analysis is his formulation in terms of instantaneous
Lorentz frames (one copy attached to each event of spacetime) and the concomitant
locally plane wave behavior of solutions to any relativistic wave equation.

Such a formula.tion must however be considered deficient because it ignores the
fundamental results of Fulling [3], Davies 14], and Unruh 15). Their quantum mechani
cal results demand that accelerated Rindler frames and their concomitant Minkowski
Bessel modes (6) of a relativistic wave equation be substituted for the Lorentz frames
and their plane waves.

Moreover their result. hold not only for their pair of accelerated frames a.t one
particular reference event, but also for any other pair related to theirs by spacetime
translation. The extension of this observation to all relativistic laws of physics is un
doubtedly not controversial: it merely expresses translation invariance in Minkowski
spacetime. Applied to their causally disjoint frames this implies the "translation in
variance of achronal frames".

In spite of its simplicity this principle opens a new vista in that it quite naturally
elevates the quantum states of a system to the geometrical status that used to be
occupied by events and four-velocities. In other words, as we shall see below, one can
characterize a system by the inner products, the parallelism, the curvature, and so on,
of its quantum states. A necessary consequence of this new point of view is that the
quantum states (of the Klein-Gordon wave equation, for example) are two-component
SU(l, I)-spinor wave functions.

The pioneering investigations of quantum mechanics relative to a uniformly accel
erated frame with its event horizons were performed some twenty years ago. Motivated
by Fulling (3), Unruh [5J considered the quantum analogue of free particles moving in
an accelerated frame, the Rindler spacetime. The result was truly astonishing: Empty
(!) flat spacetime is characterized by a measurable thermal ambience which for bosons
has the Planckian spectrum

t - to =±esinh T }

X - Xo = ±ecoshT
+: Rindler Sector I
-: Rindler Sector IT·

The randomness of the thermal ambience is an expression of the intrinsic quantum
mechanical randomness of each member of a pair of highly correlated subsystems (1].

1 1
2+ -exp~(1iw-k-T-)--1

with the Davies-Unruh temperature

kT=~ 9
C 211"·

(la)

(lb)

THREE ASSOCIATED FIBER BUNDLES

An appropriate fiber bundle framework not only overcomes these difficulties, but
also highlights an important geometrical spinor structure implied by the wave equation.
We shall describe it for for the Klein-Gordon equation, although one can do this for
other relativistic wave equations as well.

There are three associated fiber bundles that playa central role: (1) the bundle of
RiDdler spacetimes, the arena for classical particle physics, (2) the bundle of RindIer
single particle states, the arena for the quantum mechanics of a single particle, and
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(to,zo) = z E M

is a wave function with two components whose respective domains are the two respective
causally disjoint Rindler sectors I and II. Each component satisfies the same differential
Eq. (5). The two-component wave function belongs to the solution space K-G6 ("the
fiber") attached to the base event

of spacetime M ("the base manifold").

In fact, there is one copy of such a space of quantum states (= solutions to Eq.(5»

attached to each event of spacetime.

Thus the bundle of Rindler single particle Sl,.::tes is the same as the b'.male of
Rindler spacetimes in every respect. The only difference is the fiber and the manner in
which the internal symmetry group acts Oll it. '!'he linear space of solutions K -G. forms
a representation space for the internal s3'mmetry glOUP G, Eq.(4). It" commut&ti·.···Y
guarantees that its invariant subspaces are one-1:neDs:~;la.ll::.:J.dt':~ at L'· ~ C(",T.:c•.··,:c: .....t
spanning states

(3) the bundle of Rindler Fod: states, the arena for the quantum mechanics of many
particles.

(1) The bundle of Rindler spacetimes, or more simply, the Rindler bundle, is not
unfamiliar. It is a continuous family, R6 , of pairs of achronal and oppositely accelerated
frames. These accelerated frames are parametrized by the base event

(to, 2:0) == z E M

of spacetime M ("the base manifold"). A base event is the intersection of the past and
the future event horizons ("null lines") of a particular pair of frames.

