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ABSTRACT

We Itudy percolation in mall and galaxy diatributioDl obtained in three-dimeDlionai simulations of

the COM, C+BDM and the power law (n =-1) mode" in the (} =1 universe. Percolation statistics is

used here as a quantitative measure o( the desree to which a m.. or galaxy distribution is o( a filamentary

or cellular type. We have developed a very (ut code (bued on the algorithm described in Stauffer 1985)

which calculates the Itatistics of clusters along with the direct detection o( percolation. We found that

two parameten: poo (eq. 3). characteriling the aise or the tarpA duster, and p2 (eq. 4), characterizing

the weilhted mean lile o( all clusten excludinl the larlest one, are extremely useful (or evaluating the

percolation threshold. An advantage o( uling these parameten is their low seDlitivity to boundary effects.

We show that both the COM and the C+BDM models are extremely filamentary both in m8Sll and galaxy

diltributions. The percolation thresholds for the mall dittributioDl are p. =0.023 ± 0.005 in the C+HDM

and Pc =0.044 ± 0.005 in CDM models compared to P. =0.16 Cor a Gau.ian random field. For lalaxy

samples with a few thousand galaxies the thresholdl are P.,C+HDM = 0.06:l: 0.02 and P.,CDM =0.10 ± 0.02

compared to Pc = 0.31 for a Poisson dist.ribution. Percolation in relions having the shape of a parallelepiped

is discussed in the context. of the application of percolation statiatics to real galaxy catalogs.

Saljed Aeading,: galaxies: clustering - large-scale structure o( the universe - methods: numerical

1. INTRODUCTION

Angular and spatial dittributiona o( galaxies sbow structures which are often referred to as cellular or

filamentary. The former reflects a visual impression that galaxies are concentrated to narrow walla separating

large isolated voids o( galaxies and the latter means that galaxies are concentrated to one-dimensional threads

. forming a kind of three-dimensional web. No statittics which can quantitatively and unambiguously measure

these impressioDl has been IUUested despite many attemptl.

Zeldovieh (1982) was the fint to realize that thit is a topological question. He suUested the following

explanation of the formation o( the cellular structure in the pancake scenario UIOciated (that time) with the

neutrin~dominated(30eV) universe. He arCUed that i( a Cew percent o( the volume is filled randomly with

some substance and the rest. of the volume remains empt.y, then the filled regions will be isolated and the

empty space will look like a .insle ocean. (Of coune, lakes on islands are also poaible.) In order to make

a few percent or the filled volume look like a connected .tructure one must provide a special arrangement

of the filled regions in space. To IUpport thil line of reuooing quantitatively he luUested uling percolation

statistics. Soon after, one of the authon of this paper IUUested to use the percolation statistics as a

descriptor of the observational distribution of galaxies and as a cosmological test (Shandarin 1983). The

later development o( this method was recently reviewed by Dominik, &t Shandarin (1992) and we will not

repeat it here.

Instead we brieflY describe the main idea of the percolation technique and its relation to t.he topology

of the structure. In this paper, we deal with three-dimensional cubic lattices in parallelepiped-like regions

and define percolation in such systems. For example, let us take a three-dimensional cubic lattice of size N3

and assign the labels "filled" to some of t.he cells and "empty" to all the rest according some specified rule.

For instance, i( the density i. given on the lattice, one can label the cells with the density higher than a

specified threshold as filled and the othen as empty. After assigning the labels each cell becomes a member

of a cluster. Each cluster consists of the cell~ of one type which satisfy the requirement or the neighborhood.

Two cells o( the same type are considered to be neighbon i( (i) they have a common side (at most six cells

can be the neighbors of a cell due to thil requirement) or (ii) satisfy the principle: the neighbor of my

neighbor is my neigh~or. Sometimes t.he firat requirement it modified and t.he celli having a common ridge

or corner are also included in the list or t.he immediate neighbors (Mo, & Borner 1990; de Lapparent et at I

1991). These modifications, without. changing the principal idea of percolation analysis, do change the values

of the percolation t.hresholds. One disadvantage of such modifications is that they have not been studied

theoretically. In particular the percolation thresholds in Poiuon and Gauaian distributions are not known.

The number of cells in a duster it called the liae or volume of the cluster and, generally speaking, can

be any number from 1 to N3. Percolation theory studies the transition o( an infinite system (N - 00) from

the state in which every cluster i. finite, to one in which an infinite cluster exists. In finite systems, a cluster

which spans the ent.ire region play. the role of the infinite cluster. For example. in a finite cubic region such

a cluster connects the antipodal sides. The formation or such a cluster may be considered a phase transition

(e.g., from insulator to conductor).

The phenomenon or percolation can be observed in a variety o( systems: various lattices (simple cubic,

body centered cubic, face centered cubic, etc), various dimensions, discrete or continuous systems. Ilowever,
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the eIIeIlce of percolatioa is • iUc1dea formation or the infinite cluster u mme parameter characterizing th.

eyatem chUlpa Ifadually.

The percolation technique applied to galaxy diltribution is verJ dift'erent (rom that used in mlid stat~

phyaies (lee, for example, ZimUl 1979) or, say, for model. ofsolar activity (Wentzel, At Seiden 1992). In botb

cues the percolation phenomena mode" some phyaical proceM. The application of percolation analysis tc

galaxy distributioDlIUUelIla using percolation .tatisties u a descriptor, although the connection with the

physical proCet!llf!ll of Ifavitational in.tability can be also traced (Zeldovich 1982; Shandarin, k Zeldovicb

1989). Two aspects of this application are worth emphasising. First, one may expect that percolation

statistics can be an objective quantitative measure of filamentary and/or cellular structures, and second, the

percolation statistics can be an additional objective discriminator between various cosmological scenarios

of the formation of the large lCaie strudure in the universe. These two upects are relatively independent

becauee the former emphuilel the dift'erence with -strudurel.." distributions like Poisson or Gaussian and

the latter the dift'erence between the diltributions in quelltion (lee the discussion below). In this paper we

addre18 both ilsuee.

