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--~--It is well known that physical particles are thermally dissi·
pative at finite temperature. In this paper we formulate both
the equilibrium and non·equilibrium thermal field theories in
terms of stable quasi.particles. All operators, including the
dissipative physical particle operators, are realized in a Fock
space defined. by the stable quasi.particles. The propagators
of the physical particles are expressed in terms of the oper­
ators of such stable quasi-particles which is a simple diag­
onal matrix with the diagonal elements being the temporal
step functions, same as the propagators in the usual quantum
field theory without thermal degree of freedom. The proper
self-energies are also expressed in terms of these stable quasi­
particle propagators. This formalism inherits the definition of
on-shell self-energy in the usual quantum field theory. With

( this definition, a self-consistent renormalization is formulated
which leads to quantum Boltzmann equation and the entropy
law. With the aid of a doublet vector algebra we have an
extremely simple recipe for computing Feynman diagrams.
We apply this recipe to several examples of equilibrium and
non-equilibrium two-point functions, and to the kinetic equa­
tion for the particle numbers. The response function is also
discussed.

11.10.-z, 03.70.+k, 05.30.-d

I. INTRODUCTION

In the past decade there has been a remarkable
progress in the physics of thermal quantum field theo­
ries [1,2]. Although there have been many confusions,
they are mostly cleared in recent several years and we
now have a reasonably good understanding of the sub­
ject. Therefore, it may now be an appropriate time to
reconstruct these theories in a compact and calculable
form. It is thus the goal of this paper to reformulate the
thermo field dynamics (TFD) in such a form. TFD will
be shown to be very simple for computations of Feyn­
man diagrams with the introduction of a doublet vector
algebra.

Most thermal quantum field theories have indicated
the need for doubling the degrees of freedom. The super­
operator formalism [3,4] suggested a twin formalism [5]
in which left- and right-sided actions on the density oper­
ator were introduced. These two actions form a commu­
tative double sets of operations [7-9]. The closed path
formalism (CPF) can be formulated by a kind of dou­
blet formalism when the field on the line above the real
axis is defined as the first component and the one below

1

the second [6]. However, these two components do not
commute with each other. In equilibrium framework the
most solid basis for doubling the degrees of freedom in
the thermal quantum field theory was given by the C·­
algebra. An explicit canonical operator formalism for
the commutative doublet formalism was realized by the
thermo field dynamics (see, for example, [10]). In TFD
the thermal physics is formulated in terms of pure states
in which thermal effects arise through a kind of vacuum
correlation similar to what occurs in two mode squeezed
states. Since the need for doubling the degrees of free­
dom is widely recognized, we shall take it as one of the
postulates of finite temperature quantum field -theory.

In the development of thermal quantum field theories
a serious confusion was caused by the thermal instabil­
ity of observed particles; all the observed particles are
thermally dissipative. This trouble was first pointed out
in [11]. To understand this problem, it is helpful to re­
call that in the usual quantum field theory without ther­
mal degrees of freedom all quasi-particles are stable and
observable, and are described by the asymptotic fields.
The thermal instability forces us to sacrifice one of the
two features: observability or stability. Landsman pro­
posed to preserve observability, sacrificing stability. This
leads us to the generalized field theory (12,13]. How­
ever, it proves difficult to develop a practical and useful
computational method in the framework of this formu­
lation. In [14] it was suggested that a simpler formal­
ism can be obtained by preserving stability, thus sacri­
ficing observability. We shall reformulate the thermal
field dynamics following this approach. In this formal­
ism all the operators are realized in a Fock space formed
by a set of stable free particles described by the annihila­
tion op~rators (~k, ~k) and the creation operators (d, ~Z).
These quasi-particles will be simply called ~-particles and
the operators called ~-operators. All other operators are
dAefined in _term..s of these stable free particle operators
A = A(~,~,~t,~t) (the dynamical map). We define the
~-particlesas the quasi-particles (which are different from
the observable particles). In other words the operators in
terms of which dynamical maps of all the operators are
expressed are called the quasi-particle operators. Then,
in the dynamical map of the observable particle opera­
tors, the linear coefficients of the ~-operators damp in
time. Thus the thermal instability of observed particles
is caused, not by the instability of quasi-particles, but
by the temporal diminishing of the weight probability of
stable quasi-particles in the obser~~ticles.The .pur­
pose of this paper is to put this rorfWl:i#ftlpllWii!:~a
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As was pointed out in the introduction, we formulate
TFD in a Fock space associateJ with a set of free quasi­
particles called ~-pa.rticles. Their annihilation operators

- t -tare (~k,~k), and the creation operators are (~k'~k)' Thus,
denoting the vacuum of the Fock space by 10) and (01
(these are the thermal vacua), we have

complex conjugate together with the invariance of the
vacua under tilde conjugation eliminates the trivial phase
freedom in the structure of the bra- and ket-vacuum.

In order for the thermal vacuum to be invariant unuer
the tilde-conjugation at any time (as shown by Eqs. (5)
and (6)), the Hamiltonian if should change sign under
the tilde conjugation; i.e. iI must be anti-tildian. It
is further required that the dynamical equations are not
modified by the thermal degrees of freedom, implying
that iI doe" not contain any terms which mix t1.1de and
non-tilde operators of the basic fields. This requirement
indicates a sharp distinction between the dynamical ef­
fects and the thermal effects. This distinction plays an
important role in the present formulation. Let H denote
the usual dynamical energy operator, then the above re­
quirement uniquely specifies the Hamiltonian:

where 0" is +1(-1) for boson (fermion).
The general definition of the thermal doublets are

(7)

(8)

(9)

(10)

(11 )

fI = H - H.