A Rindler spacetime ("the fiber") is the union of two disconnected sets of space1ike
rays emanating from the base event z = (to,2:o),

R. ={spacelike rays in Rindler I} U {spacelike rays in Rindler II} (3)

(Note that the future and the past of the base event are not part of this fiber.) It forms
a representation space for the group of boosts and for the discrete group

z~ = {identity, I},

which is characterized by the inversion operation through the base event,

with k~ = k; + k~ + m;t, on each Rindler spacetime R•. Here

w= [~] (6)

The total group

I: (t-to,2: - 2:0) -> (-t + to,-2: + 2:0)'

(2) Associated with the Rindler bundle is the bundle of single particle Rindler stat~.

For the Klein-Gordon wave equation this bundle is simply the "Klein-Gordon vector
bundle". It is a continuous family, K-G6 , of spaces of solutions to the Klein-Gordon
wave equation

((boosts), I(boosts)} == G

is the internal syrwnetry ("structure" ) group of the bundle of Rindler spacetimes.

This group consists of its two disconnected components, the invariant subgroup
"(boosts)" and its coset "I(boosts)". This internal syrwnetry group is commutatiye.
Thus it is (isomorphic to) the direct product of its two invariant subgroups [12),

(7)[U K ....(k~)e-;-, [!I]Ki...(k~)e-i"'T': -oo<w<oo

form a preferred (unique, "symmetry induced") set of basis states for K-G6 • Such a
preferred basis for all linear spaces K -G. implies that they all can be referred to a
$ingle reference space, the $tandaro Klein-Gordon fiber, K-G. Its existence allows one
to compare quantum states in K-G. with those in K·G••. We should hasten to add
that this corres-pondence in bases is not a parallel transport. It may rather be looked
at more like an analogue of Fermi-Walker transport than of anything else.

The basis states, Eq. (7), span the internal ( i.e. Rindler) quantum states of the
Klein-Gordon equation at a particular event z = (to, 2:0)' This feature suggests that
the intuitive machinery pertaining to a spinning particle, and its internal dynamics as
cxprC:,3ed by it$ ::p~ ~:S, be !.j:p:.ied to our acceleration-induced interrcal structure of a

Klein-Gordon pa.rticle.

The number of such inteffial acceleration-induced quantum states of the fn.'e par
ticle is evidently ~fJ.nite. On the other hand, the number of internal spin-induced
quantum states of ;l, rotating particle is finite. In spite of this difference the applica
tion of the intuitive machincl."V turns out to be very fruitful: As we shall see below,(5)

(4)

[
18~ 18 8 ]--e 8T~ + -e 8e e8e - k~ W= 0,

G =((boosts), I(boosts)} =Z~ x (boosts).
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s.p(~,1") == ~(e,T),

is the wave function with its two components defined on I and n respectively, while

This inner product is defined on a global Cauchy hypersurface extending from n
through z = (to, zo) to I. In terms of the Pauli matrix

"3=[~ ~1]

(8)

(9a)

(9b)1/Jf = [.,pjt/JII]

t/J= [t:J

( ') i 100 (.I.t a, at,) de1/J 1/J =- 'I' "3-"" - -t/J "3"" -, 2 ° aT Or ~.

~t0'3-; = t/Jt"3t/J'

which verifies the SU(l,!) invariance of the inner product, Eq.(8), in each fiber space

of quantum states.

then one obtains

t [1 0] [1 0]8 0 -1 s = 0 -1 ¢:> s E SU(l, 1).

Consequently, if s operates on a spinor, say Eq.(9),

0'3:

is its Hermitian adjoint.

This inner product, we recall, is invariant under the group SU(l, 1). This invari
anee is based on the defining property of SU(1, 1): It leaves invariant the Pauli matrix

Here

this product becomes

GEOMETRY OF THE BUNDLE OF SINGLE PARTICLE RINDLER STATES

lOR. >= 10/. > @IOu. >

the intemal quantum space has an inner product, a law of parallel transport, which is
compatible with this inner product, curvature,etc.

