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A B S T RAe T

SU(2) Yang-Mills theory is formulated in terms of gauge-

covari~nt potentials and auxiliary (scalar) fields that transform

like the elements of the gauge group. Using the gauge-covariant

pot2ntia15~ gauge tra.nsfor-m2.ti on is given a

~nterpretation as pure rotation in internal i sospace. This

naturally lead5 to the gauge-invariant formulation based on

geometrical constructs. An effective theory for the gauge-

invariant quantities is also derived.
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1.0 Introduction

Gauge theories are successful in describing the fundamental

forces of natureu
>. TheiF success is due to the gauge symmetry

which render them renormal izable(2). Unfortunately, it is also

this gauge symmetry~ the presence of excess degrees of freedom

that pose a problem in quantization. This problem is dealt with

in two ways. One is by fixing the gauge, the process of choosing

a representative field configuration of each gauge orbit in

calculating physical "quantities. However, since physical

quantities are gauge-invariant and are calculated by choosing a

particular gauge, the gauge~invariance of the results must be

verified. This may be done by calculating the physical quantities

using different gauge and show that the results are the same.

Alternatively~ the gauge-invariance of the result can also be

guaranteed by establishing the Ward-Takahashi ~dentities.

Another way of dealing with the excess degrees of freedom is

by dealing directly with the e~fective tbeories of g~uge-invariant

quantities. Unfortunately, a successful derivation of the

effective dynamics of physical quantities from the fundamental

Lagrangian does not exist as of this time.

In this paper, we will present a different method of dealing

with the excess degrees of freedom of SU(2) Yang-Mills theory.

First, we will decompose the Yang-Mills potential in terms of a

gauge-covariant vector field and auxiliary, scalar fields that

transform like the elements of the gauge group. Using the gauge-
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covariant potential, gauge transformation is given a geometrical

interpretation as pure rotations. This leads to a gauge-invariant

formulation based on geometrical constructs such as lengths and

angles.

2.0 The Isovector Potentials and Th~ Auxiliary Fields

The SUeZ) Yang-Mills Lagrangian is g~ven by

:e = Cia)

F = a A
J..IV J..I v

a A - i rA • A ].
VI-J ~ I-J- v

(lb)

The Lagrangian is invariant under

where n e SU (2).

(2)

Let us now introduce the new fields Band K via the
p

following:

A = B
I-J J..I

-1.
i (0 K) K

J..I
(3)

Aa . by twelve
J..1" s

We therefore

','
#.

In (3), we are effectively replacing the twelve

iAaTd

aa and the three elements of K given by ep"s

expect a bigger symmetry group if the action is expressed in terms

of Band K. And this is what exactly happens as we show below.
I-J
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The field strength tensor expressed in terms of Band K is
J.J

given by

F
J.JV

a B
J.J v uV BJ1 - i [BJ1' Bv ] - [BJ1' (UvK)K~] + [Bv • (UJ1K)K~] .

(4)

If we impose that K transforms like an element of the gauge group,

i. e. ,

K' = OK , (5a)

then we find that

B'
J-1

OB o-~
J-1

(5b)

and (4) transforms covariantly under (5;a,b,). On the other hand,

if we saj that K"is invariant, thenF transforms covariantly if
f..Jv

we impose that

B'
f..J

(6)

Naively, it seems that we can get as many symmetries as we

want since we h~ve two fields B· and K to fit the transformation
J-1

constraint

constraints (see

Diracout the

first-class

carryweifHowever,of A.
f..J

formal ism, (3) we find the following

also the algebra given by Equation (17) in the paper)
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(7a)

<7b)

<7c)

It can be easily shown that (7b) generates the infinitesimal

transformation given by <5;a,b} while (7c) . generates the

in~initesimal version of (6). And since there are nine first-

class constraints, the independent degrees.of freedom is fifteen

less nine giving si>:, the same number. had we used the AB

,..,"5·
The problem with maintaining the symmetry generated by (7c)

is that we do not ha~e a purely covariant B . which is given by
J..l

(Sbl. The purely covariant nature of B is important for,.., it

naturally leads to gauge-invariant quantities which are geometric

in natur.e.