~kIO) = ~kIO) = 0,

(Old = (Olt! = o.
We make use of the thermal doublet notations:

compact form.
In the stable quasi·particle picture, what propagate as

particle waves are the quasi-particle waves. Therefore,
it is tempting to write all the propagators explicitly in
terms of the stable quasi-particle propagators. This will
be studied in sections 3 and 4. An immediate result of
this study is the definition of the on-shell self·energy. The
thermal instability of the observed particles has made
it rather difficult to formulate a reasonable definition of
the on·shell self-energy. The instability gives us the feel­
ing that the on-shell energy should be given by complex
poles. However, this cannot be true because the complex
poles lie not on the physical Riemann sheet, but on the
second sheet. Since the propagators of the stable quasi­
particles have poles on the real axis on the first sheet, the
on-shell self-energy can be defined by these poles in the
same way as the on-shell definition in the usual quantum
field theory without thermal degrees of freedom.

In the stable quasi.particle formalism we present a new
set of computational rules which will be explained in sec­
tion 5. These rules are formulated in terms of a doublet
vector algebra. They significantly simplify calculations
of the Feynman diagrams. Some examples will be pre­
sented.

This paper deals with both equilibrium and nonequi­
librium cases. In the latter case the Boltzman equation
plays a significant role. We derive this equation in two
ways. One is to use a self-consistent renormalization
based on the on·shell definition mentioned above. An­
other is to make use of the Heisenberg equation. Agree-

.ment of these two method suggest~a self-consistent na­
ture of the on-shell definition.

To make this paper self-contained, in the next section
we present a brief summary of some basic relations in
TFD.

II. SOME BASICS OF THE FORMALISM

Here Ct and C2 are arbitrary c-numbers, A and B stand
for arbitrary operators. It may be worthwhile to point
out here that the rule of replacing a c-number by its

To double the degrees of freedo~ in TFD, to every
operator A is associated its partner A such that the non­
tilde operators commute with the tilde operators. When
a nontilde operator A is given, its tilde partner is 'ob­
tained from it by the tilde conjugation rules which are
summarized as (see, for example, [10])

(12)

(13)

A l = A, A2 = At,
;P = At, iF = -O"A,

Here the suffix H refers to the Heisenberg operators. vVe
have the equal-time commutation relation:

where A stands for any operator consisting of non-tilde
operators only.

For sake of simplicity, we consider only the fields of
type 1, those without anti-particles. Extension of the
formalism to those of type 2 is straightforward, as will
be briefly explained toward the end of this paper. Thus
our basic Heisenberg field has the Fourier transform(1)

(2)

(3)

(4)
(5)

(6)

(ABr =AB,
(CtA + C2Br =ciA + ciB,

(Atr =At,
(Ar =O"A,

lor = 10),
(01- = (01·
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(17)

(18)

(19)

(29)

(30)

Thus we should write the matrix as Bk{8t ) where 8t de­
notes a time-dependent 8. Then the unperturbed phys­
ical particle operators (a~, (j~) depend on time through
the Bk-matrix. They will be denoted by (ark' ark)' Thus~
Eq.(28) readsHere too, use was made of the thermal doublet notations:

t/J1 = t/JH, t/J1I = t/J"'n t,
-1 t -2 -

1/-'H ="pH , WH = -t7"pH,

or

and It is convenient to introduce the notations

with the commutation relation:

Since we formulate our calculation in the interaction
representation, we use the free field operators for the ob­
served particles:

(32)

(31)

(33)

These are the unperturbed physical fields in the pertur­
bational calculation formulated in the interaction repre­
sentation.

The field equations for the quasi-particle operators
(~(t)-operators)are the usual free field equations:

a (t)JJ = e-i"",,,t aJJ
Ie - tic'

Then the free fields in (22) and (23) become

A.( )JJ _ 1 ! d3k izof JJ(t)
Of' X - (21r)3/2 e ale ,

4J(x)JJ = 1 ! d3 k e-izof(jJJ(t)
{21r)3/2 Ie •

(20)

(21)

The free field Hamiltonian is

iIo = Ho - iIo

(24)

(25)

[:t + iWIe(t)]~k(t)/-l = 0,

-- d
~Ie{t)/-l[dt - iWk(t)] = O.

(34)

(35)

with Here we used the notations

(26) (36)

When a thermal situation changes in time, the observed
energy Wk may depend on time. However, calculations
are much simpler if we use a time-independent Wk such
as the energy at the final state.

The fact that a system can be in a variety of thermal
situations can be expressed by the statement that the
operators of the observed particles (ak' ak) are not the
same as those of the ~.particles, but are related to the
~-operators through linear relations of the form:

The general structure of the matrix B Ie will be discussed
soon later. Here we point out only that 8 stands for a set
of continuous parameters. The dependence of Bk(8) on
the parameters 8 signifies the fact that the realization of
the physical operators (a~, a~) depends on the thermal
situations which are classified by these parameters.

In order to consider the possibility of time-dependent
thermal situation we need to further elaborate on the
notations. When a thermal situation changes in time,
the parameters in the Bk-matrix also depend on time.

where

(39)

(37)

The Hamiltonian for these equations is

Since this should be the same as the free Hamiltonian
in (25), the condition for the Bk-matrix is that it keep
the free Hamiltonian (25) invariant. In other words, the
thermal degree of freedom is the freedom in choosing the
operations under which the form of the free Hamiltonian
is invariant. There are three generators which commute
with Ho (25), providing us with a linear mapping with
three parameters. The general form of the Ble-matrix de­
pends on the three parameters (a, Sk, nk) through [15,10]:

B.(8)#V = (1 + <Tn.)l/'.,." [ -<TIt-a. - ~!:' ], (38)

which gives nk = fk/[l - (f fk]. We choose ak to be
independent of kand denote it by a. The symbol 8 stands

(27)

(28)

~~ = Bk(8)JJva'fc,
(~ =ak B ;1 (8)"'/-l.
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because the total Hamiltonian H should not be modiried.
Since we consider the interaction representation, :he

time-change of the state vectors It) is generated by ~ ;11S
interaction Hamiltonian:

for these three parameters (nk' a, Sk) . Use of Eqs. (9)
and (8) gives

(40)

nk is called the number parameter.
The inverse of the above matrix: is

Bk"'(8)"" = (1 + unk)'/2 ["A-" If] e-..... (41) with

fII(t) = Hint + Q(t),

It) = u(t)lto)

. SO)

(51)

where

which can be obtained from Eqs. (34,35) for the quasi­
particles, where

(52)

Here we denote the coincidence time of the Heisenberg
and interaction representation by to. It has been shown
[16,10] that, when the form of the number parameter nk
is not restricted to the equilibrium form, the Feynman
formalism for the perturbation calculation can be ob­
tained only for two choices of the parameters; (a) a = 1
for to = -00, or (b) a =0 for t =00. We use a = 1 with
to = -00 in the following consideration.

