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ABSTRACT
SU{2Y Yang—-Mille theory is formulated in terms of gauge—
covariant potsntials and suxiliary (scalar) fields that transform
like the elemsnitis of the gauge group. Using the gauwge—covariant
potentials, gauge transformation is given 2 gepmetrical
interpretation as pure rotation in internal  isospace. This
naturally lssads to ithe gauges-invariant Fformulation based on
geamstrical constructs. fn effective theory Ffor the gauge—
invariant guantitises is alsc derived.
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1.0 Introduction

Gauge theories are successful in describing the fundamental

(1> . .
forces of nature . Their success is due to the gauge symmetry

which render them renarmalizablémﬁ Unfortunately, it 1is also
this gauge symmetry,'the presence of Excesé degreeé of freedom
that pose a problem ih quantization. This problem is dealt 'with
in two ways. One is by fixing the gauge, the process of choosing
a representative field canfiguratinn of esach gauge orbit in
calculating physical gquantities. However, sjnce{l physical
guantities are gauge—invariant and aré calculated by choosing a
particular gauge, the gaugefinQariance of the results must be
verified. "This may be done by calculating the physical quantities
using different gauge and show that tﬁe results are the same.
Alternatively, the gauge—invariance of the resultv can also be
guaranteed by establishing the Ward-Takahashi identities.

Ancther way of dealing with the excess degrees of freedom is
by dealing directly with the effective theories of géuge—invariant
gquantities. Unfortunately, a successful derivation of the
effective dynamics of physical quantities from the fundémental
Lagrangian does not exist és of this time.

In this paper, we will present a different method of dealing
with the excess degrees of freedom of SU{(2) Yang—-Mills theory.
First, we will ﬁecompose the Yang—Mills pnténtial in terms of a
gauge—covariant vector field and auxiliary, scalar fields that

transform like the elements of the gauge group. Using the gauge-—
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covariant potential, gauge transformation is given a geometrical
interpretation as Qure rotations. This leads to a gauge—invariant
formulation based on geometrical constructs such as lengths and

angles.

2.0 The Isovector Potentials and The Auxiliary Fields

The SU(2) Yang—Mills Lagrangian is given by

£ = — ier [F' F“"‘} | : (1a)
73 . :

2
F =ohA — A - iEA « A ]. . {1b)
ue o v vy [y} v .
The Lagrangian is invariant under

A, — A = QA‘JQ"—i -:apmn“, : (2)

where Q_e SU(2).
let us now introduce the new fields E!‘u and K via the

following:

1

A =B - i(8 K)K (3
# Mo H
In (3), we are effectively replacing the twelve Az,s by twelve
: ' - - | !
Bi’s and the three elements of K given by ElA T - We therefore

expect a bigger symmetry group i+ the action is expressed in terms

of B“ and K. And ﬁﬁis is whét exactly h;pﬁens as we show below.
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The field strength tensor expressed in terms Qf By and K is

- given by’

. -1 -1
F, = 9,8, - 9,8, - 1[Bu, Bv]—[B“,(apK)K ]+[Bv, (8, K)K ]
' (4)
If we impose that K transforms like an element of the gauge group,

i.e.,
K = QK , ’ (5a)

then we find that

B, =aqB o, | (5b)
T ¥ _ .
and (4) transforms covariantly under (5:a,b,). On the other hand,

if we say that K is invariant,vthen va transforms covariantly if

we impose that

P -1 -1, . -1 . -1, —1
BP QBHQ 1(3“9)9 + 1[(8NK)K 1Q(BNK)K Q ] . (6)

NaiQely. it seems that we can get as many symmetries as we
want since we have two fields Bp and K to fit the transférmation
ot A“. ‘However, if -we carry out the Dirac consﬁraint
formalism,™ we find the following first-class constraints (see

also the algebra giVen by Eguation (17) in the paper)
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Mg =© - o o (7a)
P’ 48 :
S{BoKIK ] b . o, | | 7b)

P + [B,, =
Y 8(8oA™H

[D.ab(Br - [(a.k:m", T"“] ]n'? =0 | N )
A5 i [% .

