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ABSTRACT 

By employing the dictum that axiomatic principles are devoid of predictive power, 

we find that the elastic unitarity constraint, applied to strong W L W L scattering, does 

not alter the assumed spectrum of intermediate states. We consider intermediate states 

involving a heavy Higgs and heavy fermions of a hypothetical fourth generation doublet. 

In contrast to recent studies, we find no p-wave resonance, and therefore no violation of 

the S parameter upper bound. We conclude that the elastic unitarity constraint sheds no 

light on the existence of a heavy fourth generation. 
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Long ago, it was of interest to determine whether a strongly interacting linear sigma model (LSM), in 

all its apparent simplicity, could prove capable of generating the complex hadronic spectrum [1]. In recent 

times, the familiar isomorphism between the pions and the longitudinal modes of the standard model gauge 

bosons, made precise through the equivalence theorem, has led to a resurgence of interest in the strongly 

interacting LSM [2,3,4]. Motivation rests on the understanding that W L W L scattering provides a unique 

probe of the mechanism responsible for electroweak symmetry breaking [5]. Evidently, triviality bounds [6] 

provide at best a narrow window within which a strongly interacting Higgs sector could exist. However, it 

is important to know what resonance structure to expect should such a window exist. The specific question 

that we address is: Do intermediate states involving heavy fermions of a hypothetical fourth generation 

doublet provide enough binding to produce a p-wave resonance? As emphasized by Truong in Ref. 4, this 

question is of special interest since precision weak-interaction measurements constrain the spin-I content of 

a strongly interacting Higgs sector via the S parameter upper bound [7]. 

Study of the singularity structure of the scattering amplitude requires trading crossing symmetry for 

elastic unitarity, in a non-unique way. In Ref. 3 and Ref. 4, the method of Pade approximants is used to 

show that, for a large fermion mass, it is possible to dynamically generate a p-wave resonance. If this result 

is correct, then the S parameter bound can serve to exclude a heavy fourth generation of fermions [4]. We 

will argue that the use of the Pade method in Refs. [1-4] is based on the notion that elastic unitarity should 

be imposed for the purpose of making predictions. Our approach is conceptually novel in that, in sync with 

current lore, we ensure that unitarity per se yields no predictive power, a point of view clearly orthogonal 

to S-matrix theory (in the bootstrap sense.) That axiomatic constraints like unitarity and causality do 

not uniquely determine S-matrix elements was an important lesson learned with the advent of QeD. A 

priori, there are an infinite number of S-matrices consistent with the most general physical principles [9]. 

For example, in the context of a non-abelian gauge field theory, changing gauge group and fermion content 

certainly does not affect the unitarity of the theory. 

We find that the 1=1 singularity structure is insensitive to the heavy fermion mass. Furthermore, the 

only nearby pole of the full amplitude is seen to be the physical Higgs pole. Therefore, we find that there 

is no violation of the S parameter upper bound for any value of the heavy fermion mass. We conclude that 

elastic unitarity, imposed as a constraint on strong W L WL scattering, yields no information concerning the 

existence of a heavy fourth generation of fermions. 

Exploitation of the model-independent low-energy structure of the theory is essential to our approach. 

Assuming a custodial SU(2) symmetry, the most general effective Lagrangian including terms with four 

derivatives is given byl 

1 The coefficients, normalized in this way, are of O(1) in the sense of naive dimensional analysis [8]. 
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The Goldstone boson fields (w+ ,w-, and z) are contained within the field variable E = exp( iT;W). C1 and 

C2 are undetermined constants which characterize the underlying theory at low energies. In general, there 

are contributions to C 1 and C2 from all heavy degrees offreedom, as well as continuum contributions arising 

from goldstone boson loops. The contributions to these low-energy constants arising from intermediate 

states involving the Higgs boson and degenerate2 heavy fermions of a fourth generation doublet have been 

calculated perturbatively in Ref. 10 using an on-shell subtraction scheme. They are given by 

1[ (971" 37) 1 ( J.l2 )] v 
2

)Cr(J.l) = 4 - 4V3 - 9 - "6 log MlI + 27l"2 ( MlI 

(2)C~ (p) = ~ [- G) -~ log (;~ ) ] , 

and 

N c (4-a)11 )][1 (2Cf = -- - + 6 - +-- log(l- ax (1- x))dr:
1 12 2 a a2 a 

f _ N c (3)C2 - 12' 