The above choice of the parameters is based on the con­
ventional reason that we wish to make use of the Feyn­
man formalism; if we do not mind a complicated com­
putation rule without the Feynman method, the choice
of a is not limited. A remarkable aspect of the pertur­
bation calculation in TFD is that it does not need the
Gell-Mann-Low trick [16,10]. Finally the choice of a is
not limited when the number parameter has the equilib­
rium form. It may be worth recalling that the equilib­
rium number parameter seems to follow from the stability
condition for the thermal vacuum which states SIO) = 10)
and (OIS =(01, where S == li(t =00). We used the word
"seems" because the complete proof has been given only
for the fact that the stability condition is sufficient for the
number parameter to have the equilibrium distribution;
it has not been proven that this condition is necessary,
though perturbation calculations suggest that it indeed
seems to be so. The emergence of the temperature seems
to be based on the stability of thermal vacuum. In this
paper we derive the concept of temperature from a dif­
ferent condition. We show that the temperature emerges
from the condition that a thermal situation is stationary
(that is, time-independent) when there are no interac­
tions with external systems.

Though we have chosen a = 1, we are still left with
the parameter Sk besides the number parampter. We
shall choose

(47)

(46)

(45)

(44)

(43)

(42)[:t + iWk(t) - iPk(t)]ak(t) = 0,

-
iik[;t - iWk(t) + iPk(t)] = 0,

H = Ho + Hint.

Then the total Hamiltonian has the structure

Note that no time-dependent thermal processes start
without the Q-term.

Let us separate the dynamical energy operator H into
the free and interaction parts:

Pk(t) == iB;l(t) :tBk(t).

It is due to this definition of Pk(t) that [d/dt - iPk(t)] is
called the covariant time derivative.

The Hamiltonian of the unperturbed physical fields
(the a(t)-operators) is

Among the three parameters the one which physically
classifies the thermal situations is the number parame­
ter nil. Choices of the other two parameters, (a, Sk) are
rather a matter of convention and preference, as will be
explained later.

On the other hand, the unperturbed operators of phys­
ical particles (a(t)-operators) satisfy the equations [15]

Since our unperturbed Hamiltonian is not fIo but fIQ(t),
the interaction Hamiltonian in this perturbation calcula­
tion contains the counter term Qas

with

(48)

(49)

(53)

because this makes the matrix Bk linear in nk and simpli­
fies the structure of the heat term Qas will be shown bel­
low though a careful investigation shows that the choice
of Sk has no physical significance in the heat term. Since
the parameters (a, Sk) are specified, Bk depends only on
the number parameter nk. We will therefore denote it by
Bk[n] in the following. With this choice of a and Sk we
obtain
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the inverse of which is

B";:l(n] = [~ nk ]
II: v 1 + (1nk .

(54)

(55)

8(v: t - t') == e-i.(H') ( 9(t;) n -9(~ _ t) ). (60)

This motivates us to express all the propagators in terms
of this quasi-particle propagator. The matter is simple
in the case of unperturbed propagators of the physical
particles (a-particles)

With this BIc[n] the operator Q takes a simple form;
Eqs.(44) and (46) give

PIc(t) =it:T1iIc(t)To (56)

A/c(t,t')JJV6(k - n== (0IT{a/c(t)#"at(t'Y]T310).

Eqs. (29) and (30) give

A/c(t,t') = B;1(t)8(Wk : t - t')BIc(t')T3'

(61)

(62)

and

III. DIAGONAL PROPAGATOR OF THE
QUASI.PARTICLE

It may be worthwhile to point out some significant dif­
ferences between the closed path method and TFD [17].
In TFD we have the freedom in choosing the parame­
ters (a, Sic)' We chose these parameters according to our
convenience. The parameter Sic does not show up in the
unperturbed propagator in a stationary situation, but
it does explicitly appear in the propagator in a time­
dependent situation, as will be shown in the next sec­
tion. Another difference between TFDand CPF seems
to be more fundamental. In TFD, the free Green's func­
tion is unambiguously defined, the time dependence of
the number parameters is explicit. In CPF however, the
number parameter in the free Green's function is rather
vague. As a matter of fact n/c is the initial number pa­
rameter defined at time to = -00 and does not have the
time dependence. Therefore the derivation of the Boltz­
mann equation in CPF, particularly the collision term,
does not withstand close scrutiny, Le., we cannot have
a consistent integro-differential equation for either the
number parameter n/c or the observable number density
nH(t) =< af(t)a(t) >.

With this preparation we are now ready to enter an
essential part of the construction of TFD in this paper. .

which is the observed number. The temporal behavior of
this quantity will be studied in section 5.

with a c-number function g(t, t' : k). The corrected num­
ber parameter Nk (t, t') with t = t' has the property

Nk(t = t') = (Olakle(t) aHIe(t)IO) (65)

Note that the time-dependent sic-parameter explicitly
contribute to this unperturbed propagator of the physical
particles.

We need an explanation for the presence of '13 in the
above definition of the physical particle propagators, be­
cause the usual definition does not include '13. According
to the notations for the thermal doublet in (13), we have
alc(t)2 = -(1[alc(t)2]f. Since the interaction Hamiltonian
is expressed in terms of ak, a/c and their dagger conju­
gate, the Feynman internal line is written by these op­
erators. Furthermore, the tilde conjugate of alaI = ata
is not a2 a2 but ata = a2 a2 • To make use of the thermal
doublet notations in the Feynman diagrams, we need the
factor (1 to take care of this change in this standing order.
Thus the above factor -(7 is taken care of by '13 in the
propagators of the physical particles. Furthermore, this
definition of the propagator including '13 simplifies the
computational rules which will be introduced in section
5.