(3) From the viewpoint of the physics of many particles the most important bundle
(associated with the Rindler bundle) is the Rindler Fock bundle. It is a continuous
family F., of Rindler Fock spaces attached to each base event z ;::: (to, %0) of spacetime.
The quantum states in each space are the multiparticle excitation states of the Rindler
vacuum

attached to each z. This vacuum, we recall, is the direct product of the FUlling vacuum
[3] for Rindler sector I. and I It respectively. Physically this product state is obtained
by operating two refrigerators as they accelerate into opposite directions [13].

The multiparticle states, the elements of the "fiber F.", are obtained by applying
linear combinations of products of creation operators to this vacuum state. In general,
such an application results in a quantum state which is thermodynamically distinct
from the vacuum. Mathematically this manifests itself by the fact that, for example,
the Minkowski vacuum state cannot be related by a unitary transformation to the
Rindler vacuum state (14]. It follows that the set of multi-particle states, i.e. the
Rindler Foa fiber F t , has a considerably more sophisticated subspace structure than
the corresponding quantum single particle space K -G•.

Moreover, if K -Gt is the fiber of a "vector" bundle, then F. is the fiber of a
Whitney sum of "tensor" [15,16] bundles. In spite of this difference both bundles have
the same intemal symmetry group G, Eq.(4). The only difference lies in the manner
in which its operations are represented on the two respective fibers of quantum states.

The Klein-Gordon wave equation imposes two natural structures on the Klein
Gordon vector bundle: (1) an inner product in each fiber space ofsolutions, the familiar
Klein-Gordon inner product, and (2) a gauge structure, the quantum mechanical ana.
logue of parallel transport. This gauge structure is compatible with the inner product.

1. Inner Product

The Klein-Gordon inner product for the Klein-Gordon Eq.(5) defined on Rz ,

Eq.(3), is

(.1. .I.,) i fO (.1... a, a ./.. .1.' ) d{ i 100

(.1... a .1.' a.. ) de
'1', 'I' ;::: '21

00
'I'll aT t/JII - 8T'I'II'I'II T + '2 0 'P/ ar '1'1 - aT f/J I.,p/ T·

2. Linear Gauge

A linear gauge for the Klein-Gordon vector bundle means a choice of a basis for
K-G. varying continuously with z. A gauge transformation is a linear transformation
at each z - a transformation which provides a change of basis at each z. A gauge
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$trocture is a gauge together with all its gauge transformations. The Klein-Gordon
equation

together with boundary conditions on its solutions imply a unique gauge structure for
the Klein-Gordon vector bundle.

One can specify this structure (i) in terms of a locally defined covariant derivative
or (ii) in terms of a set of globally defined solutions. We shall take the global approach
because it motivates the local definition.

The global approach to the definition of the gauge structure consists of a reinter
pretation of the translation representation property of the globally defined Minkowski
Bessel (= MB) modes. The motivation and the definition of these modes are as inex
tricably related as they are simple [61. See Figure 1. Their three defining properties
are:

(i) They satisfy the Klein-Gordon Eq.(lO).

(ii) They are invariant under the boost transformations.

(iii) They are related to the plane wave solutions by a Fourier transform,

r: -:2 + k'] ~ = 0

(12a)

(12b)V~",(z) = B~",,(kUo, kVo)

== B;_w' (z).

00

B~(z+ y) = JV~t(z)B~(y)dw'.
-00

Here the representation kernel is expressed in terms of the MB mode,

It leaves invariant the space of positive (+) an.. negative (-) MiD}owski frequl'ucj"
modes.