The question now is how to have a purely covariant B.,..,

Effectively, we want to break the extrC\ symmetry generated by <7c)

which is a consequence of the fact that we have tad many degrees

aof .freedom, three .more than the A,..,"s. T~ get the same number of

degrees o~ ~reedom, we can impose

satisfy·

the cbnditio.n that the a
Bi."S

a -+
n.B. (X,t> = 0,

\. \. ,.

2where the n.(n. = 1) represent arbitrary directions in real
\. \.

5

(8)

space

itt



wh~ch we will eventually average out. Note that conditions' (S)dlre'

invariant under (Sb) but not under (6). Now, t.he degrees of .'

freedom exactly tally, there are six independent components in..
a a~s

B., plus three A in K for a total of nfne..: floweve~:, there are\. s

'three first-class constraints given by.<7b) yielding a total of
/

six independent degr'ees of freedom which we can take to be ,the six

gauge-rnvariant geometrical constructs based on the, covariant

natur:e of B:.
, 't.

. Before we proceed, one word of caution 15 io order. Equation

(8) is not, a gauge-fixing condition as thetheolTY is still gauge­

invariant under (5;a,b). Equation(S> should' ,be interpreted as

part of the equation (3) that defined the new degrees, of freedom

B. and K so that the number of fields are the same.
\.

3.0 "SphericalJl.Decompositionof·Fields

The spherical decomposition of the fields is most appropriate

because of the gauge transformations given by' (5a,'b). The

physical degrees' of freedom are' clear"! y, 'visible

dec:omposi ti on.'

in this

Sinc'e K transforms like an element 'of the, gaug'e ,group, we

will parametrize both K and n in the same manner, 'in terms of the

Euler angles (a, 13, y) and (lp, e, tj» 'respecti vely, 'i. e.,

i e i /2 (otl') si n f1/z]
,...i 12 (ot+y) .~/'"e COSf.l .4.
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i 12 hp+q»

[

e cos8/2

n = ie-i/2(~-¢)sin912

i 12(VJ~4» .... .

ie' Sin812]
e-i /2 (>P+4') c0s8/2 (9b)

Equation (5a) translates into the following:

(lOb)

(l'Oc)

. (lOa)

(3' =

+

a' =

+

a' =

.., . "':'f.{ ,ze . 2/1 . 28 z(1
"Sln COS 2" Sln 2 + Sln 2" cos 2

1 }f./z
'2sin9sinf3 cos <4>'+a)

sin-..{5i~~. [S'1 ne si n'fJ cos~'+ S1n~ (5i n'fJC05eCO$ (¢+",l

O::OS'fJ 'si n (¢+",l ]}.
.'

cos-"{5i~~' [cose cosy sin~ + sine(c.osy cos~ cos(¢+",)

siny sin (¢+",l )J}.

Since,B transforms like an isovector, we will parametrize
/..l

its spatial components by

cose,
t..

i</>,
sine. 'e t..

...

-ie/>,
sine, e \.]

-CO~. "

"

(11)

~ "spherical polar" coordinate system in the' internal space. The

time components Ba will be conveniently left in. terms of the
, 0

Cartesian components because they are not' dynamical degrees of

freedom ~conjugate mo~entum is zero). The gauge transformation

(5b) changes the "spheri~al" components by,
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€J',
i.

R ~'
.1.

COS-1{ cosBi.

'[m.] '"-J. ' \.

'P~ = tan ,n;,'

where m. =cosVJsin8cosB. -sin~.sin¥'cos ('P. -</» +sin8. cosVJcose
\. .' l. l.. \. 1.

(12a)

(12b)

(12c)

sin ('P. --4.» ;
1.

n. =sin8cose.sinYJ+sin8. cos¥'cos ('P. -4» +sine. sinYJ cose sin ('P.-¢) •
1. l..' . l. \. 1. \.

Note

that' the lIlengths'" R. are invariant which make them suitable
1.'

candidates forphysfcaldegrees of freedom.