Percolation thresholds are primarily topological characleristles of random fields and are related to the

Euler characteristic. In the case of Gaussian random fields in one-, two-, and three-dimensional spaces the

genus curve changes the sign at percolation limits (Tomita," Murakami 1988) which agrees with Ziman's

(1979) .peculation.

The application of percolation analysis to real galaxy catalogues encounters several problems mentioned

in the early studiee (Shandarin 1983; Bhavsar,&I: Barrow 1983; Einuto et aI. 1984; Dekel, " West 1985;

Klypin 1987; Mo, &I: Borner 1990; de Lapparent et at. 1991; Dominik, At Shandarin 1992). Discreteness,

typically complex shapel of aamplell, inhomogeneity related to the selection function, and small statistics

are among them. In this paper we dilCUIS the problems of discreteness and boundaries of the samples

using simulated three-dimensional samples of galaxiell in COM, C+ROM, and the n=-1 power law models.

We suuest a new technique to deal with the discreteness and also test three methods of estimating the

percolation thresholds, two of which are quite insensitive to the boundary effects. We reserve the study of

the inhomoseneous samplee to a separate paper.

Concluding the introdudoiy remarks we would like to emphuize a few general points:

(i) Percolation is a phue transition characterising a system u a whole no' only the percolating cluster.

A8 a matter of fact, all clusten ese/.4in, the largellt one specify the percolation transition in the same way

u the percolating cluster doel it.

(ii) Our Ulalysis or realistic c:oemological models doee not .upport the conclusion (bued on the analysis

of toy models ) that the dependence of percolation propertiee on the mean density of galaxiee is a serious

problem of the method.

(iii) The strong dependence of percolation propertiell on the volume of the sample found in some studies

wu probably caused by an inadequate technique used for measuring percolation thresholds.

We discuss these issues in &reater detail bellow. The rest of the paper is orsanized as follows. In 12 we

brieRy describe the cosmolosiclll models which we studied using the percolation technique. 13 describes the
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specifies of our version of the percolation method and the result. of teets. In 14 we present the analysis of

the cosmological models. And finally 15 i8 the summary of our results.

2. COSMOLOGICAL MODELS

Numerical simulations of three cosmological models were done using standard Particle-Mesh (PM) code

(Hockney & Eastwood 1981, Kates et aI. 1991).

In the C+ROM model the dark matter i8 a mixture of 30CJf» of hot particles (e.s., tau-neutrinos with

the rest maa of 7.2eV) and 7~ of cold particlee (Holliman 1989, Klypin et a1. 1992). Both the COM and

C+ROM models were normalized to the hi_ins parameter" =1.5. The n = -1 model wu normalized to

" = 2. All models were simulated in a 50 Mpc box (h = 0.5). The C+HOM simulation and one of the COM

simulations ueed the same set or random numben. The comparimn of the two simulation. emphasizes the

dift'erence between the C+HOM .and the COM models. Note that the CDM and C+HDM models are not

very different on the scalell within the box: the linear normalization at rtop-hat = 8h- 1 Mpc is the same

and the slopes of the power spectra are also quite similar at these scales. So it is really a challenge for a

method to deted difference between the models.

The above models were simulated on a 256' mesh. The COM simulations and t.he n = -1 simulation

had 1283 particles each, while the C+1I0M simulation had 128' cold particles and six sets of hot particles

of 1283 each. The COM and C~ROM simulations were started at :r = 15. The power law simulation, which

has much higher amplitude of fluctuations at the smallest remlved scale (195 kpc), was started at redshift

z = 99. In total three realizations of the COM model and one realization for each the C+II0M and n = -1

models were simulated. A detailed description and analysis of the COM and C+HOM models may be found

in Klypin et at. (1992). Fig. ishows positions o( about 10% randomly selected particles in a thin (2 Mpc )

slice in the C+ROM simulation (left) and in the COM simulation with the same initial phases (right). The

slice was chosen to pass through a dense region near the center of the plot. The magnified inner part of the

region where about half of the particles are plotted shows the small scale difference between the t,vo models:

C+HOM model in Fig. 2and COM model in Fig. 3.

We also briefly studied percolation in the C+RDM model simulated in a 100 Mpc box on 51~ mesh

having 2563 cold particles and 2 • 2563 hot particles.

To identify "galaxies" in the model, we simply find all local maxima of the total density above some

threshold. Positions of the maxima were treated as the galaxy coordinates. In the C+ROM simulation the

number of galaxies was 835, 1824, and 4617 for density thresholds of 100, 50 and 25 correspondingly. In the

COM simulation with the same initial phases the number of galaxies was 751, 1640, and 3318 for density

thresholds of 200, 100, and 50 correspondingly. Thus, with the same density threshold the COM model

produced about twice the number of galaxies as the C+ROM model and doubled threshold results in about

half the number of galaxies. The n = -1 model produced many more galaxies: for the density threshold of

50 it had 5650 galaxies. Thus the number of galaxies in the simulations was not very large and is similar

. to what one might expect in a volume-limited catalog at the preeent time or in the near future. Assuming

the Schechter luminosity function with parameters M. = -19.2, a = -1.1, and ~. = 0.02h'Mpc-' (de

Lapparent et al. 1989) one may expect to find about a thousand galaxies 3.2 magnitude weaker than M. it} a
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3.1 Poi"oJl Lattice

L n(v) oc Ip- pcl'-a,

In this paper, we deal mostly with two parameters: the (raction o( volume occupied by the largest

duster, normalized to one cell,

A Poisson distribution ofcell. with the probability P(or a cell to be filled is a simple but quite interesting

model. In spite of its simplicity, the srowth o( clusters in the model provides a reasonably accurate model

(2)