Although they are not eigenfunctions of spacetime translations, they do form a (non
diagonal) representation for them. In fact, one has

Note that these MB modes are boost eigenfunctions indeed:

In summary, the MB m{ldes represent bvosts diagopa.lly, and '''·'.slatio' -'In-

diagonally. This is just the othl'.r way around frOI\'> -.Ja.I:" wave ~.c':.'>. :', e" .t
eigenfunctions of boosts, but are invariant Ui1de:- ",,·mu.t:-xu.. 'f'.

modes are as ubiquitous in pairs of instantaneous accelerated frames ..... plll.l.i'- "'.1'1'

modes are in instantaneous Lorentz frames.

(t:X + Z~) B~(kU. kV) = -iwB~(kU. kV).

The gauge structure of the Klein-Gordon vector bundle is constructed by picking
a basis of quantum states at one event, say z = (0,0), and then specifying the set
of corresponding parallel quantum states at another closeby event. The parallelism is
dictated by the linear transformation V:'±",(z), Eq. (12), on the space of MB modes.
'VI' proceed withiu the framework of the Klein-Gordon vector bundle as follows:

(i) Imagine the one-parameter family of Klein-Gordon solution spaces K-Gz(J..)' which
are attached to the curve z(>..) in Minkowski spacetime.

(ii) At each point z(>..) identify the B;;(y)'s as a set of basis states (spanning vectors)
for ea.ch Klein-Gordon fiber, J(-G.(J..)' This is a natural thing to do because the two (I
aud II) Rindler coordinate representatives of these MB modes form z. basis, essentially
the same as Eq.(7»

(10)

(11)

-00<0<00
WI; =kcoshO)
ks = ksinhO

m2c'"2=,,2+,,,+ __
11 • h2

00

B~(kU,kV) = 2~ Jexp[TiwI;t - kzz»)e- iwldO
-00

00

=..!.. Jexp[Tik(Ues + Ve- S )/2!e- iwll dO.
211"

-00

Here

-1-: Hindler Sector I
Hindler Sector n

and

U = t - z) V = t +z

are the retarded and advanced times ("null coordinates"). These two types of MB
modes are unitarily (= by the Fourier transform) related to the two types of plane
wave modes: those on the positive ( upper sign ) "mass shell", and those on the
negative (lower sign) "mass shell".

Here

rB;;(y)II ] Ki",(k€) -iWT [e±f<W/ 2]
B~(y) : = --1I"-e e'ff<"'/2

LB~(y)ln

{
t - to = ±( sinh T }

Y :;:; x - xo = ±~ cosh T

- 00 < W < 00. (13)
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00

B+ =~ J e-ik(Ve6+Ue-6)/2eiw8 dB
w 21r' .

-00

, 00

B- = ~ Jeik(Ve6+Ue-6)/2eiw8 dO
w 21f .

-00

1 _lI'w K . (k t ) -iw'-e ""2 ~w ':t e
1C

i lI'w H 2 ( .-'2eT iw ke)e-tw-r

i 1I'W 1 .'2e-T Hiw(ke)e-twT

1 ~w •

1r e.2 Kiw(ke)e-tw-r

~+o~
'co U

1 ~K. (k t ) -iw-r-e 2 tW ':t e
1r

i lI'W 1 .2"e- T Hiw(ke)e-'I.WT

~ lI'W 2 .-2"eT Hiw(ke)e-tw-r

1 lI'W •

-e- T K· (kt)e-~w-r
1f . ~w ':t

'~"~ '10
-'<0 U

FIGURES la AND Ib

Minkowski Bessel (MB) modes B±(kU, kV) and their coordinate representatives in the respective

Rindler chans I. II, F. and P.
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is invariant under the transformation v~w(z).

Taking linear combinations from both invariant sets, one finds that the general
linear combination

is spacelike and thus is a typical point in the Rindler fiber RZ(J\)' Thus each linear
space K-Gz(>.) has its own basis given by Eq. (13).