M 2 

where a == j/f. Note that for definiteness we use values of the low-energy constants extracted from per­
f 

turbation theory. However, we stress that we could equally well consider the most general couplings of 

fields with any quantum numbers to the goldstone bosons, and estimate the values of these couplings using 

naive dimensional analysis. The uncertainty associated with a change of the Ci of 0(1) should certainly not 

exceed the inherent uncertainty that accompanies any unitarization scheme. In fact, we find that our basic 

conclusions are insensitive to natural changes in scale. For example, we can replace the cf by the values 

that obtain from coupling a scalar to the goldstone bosons in the most general way [11]. In this case there is 

an undetermined parameter that can be related to the scalar width. If, instead of choosing the perturbative 

standard model value for the width, we choose one-half of that value, as is the case when the existence of a 

narrow p-wave resonance is assumed [12], our results are unaffected. 

To order s2, the relevant partial wave amplitudes of definite custodial isospin are given by 

(4a) 

2 The heavy fermions are taken to be degenerate in order to avoid introducing isospin breaking terms. 
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where ao == 16;'V2' al == 96;'V 2' and a2 == 321T~2' Each curly bracket consists of three terms, correspond­

ing to the low-energy theorem, and the 0(s2) contributions in the direct- and the crossed-channel respectively. 

Note that we have been careful to preserve the crossing properties of the undetermined coefficients [14]. 

Our unitarization scheme corresponds to a simple bubble-sum with amplitude given by 

(5)td s ) = [ ] . 
1 + 7- log(;g) + Ri (J1.2) 

The Ri's are obtained by matching against the direct-channel piece of the chiral expansion. By inspection of 

Eq. (4) we find Ro = -6(2C1 + C2) and R2 = R 1 = -12C2• The "complementarity" between the 1=1 and 

1=2 channels that follows from R2 = R 1 is investigated elsewhere in detail [13,14]. 

Inspection of Eq. (3) reveals that the 1=1 and 1=2 amplitudes are independent of the heavy fermion 

mass, in sharp contrast with the Pade result of Ref. 3 and Ref. 4. Only the 1=0 amplitude has non-logarithmic 

contributions that depend on the Higgs and fermion masses. This is not surprising; the values of Cl and C2 

given in Eq. (3) are the low-energy manifestation of a scalar-dominated theory. Unitarization simply restores 

the basic properties of the assumed underlying theory. 

In Fig. 1 we schematically depict the complex s-plane. With a rather conservative choice of cutoff, given 

by A=47rv ~ (3 TeV), and with MH=Mf= 1 TeV, we see that the only pole in the theory is the "physical" 

Higgs boson. In Fig. 2 we display the partial wave amplitudes of definite custodial isospin for values of the 

tree Higgs mass of 0.75 TeV and 1 TeV. For values of Mf above 250 GeV, the fermionic contributions to the 

1=0 amplitude amount to a negligible renormalization of the physical Higgs mass, and so we neglect them 

in the graph. The complementary character of the non-resonant 1=1 and 1=2 amplitudes is clearly evident. 

We also display the Pade prediction for the 1=1 amplitude, with MH=0.75 TeV and Mf=l TeV. 

The approximation of neglecting crossed-channel contributions clearly works best near an s-channel 

pole. Since our primary goal is to investigate the possibility of a p-wave resonance for definite values of C1 

and C2, this sort of approximation is ideally suited to the task. More importantly, we argue that if one 

wants to play the unitarization game, then one is required to make this approximation. We have argued 

that no S-matrix element should be uniquely determined by unitarity alone. Yet, we see in Eq. (5) that if 

h is resonant, the width of the resonance is automatically fixed to the weak scale analogue of the KSRF 

relation [12]. However, we need not worry. This prediction is not a consequence of imposing elastic unitarity, 

but rather of neglecting the left-hand cut. This is easily seen by including left-hand cut contributions in a 

way that respects the low-energy structure of Eq. (4), and yet avoids double-counting of graphs [15]. Eq. (5) 