(4)

(3)

(1)

Poo =flm../N"

•

•
LV ·n(v) oc (p- Pet,

LV' .n(v) OC Ip- Pcl-",

1 - p +Poo +I>.n(v) =1.
•

and the mean weighted size o( the dusters excludins the largest one:

, _ E.,,2. n(v)
/J - N,2/3E. n(v) ,

where Nt = N• . N, . N. is the size o( the lattice, and the summation is over all dusters excluding the

largest one. We have introduced the additional factor N:/3 in the denominator (compared to the standard

definition o( P' in theory of percolation) to make plottios of the results easier. Accordins to percolation

theory, the critical exponents are P ::::s 0.4 and.., ::::s 1.7. (Stauffer 1986) We expect that Poo grows rapidly

and P' has a sharp peak in the vicinity o( the percolation threshold.

where a, P,.., are critical exponents (e.g. Stanley 1971). It also can be shown (rom eqs.(I- 2) that /Joo oc

(p - Pc)".

At the percolation threshold the whole system experiences a dramatic transition. For instance, at the

percolation verse Pc the multiplicity function is .imply a power law (Stauffer 1979, 1985): n(v;pc) oc v- r ,

T ::::s 2.1. But it is not true in the seneral case where it fall, exponentially at high v. In principal, the (orm

o( the multiplicity (unction could be used to detect the critical point. However, keeping in mind the limitied

amount o( observational data, it seems more reasonable to besin with an analysis o( the lowest moments o(

the multiplicity function, which also exhibit singular behavior. The singular terms (or the lowest moments

are as (ollows:

When describins the percolation transition, it is convenient to introduce the multiplicity function n(,,)

which is the average number (per lattice .ite) of clustem of.ize v. The multiplicity function depends on the

(raction of filled cells P, which we call the fiUinS factor. In seneral, every cell has one of three options:

(i) it can be empty with the probability 1- p,

(ii) it can be a member of the infinite cluster with the probability POIh or

(iii) it can be a member o( a fimte etbater with the probability E. v· n(v).

The sum of all probabiliti-. is of course unity:

3. PERCOLATION TECHNIQUE

Aa we .trelled in the introduction, the mOlt ellential concept of percolation theory (in infinite systems)

is the critical transition from the .tate where there are only finite clusten, to the state where an infinite

cluster exilts. Probably the limplest way to illustrate the formation o( an infinite cluster is to observe the

powth of the diameter of the larsest cluster in a .y.tem: at the tranaition it becomes infinite. In an earlier

paper by one o( the authors, (Shandarin 1983) the srowth of the largest elueter was DIed mainly for an

illustrative purpoee, rather than a suuestion that it is the only or the best method of detecting percolation

in a system. Unfortunately, in some later papers, (e.s, Bhavsar, &t Barrow 1983; Dekel, &t West 1985) this

property o( the percolation phenomena was treated almOllt as a .ynonym (or percolation and occasionally

was used for estimatins the percolation threshold in samples which are not well suited to this technique

(e.s., a cone). That was part o( the reason for the reported problems in applying the percolation statistics

to coemolop.

cube like oun. The low limit of the maximum denaity impoees a limit on the mllll of Salaxies. For exalUple,

the denaity threshold 60 impoees the restriction on the mllll of salmes M > 2.5 )( 1010 Me .

In this paper, we WIe percolation analy" on three-dimensional cubic lattice lIIIuming that each cell can

be immediately linked to no more tlf. the cloeeet six neishbon. In percolation theory jarson, this i. called

lite percolation on a limple cubic lattice. It is worth .tr_ns t.hat in recent .tudies (de Lapparent et al.

1991; Mo, ck Bomer 1990) different acbemes were ueed, allowinS more connections, which of couree makes

percolation happen easier i.e. at lower flUins facton. Unfortunately it aIIo reduces the percolation threshold

for the PoillOn distribution, which means that the .isnal-to-noile ratio doee not improve. An advantase o(

our definition of the neishborhood is that it has been very well studied. Before we preeent the results of our

testa let UI deecribe the pheno~~nof percolation in peater detail.

The formation o( a duster spannins the entire volume (which we call the "direct test for percolation")

is only one manifestation o( the critical behavior o( a system near the percolation transition. Although

quite intuitive, it has serious disadvantases when DIed as an estimator of the percolation thresholds. First,

it is not clear how to apply the direct test to samples having shapes other than a cube or parallelepiped,

e.s. a sphere or a cone. Second, the direct test is very sensitive to what happens near the boundaries: a

ftuctuation or an incompleteness of the catalos could .ipificantly affect the results. The diameter o( the

larsest eluster as a measure o( the percolation threshold is (ree of the fint disadvantase but .uffers (rom the

second. Fortunately they are not the only features of percolation. There are others which much better suit

the purpoee of measuring the percolation threshold.. One is related to the growth of the the size (the size

equal. the volume equals the number of cells) of the larsest duster and another to the weishted mean size

o( all dusters, excludins the largest one. It is clear that the growth of the diameter of the largest cluster is

strongly suppressed when its end points reach the boundaries of the region. On the contrary, because the

volume can grow by joining the cells along its whole .ur(ace, mOlt of which are perfectly inside the region, it

is less sensitive to boundary effects. UsinS both parameters in cOllmolop was suuested by Klypin (1987),

and the size o( the largest cluster was ueed as an estimator of the percolation threshold by de Lapparent et

al. (1991).
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for. number of critical pbenomena (SlaDle, 1971). We .how in 14 that in the vicinity of the percolation

thretbold tbe powtb of lar.. cluter in botb the COM and the C+BOM model. i••imilar to that in .ate

PcH.on model. We UIe the POBn model for the purpoee or &elUnl the code and .tudyinS the dependence

of percolation propertiel on the sise of tbe lattice and the .bape of the volume.