We would like to note that the parametrization (11) is not

appropriate for the A. because of the inhomogeneous term . in the
l. .

'gauge tranSfOl'11lation which wi 11 resul t. in a non-invariant length.

The. field strength components ,c'an be expressed in terms of

the fields defined above bY using equation (6). For example:

F1
. - (8 R;) sine. cOS'P. + R cose. cos'P. (8 e. )

ot. 0 \. ' \. \. \. 1. 1. Q l.

~ R sine.:s~in'P. ."(0' 'P.) - O. B
1

l. l.,"'" 1.' 0 l. 1. 0

12 > i:l 2 2
+-2'B R. cose.,.' + B -sina(o,.f~) + B (a.a) +B coS/3(iJ.y)o \. ' '.1.' - 0 ' . l. 0 1. 0 \.

B2
S in{1 c'os~(a. r) - R. cose. s i na (0 (3)

o • " l. . \. \. 0

R. s.ine. sin". (0 a) - R. sine. si.n'P. cos(1 (0 r)
l. ' l. . l. O' \.. 1. ' \. ' 0

+ R cose .si~ COSol (a r) ;
'I. 1 .', ,0

if..- o.R.sine; COSf'. + R. cose. cos'P.(o.e.)
l.J l. J J. J . J .J J \..- J

<i-3a)

:- R. sine. sin'P. (0. 'P.)
J J J 1.' J

1
-2R. R. cose. sine. sin".

1. J \. J .1
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+ R cose, sino(o.rn + R. sine. sinq), (0.0)
I. I. I. I. I. I. J

+R sine, cos(3 sin<p. (o,y) R cose, sinf1 coso(o~y)
\. I. I. J I. I. J

(same terms but with \. ~ j) . (13b)

-.:

There are similar'terms for the others but we wili not write them

down as the derivation is rather straightforward.

4.0 The Constraint Structure and the Symmetries

The Yang-Mi lIs action in terms of Ba , (R ,e. ,<P.) and . (o,f1,Y)
o I. I. \.

is still first-order., Following the Dirac constraint formalism,

we get the followingprirnary constraints:

a 0 (14a)no /

3

Xs. P E n<p,
= 0, (14b)01

\. =1 \.

X2 P(1 + E { sin (<pi. +01) Jle\. + cote, cos (<p. +o)n } 0, (14c)
\. '\. <p,i. \.

X
EI

P - E {ne\. sin{5 cos (<p, +a)y \.
\.

+ n [cos(3 cote, sin{5 sin (<p, + 0) J} O. (14d)<p, I. ,\.
\.

The extended Hamiltonian is given by

SJe 1
E {n~ (R;)

2

(R~ s~n2e] n;i.}2
+ ne. +

E
\. \.

\. \. \.

+ 1:.
2

E
a e, , (3, and derivatives)F .. (R. , <p, ; 0, Y4 Lj,a I. J \. \. \.
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where ua and v . are Lagrange multipliers.
a

operators and they are given below:

(15)

a'sThe G . are·the Gauss'

G
1

= ~ {a. [s i n8. cosp. n + (~) cose. cOStp. ne
1. =:1 1. t 1. R i i L 1. i.

(~. ) 1le. (21) i. - ~np. cotei cospi - [~. )ntp. (31) i}' ·
1. 1. ,,1. 1." 1.

(1) COS(~'i. ] 1
+ R . e R- nR (12)i + 2Jle cosp.

\. s 1 n i lPi \. i 1.

(16a)

[~.J1le. (22) i.
1 cote. sin". n - (~.) H

pi
(32J i}. (16b)- - 2 1. 1. tp.

\; 1. t. 1.

9
E {iii [cose, [~) sine, ne]G =.' nR .
i- t. 1. 1..

(16c)

The (jk). terms wi th j, k
1..

the matrix given below:

1,2,3 are the jth row and kth column of
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sine. sin'P. a; +cose. b. -sine. COS'P. a. +cose. c. -sine. cosp. a. -sine. sinp. c.]1. \. 1. 1. t. 1- l. 1. \. t. 1. t. 1. 1. 1. 1.

cose. sin'P. a. -sine. b. -case. cos'p. a. -s i ne. c. -case. COSlp. b. -case. s i nlp. c.
1. 1. 1. 1. 1. 1. 1. 1. \. 1. 1. \. 1. 1. 1. 1.