(iii) Attach to the curve z(..x) in spacetime the following one-parameter family of
quantum states,

i 2J:;w(z(A»B~(y)dw' E K-Gz(>.). /
00 /00 K. [ ."w/2
(B~(y)at +B;;(y)a;:;)dw : ,p(z(O» = ;w e- iWT e~1rW/2

-00 -00
e-"'lJJ/2] [a~ll&)
e

1rw
/

2
a w J

the corresponding linear combination at the end of the curve.

at z(O), the initial point of the curve, yields the parallel vector,

e-
1rW'/2] /00 [v:.t(z) 0] [at1YilJ)

e7:W' /2 ° V:'-w(z) a;:; l
-00

Considered as vectors, these states consistute a set of basis vectors which stay parallel
as one moves along the curve.

We shall now determine explicitly the relationship between these sets of parallel
basis states.

Suppose our chosen curve connects the two points

z(O) =(0,0) -+ zeAl = (to,xo) =z.

l.From Eqs.(ll) and (12) we have

1J~:,(z(O» =S(w - w').

,p(z(..x» = /00 dw,Kiw' e-iw'r [ efTW'/2
11" e- rw'/2

-00

Thus relative to the complete set of basis ",tes
(15b» the transformation ("parallel propaga.;

[
v:,.+",(Z) ° '_,. dk (\

o V~:,{z) j = w'w z)

union of Eqs. (1530) and

- ;)

Consequently, the quantum state

s:t:( ). Kiw(k~) -iWT [ e
fTw

/
2

] E K-G
w Y· 11" e e-",w/2 z(O)

which may be looked at as a vector at z(o) = (0,0), is parallel to

/
00 ,~ /00 K. [ "'''''/'1]k+ + I I'w' -i",' r e k+'Dw'",(z)Bw'(Y)dw: diJ.J ---;-e e-",w'/2 'Vw'w(z),

-00 -00
a quantum state at zeAl = z.

Thus one has a linear transformation which takes linear combinations of

(14a)

(14b)

establishes a parallelism between the quantum states at z(o) and thOlSc at;,; ..,,{,'+
In other words, this parallel propagator specifies a representation of the sought-after
linear gauge, i.e. it specifies the orientation of parallel basis states as z varies over
spacetime.

An alternative, but non-geometrical way of looking at this transformation may
be more familiar: it is a type of propagator which relates Cauchy data on any of the
hypersurfaces through z(O) = (0,0) to the evolved data on any of the hypersurfaces
through z('\) = (to, xo) = z. From the viewpoint of mathematical analysis, :finding this
propagator is tanta.mount to :finding all possible solutions to the Klein-Gordon equa.tion.
This propagator contains all information about the dynamics of the qunantized Klein
Gordon particle. It is therefore difficult to overstate the importance of this propagator.

into linear combinations of the same set. In other words, this set of quantum states
(elements of the fiber K-Gz ) is invariant under the transformation v~t(z). Similarly,
the set

-oo<w<oo}{
Kiw(k~) -illlT [ e

1rw
/

2
]

11" e e-",w/2

{B;(y), -00 < w < oo} : {Ki..,(ke)e-i",r [e-fTW/'J]
1r e",w/2

10

(15a)

- 00 < w < oo} (15b)

3. Gauge Transformation

At :first sight there is an embanw'de" richesses' in the ways of representing the
parallel propagator. For every set of basis states (in each fiber K-Gz ) there exists a
representatio~ cf the propagator. Such flexibility might be an expendable luxury be
cause the base ,.. ~illif()ld is Minkowski spacetime. But one suspects that in thp, presence
of gravitation, for example, such flexibility is precisely what is needed if the parallel
propagator be capable of accomodating a faithful quantum mechanical characte:dzation
of spacetime.
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Each factor acts independently on the two-component amplitude of a corresponding
spectral component of a wave function, e.g. Eq. (16b). In other words, a generic
element T(z) E [SU(I, 1)]00 is "pectrum pre"enJing as it maps the fiber K-G onto itself
(17). This group element, an achronal spin rotation, is therefore

unlike for a spinning particle, they comprise a state space which is infinite dimensional.
At each spacetime event z = (to,zo) the states have a form given by Eq. (16b).