The dependence of the percolation parameten on the sise of the cubic lattice iI .howD in FiS. " for

33',633 , 127', and 256' lattices. A bundred difl"erent Bell ofrandom Dumben wu averaled for each lattice

except the 256' lattice, for which 40 sell were used in the vicinity of the percolation transition (three dosest

points) and ten sell for other flUinS facton. Tbe top panel sbOWl the fraction of percolatinl realization.

for a pven flUinS factor p. Thil iI the direct test for percolation. The middle panel .hows the fraction of

cella in the larSeit clu.ter poo (eq. 3) as a function of the fillinS factor. poo approaches zero at p < Pc and

the asymptote Poo ClC (p - Pc)O.4 at p > Pc. Tbe bottom panelshoWl tbe dependence of the weighted mean

volume of the remainiDS clu.~.p' (eq. 4). With tbe srowth of the lattice sise, the maximum of p'(p)

becomel narrower and it position approachel the percolation thfelbold Pc. The vertical dashed line marks

the percolation threshold meuured on very large lattices (e.g. Stauffer 1985). The central panel shows that

the traDlilion to the pereolatins phue iI quite sharp on all lattices. Even usinS the smallelt 33' laUice,

one can estimate the percolation threshold witb a relative accuracy better than 5% which corresponds to

the ranse 0.298 < Pc < 0.327. The bottom panel .hows that tbe p' statistics is somewhat noisier for small

laUices. We show the dispersioDl of both Poo and p' in units of correspondins mean values in Fig. 5. ODe

can see that the noise in Poo i. relatively large in tbe nonpercolatinl relime even for our largest lattice and

ralls rapidly in the percolatinl regime. The p' statistics shoWl the opposite behavior; however, the noise is

lenerally higher. In a sense, the Poo and p2 statistics are complementary.

3.1 A"i,otro,ic ""ice'

In applyins the percolation technique to real galaxy catalop, tbere is the problem of inhomogeneity

of the catalop caused by the dependence of tbe selection function on the distance. One way of dealing

witb thil problem is the introduction of correction for the efl"ect of the selection function. In the context

of the percolation analysis, it was used in two .Iilhtly difl"erent forms by Bhavsar, k Barrow (1983) and

de Lapparent et al. (1991). Bbavsar cit Barrow (1983), who studied percolation in point-like systems, used

the neighborhood radius varyinl witb the diltance, and de Lapparent et al. propoeed usinl a lattice with

cells of varyingsiZei. The volume of both a sphere and a cell iI approximately inversely proportional to

the mean density of galaxies. Altbougb somewbat technically difl"erent, both methods suffer from a common

disadvantase. To lee it clearly let us dilcu. the followins ,ed.den experiment. Let u. imasine that we

have a very larse volume-limited sample of lalaxies. For the purpoee of te:stinS the percolation technique

we produce a subeample by .imulatins tbe selection of salaxies with a .peciflc selection function. Now if we

Rnd the percolation thresholds separately for two parts of the subsample: one in a nearby repon where the

subsample is eomplete and the other in a remote resion where the subsample becomes a Poi~n distribution,

they may be very difl"erent despite that they were similar in the orilinal sample. A~mins that the original

distribution is of a ftlamentary type, the percolation threshold in the nearby resion is small. In the remote

re&iOD it may be equal to the Poisson value. Combinins them tosether, we may end up in the mixture

dominated by the Poisson part. The 'UUested correction. (the variable radius of spheres, or size of cells)
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does not help at all because it can not reltore the lOll information and does not reduce the contribution of

the Poisson part.

We can sugest a different approach which does not mix cloee and remote relions. Let us divide the

volume of a sample into layen perpendicular to the line of sisbt. The thickness of a layer must be chosen to

keep the density roughly constant within the layer and the layen must be analysed separately. Obviously rree

of the disadvantage of the 6rsttechniftue it can be afl"ected by the anisotropy of the layers. In order to satisfy

the requirement of the homoseneity, at least some of the layers must be relatively thin. In particular, one

can expect that on lattices having the shape of a flattened square parallelepipeds the percolation threshold

must approach the tw~dimensionalvalue in the limit of small thickness. The full study of this effect must

produce the percolation threshold u a function of distance for each model and a specified selection function.

And this function must be compared with a similar function calculated from a real salaxy catalog.

Here we only make a rough estimate of the significance of thil effect. In Fil. 6 , we show the dependence

of the percolation threshold on the thickness of the lattice. As an example we show percolation properties

on a series of lattices baving the same square bue of 127' and the thickness varying from 1 to 8; we

also show the percolation parameten for the full cubic lattice 127'. In the anisotropic relion., the direct

percolation test was applied only alons the two larlest sides. The percolation parameters were evaluated for

100 realizations of random numbers for each lattice. A. expected, tbe percolation parameter decreased from

the tw~dimensionalvalue (Pc =0.57) when the lattice had only one layer of cubic cells to almost the tree­

dimensional value when it had thickness 8 (roughly 0.34·0.35 instead of 0.31). Similar calculations for the 333

lattice show very similar results, but with greater dispersions due to smaller statistics. In the structureless

Poisson distributions, the percolation thresholds depend only on -',ol.te thickness of the lattice.

3.3 Di8crefe Di,tribtioM

When we dealt with the Poisson models, we could increase the filling factor until percolation occurred.

Studying percolation in mass distributions one can vary the filling factor by changing the density threshold

when labeling the cells. Galaxy samples are di.crete distributions and usually do not percolate without

smoothing. One can think of a number of smoothing filters: the Gaussian smoothing (Mo k Borner 1990;

Oominik cit Shandarin 1992), the variation of the sizes of cells (Einasto et al. 1984; de Lapparent et aI1991).

a construction of spheres of varyins radius about each lalaxy (Shandarin 1983; Bhavsar k Barrow 1983;

Oekel k West 1985; Klypin 1987).