"It can be easily shown that ‘(7b) generates the infinitesimal

transformation givénk by (S:za.b) while {7c)  generates the
infinitesimal vefsiun of (6). ’And sihce“there are nine first—
class tonstraints, the 1ndependent degrees of freedom is ‘fifteeﬁ
less nine giving six, the same number had we used the A s"

The pfablem wiih maintaining the symmgtry‘generated by (7c¢)
is that we do not have a purely covariant Bp'bwhich‘ ig given by
(5b). The purely covariant nature of Bp is imﬁcrtént. for it
naturally leads fo gauge—-invariant quantities which are geometric
in natﬁre. | o |

The question now is how to have a purely covariant BH'
Effectively, we want to break the extra'symmetry generated by (7c)

which is a consequence of the fact that we have too ‘many degrees

'o{.freedom, three more than the Aa,s. To~get the same number of

v

degrees of freedom, we can impose the cbndition that the B?’s

‘ satisfy
nB3F 4) = 0, ~ (8)
i) ' , o
where the ni(nf = 1) represent arbitrary directions in real space
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which we will eventually average out. Nute that ccnd1t10n5 (a>¢1re
invariant under (5Sb) but not under '(6);r wa, the degree5 of
freedom exactly tallg; there are six ihdependent;xcomponents  in'

a's-

a,s plus three A

B{ in K for a total of nine. HoWévéﬁQ'theré ére 
"three first—class cnnsfraints-given by.(?b)‘yiélding’j; total of
six independent deérées of freedcm which we»ééﬁvtékevﬁd-belﬁheﬁsix
gauge—invariant geometrical constrqcis;fb#séd  nn‘ thé; covafiant
nature 6f Bw‘ | A L

‘Before we proceed one word af :autinnAxs 1ﬁ’c?der;‘ Equatzon‘
'(Q) is not a gauge—fleng cnndltlon as the theury is. stxll gauQEﬁ
-~ invariant under (S;agb). Equatlon 8) should be lxnterprgted -as

part of the equation (3) that.defzned the new degrees df freedom

Bi and k¥ so that the number of fields are the same.

3.0‘ "Suher1ca1" Décompbsitidn‘o{ Fieids

The 5pher1ca1 decomposition of the fxelds is must apprnprlate
because Df‘ the gauge transfurmatlnns g1veni by (qa b). The
physical degrees7 D%l freedom 'are“ c@early»- vzslble'”fin_:vthisf
decompositioﬁ;' | | | | | - i

Since K trans%nrhs liPe an'elementfﬁﬁl:the ﬁégéeiigraﬁﬁ;F‘wev,'
will parametrxze both K and Q in thebsame manner‘ ih £e?ﬁ§ of the

Euler angles (a, 3 y) and (yw, 9, ¢) respectxvely,'i.e;,

ei/2(0+w) 1/2(a—y)

cosf3/2 ie sinﬁfz]

= -1 2 . —1 )
K { ie 1/,(q-y)51nﬁ/2 e 1/2(a+7)c05612 »(Qaf

(a1
LORRNY

o
[L NS .
HE ST
IQ,;
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1/2(pep) 2t .

e cose/2 - ie sing/2| SRR
Q = ie_?(Z(w_¢)sin6/2 9—1/2(w+¢)c056/ ,(9#),
Equation (5a) translates into the following:
. .~ 20 _. 203 . 28 2f3
B3 =2 sin {FDS*Z sin 5 + sin 5 cos 5
{ ' , 12 o o :
+ isine.sinﬁ co$(¢+a)} o I & (2

I

ot = sin*i{gréﬁr[sine siny cusﬁ‘+”sinﬁl!§inw‘cdsefcasi¢+éi"_'
+ énsw-sin(¢+a)]}, : S S (1Qb§
a’ = cos—i{gféﬁr[cbsé cosy sinfs + siu&[%osy cosﬁiéos(¢+d)

= siny sin(¢+a)]]}. S o ’”' 5':;»~'—, “ {10c)

Since . B transforms like an isocvector, we will parémetrize

its spatial components by

: —-ig
1 cose, sine_e ' o
~Bi.= -2-Ri. . 1¢i’ s (11) |
sin8. e - —-C0oso,
) T 1
a "spherical polaf".coordinate system in the'internai space. The

time components Bg will be canveniehtly left in,’térms of the
Cartesian components because they are not dynamicalnijgreeé of
freedom (conjugate momentum is zero). The .gauge '£ransfnrmatibn