COSlp. sin'P. sin<p. COSlp.
1. \. 1- b.- - . \. c.

sine. a. sine. a. sine.1. 1. 1. 61ne. \.
\. 1. 1. 1.

...

where a. = a.o + COSr) (0. r); b.
1.. l. 1. 1.

s i nOt (a. (5) - s i n(5 COSOt (0.1" ) and
l. 1.

C.
1.

COSot(o./3') + sin/3' sinO(o.y).
1. l.

... The letterG is used to represent the. constraints given by

(18) because they appear like Gauss' operators. However, they are

not the genera.tors of the gaug:e transformations given by

(5;a,b) but the x I ." However, the. . a s

given by equation (6).

a's
G generate the symmetry

Carrying out the Dirac consistency iteration 'for the

constraint na
= 0 yields Ga = O. The constraints given by (14a,

. 0

b, c, d) and by ~a = 0 satisfy the following algebra:

::I'" .
G (x,t)] = 0 •.

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

(17g)

(17h)

. a 2 3 ......
(sln/5 COSOt G -COS~ G )6 (x-x'),

(-s i nr) S i nOl G
a +cos(5 G1

)6
3
(~-~")

G
t
(~'. t) ]

G2
(~, , t) ]

::I ..... 1 2 a ......
G (x,t)·] = (slno G + COSot G )6 (x-x'),

Gt
(~, t)] = _G2

6
3
(~-~, ) ,

G2
(~, , t)] = G1 6 3

(~-~, ),

...
[xt(x,t),

...
[xt(x,t),

...
[Xt (x, t) ,

...
[X

2
(x, t) ,

-+[X
2

(x, t) ,

...
[X

2
(x, t) ,

. -+
[Xa(x,t) ,

...
,£Xa (x, t) ,
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[ ( -+ t) 6 3 ("'X' , t) ]X
3

x, ,

(17i)

(17j)

wi th all the others gi ving zero. Fur.~hermore, all the constraints

have vanishing brackets with the Hamiltonian density

~2
1.

1 ) z} +
sine~ l\p1.

<t.

(18)

The derivation of the above results are rather lengthy but

straightfo~ward. Operator ordering was not taken into account as

we are dealing with classical Poisson brackets. However, it is

easy to see that the algebra is also valid as a .quantum relation

... < • n m 1 An ·...m AmAnif the symmetrization rule q p --+2[q P + P q ] is used.

The algebra shows that the constraints x = 0 and Ga=O would
a

have been all first-class if the B. are not restricted (and this
1.'9

is due to the excess degrees of freedom). However, we imposed a

condition on the B. which is consistent with its
1.

isovector

character and is given by equation (8)~

these conditions read:

P~ = E n,R. cose. = 0,
1. 1. t.

1.

Pz = E n.R. sinB. sinp. = 0,
1. \. 1. \.

/

P a = E n.R. sinB. COSf\ = o.
~ l. l.

~

12
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In spherical coordinates,

( 19a)

(19b)

(19c)



..

It is easy to verify that (Xa , Pb] ~ P and that (Ga , Pb] ~ O. thus

the, onl y surviving first class constraints .are the X a 's'

We now show that the Xa,s generate the gauge transformations

{5;a,b). The infinitesimal limit of (10;a,b,c) and (12;a.b,c)

are:

00( = OV; + 6¢ - sinO( cot/3 oS. (20a)

0/3 eosO( oe, (2Gb)

or 1 sinO( oS. (20e)= sin(3

oR. 0, (20d)
1.

~

oS. sin",. oS. (20e)
\. \.

op, == --(64) + o¥J) + cO.ts. cos",. oe. (20f)
.1. 1. 1.