These states may be organized into a geometrical picture analogous to a particle
with spin. In fact, these states form a representation of the spinor group SU(l, 1),
more precisely, an infinite product of independent copies of SU(1, 1):

..
,. ,

There are two alternative sets of basis states that playa prominent role: (i) there
is the particle-antiparticle ("positive-negative Minkowsi frequency") basis, Eqs. (15),
and (ii) there is the Bindler basis, Eq. (7), whose elements are invariant under the
symmetry group, Eq. (4).

A particle-antiparticle basis enters because the parallel propagator has two invari
ant subspaces which are the respective particle and antiparticle states.

This particle-antiparticle basis is however totally useless to a pair of oppositely
accelerated observers in Bindler I and Bindler IT . There is no way they can deter
mine whether the Klein-Gordon particle is in a particle state or an antiparticle state.
Their causal disconnectedness prevents them from doing so. The particle vs. antipar
ticle property is encoded in the correlation between the measurements they perform
individually.

The Bindler basis, or more precisely the one obtained by taking sums and differ
ences,

00
... 0 SU(l, 1) 0 SU(l, 1) 0··· = II 0SU(1,1)

loI=-oo

== [SU(l, 1»)00.

(21)

[~] Kiw(ke)e-iwr , [~] Kiw(ke)e-iwr : -00 < w < 00 (18)
.--+

T(z) : Tw'w(z) = S(w' - w)e l L· n ..,(z)a..,(z) : K-Gz -+ K-Gz • (22)

is the natural basis for a pair of oppositely accelerated observers. These basis states
span the quantum states for Klein-Gordon subsystem I independently of those for
Klein-Gordon subsystem n (as governed by Eq.(5»

The existence of these two bases expresses a typical quantum mechanical duality.
Either one measures the particle-antiparticle aspect of the quantum system, or one
measures its Rindler I-IT aspect. One can't measure both.

The transition from one basis to the other is determined by the z-independent
gauge transformation, which is given by the transition matrix

[
e1rW' /2 e-1rW' /2]

V = e-1rW' /2 e1rW' /2 - 00 < W < 00. (19)

Here

. -+
elL. n ..,(z)a..,(z) E SU(1, 1),

"7 _ {I [0 I]! [0 i ] ! [-1 0] } (23)
1J : {Lt, L2, L3} - 2 -1 0 ' 2 i 0 ' 2 0 1

are three generators of SU(l, 1) rotations characterized by their commutation relations

[Ll , L2 ) =-iL3
[L2, L3]= iLl

[L3 , Ld = it:;,
and

An important consequence of assigning a pair of accelerated frame to each event
of spacetime is that a Klein-Gordon particle acquires internal quantum states. But,

Thus starting with the particle-antiparticle gauge, Eq. (17), one obtains the Rindler
gauge, appropriate for the pair of oppositely accelerating observers,

rtw(z) : {nlw(z), n2w(z), n3w(z)} - 00 < w < 00

which specifies the rotatiion axis while ow(z) is the amount of rotation.

The (local) isomorphism between SU(1, 1) and SO(2, 1) implies that this rotation
takes place in a three dimensional Lorentz space with its indefinite inner product.
Consequently,

[Dw'w(z») = (Vw'][d..Iw(z)][V~l],

which also could have been obtained by merely inspecting Eq. (16b).

ACHRONAL SPIN

(20)

L. rtw(z) = L3n3w(Z) - L2n2w(Z) - L1nlw(Z)

rtw(z) . rt",(z) =[n3w(z)]2 - [n2w(z)]2 - [nlw(zW

L .L =L~ - L~ - L~ ( =i (~ +1)).
(24)
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(26)

A rotation may be
"timelike" : 1t . 1t = +1,

"spacelike" : rt .rt = -1,

or "null" : rt . rt =0

(Subscripts and arguments have been suppressed). The corresponding elements of
SU(t,l) are

which it is invariant. By inspection one sees that the following one parameter family
of transformations commutes with Eq.(20):

t(z) : t""",{z) = sew' - w)V",eiLlIQ'V",-l

=S(w' - w) exp[iV",LaV;-la]

=Sew' - w)[cos ~ + 2iV",L3Vw- 1 sin i).