{5b) changes the "5pheri;a1" components by_‘
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R =R, o . (122)

L 1
o = cos“{cosei? cose - sine, sina'sin(go.t—cp)}. o (12b)
S i (12¢)
Y. by ,

where ﬁ%=¢oéwsiné;6$9ifsinaiSipﬁcos(¢£—¢)+sineic03wcose ‘ éin(¢k—¢);
ktk%sinécoéeisiansiﬁ9i005wcos(p{ﬂp)+5ineisinw cos® sin(e,—#). Note
that £he'f1eﬁ§thsTan are _invariant which make them suitable
 candidates fdr~§hy5i¢al'degrees of freedom.

We'would‘like:to.note that the parametrization (11) 1is not
'_apbfopriate,f§r the AiIbecause 6f the inhomqgeneous term 'in the
‘gauge trénSformatiop th¢h5will result in a‘nonfinvariant length.

’ Tﬁe,fiei& étféngth'CGmponeﬁtsrCan be expressed En terms 1of

" the fields‘defihed above by using equation (6). For example:

F

‘2 (8 R)sin® cose + R cos8, cose (2 6.)
. iOl— .0 \- b ‘ L S T 1 T QL
S e N 1 1.3 o )
7¢Ri‘sléétﬁs?npy(?¢¢1) | 8130 . 2}3‘__‘!@!.L 51n6i sing,
+ 1R cose 4 B ina(dp) + g @a) + B cosf(2.7)
TR COSE T By sanata ) b B AN T 5 e

s R ' 2 .v‘ . w""- . .
»,f;Ba,SlOﬁ Cosq(agf), R cos6, slna(aoﬁ)
— R, Sine.uéinpf(a a) — R sin8, sine cosf (3 ¥)
Lo L i o 1 T i . o - ‘
" ?+ R%VCOSSifsinB'cosa(aoy): | » (13a)
F'. .= 3R sin® cosep. + R cos®, cose (8.6))
I s T i it

e ‘ . . .
- R =B ne.(@¢.) — =R R. cosB. sinf. sine.
3 s1n Jhsl Ps‘nfﬁ’ PAR A Lo i PJ




+ R cosB. sina(8.2) + R sinB. sine (éa)
L T i L T 1 )

+~RL sinei cosf3 sinpi(aﬁf) - R,L cose.L sinf3 cosa(a?f)

—~ (same terms but with i < j). (13b)

There are similar terms for the others but we will not write them

down as the derivation is rather straightforward. .

4.0 The Constraint Structure and the Symmetrieé
The Yang—Mills action in terms of B:, (Qxeiwﬁ) and (,3,7)
is still first«order., Following the Dirac constraint formalism,

we get the following primary constraints:

nS =0 (14a)
=P - Eﬂ My, = 0 - aa |
x, = Pﬁ + ?{sil'x(«ai+cx-)|r-|at +’cot9.t COS(¢Q+“)HP;} = 0, ..(14c) -
X, = PY -z {na. sins cos (e, +a)

+ né_[cosﬁ - cot8, sinfB sin(e, + a)]} = 0, - - (14d) <

1

The extended Hamiltonian is given by

"
NI
“™

- 66 - i) )

£ FJ (R, O, e: a, 8, r and derivatives)
J' .

B Ll




a .a ., a :
+ T [Bo G~ + U, no'+ Vaxa], (15)

where u® and v, are Lagrange multiplie¥s. The G% ® are the Gauss'

operators and they are given below:

3
1 . 1
G = 'z{a,L [31n69.l cose; Ty + [—R—] cose.L cose, ne.
=4 T 1 . 1
) sing.
- [ — ] - (1) S i
Rj sino. lp Me o 2lle, SINE;
~~ 1 T L 1 L
- [, 21y, - 31 cote. cose. - 1—] (31) (16a)
Ri. ﬂei L 2”901 i t Ri,' ﬂp_t vy’