Here we .uggest a very simple smootbinl technique, which, in addition to beinl very efficient compu­

tationally, also roughly preserves the Poisson characteristics wben applied to a Poisson sparse distribution.

ApplyinS the smoothinl once means that: (i) every orilinally filled cell remain. filled, and (ii) each originally

empty cell changes its type if and only if it hu at least one clOlelt (of.ix total) neighbor being originally

filled. Applied sequentially tbis procedure eventually fill, tbe saps between galaxies and a percolatins cluster

form.. RouShly speakinl the procedure blow. a sphere around each galaxy with the radius measured in cell

units equal to the number of times the procedure has been applied.

To study percolation in our lalaxy samples we must be able to start from very low filling factors. As

mentioned above in our .imulation we selected only a few thou.and lalaxies which corresponds to a filling
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factor I' < 3 x 10-3 on the 2563 lattice. Teatinl this technique, we randomly labeled a few thousand cells

as filled on the 2563 lattice and applied the amoothinl proeedur~ until percolation oecurred. We found

that the percolation threahold.in such a system is about p. =0.28, compared to the Pc = 0.31 in real

Poiaon distributions. It is worth mentioninl that the Ga.-ian filter tends to transform this distribution

to the GaUMian one havinl a percolation threshold about p. =0.18 (Dominik &: Shandarin 1992). Another

diaadvantase of the G....ian filter is that it brinp about an additional parameter which is the density

threahold. The major diaadvantqe of our method is that it cannol increase the filling factor continuously.

4. PERCOLATION IN COSMOLOGICAL MODELS

4.1 De" metier

Three COIlllolopcai modell were simulated to study connected structurea: the CDM, C+HDM and the

model witb the power law initial spectrum (n =-1). In all modell the percolation propertiea of the mass

distribution were studied on a" 2563 lattice. The density threshold Atar served as a free parameter. Cells

with density above Pthr were labelled as filled and all the reat as empty. Thus, the fiUinl fraction I' was a

function of the threshold density Pthr' The size of the larlest cluster Poo and the mean size of all the rest of

the clusten but the larlest one p' averaled over three realizations of the CDM model are shown in Fil. 7.

The two panell show the typical features of percolation: the fast Irowth of the larlest cluster and a peak in

p'(p). Similarly to the PoilllOn distribution, the fluctuations in the critical relion are quite large (especially

for p'), but the critical transition can be easily identified somewhere between I' =0.04 and I' =0.05. The

percolation threshold can be evaluated more accurately by flttinl the data points byeq. (2). Both Poo(p) and

p'(p) can be reasonably well approximated above the percolation threshold as: Poo(p) = 0.22(1'- Pc)0.5 and

p'(p) = 0.3(1' - Pc)-1.7. We found that the exponent 0.5 approximates poo slightly better than the Poisson

value 0.4, but the difference is small, and we do not claim that it is sipiftcant. This gives the percolation

threshold Pc =0.043 ± 0.005 for the dark matter in the CDM model normalized to the biasing parameter

6= 1.5. Results of the direct test (the detection when the largest duster links the opposite sides of the cube)

are consistent with this estimate. We also roughly estimated the uncertainty in the percolation threshold

from variations of the value from one sample to another and by comparing various statistics (the direct test,

Poo, 1"). For the C+HDM simulation the same procedure gives the threshold 1'. = 0.0230 ± 0.005, which is

silnificantly lower than that in the CDM model. Fig. 8 compares the CDM (middle curves) and C+HDM

(left curves) simulations having the same set of the initial random numbers. The results for the n = -1

model are also shown (right curves). The growth of the largest duster is approximated as A(p-I'c)0.5 (dashed

curves) with the parameters: ACDM = 0.23, AC+HDM = 0.20, I'c,CDM = 0.0448, and Pc,C+HDM = 0.0230. For

the n =-1 model the approximation is Poo = 0.25{I' - Pc)O_4, P.,n=-1 = 0.073. The dashed carves in the

bottom panel are p' = 0.3{p - Pc)-1.7 with the same percolation thresholds as above.

We found that in the vicinity of the the critical point, the growth of the largest cluster can be approx­

imated by roughly the same exponent, P= 0.4 - 0.5, independently of the model. The only difference is

the amplitude. To show this we have plotted Poo as a function o( I' - Pc on 10larithmic scale. Fig. 9 shows

log{poo) for the CDM model (averaged over three realizations) and the C+HDM simulation as well as for

the PoilllOn distribution. The size o( the larlest cluster Poo for the PoilllOn distribution was scaled down

by a factor of 6.7. All three mqdels predict almost the same relative rate of Irowth of the largest cluster.
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The only difference is that the volume o( the larlest cluster in the Poisson distribution is considerably larger

than in the C+HDM and CDM simulations.

In order to distinguish bll;;;en1ilamentary and cellular structures, we made the percolation analysis of

empty cells which were the cells havinl the density 6elov the threshold. We found that even for densities as

low as P < O.I(p) there was percolation throup empty celli. As a matter o( fact, in the ease of the CDM

model there was a single void occuPyinl the mOlt o( the volume (85%) and only a few very small voids.

We could Dot reach lower densitis because of discretenell. Thua, hilh density walll do not isolate voids

and therefore do not form a cellular structure in our modell. Of coune, it does not exclude the existence

of isolated walls (pancakes) in the distribution of the dark matter. We also cannot exclude that a cellular

structure forms at even lower density thresholds that would be in qreement with the results obtained for

two-dimentional distributions (Dominik, &: Shandarin, 1992).

One can use the concept ·of the percolation analysis to formulate a quantitave topological criterion of a

cellular structure. A structure can be defined to be cellular if the percolation threshold throulh empty cells

is smaller than Pc < 0.84 (or a continuous distribution or 1'. < 0.69 for a discrete distribution. Here the p. is

the fiUinl (actor of filled cells. Therefore this definition requires that percolation throulh the empty cells is

suppressed when the fraction of empty cells islarle: pc(empty) > 0.16 = 1-0.84 for continuous distributions

or Pe(empty) > 0.31 = 1 - 0.69 in discrete distributions. This definition emphasizes the topological aspect

of a cellular distribution and may include the case when the thickness of walls is not much less than the

diameters of voids.