then becomes 
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(6) 

where 130 == (i8~)(ao)2, 131 == (~)(aI)2, and 132 == (9~1)(a2)2 (see Eq. (4).) The Bi are the low-energy con­

stants associated with heavy particle exchange in the crossed-channel. The Mi are undetermined constants 

that appear at two-loop order in the chiral expansion. We see that it is by neglecting the contribution to the 

imaginary part of the inverse amplitude involving B 1 that we are able to predict the KSRF relation. There­

fore, the predictive power of Eq. (5) is not a result of imposing unitarity, but rather a result of neglecting a 

class of graphs associated with heavy particle exchanges in the crossed-channel, which are manifest at 0(s2) 

in the chiral expansion. It is important to note that the above does not constitute a new derivation of the 

KSRF relation. In fact, all justifications of the KSRF relation, including the original current algebra deriva­

tion [16] , require the tacit assumption that the left-hand cut of the 1=1 scattering amplitude is effectively 

absent [17]. We find it powerful evidence in favor of our scheme that, by ensuring that predictive power 

come from a source other than elastic unitarity, we arrive at a consistent derivation of the KSRF relation. 

The method of Pade approximants, as applied in Refs. [1-4], also predicts the KSRF relation in the 

1=1 channel, and yet the 0(s2) crossed-channel contributions are included. Therein lies its downfall; the 

neglect of crossed-channel contributions can no longer serve as the source of predictive power, and so the 

crossed-channel contributions necessarily appear in the wrong place. Yet if this is the case, then why do both 

unitarization schemes of the bubble-sum type and the Pade method provide a good parametrization of the 

1f'-1f' phase shift data? The reason is straightforward. One can say that the bubble-sum method works well 

because the crossed-channel contributions which are neglected are small, whereas the Pade method works 

well because the crossed-channel contributions which are included in the wrong place are small. Since these 

misplaced contributions appear in the real part of the inverse amplitude, in the current context it is quite 

understandable that unphysical poles are present. Of course, there are well defined instances in field theory 

where crossed-channel contributions decouple. For example, the O(N) model is exactly solvable to leading 

order in k precisely because left-hand cut contributions first appear at O(~) [18]; not surprisingly, to 

leading order in k, the [1,1] Pade approximant yields the exact result [19]. In this spirit, it is interesting 

to note that if we assume that the crossed-channel contributions that appear at 0(s2) in Eq. (4) are much 

smaller than the direct-channel contributions at the same order, then our unitary amplitude, Eq. (5), is 

the [1,1] Pade approximant of Eq. (4). However, our unitary amplitude with crossed-channel contributions 

included, Eq. (6), is clearly unrelated to any Pade approximant. The moral of this story is that the Pade 

method, which is ideally suited to problems in potential theory, should be applied only with great care to 

problems where crossing symmetry is important. 

Our conclusions are not surprising. The effective field theory viewpoint implies that one gets out 

essentially what one puts in. Once we saturate the low-energy constants of chiral perturbation theory with 
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contributions from a scalar-dominated underlying theory, information regarding the intermediate-energy 

spectrum is, in a sense, exhausted. The elastic unitarity constraint does not, and should not, change the 

character of the assumed underlying theory, albeit a strongly interacting one, e.g., by inducing a prominent 

vector contribution. 
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Figure 1: Schematic depiction of the complex s-plane for characteristic values of the 
input parameters, MH=MJ= 1 TeV. The only pole below the cutoff is the physical Higgs 
pole. 

0.8 

0.6 

It o(s)IO.4 

0.2 

o~ --,--- "",--- ,,---__----......J 

o� 0.5 1 1.5 2 

-.Js (reV) 

Figure 2a: 1=0 s-wave amplitude. The dashed line corresponds to MH=0.75 TeV and 
the solid line to MH=l TeV. 
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Figure 2b: 1=1 p-wave amplitude. The dashed line corresponds to MH=O.75 TeV and 
the solid line to MH=1 TeV. The dotted line corresponds to the Pade method prediction 
for MH=O.75 TeV and Mj=1 TeV 
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Figure 2c: 1=2 s-wave amplitude. The dashed line corresponds to MH=O.75 TeV and 
the solid line to MH=l TeV. 