1 i

G = % {:?.#t[sir‘se,t cose, "nR + [—;ﬁ,\—]s:i.mo‘L cosé, [y
i ‘ i i

1y ©9%% o 1
* [ﬁ?] sing, n‘ot] - ﬂni‘(lzfL + inet cose,

. : - [é—)ne (22), - % coté, sine, 11, - [%T] My (32)4}’ (16Db)
3 ’ 1 . ’
G = Lz {a,t [cos@i n“x - [—R—JS',lxus"L nei]
- (13) - [l-] (23). + % - [-1-—] (33}, (16¢)
nnt b R ‘npi ¢ 2 n¢t R npi. A

The (jk)t terms with j,.k = 1,2,3 are the jth row and kth column of

the matrix given below:

10




|
R SRS A SO

sin8. sing a +cos6 b —-sin8, cosp.a +cosB. ¢, -sinf. cosp a. —sin®. sing. c
L 1 T L LA X 1 ) . B T L L T U 1 T L

cos8. sing a —-sin® b —-Ccos8, cose. a —sinf. c.  —cosB. cose. b —cosB.sinp. C.
. L . T\ 1 v-LL 1Tt 1 L. N 1 T L
cosp, sinp; ss:irup.L cosp,
—_—a, —_—— A, —— D - .
sinB, i sing. i sS1ind. i s1n6. i
% 1 ) i i
where a = asx + cosﬂ(agf); .b.L = sina(ag?) - sinfs cosa(agf) and c,

= cosa(BJ?) + sinB sina(37).
The letter G is used to repreéent the . constraints given by
(18) because they appear like Gauss' operators. However, they are

not the generators of the gauge transformations given by

(5:a.b) but the Xy's 85 generate the symmetry

; ./ However, the G

given by equation (6). |
Carrying out the Diraé coﬁsistency iteration for the

constraint nz = 0 yieldé G% = 0. The constraints given by (l4a,

b, ¢, d) and by Ga = 0 satisfy the feollowing algebra:

(%), G 0] = 62 GF), : - (17a)
, % 0), .01 = 6 GF, 3 (170)
x, 3.t), &)1 =0, (17¢)
{xz(i,t), (%, t)] = -sina G363(§r§;),} ' (17d)
(x,(%,t), (X' ,t)] = —cosa G?éaciéi') - - (17e)
(x, (%, t), G7(%,£)] = (sina G* + cosa G*)&7 (X-X'), (17%)
x, (%, £), 6% .t)] = (sinp cosa G'-cosp G67)&°(X-%X),  (179)
Ix, (% t), G(X.t)] = (-sinf sina G4coss G)&° (3% (17h)
11




[xs(g,t), 62¢', )1 = (—sin@ cosa G+sing sina 6282 G-

{(171)
63,6, 62,1 = £3P° g€ &2ty (173)
with all the others giving zero. Furthermore, all the constraints

have vanishing'brackets with the Hamiltonian density

2

1 2 1Y 2 1 2 1 a
% =% {h + [——] + L;——————J } + = P F7 .. (18)
23Uk 7 G2t " el T8 5 T

sl

‘The derivation qf thé above results are rather lengthy but
straightfurward. Operator ordering was not taken into accnunt as
we are dealing‘with classical Poissan brackets. However, 1t is
easy to see that the algebra is also valid as a quantum relation

Ea

if the symmetrization rule q"'p" — %Cq"pm

+ SmS"] is used.

The algebra shows that the constraints % ¥YO and 6°=0 would
have been all ?irst—class if the Bv; are not restricted (and this
is due to_the excess degrees of freedom). However, we imposed  a

condition on the Bi which ' is consistent with its isovector

character and is given by equation (8). In spherical coordinates,

these conditions read:

P, = %‘_‘, n,‘Ri 4:«:;-59‘L = 0, N | (19a)
p2.= z nJﬁ ‘;—une,t sinp, = O, (19b?
Py = x ng.Ri 51n6,t :cvspi = 0. {19c}
12
)




It is easy to verify fhat [xa, pb]tv £ and that [Ga, pb] # 0, thus
the only surviving first class constraints are the Xy g
' We now show that the Xy g generate the gaugé transformations