The above percolation thresholds characterize the stage of the evolution identified with the present time.

However, the percolation thresholds chanle with time. At the initial time (% = 15 for the CDM and the

C+HDM, or %= 99 (or the n = -1 model) the percolation threshold was Pc,lin.... = 0.16-0.18, which is close

to the percolation threshold for Gau88ian fields and may be identified with the percolation level of density

fluctuations in the linear regime. Later the threshold decreases in all models indicating the formation of

elongated anisotropic structures. In the n = -1 model the threshold had a minimum Pe.n=-l =0.04 at the

redshirt %~ 2 and grew up to the level 0.073 by the preaent time. The CDM and the C+HDM simulations

also show a minimum in Pc(%) but at about %= 0.3 (Pc,CDM ~ 0.035 I'c,C+HDM ~ 0.022). The minimum is

quite shallow: in the CDM model the value similar to the threshold at % = 0 was also at z = 2.7.

The threshold density at the percolation Pc also varies with time. In the linear regime the density

threshold was slightly Ireater than twice the mean density (Pc=2.2-2.4). As the fluctuations enter the

nonlinear regime, the density Pe increases. Approximately at the same time, when Pc{z) had a minimum,

the density P. had a maximum which was different in different models: Pc,C+HDM ~ 6.0{p), Pe.CDM ~ 5.5{p),

Pc,n=-1 ~ 3.1{p). After Passinl the minimum, the density threshold decreases. At z = 0 it is practically

the same in the C+IIDM model Pe,C+HDM ~ 6.0(p), however, significantly lower in other models: Pc,CDM ~

3.3{p), P.,n=-1 ~ 0.25(p).

Percolation in the mass distribution in the C+HDM model simulated in a 100 Mpc box is illustrated

in Fig. 10. The simulation has the same spatial resolution as in the 50 Mpc box, but occupies a larger

volume. The percolation threshold for the simulation was p. =0.008-0.015, pc = (8 - 12){p). In this

simulation we studied percolation by splittinl the box into (our or eilht equal flattened parallelepipeds in
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addition to percolation in the full cube. Comparine two statiltic:e we estimate the percolation threshold

,. = 0.008 - 0.028 with a elieht indication that it i. syatematically hieber in tbiner parallelepipeds, wbith is

not unexpected.

Fil. 11 sbo.. the results of the percolation analy. of the dittribution of lal&Xies identified with the

maxima or density hilher than SO(p). The constant threshold results in different numbers of objects in

different simulations. The dift'erence between the larlelt sample in tbe n =-1 model and the smallest one

in the C+HOM model it about a factor of three. Comparinl the percolation thresholds obtained Crom the

,,2 and "00 atatitties, we estimate 'C u folio..: 'c,C+HOM = 0.08, '.,CDM =0.11, ,.,,,.-1 = 0.15 with

the uncertainly ..bout :1:0.02. Tbe thresholde were estimated by ftUinl tbe data with eq.(2). Althoulb the

dift'erenee between tbe COM and C+HOM models i. not larp, Fil. 11 demoDltratea tbat the percolation

analysis does distinluisb tbe model.. The same smoothinl filter wu applied to 3200 randomly distributed

particles, wbich was dOle to tbe number orlalaxles in the COM simulation•. On tbe one band, the percolation

threshold oftbe spane Poisson distribution (,. = 0.28-0.32) is not much dift'erent Crom the tbe known value

(P. = 0.31). But on tbe other hand, it is sicniftcantlYlreater than in our eosmolocical models. We conclude

that all three COIIllolocical models are very filamentary u well u tbat tbere is a silniHcant difference in tbe

percolation properties between tbem.

The dependence of the percolation thresholds on tbe number and tbe mall of lalaxies is shown in

Fil. 12. The density thresholde identifyinl Salaxies were 50, 100, 200 in the CDM model and 25, 50, 100

Dark haloe, whic:h were identifted with ealuies, are not diatributed identically to tbe dark matter. This

wu indicated by tbe analysis or tbe correlation functions and velocities (Klypin et al. 1992). Althoueh dark

haloe are more dfOnety cluatered, even on laree lea1es, it doee DOt neee8l8lity mean that tbe distribution of

lal&Xies (halOl) ia more filamentary than that or the dark matter. The deasity threshold Pc at percolation was

not very hilh: about 3 - 8 in the COM and C+ROM models, and even I.. than unity in tbe n = -1 model.

Thia may mean that there are relatively low density dark matter "'bridles", which link small numerous

clumps to the lar&fllt ones ~d_!,hi.c:h actually account for the fut powth of the percolatine cluster in

the m.. distribution. However, many of tbese "'bridps" do not have pluies. A. a result, in the ealaxy

distribution the percolation may happen at larlef ftlline fKton. There it a1IO another cauee for the difference

in percolation properties in the lalaxy and dark matter distributions. It ia the noiee due to the discreteness

of lalaxy distributions. A. we mentioned above, a distribution or point-like objects (Ialaxies) must be

somehow smoothed before clusters can be formed. No matter how tbe smoothine is done (say, by usinr;

IUten on laUices, as we do, or by surroundinr; each laluy with a sphere as in the orieinal percolation

prescription), it results in thicker strudures and sreater ftllinl factors at percolation. The effed is inevitable

- this is the price for the lost information on small sc:aJes.

Dekel, at West (198S) were concerned that the percolation tbreshold sc:ales with the mean number of

objects in a way which depends on the dimensions or tbe underlyinr; set. Altboulh their arcuments were

bued mainly on the analysis of overly simplistic toy models and tbey used different method for meuurinl

percolation thresholds, we atudied this effed in our models.