---. - 'L- a.--+ ---. . an . n =1 : e' . n Q' = cos - + 2. L . n sm-
2 2

_ _ ,7 -+ a._ -+. a
n . n =-1' e' ,n Q = cosh - +2. L . n sinh-. 2 2

'-L -+ -+1t ' rt == 0 : e' . n Q = 1 + i L . 1ta

(25)

Consequently, the conserved a.chronal spin operator is

1 (' ) [ cosh 1rW 1] (' )S:V",L3V",- Sw -w = La-
inh

+L1 -
inh

Sw-w
s 1rW S 1rW

= [2La(N +~)+ 2L1VN(N + 1)]8{w' - w)

Here

(27)

- 00 < W < 00.

lI/=-OO

00

"'$~$~$'''= L $Jf

is the corresponding mean squared thermal fluctuation spectrum.

The (local) isomorphism of SU(1, 1) with SO{2, 1) implies a geometrical picture
for t(z), Eq.(26): It is a rotation in the direct sum (more precisely, direct integral)

The group [SUet, 1»)00 serves the same purpose for the Klein-Gordon system that
the group of rotations serves for a spinning particle in a magnetic field: First of all,
the group preserves the inner product in the space of quantum states. Second, there
is a subgroup of symmetry operations that preserves the evolution of the system, and
third there exists a conserved spin opera.tor.

For the particle the symmetry subgroup is the set of rotations around the tilted
magnetic field axes. These rotations leave the Hamiltonian invariant. Equivalently,
their generator, the angular momentum along the tilted axis, commutes with the Hamil
tonian of the spinning particle.

Similarly the parallel propagator D(z), Eq. (20), of the quantized Klein-Gordon
particle is invariant under thosespeetrum preserving symmetry elements t(z) E (SU(I, 1»)00
which commute with the propagator,

N =N(w) = exp~;w _ i

is Planck's thermal spectral function, and

1 1
N (N + 1) = exp 21rw _ 1 + (ezp21rw _ 1)2

(23a)

\,,,ob)

(29)

[D(z), t{z)} = O.

By inspecting Eqs. (20) and (17) and comparing them with Eq. (22) one can readily
infer the symmetry elements. But first one must decide relative to which represen
tation, "particle-antiparticle" or "Rindler", shall the answer be given. Our focus on
accelerated reference frames demands that the quantum mechanical measurements are
to be performed by the pair of observers in Rindler I. and II.. The reasoning sur
rounding Eq. (IS) demands that the appropriate basis be that of Rindler and not the
particle-antiparticle basis. Consequently one must represent the parallel propagator
as in Eq.(20) ( and not Eq.(17) ) in order to find the symmetry elements t(z) under

14

of three dimensional Lorentz spaces, each one, Ra, spanned by the classical values of
the operators LI, L2 , and L3 •

The rotation t{z) is (a) spectrum preserving, i.e. leaves invariant each Lorentz
space Ra, and (b) has an axis of rotation whose projection onto the wth subspace R3
is the vector

J. ~-+ I 1 2 1 1
n '" == - + ,0, - + . .

'?-'q) 21T"w - 1 (exp 271'w - 1)2 ] 2 exp 21T"w - 1 J

In other 'ivorcts,;'ector lies in the L 1 - £3 plane. The projection along; the La axis
is given by the sum. of: zeropoint plus Planckian thermal spectral intensity. The tilt of
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,1' .'

...
,.

this vector is given by the r.m.s. fluctuation spectral intensity, which is the projedion
along the £1 axis.

Let us return to the question posed near the beginning of this paper: "Why does
Nature choose to characterize pairs of accelerated frames with a Planckian and not
with some other spectrum?"