A remarkable fact is that a form similar to (62) holds
true also for the corrected propagator of the observed
particles:

Gk(t,t')6(k - n== (0IT[aHk(t)aHZ(t')]T310). (63)

It has been shown that this has the form [18,19]

G (t t') = B-I[N (t t')] (g(t,t' : k) 0 _)
/c , Ie , ° g" (t' , t : k)

8(0: t - t')B[N;(t',t)]T3' (64)

(58)[
1 -(1]

To == (1 -1 '

where

We now come to an issue of essential significance. In
the stable quasi-particle picture, the particles are defined
by the quasi-particles so that what propagates as particle
waves is the propagator of the quasi-particles, which is
given by the diagonal matrix

with

IV. SELF-ENERGY AND ON-SHELL
DEFINITION

In this section we express the proper self-energy in
terms of the quasi-particle propagator e. This will help
us to find a reasonable definition of the on-shell self­
energy.
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To split this into the real and imaginary parts, it is con­
venient to write

8 0(v: t - t') = i6(t - t') [p_1_ - i1r6(Wk - V)T3] .
Wk - v

(76)

Now the well-known definition of the on-shell part can be
immediately applied to this by putting ko = Wk. Thus
the on-shell part eo(v : t - t') is obtained by replacing
ko by W/c in (73):

eo(v : t - t') = 6(t - t')8(v: Wk) (75)

quasi-particles are stable, we can apply the usual defini­
tion of the on-shell energy to their self-energies. Tilus
write the Fourier representation of the quasi-particle
propagator:

e(v : t - t') =! dkoe- iko(t-t')8(v : ko). l73)
211'

(74)
i

8(v: ko) = k .'
o - v + ~eT3

We then have

A. General Properties of the Self-Energies

We consider the self-energy diagrams with two vertices
connected by some lines. Since the interaction Hamilto­
nian has the counter term Q according to (50) with (46),
the proper self-energy has the form

~prop(t, t' : k) =~k(t, t') + Pk(t)6(t - t'). (66)

A calculation showed [18,19,10] that, when ~k(t, t') is
given by a self-energy diagram with two vertices, it has
the form

:E.(t, t') = -i ![dqj B-'[N(t)) (s~) S(t))

e(W : t - t')B[N(t')]. (67)

Here [dq] denotes the momentum integration with respect
to the momenta associated with the internal lines which
join the two vertices. The quantities N(t) and set) de­
pend on these momenta. Suppose that n lines propa­
gate from t to t' with momenta (~ : i = 1"" ,n) and
m lines move in the opposite direction with momenta
(iii : j = 1"" , m). Here the direction points from et> to
cPo We then have

Here nq(t) is the unperturbed number parameter of the
line with momentum q. The O"i and 0O"j are the 0"­

parameters of the i-th and j-th lines respectively. The
sign factor 0"0 is the O"-sign parameter of the external
lines. The coefficient C is a positive numerical factor
determined by the coupling constant. We present in
section 5 an extremely simple derivation of this result.
Eq.(67) indicates that the proper self-energy does prop­
agate through the quasi-particle propagator.

With this we can define the on-shell self-energy of phys­
ical particles even when they are not stable. Put the
self-energy in the form

:E.(t, t') = ! dv B-'[N(t, t')1 (s(tc/) s'(~" t) )

e(v: t - t')B[N"'(t', t)], (77)

(79)!:~ (t, t') = b(t - t')!:~ (t )

with

which is always possible. Here the tilde conjugation rule
is considered. The quantity N( t, t') and s( t, t') depend on
V. Then, the on-shell self-energy of the physical particles
is obtained by replacing e by eo, so we have the on-shell
part

~2(t t') =6(t - t')! dv B- 1 [N(t)] ( set) 0 ), 0 s*(t)

eo(v : wk)B[N...·(t)]. (78)

Here N(t) and set) are respectively N(t, t') and set, t') at
equal time t = t'. This coincidence of time is du.e to the
delta function in 8 0 (v: t - t').

We now apply this definition of the on-shell self-energy
to the above example in (67). Its on-shell part is

(70)

(72)

(71)

(68)

(69)

n m

F(t) = II fq,(t) II f;/(t),
i=1 j=i

n m

W = L W q, - L Wqj •

i=1 j=1

n m

6(k - L«ii + Lqj),
i=1 j=1

n m 1
set) = C nnq,(t) gO"j[l +O"jnqj(t)] N(t)'

N(t) _ 1
- F-l(t) - 0"0

B. Definition of On-Shell Self-Energy and
Renormalization

The above structure of the proper self-energy leads to
a reasonable definition of the on-shell energy. Since the

!:~(t) = -i ![dq]set) B-1 [N(t)]8 0 (W : wk)B[N(t)].

(80)

Then the relation (66) shows that the total on-shell self­
energy is
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with

with

(96)

(91)

(97)

(92)s~ 0,

Kk(t) =11"! [dq] 6(Wk - W)s(t).

Through the exchange of variables it can be written as

S = ~11"! dk1dkzdq6(Wk + wq - Wk i - Wk 2 )

6(k + q - k1 - kz)
([V(k - k1) + uV(k - k2 )f + 4SV(k - kd Z

}

nk1 nk2 nknq(/;;1 1;1 - r;/ 1~1) In(lk l Ik 2 / fqlk)' (98)

It is zero if and only if

(fqfk - h~l Ik2 )6(Wk + wq - Wk 1 - Wk 2 ) = O.

This requires that (In f) as a function of W be linear.

where the entropy S is defined in terms of the number
parameters as

Set) =! d3 k{[1 + O'nk(t)] In [1 + O'nk(t)] - nk(t) In nk(tn.
(93)

This is the Boltzman equation obtained in [18,19,10!.
where it was shown that the entropy law follows from this
Boltzman equation. In other words, the above Boltzman
equation leads to

This illustrates a usefulness of the on-shell self-energy
condition in the stable quasi-particle picture. The con­
stant Kk(t) is the dissipative constant. Though the quasi­
particles are stable, the observed particles are dissipative.