.:t!:; 4.1 G.lui"

in the C+HDM simulation. There is lOme indication that tbe curves may,hift to the smaller thresholds

u the number of objects po.., but tbe effect is obviously quite weak. Fil. 13i11ustratel percolation in

different models when tbe number of lalmes is kept almoet tbe same (N, =41S0-4250). We found followinl

thresholde: 'e,C+HOM =0.08, 'c.COM =0.10, and '.,".-1 = 0.18. Tbe difference between the CDM and

C+HDM models now looks a little more distinct wbic:h it in a rour;b apeement with the previous result. In

this lilure the number of lalaxies in the C+BOM model Is 2.3 times peater than that in Fil. 11. Tberefore,

lees smoothinl is needed to reacb tbe percolation level of tbe lillinl fKtor. We conclude that althoulh the

effect discussed by Dekel, at West (1985) strictly ,peakins exists, it does not seem to be very important in

realistic models.

The analysis of voids in tbe lalaxy distributions lave a result similar to that Cor the mus distribution.

Applyinr; our smoothinl filter (see §2) twenty times (tbus, eKb isolated salaxy was blown up to a sphere

of 20 cells in radius), the stal~_when the frKtion of the volume in voids was only 40%, there wu still

a percolatinr; void, encompassed mOlt of the empty cells. We conclude that the lalaxy distributions in

the models in question allO do not look like tbin walls separatinllarle voide. Thus, matbematical models,

assuminl that the lalaxy distribution loob like tbin walls separatinl void. (e.l. Voronoi tesselation), are not

very lood approximations for tbe COM or C+HOM coemolpcal models. Tbe COM andC+HDM models,

rather usume the existence or a system or thin filaments, connected in "knots" where dusters of galaxies or

groups are located. However, walls (pancakes) can allO be present.

5.·SUMMARY

We have developed a very fast numerical code allowinl the detection of percolation on three-dimensional

cubic lattices in parallelepiped repons, alonl with cluster analysis of both the density and point/galaxy dis­

tributions. The code is based on tbe allorithm published in Stauffer (1985). In the case of point distributions,

we suggested and tested a new very simple and efficient smoothinl technique allowinl the study of percolation

in point systems usinl our percolation code.

In order to evaluate tbe percolation thresholds, we calculated two parameters characterizing the per­

colation transition alonl witb the direct detection of percolation. One or them is 1'00' the size (= volume)

normalized to the size oC the laUice (eq. 3), and the other 1", the weilhted mean .ize of all dusters exclud­

inl the largest one (eq. 4). We found that botb can be used Cor the purpose of evaluatinl the percolation

thresholds, but for smalllaUices (less than roulhly 643) the Cormer is IOmewhat less noisy. A very significant

advantale of tbese two parameters over tbe direct detection of percolation or the diameter of the largest

cluster is that tbey are much I.. sensitive to the boundary effects.

As expected, we found that tbe percolation tbresbold in square parallelepipeds (N' )( M) increases

witb decreuinl M: for example, it approaches the t~dimensional tbreshold when M - 1 for the Poisson

distributions. However, in the Poisson distributions, wbich bave no sc:ale, for M = 8 the percolation threshold

is only about 10% creater tban in cubic repons independent of N (except Cor the level of noise) in the ranle

33 S N S 127. Tbe chanle in percolation properties throulh tbe transition from three-dimensional to two­

dimensional lattices is relular and can be easily taken into account if asymmetric relions need to be studied.

This effect is deftnitely present in the analysis of de Lapparent et al (1991), (at leut wben they studied the
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slices eepuately), resulting in the increue of the percolation threshold. On the other hand, using the ~eme

allowing connection with 26 neighbon (compared to 6 in the standard percolation analysis) they definitely

decreued the percolation threshold. Even the aip of the net result is difficult to ... without additional

analysis. ...... -i,i,

We studied percolation properties of three coemolopcal modele: CDM, C+RDM, and the power law

model with the slope n =-1 in the (} =1 univene aaing N-body simulations. Both the maaa and Ialaxy

distributions were studied. We found that for all mode.. the percolation thresholda evaluated by different

methods (direct percolation, the luseat clUiter, and the mean aize or all elusten except the IUlest one) give

consistent results.

The percolation thresholds of the mus distributioDl are significantly different in the three models. As

expected, the percolation threshold in the C+DDM is the smallest P. =0.023; in the CDM model Pc = 0.044;

and in the n = -1 model P. = 0.Q73. Our estimate of uncertainty of the thresholds is ±0.OO5. All thresholds

are _pileantly smaller than the Gaussian value Pc =0.16. Therefore we conclude that as concerns the

ma. distribution the percolation statistiCl measures the degree of ftlamentarity and is able to distinr;uish

between different models.

The percolation thresholds in the simulated Ialoy distributions are significantly greater than those

in the maaa distributions: Pc = 0.06 ± 0.02 for the C+HDM simulation, Pc = 0.10 ± 0.02 for the COM

simulations, and Pc = 0.15 ± 0.02 for the n=-l model. This is not surprisinl because the random component

is much higher due to a small number of r;alaxies in the samples: from about 800 to 5000 on the 2563

lattice. Dowever, the percolation threshold is much less than Pc = 0.28 corresponding to the sparse Poisson

distribution of a similar number of points. Therefore, we conclude that the simulated galaxy distributions

in the both models are very filamentary.

The study of percolation throur;h empty cells is a test on the cellular structure. Our results suggest that

neither maaa nor galaxy distributions in COM or C+HOM modelalook like large isolated voids separated

by fhin walls. Dowever, this does not exclude the existence of thin pancakes which do not make a cellular

structure or a system of isolated voids separated by fhick walls, of the kind briefly described above. In this

cue the denaity threshold is quite low.