(5;a,b). The infinitesimal limit of (10;a,b,c) and (12;a,b,c)

are:
Sat =.éw + &¢p — sinot cotfz &8, (20a)
53 = cosa &8, | | (20b)
N v = grg Sina 56, - | (20¢)
&R =0, | - (20d)
‘ 56, = sinp_ 66, | | (20e)
éPt = —(S¢ + Sy) + c:o.te.L c'os«:.L &6 . o | (201)

The conserved change is given by

Q = Jdax{%i(éw + S¢) + [cosa‘x2 + Z;gg X, ~ sina cotf? 21169}'

(21)

expressed only in terms of the x thus proving that they

ats;

generate the gauge transformation.

5.0 Effective Dynamics of. the Gauge—Invariants
We have already identified three gauge—invariant gquantities,
the "lengths"” &}i,t) of the isovector. The other three are the

"angles'" between the isovectors Q}%,t) defined by

13




. 2 tr(BB) . |
coseu(x,t) = ———Tgii—_~ = coso, cosaj+s1r16,L slnaj cos(pfwﬁ)

(22)

Note that these invariant quantities are geometric objects in the
internal isospace at each space—time point. In this section, we
will derive the effective action that gerrns the dynamicsl of
these quantities.

For simplicity, consider the Az = 0 gauge of Yang—Milfs whiéh
is still invariant under time-—-independent gauge 'transformations;
The effective dynamics for the gauge—invariants wi11 be derived

from:

i3 } is (R., 8. ) :
J-(dAf‘)e M =NI(dR.L)(d9,u_)e eff . LT i (23)

| To arrive at the right hand side Qf (23), we need to do the

following steps:

(a) Express the measure (dA?) in terms of B? and K

(dA%) = J,(dBY) (dA®) &(n-B) (24)

The Jacobian of this transformation is

14
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ab " ab 1, abc

& | 0 6570 + ZF70C 9 AT+ 4L

g =pet |0 &% 5% + 2£%°F 5 A0 AP+ .. |87 @R,
_ 1sab _ Sab 6aba + L{abc 3 AS+0 A +. ..
n,- n, a 2 3 , J

and Det refers to the functional determinant.

(b) We wfll gaugeffix by imposing K = || (or A = 0y to simplify
- the ?ield st;engths and Jl. Note that this gauge conditiun is
always realizable an& unique. The Fadeev—-Popov determinant for

this gauge—fixing is

the reciprocal of the divergent gauge volume term.

(c) We will exponentiate the restricting conditions on the B?,

i.8.,
S(n-B%) = gxp{— ;E J&‘x tr (M) }
= exp.{ ,Jﬁ, fd y{): + nnRR Cos86, ]}
X 1)
The value F = 0 is the "unitary"” limit.

{(d) The measure (dB?) will be written in terms of the spherical

coordinates (Ri, ei, pi)

-

00
O
N
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b
|
)
]
i
!
b
‘ e e

(4B]) = (1 Det (R’ sing,)) (dR ) (d&,) (de,).
2

(e) Next, we express the action (with K = Il) in terms of the
gauge—invariants. To illustrate how this will be done, consider

the kinetic term:

| z _ 1 2,02 2 2 . 2 2
tr(aoBi) = = F'[(aoRi) +Ri(6°9i) + Rt(SIHBt) (aopt) ].

N

To get the gauge—invariant components, take B, along the z-axis.

This means 8 =8 , 8 =8 and from cos@ = Cc0s8 cose +
i 1 - 13 2 23 12 i 1 2

sine1 sinez cos(pi—pz), then PP, TP is gauge—invariant. The

kinetic term then becomes

2 2 2 2 /2 ‘ 2 '2_
[(aoR1) + (aoRz) + (6OR3) fR:l'(aoeia) + Rz(aoem)

N+

2 . 2 .2 -2 . 2 2
+ R1 sin 81a(aop1" + R251n 823(8°pé) }

We then decompose ¢;'= %p +'pT; p2»= PT_ - %p where p* vis  non_
invariant. The non—invgriant“ angles afe then Py and  the
orienﬁation of the B3 vector in the internal isospace given by‘ ea
and'pg. Using the relation for coseiz, we will get an expression
for (6°¢) and use this to extract the gauge*invariant (the (aopT)
independent terms) components of the kinetic term.