Eq.(90) can be put in the form

7ik(t) = 211"! [dq) 6(Wk - W) [N(t) - nk(t»). (94)

Thus the condition for nk = 0 is N(t) = nk(t) for W =
Wk. According to (70) this condition is equivalent to the
relation F(t) = fk(t) for W = Wk. Then (71) shows that
fk(t) should have the form

fk(t) = e-~wlc (95)

with a parameter 13 which is independent of k. This im­
plies that a stationary situation without any external in·­
teraction is an equilibrium state. The concept of tem­
perature (T = 1/13) emerges from the condition that a
system be stationary.

However a more rigorous proof is from the entropy
law. For an interaction of the form Jdxdx'V(x ­
x')1P t (x)1P t (x')1P(x')1P(x), it has can be shown that

nk = 11"! dk1dkzdq6(Wk + wq - Wk i - Wk 2 )6(k + q - k1 - k2 )

{[V(k - kd + O'V(k - k2»)Z + 4sV(k - kd 2}
(/ -If-1 f-lf-l)nk1 nk2 nknq q k - k i k2 '

where s is the particle spin. The entropy change is

5 = - ! dknk In(lk).

(88)

(83)

(81)

(85)

(82)

o ,.. 0 .. ,
~prop(t, t : k) = I:prop(t : k) 6(t - t )

1<, [~:rop(t : k)] = ! [dq] set) 'P_
1

_
Wk - II

The renormallzed quasi-particle Hamiltonian should be
diagonal in quasi-particle operators (the ~-operators).

The real part of the on-shell self-energy replaces Wk with

where (56) is considered.
The on-shell self-energy contributes to the renormal­

ized quasi-particle Hamiltonian fIoas

O'nk(t)To - ![dq]set) 6(Wk - W)A[N(t)] = -~k(t)A[nk(t)]

(89)

with an unknown constant ~k(t). This two by two matrix
equation gives the following solution:

z [~:rop(t: k)] = Pk(t) - i ![dq]set) 6(Wk - W)A[N(t)]

(84)

nk(t) = -2~k(t)nk(t) + 211"! [dq] 6(Wk - W)N(t)s(t)

(90)

with

preserving the diagonal nature of the free Hamiltonian.
Since the Hamiltonian should change sign under the tilde
conjugation, its diagonal imaginary term can only take
the form i«(kT3~k) which is equal to i(ak(t)A[nk]ak)'
Thus the above imaginary part of the on-shell self-energy
should be proportional to such a term:

With Eq. (76) we can split this into the real and imag­
inary on-shell parts:

We can rewrite the imaginary part of this on-shell total
self-energy as

I [~:rop(t: k)] =0'1h(t)To - ![dq]set) 6(Wk - W)A[N(t)],

(86)

7



c. Equilibrium Situations (l05)

(107)

(106)

1 rk
Pic = ;: (v - Ek)2 + r%

_ 1

g1c = kr + iki - Ek + iSGN(ki)rk

. 2

ITk = jdVdQ2gk-q pq(v)
Wk-q

[
1 +nk-q nk- q ]

ko - v - Wk-q + ie + ko - v + Wk-q + ie

with

where Ek is the energy pole and r k is the width of the
spectral function. Extend the frequency ko to the com­
plex domain ko = kr + iki then

;; j-d Pk(V)
yk = v

ko - v + if

which completely determines the Green's function. gk
does not have any poles in the complex plane, to see this
we assume that the spectral function has Lorentzian form

where

(99)
1

n(v) = 13 .e 1/-1

Grc(ko) =100

dv B- l [n(v)] k Pk(V). B[n(V)]Ta,
-00 0 - v + leTa

(100)

Ek(t - t') = -i j dv B- l [n(v)]8(v : t - t')qk(v)B[n(v)].

(102)

In this way the physical particle propagator is expressed
in terms of the propagator of the stable quasi-particles.
However, the structure of the spectral function is such
that the physical particles are dissipative, as is well
known in thermal physics.

The Dyson equation shows that the proper self-energy
has the same form with a different spectral function:

The function P is the spectral function. The integration
over ko gives

GIe(t - t') = -i j dv B-1 [n(v)]8(v : t - t')Pk(v)B[n(v)]T3'
which apparently has no complex poles. We shall now

(101) consider an electron phonon system assuming that the
electron-density is zero. With the use of full Green's
function the electron self-energy is

The Fourier amplitude of the two-point functions Gk(t­
t') has the spectral representation

In equilibrium situations, the above consideration be­
comes extremely simple. Then the unperturbed number
parameter has the equilibrium distribution

(108)

The spectral function P is related to the spectral function
q through

(103)

Thus the proper self-energy is also expressed in terms
of the propagator of the stable quasi-particle. The on­
shell self-energy is obtained from the on-shell part of the
quasi-particle propagator as

where Wk is the phonon energy, gq is the electron-phonon
interaction matrix element and n q is the phonon num­
ber density. To make the problem manageable we again
use the Lorentzian approximation for the spectral weight
function we have

2

IT jd
gk-q

k= Q-­
2Wk-q

[
1 + nk-q nk- q ]

ko - E q - Wk-q + irq + ko - E q + Wk-q + irq •

iE~(t - t')

= j dv B-l [n(v)]8o(v : t - t')qk(v)B[n(v)]

=6(t - t') j dv B- l [n(v)]8(v : wk)qlc(v)B[n(v)]. (l04)

The real part gives the energy shift, while the imagi­
nary part is the dissipative constant which never vanishes
when the fields have nonlinear interactions.

We write the Green's function in momentum space in
a slightly different form

where Ek and ric are to be determined later. Hence

where ek is the bare electron energy. Since we assumed
the full Green's function to have the Lorentzian form,
replacing ko by Ek in the self-energy with the above on­
shell definition, we must have

which gives the self-consistent equation for Ek and r k

8



(116)

(117)
1

n(v) =--,
eV

- 0'

Tw ;: (~ ~) , T1 == (~ ~), TIl] ;: (/~l ~)

(114)

Thus, when we introduce the notation

Note that the Fourier amplitude still depends, not on
two time, but on one time; the first (second) term is the
Fourier transform with respect to t (t') and the Fourier
amplitude does depend on t' (t).