Estimating the percolation threshold in the CfA slices de Lapparent et al. (1991) used a parameter

I,.re which equals Poo in our notation and IKe correspondinI p. However, we wish to warn against a direct

comparison of the results, because they used a nonstandard scheme when Jinkinl cells.

Our analysis of the percolation properties of a few currently popular cOlmological models has shown the

potential merits and disadvantages of the percolation method. It also showI additional features discriminating

the models. Dowever, to make a practical prediction of the percolation properties of different cosmological

models which can be compared with observations one needs to make additional important steps. More

realistic catalogs should be simulated in larler volumes includinl modelinl a real selection function and a

redshift space. We are goinl to do this in a separate paper.

We wish to acknowledle S. Babenlto for help in developinl the percolation code. We are grateful for the

research support from NSF grant AST-9021414 and NASA grant NAGW-2923 at the University of Kansas.

Our computer simulationa wen; done at the National Center for Supercomputing Applications.
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FIGURE CAPTIONS

Fil. 1- Pwitio... of randomly selected particlee (about 10" o( total) in a t.hin (2 Mpc ) slice in the

C+BDM simulat.ion (left) and in the COM simulation with the same initial phaseJI (riSht.).

Coordinatee are aed in Mpc (Ia = 0.5).

Fil. 2- DiAribution of cold particlee in t.he C+8DM model in 10 Mpc )( 10 Mpc )( 2 Mpc resion dOle

to t.he center o( FiS' 1. 'the number o( part.iclee iI 13680, which is a hal( of t.he total number in

t.he resion.

Fil. 3- The lame as in Fil. 2, but. for t.he CDM simulat.ion. The number of particlee is 13185.

Fil. 4- Percolation in the PoillOn diatribut.ion on the lattieee from 33' to 256' is shown. The error bars

correspond to 1" dispersion. The top panel shows t.he fract.ion of percolat.inl systems (or siven

ftllinl factor I' (direct..teet. (or percolation). The middle panel shows the fract.ion of cells in t.he

larlm cluster, POll' The bot.tom panel shows the dependence or t.he mean square of t.he volume of

clusters, II', excludinl t.he larpat. one. The vert.ical dot.ted line maru t.he percolat.ion t.hreehold

on Yer1larle lattieee.

Fil. 5- The relative level or fluet.uat.ions (or t.wo mimatee or t.he percolation t.hreshold POll (top panel)

and p'I (bottom panel) shown in FiS. 4. The vert.ical dot.ted line marks t.he percolat.ion threshold

on very larse laUieee. The t.ypes o( linee are u in Fil. 4.

Fil. 6- The dependence of the percolat.ion t.hresholds on t.he t.hicknelll o( the parallelepiped liven in mesh

unita; 1 corresponds to t.he t.wo-dimensionailaUice.

Fil. 7- Percolat.ion in the COM model, averaled over three realisations. The dashed curve in t.he top

panel is t.he ftt IIeo = O.22(p-Pc)O.I, the dashed curve in the bottom panel is p2 = 0.3(1'-Pc)-1.7.

In both cues Pc =0.043.

Fil. 8- The percolation properties of the C+8DM. COM, and n=-1 models are shown correspondinsly

from left to riSht.. The C+BOM and COM models have t.he same set. of random numbers. The

dashed curves in the top panel are t.he ftll 1100 = A(p - Pc'" wit.h p. = 0.0230.0.0448,0.073.

~ = 0.20.0.23,0.25 and fJ = 0.5.0.5,0.4 for the C+8DM, CDM and n=-I models respectivel,..

The dashed curves in the bottom panel are the ftll p2 = 0.3(p-pc)-1.1 with t.he same percolation

thresholds as above.

Fil. 9- The srowt.h of the volume of the larsest cluster in t.he Vicinity of t.he crit.ical point: t.he COM

model (the eoIid line with error ban), the C+8DM model (the dashed curve), and the Poisson

diltribution (the dot. dashed curve). The PoillOn curve ia eealed down by. factor of 6.7.

FiC. 10- Percolation in the maM diatribution in the C+8DM model simulated in a 100 Mpc box. Solid

lines .how t.he percolat.ion parameters for the full cnbe (512'). Dashed linee with error ban are

the parameters averaled over fOUl slieee of 128 eelll t.hick; and dot dashed Iinee are averased over

eiPt. .lic. of 64 ee11s t.hick.

Fil. 11- Percolation in Ialaxy distributions ia .hown: the C+BDM model (t.he IOlid line); t.hree COM

simulation. (the das~ed curve wit.h errorban); t.he n = -1 model (the dot duhed curve); and t.he

15

PcH.on distribut.~;;;;3200 poinll (t.he Ionl d..hed cone with errorban). The densit.y t.hreshold

SO(p) or t.he m.. limit 2.5 )( 1010 Me w.. used to identify Ialaxiee in every model.

FiS· 12- The volume o( t.he larsest cluster for t.he Ialaxy dist.ributiou specifted by different masses and

t.herefore havinl different. numben or Ialai•. Bot.h the CDM and t.he C+BOM simulat.ions

had t.he same initial ph8lell o( fluduatio.... For both models the solid curves correspond to

M > 2.5)( 1010 !1e .Jt:COM = 3318,Nc+HDN = 1824); t.he dashed curvee correspond to

M > 5 )( 1010 Me (NcoN = 1640. NC+HDN = 835), and the duhed-dotted curves correspond

to M > 1.25)( 1010 Me , (NC+HDN = 4617), and M> lOll Me (NCDM = 751).

Fil· 13- The volume o( t.he larlest cluster when the number of Ialaxies was about. t.he same. The solid

curve shows the C+HOM simulation; t.he dashed curve wit.h error bars is for the COM model

(averaled over three realisations); and t.he dot dashed curve ia for the n = -1 simulation. The

number of laiaxieai"'fOUlhly the same: N = 4150 - 4250.
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