But the result we will get from abovevwill not Dbe symmetric:

with respect to the i = 1.,2,3 indices. To make the result

16




symmetric, we do the same calculations with B along =z and also

with B, along z and average the three results to give:

; - _ 1 2 1 2 2
(Klnetlc'term)‘ =3 g (aORL) f € ZE%(BQQU)”

invartant Bl
LE)

. o2 2 2
> R'[bln €k (9P i ik

.2 . 2
+ sin‘e@, (& N
(i,ji,%)" Yo i °P)‘h“”]

'er—‘
KN

where
(auphuLm = {511167.Lj Sl”%k 51n6ﬁ(8H9u}

+ ai
ik ss1n£€¢u{(cosaLj cosejk

. . » . 2 . 2 .
- coseuc) (a“ajk)}/{[slnsij .s1n6jk] X 1[’2*_51“,613‘ + sin B_Lk

172
. 2
+.8in 6., + 2 cosB.. cosf.. cosb, :
ik ij ik ik

+ _'-->’1r1(9jk(cos@v.Lj coseu:T cosGﬂ)aﬂe.

The prime in the third summation denotes that .(i,J,k) is a cyclic

permutation of (1,2,3).

The potential part, % - (F?j

La,1,3

2 .
)", involves a lot more  work.

Fortunately, there are some terms that are obviously invariant and
they lessen the calculation a little bit. The other terms would
have to be worked out in the same manner as the kinetic term' and

after a lengthy calculation vields:

17




N

. 2 1. 2 2 . 2 1 2 2

, = 3 R)I+IR° R e, |+z

(Potential), = LEj[( ;RJ) R R_, sin .”.]+6 L:tjz,;t;ekR" (28,.)
s o2l o 2 2 .2 2

. };-: kl)Q.L [51n i (%) (e T ?”’ sij(afqo)(k,i.,j;]

o . . K ’ (1 (2>
+ (i Jz,k)Ri.Rj D('L,j,k) +(L ?k[R\ai.RjE(i.,j,k) + RjajRiE(i.,j.k)]

N =
S

,
2 (¢ B) 2 (2) .
+ v IR R. G . + R R G2 .
(i.].k 1 1 WLk 3 v KLk
".J' .

The coefficients D, E‘and’G areffunctions of the GU%" We will
not write down their explicit forms because of their length and
their derivation is rather straighﬁforwérd anyway.

(f) Penultimately, we’express the measu;e (dB?) in terms of the
gauge—inyariants. Following the same procedure for the kinétic

and potential terms, we find

(aBY) =1 (Det RY) [y Det"a[ >0 ]
- P YLk (Sime) (i ik

% (d&)(deu)[d(non—inv.)],

where

: o
x €O5€,

cos6. . — coso,

- 1) 1
(i) sin@. . sing.

L] Lk

"(cosp)

The non—invariant measure corresponds to the angles of the vector

we put on the z—axis and the azimuthal angle o defined from the

i8




other two. They correspond to the freedom of orienting the z-axis
and rotating the other two vectors by the same azimuth about the
z—axis.

(g) Finally, we average over the directions n, to restore the

real space symmetry. This procedure, will primarily affect the

rknngj coseij term from the &(ReB).
Taking everything into account, the effective Lagrangian for

the gauge-invariant, is
_ 4 - . " | 1l Q2 .
Se" = Iﬁ x{Klnetlc + Potential o F R.L + 2 ? in R,L
: s:i.rxeij
¥ olemer )
(L5 LI

’ N2 ) .
o1+ 2[Z2] © | d*xd*x’ [RRcose..| [RRcose .| +...
2 28 o i) ij L L) e
LR X b4

1

-+

This is the final result of this paper.

6.0 Summary

We Thave réformulated Yang—-Mills theory in terms of

gauge—covariant potentials and auxiliary scalar fields. From the
gauge—covariant potentials, we identified the gauge*inv§riént
variables from geometrical constructs. ~We also derived the
effective action for these invariants. Physical consequences from

this effective action is presently under investigation.
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