In an equilibrium situation nk and fk are independent
of time and we have ( with the unit j3 = 1 )

with any function f.
Eq.(111) has the following Fourier expansion:

The notations used are

(109)

We would have no way of ensuring the imaginary part r Ie

to be positive definite.
In a hot quark gluon plasma system [21], it has been

shown that if the present on-shell definition is used, the
thermal infrared divergence disappears though the au­
thors believed that complex poles should be used. How­
ever if the complex poles are used, the infra-red diver­
gence reappears.

2

E1c + irk =fie - jdq gk-q
2W k-q

[
1 + nk-q n k - q ]

E" - Eq - Wk-q + ifq + Ek - E q + Wk-q +irq •

This defines explicitly the on-shell approximation for the
problem. This constitutes the crudest self-consistent ap­
proximation for the energy poles of an electron moving
in a phonon field. This has been called a polaron. Note
that a common mistake is to replace ko by Ek - irk in
the self-energy part which is

V. SIMPLE COMPUTATIONAL RECIPE IN TFD

In this section we formulate a doublet vector algebra
and show that the formalism provides us with an ex­
tremely simple computational recipe in both equilibrium
and nonequilibrium TFD.

the unperturbed propagator of the physical particle in
(62) reads as

~k(t - t') = B- 1 [n(wk)]E>(Wk : t - t')B[n(wk)]T3' (118)

In this case Eq.(111) takes the following form:

~k(t - t') = e-iw,,(t-t') [n(wk)8(t - t')TuT1T(Wk)

- n( -wk)8(t' - t)T( -wk)T1Tu]. (119)

A. Doublet Vector Algebra
Here use was made of the relation

Let us begin with the general time-dependent situa­
tion. In this case the unperturbed propagator of the
physical particle was given in (62):

n(-v) = -[n(v) + 0'].

We used also the following notation:

(120)

which gives

Here f is related to n as

When (60) is considered, this reads as

~k(t, t') = e-iwlo(t-t') [nk(t') 8(t - t')TuT1T[/k(t')]

+ 0'[1 + O'nk(t)]8(t' - t)T[Jk"1(t)]T1Tu]. (111)

(121)

(122)

(
eV 0)

T(v) = 0 1 .

To facilitate our calculations it is convenient to define
the following tensors:

r(l) == { :~ },

which is just a two component vector. This will be called
a doublet column vector with components (aI, a2)' A
2x2 matrix

(112)

(113)

9



•

which is related to an n point Green's function.
The unperturbed propagator now can be written as

(129)

t'1

with

To illustrate the above recipe of computation of the
Feynman diagrams in equilibrium TFD,. we consider a
self-energy diagram with two vertices joined by two lines.
The time of the two vertices are t and t'. The one line
points from t to t', while the another line moves in the
opp_osite direction. Here the directions is pointing from ¢
to ¢. This self-energy diagram has been calculated (see,
for example, page 137 in [20]). However, our recipe gives
the same result in a much easier way.

Accordi~g to (126) the unperturbed propagator is

B. Equilibrium Calculations

dk(t - t') = O(t - t')n(wk) ({; } { e~' })

t n t~
FIG. 1. n incoming lines and m outgoing lines meet at t.

Let us come back to the t-vertex in fig.1 and derive
an important theorem. When t is after all of the n + m
vertices ,i.e. t > ti, t'i for all (i, j), all the incoming lines
contribute with the second term in (126) while the out­
going lines with the first terms. Thus each line creates
the column vector with the components (1, u) accord­
ing to the above consideration and these column vectors
form the inner product. This inner product is the factor
(1 - I1 U i IIi Ui)' which vanishes because the interaction
Hamiltonian is a bosonic operator. This theorem reflects
the relation (OIHr(t) = 0 at any time t.

which is a c-number factor. Here the minus sign in front
of the second term on the right hand side comes from the
minus sign in front of Hint in the interaction Hamiltonian
iII The other columns stand in the form of r(l). Many
column vectors in this r(l) form inner products with the
column vectors attached to other vertices, while some
remain in the form of r(n)-tensor when we study n-point
functions.

A general rule is that all the columns attached to an in­
ternal vertex form the inner product, creating a c-number
factor while the columns attached to an external vertex
form the out-product defined by

(124)

{ :~ } . { :~ } . { :: } ..• { :; } ==na; - nb;

(127)

L\k(t - t') = e-;""('-") [n(Wk) O(t - t') ( { ; } { e~' })

- n(-Wk) O(t' - t) ({ e-t }{;})]. (126)

Suppose that a vertex at t is connected to n vertices
at (ti: i = 1··· n) through incoming lines and to m
vertices at (tj: j = 1··· m) through outgoing lines (see
fig.l). The vertex at t is the end points of the incoming
lines and the beginning points of the outgoing lines. We
denote the momenta of the i-th and j-th lines by ki and
kj respectively. The energy Wk, will be simply denoted
by Wi.

Consider the i-th line which is incoming to this vertex.
Then the t-vertex is the end point of this line. When
the starting point of this line is before t, the second term
in (126) contributes and the column vector with the two
components (1, Ui) is attached to the vertex at t, leav­
ing us with another column vector with the components
(e-W

" 1). When the starting point of this line is after t,
the incoming line contribution comes from the first term
in (126). Then the column vector with the components
(eW

', 1) is attached to the t-vertex, leaving us with the
column vector with the components (1, Ui).

Consider now the outgoing i-th line joined to the t­
vertex. Then the t-vertex becomes the beginning point
of this line. When the end point of this line is before t, the
first term in (126) contributes and the column vector with
the two components (1, Ui) is attached to the t-vertex,
leaving us with the column vector with the components
(eWi

, 1). When the end point of this line is after t, the
outgoing line contribution comes from the second term
in (126). Then the column vector with the components
(e-w ·,1) is attached to the t-vertex, leaving us with the
column vector with the components (1, ui).

Thus 1(= n+m)-lines create I column vectors attached
to the t-vertex, leaving us with other I-column vectors.
Those attached to the t-vertex form the inner product:

r(') == ({ :~ } { :~ } ) .