The conserved change is given by

(21)

expressed only in terms of the thus proving that they

generate the gauge transformation.

5.0 Effective Dynamics of. the Gauge-Invariants

We have already identified three gauge-invariant quantities .

~the "lengths" R. (x.t) of the isovector.
1.

.
The other three are t.he

~"angles" between the isovectors B. (x,t) defined by
1.

13



....
cose.. (x,t)

l.J

2 tr (B. B.)
l. J

R. R.
l.J

cose. cose .+sine.· sine. cos(P.-fP.)
l. J l.' J l. J

(22)

Note that these invariant quantities are geometrid objects in the

internal isospace at each space-time point. In this section, we

will derive the effectiv~ action that governs the dynamics of

these quantities.

For simplicity, consider the A
a = 0 gauge of Yang-Mills which
o

is still invariant under time-independent gauge . transformations.

The effective dynamics for the gauge-invariants will be derived

from:

is
J(dA~)e VM J

is ff ( R. , e. .)
N (dR.) (de.. ) e e . l. l. J

l. l.J
(23)

To arrive at the right hand side of (23), we need to do the

following steps:

(a) Express the measure (dA~) in terms of B~ and K
l. l.

(dA~)
l.

(24)

The Jacobian of this transformation is
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6
ab

0 6
ab

IJ + !fabc C 2a A +0 (A ) + •••
1 2 1

J Det 0 ·6ab
6

aba + !fabc C 2 6 3 ( ... +')= a A +0 (A ) + ••• x-x ,
1. 2 2 2

n n
6

aba + !'fabc~ab 2.oab IJ AC+O (A2
) + •••

n n 11 2 3
3· 11

and Det refers to the functional determinant.

(b) We will gauge~fix by imposing K = II (or Aa = 0) to simplify

the field strengths and J. Note that this gauge condition is
1.

always realizable and unique. The Fadeev-Popov determinant for

this ga~g~-fixing is

= 1----,J. <dOl

the reciprocal ·of the divergent gauge volume term.

(c) We will exponentiate the restricting conditions on the a
B. ,

\.

i. e. ,

A ~a
ex p{- ~ Jd4Xtr <~.~)2}.6(no ) =

= exp.{-·~ Jd4X{~ R~ + E n.n.R.R. coseq ]}.
\.

\.~j
1. J \. J

The value e = 0 is the "unitary" limit.

(d) The measure (dB~) will be written in terms of the spherical
\.

coordinates (R., e., P.)
\. \. \.

:1:-5



(dB~)
\.

(n 'De t (R~ s i n8. ) ) (dR. ) (de. ) (diP. )
1. \. \. 1. \.

( e ) Next, we expressthe act ion (wi t h K = 11) in terms 0 f the.

gauge-invariants. To illustrate how this will be done, consider

the kinetic term:

tr (0 B. )2
o 1.

To get the gauge-invariant components, take B along the z-axis.
3

This means e = e
1. 1.3 '

e
2

e
23

and from cose == cose
1.2 1.

cose
2

+

sine sin8 cos(~ ~ ), then Pt-P 2 = ~ is gauge-invariant. The
1. 2 t 2

kinetic term then becomes

We then decompose 1 + f:> •
1 where isf:>1- -f:> P2

= f:> -'P ~T non-
2 T' T. 2

invariant. The non-invariant angles are then 'P
T

and the

orientation of the B vector in the internal isospace given by e
3 3

'-..

and 'Pa . Using the relation ~or cose , we will get an
12

expression

for (0 p) and use this to extract the gauge.;..invariant (the
o

independent terms) components of the kin~tic term.

But the resul t we wi 11 get' from above wi 11 not be symmetric

with respect to the i 1,2,3 indices.

16
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symmetric, we do the same calculations with B along z and also
j.

with B along z and average th~ three results to give:
2

(Kinetic term), .
l.nva.rt.a.nt

1 ' 2 1
= - E (0 R.) +-2, 0 l. 6

\.