The answer: "The Planckian is Nature's way of expressing the parallel translation
symmetry of flat Minkowski spacetime."

This she achieves by the fact that (1) a relativistic wave equation imparts an
acceleration induced set of internal quantum states to each event of spacetime, and (2)
there exists an achronal spin operator, S, Eq.(27), which is conserved under translations
in spacetime, and which has the striking property: The diagonal spectrum of S is

The quantum mechanical reasoning summarized by Eqs.(31)-(33), leads to the
heuristic conclusion

which according to Eq.(32) vanishE's everywhere.

Thus Minkowski spacetime is characterized by a vanishing achronal gauge field, but
one with a non-vanishing potential. This potential is rotationally symmetric around an
achronal rotation axis whose direction is given by Planck's thermal spectrum together
with its r.m.s. fluctuation spectrum.

gravitation = ISU(l,l)]oo gauge geometry

Its basis, we reiterate, is translation invariance: every pair of achronal accelerated
Rindler frames is physically and hence geometrically indistinguishable from a.ny other
pair. Purely wave mechanical considerations, in our case those for a single charge
governed by the Klein-Gordon equation, then lead directly to this conclusion.

(34)F[n dU 1\ dV = dO + 0 A n,

for an [SU(l, l)Joo Yang-Mills theory [19,20J. The corresponding gauge field is

(3Da-)
1 1-+----
2 exp21rw-1'

namely "zeropoint plus Planckian power", while its off-diagonal spectrum is

One may also view the connection differential as an achronal gauge potential

O(z) == Au(z)dU + Av(z)dV (33)

dO + 0 1\ 0 =o. (32)

This infi.nitesimal law for parallel transport yields the covariant derivatives of 011 the
particle-antiparticle basi!! states, Eq.(13}. Itg curvature vanishes [18]:

Classical general relativity can be characterized by by the manner in which matter
and spacetime are related: "Spacetime tells matter how to move; matter tells spacetime
how to curve" [21J.The first relation can be illustrated by the equations for geodesic
motion and the equations for geodesic deviation. The second one is captured by Ein
stein's equations for the moment of curvature as dictated by energy and momentum
[22].

Quantum mechanics however forces a very different picture upon us. In this picture
achrona! spin replaces world lines as the way to characterize the motion of particles.
The equations of geodesic motion and of gedesic deviation are supc;rceded by a Heisen
berg type equation of evolution that governs the orientation of the precessional motion
of the infinite dimensional acnrcll('J [SU(l, 1)Joo spin vector.

The e:ustence of the achronal gauge potential demands that the evolution of the
achronai spin be controlled in a way analogous to how the Yang-Mills gauge potential
controls the evolution of isotopic spin. Suppose one indeed characterizes spacetime in
terms of its gauge potential. Then its quantum mechanical control over matter may
be expressed by saying "Spacetime tells achronal spin how to precess."

IT one accepts this quantum mechanical picture then one must consider, of course,
its converse. It consists of the answer to the question: "How does achronal spin de
termine the achronal gauge field?" Even though this field is based on the gauge group
{SU(l, l)]CXJ, while that of Yang and Mills is based on only SU(2), there are numerous
reasons to believe that the latter sheds considerable light on the former.

QUANTUM MECHANICAL PICTURE: A HEURISTIC SCENARIO

(31)

(3Db)[ 1 1]i
exp 21rW -1 + (exp 21rw - 1)2 '

O(z) = i; [~ ~1] {6(w-w'+i)dU+6(w-w'-i)dV}.

CURVATURE AND ACHRONAL GAUGE POTENTIAL

that of the concomitant "r.m.s. fluctuations".

Let us explore why the achronal symmetry axis is oriented along the direction
given by Eqs.(29).

Consider the parallel propagator for an illiJIDitesimal spacetime displacement. An
easy calculation based on Eqs.(17), (11), and (12) yields the connection one-form
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Minkowski Bessel (MB) modes B*(kU, kV) and their coordinate representatives in the respective
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