This is generalized to higher dimensions

is denoted by

10



- n(-wk)8(t' - t) ({ e~'"' } { ~ }). (130)

Let us first consider the case t > t'. Then the propa­
gator pointing from t to t' contributes with the first term
in (130), while the other line contribution is given by the
transposition of the second term with exchange t ~ t'
which is

-n(-wq )8(t - t') ({ ~ } { e~'"' }) • (131)

Here the momentum of the latter line is denoted by ij.
Then the momentum of the first line is (k - i), where k is
the external momentum. Since we take the cross product
of the columns at each external vertices, the contribution
of the two internal lines become

({
1 } { e

WIl
-, -W

f
})-8(t - t')n(wk_q)n(-wq) 0'0 1 '

(132)

which can be rewritten as

8(t - t')[n(wq) - n(wk_q)] n(wk_q - wq)

({;0 }{e'"'-;-'"' }) , (133)

There is no need to calculate the case t < t', because this
case can be obtained from the case t > t' by means of
the tilde conjugation rules. Comparing (133) with (130)
we see that the self-energy diagram under consideration
gives

show this we calculate the two vertex self-energy cit::
cussed in section IV. Thus we consider a self-energy >.11,
agram with two vertices joined by (n + m) lines. Tl~~

time of the two vertices are t and t'. The n lines go from
t to t', while the other m lines move in the opposite (1i­
rection. Here the directions is pointing from <p to (fi. \Ve
apply the recipe to this diagram and derive the resuJ l~

(67). The calculation turns out to be as easy as the one
in the equilibrium case.

The unperturbed propagator in time-dependent cases
was given by (111). This can be written in terms of the
column tensor notations as

(136)

with

({ : } { fk"
l
l(t') })dk(t,t')=8(t-t')nk(t') v

+ u[1 + unk(t)]8(t' - t) ({ fk}t) } { ~ }). (137)

Let us first consider the case t > t'. Then the i-th
propagator contributes with the first term in (137), while
the j-th line contribution is given by the transposition of
the second term with exchange t ~ t f which is

u[l + unk(t')]8(t - t') ( { ~ } { fk~t') }) . (138)

Since we take the cross product of the columns at each
. external vertices, the contribution of all the internal lines
become

~k(t - t') = Jdv O"o(v) B-1[n(v)] e(v : t - t')B[n(v)]

(134)

with

n m

(J(t - t') IT nq, (tf) IT O"j[1 + O"jnqj (tf)]
i=l j=l

({ ;0 }{F-~(t') } ) , (139)

(135) where 0"0 specifies the external propagator and

In this way the result takes the form of the spectral rep­
resentation. The simplicity of the computation is re­
markable. We performed nothing more than the out­
products of columns at each external vertices. Further­
more, we did not use any temporal Fourier amplitut­
des. The calculation was made in the time-representation
(t-representation). This example illustrates an applica­
tion of the doublet vector algebra for calculation of self­
energies in the t-representation. A similar calculation
can be applied to a self-energy diagram with two exter­
nal vertices joined by any number of lines.

C. Non-Equilibrium Calculations

n m

F(t) = IIfqj(t) II f;/(t).
i=l j=l

When we define

the above contribution for t > t' reads as

8(t - t')s(t')N(t') ( { ;0 }{F-~(t') }) .

(140)

(141)

(142)

(143)

The above calculation of the self-energy can easily be
extended to a time-dependent nonequilibrium case. To

11

The case t < t' can be calculated in a similar manner. We
see from (143) that the self-energy under consideration is



The unperturbed propagator satisfies the equations:

Nr(t)6(k - i) = (Olaklc(t)aHI(t)IO). (144)

In equilibrium cases it is known that this observed num­
ber is a frequency average of n(v) over the spectral func­
tion p(v):

Gk(t,t') = ! dtldt2 ~k(t,tl)~prop(tbt2: k)~k(t2,t')

+ ~k(t, t'). (146)

Recall now that no internal vertex is in future of t, im­
plying that tl and t2 in the above equation must before t.
We therefore consider only those terms which are propor­
tional to 8(t - tl) or 8(t - t2) in the integrand. Note that
t 1 and t2 appear separately in two terms on the right
hand side of the above relation. Therefore, to simplify
notations, we will denote t2 in the first term by tl- Since
the Pic-term in I: prop in (66) is proportional to 6( t - td,
integration domain for this term shrinks to vanish; this
Pic-term does not have any contribution. Therefore, we
can replace ~prop by ~k. According to (67) ~k has the
form

i~k(t, t') = ![dq] e-iW(t-t')

[O(t _ t')s(t')N(t') ({ ~ } { F-~(t') })

+ s(t)u[l + uN(t)JO(t' - t) ({ Fit) } { ~ })]

(151)

The structure of ~k was given in (137). At the tl-vertex
in the first term in (151) ~prop creates the column with
the components (F-l(tI), 1) and ~k gives the column
with the components (fk(td, 1). The inner product of
these two columns attached to tl-vertex gives rise to a
factor [F-l(tI)flc(tI) -1]. At tl in the second term ~prop

creates the column with (F(tl),l) and ~k gives a col­
umn with (f;;l(tI), 1). Their inner product is the f~ctor

[F(tt}f;;l(tI) - 1]. We are then left with two columns
attached to t. Their components are both (1, u). In this
way the vector algebra recipe simplifies the computation
and we obtain

\Vhen the t- and t'-derh-atives act on the second term
in (146), they ereat PIc-tt'rms which are proportional to
nlc Since nlc is of the second or higher order in coupling
constant, so are the Pic-terms. Thus product of these
Pic-terms and I:prop are of the fourth or higher order of
the coupling constant. We therefore ignore these terms.
because their contribution is of the same order as the
terms ignored in the above approximate Dyson equation.
We then have

-i lim (88 + 88,) Gk(t, t')
t-t' t t

= ! dt'[I:prop(t,t')AIc(t',t) - AIc(t,t')~prop(t',t)]. (150)

t~"t, (:t + ~,) Gk(t, t') = (U }{ ~ })
! [dq] ['00 dt, s(t,)

x (N(tl)U[1 + unk(tI)HF-I(tdfk(td - l]e i(w k -WHt- t t>

- nk(tt}u[1 + 0' N(tdHfk"l (tdF(tl) - l]e- i
(W k -W)(t-td ) .