1 E' R2 [-.. 2 e (0 ) 2 ' . 2 e '0 ) 2 ]+ 24 ' s 1 11 . k tp, '1.' + S 1 n ,,( q:> t.·· •

( . . k) l. 1. 0 ( l.. ,11(, ) 1. J 0 (x. \.. J>
, l. , J , "

where

+ sine'
k

(cose., cose, k - cose 'k ) 0 e. k + sine. k (cose" cose
J
'kJ l.J 1.' J' J..ll. 1. l.J

- cose'k) (o,}'1 jk )}/{ (Si neijSinejk) x [-2+S in
2
e,j + sin

2
e ik

+. Sin2ejk + 2 COs£lij cose'k cosejk]1/2}.

The prime in the third summation denotes that .(i,j,k) is a cyclic

permutation of (1,2,3).

The potential part, 41 E (F~.)2, involves a lot more
- • 1. J

.a,l.J
work.

Fortunately. there are some terms that are obviously invariant and

they lessen the calculation a Ijttle bit. The other terms would

have to ·be wor}<ed out in the same manner as the kinetic term and

after a lengthy calculation yields:

17



(Potent.ial). =.,~ E [(O.R.)2+4!.R~R~ 5in
2
e. ']+-6:l:, . E R~(o.e.)2

\.nv.· 1. ~ j 1. J 1..J 1.J i. ~ j ; i.~k' \. J \.k

+ 2
1

4 E' R~[sin2e'k(o..<O)'2. 'k + sin
2e.. (o..<O)2

k
· .. ]

( . . k) \. 1. ,f..' (1.,J,) l.J ·t' (,L,.I"
\. , J , .

[
( 1.> (z> ]+ !:' R R. D. 'k + E' R. 0. R.E (. 'k + R.o ,R. E ..

(1. , j , k) \. J (1. ,J,) (1. , j , k \. \. J 1. ,J, ) J J 1. .( 1. ••1.k>

E' '[HZ. G(l). + H2, <Z)] ".-+ R.. ,. k R. G .. k .
(i,j,k \. J (1.,J,> J '\. (1.,J.>

The coefficients D, E and G are. functions of the e...
'. 1-j'S

We will

...... not write down their explicit forms be~ause of their length and

their derivation is rather straightforward anyway.

(f) P~nultimateIy, we~ express the measure (dB~) in terms of the
\.

gauge-invariants. Following the same procedure for the kinetic

and potential terms. we find

(dB~)
\.

2n (Det R. )
. 1.
\.

sine..
, D t:1/3 ( l.J )

. IJ k e (si rw )(. 'k
( l. • J. > . \. d. >

x (dR. ') (de.. ) [d (non-inv. )] ,
\. l.J

where

cose,. - case. k' cose'
k1. J \. 1.

(cos¥» (i,j.k> == sine. . sine. k
1. J 1.

The non-invariant measure corresponds to the angles of the vector

we put on the z-axis and the azimuthal angle ~ defined from the
T

18
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other two. They correspond to the freedom of orienting the z-axis

and rotating the oth~r two vectors by the same azimuth about the

z-axis.

(g) Finally, we average over the directions n. to restore the
\.

real space symmetry. This procedure~/ will primarily affect the

-+ * .n. n.R. R. cose .. term from the 6 (nolj) .
\. J 1. J \. J

Taking everything ~nto account. the effective Lagrangian for

the gauge-invariant. is

S..rr = Jd
4
X{Kinetic + Potential

+ 1: E' ~n [ s i. nei.j ] }

3 (i., j , k ) ( s i n~) ( i.,j,k>

~< ~ R~ + 2· E .tn Ri.
\. 1.

E Jd
4

xd
4
x' (R. R. cose..J (R R. cose: ..J' +... ]

1.~.i 1. J \.J X \. J 1.J X'

This is the final result of this paper.

6.0 Summary

We have reformulated Yang-Mills theory in terms of

gauge-covariant potentials and auxiliary scalar fields. From the

gauge--covariant potentials, we identified the gauge-invariant

variables from geometrical constructs. We also derived the

,
.....','

effective action for these invariants. ·Physical consequences from

this effective action is presently ufider investigation.
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