(152)
(149)

(145)Nr =! dv p(v)n(v),

lim (88 + 88,) ~k(t, t') = O.
t-t' t t

Thus

where the number parameter n(v) has the Boltzman dis­
tribution with the energy v; the observed number fluctu­
ates around the Boltzman distribution. This shows that
the number parameter has 'a simple property, but the
observed one behaves in a complicated way.. It is there­
fore interesting to study the equation for Nr(t) in time­
dependent cases. In the following, we study this equa­
tion. To do this we consider the corrected propagator
GIc(t, t'), because its (1,1)-component in the limit t -+ t'
with the condition t < t' is uNk(t), while the same quan­
tityat the limit t -+ t' with t > t' is [1 +uNk(t)]. There-
fore, the quantity Nr(t) is given by the (l,l)-component
of u[(8/8t) + (8/8t')]Gk(t, t') at t = t' without any con­
dition for ordering among t and t'.

We calculate this in the second order approximation
of the coupling constant. Thus, we approximately write
the Dyson relation as

[:t + iWk(t) - iPk(t)]~k(t, t') =6(t - t'), (147)

-
~k(t, t')[d~' - iWk(t') + iPk(t')] = -6(t - t'). (148)

given by (67). The computation in this section is much
simpler than the one given in [18,19,10].

When we consider diagrams with many internal ver­
tices, calculation is considerably complicated. However,
use of the recipe simplifies treatment of the internal ver­
tices. Without the doublet vector algebra, calculations
with internal vertices would be intractable. We are plan­
ning a further development of the recipe for still more
simplification of computations.

The last example of application of the doublet vector
algebra recipe is a study of the time-change of the par­
ticle number. In section IV we derived the Boltzman
equation for the time change of the number parameter
nk(t). The equation was given by (94). However, the
observed number is not this number parameter but the
particle number defined by the Heisenberg operator:

12



Picking the (1,1)-element and using the relations

N(t){1 + O'nk(t)}[F-1(t)!k(t) - 1] =nk(t) - Net) (153)
nk(t){1 + O'N(t)][F(t)!;l(t) - 1] =.N(t) - nk(t), (154)

we obtain

. ( 8 8 ) G ( ')11lim -8 + -8' Ie t, t
t-t' t t

= q j [dqJ l"", dt, s(t,)[n.(t,) - N(t,)]

x[ei(IoI.-W)(t-tt) + e- i(IoI.-W)(t-t d ]. (155)

We thus have

N;;<t) = j [dq]l"", dt, s(t,)[n.(t,) - N(t,)]

x [ei(IoI.-W)(t-td + e- i(IoI.-W)(t-td ]. (156)

Note the resemblance of this equation to the Boltzman
equation (94) for nk(t). When we approximately replace
[nk(t2) -N(t2)] by the same quantity at time t, the above
equation (156) becomes

Nk(t) ~ 211' j [dq]6(Wk - W)s(t)[N(t) - nk(t)], (157)

the right hand side of which is the same as the one in
(94). This implies that in this crude approximation the
observed number agrees with the number parameter and
the Boltzman equation obtained from the self-consistent
renormalization (based on our on-shell definition) is re­
produced by the Heisenberg equation. The derivation
of Boltzmann equations in CPF is usually done this way.
However this equation does not relate the change of num­
ber density nle to the collision integral in terms of them­
selves as is obvious from the notations in the above equa­
tion.

VI. RESPONSE FUNCTIONS

TFD has the advantage of calculating response func­
tions without resorting to the Kubo formula. Suppose
that there added to the system a weak perturbing poten­
tial Hi = JdxU(x)B(x) where B(x) is an operator for a
measurable physical quantity and U(x) is an externally
aAdded potential. The co!responding potential in TFD is
Hi =JdxU(x)[B(x) - B(x)]. T Use the Feynmann dia­
gram approach, the change of another measurable phys­
ical quantity A is

<At(x» -Ao(x)

= -i j dydt'U(y) < T[A(x)(B(y) - B(Y»] >

= -i j dy 1: dt'U(y) < A(x)(B(y) - B(y)) >. (158)

13

Only the retarded part is needed. Similar to the ~t.'if~

energy the retarded part of the correlation function can
be written as

-i < T[AJJ B II
] >

= jdvB-1(N(t,t'») (Sl(V;t,t') 0 ) B('''''' ';1\S2(V;t,t') .J.'/ .... " ;!.

Eq. (158) becomes

<At(x» -Ao(x) = j dydt'(}(t - t')dVU(Y)Sl(V; t, t')

=j dydt'(}(t - t')U(Y)Sl(t, t'). (159)

This explains why it is important to keep only the diag­
onal terms. A comparison shows that this is the same
in form as the retarded function in CPF, though the ex­
plicit structures of these functions are different due to
the reasons stated near the end of section 2.

VII. SUMMARY

In this paper we formulated TFD in terms of stable
quasi-particles, which are different from the dissipative
physical particles. In this formalism, all operators are
realized in a Fock space associated with the stable quasi­
particles. Even the operators of the dissipative physical
particles are expressed in terms of operators of the stable
quasi-particles. The propagators of the physical parti­
cles were expressed in terms of the stable quasi-particle
propagators. Although the quasi-particles are stable, the
weight probability of the stable quasi-particles in the
physical particles diminishes in time, making the physical
particles dissipative. In the stable quasi-particle picture
we inherit the definition of the on-shell self-energy from
the usual field theory without thermal degree of freedom,
finding a reasonable formulation of the energy renormal­
ization. Through the course of this consideration a dif­
ference between the closed path formalism and TFD was
discussed. The difference is due to the freedom in the
choice of parameter Sk and explicit time dependence of
the number parameter nk. The difference becomes visible
in time-dependent problems. Due to this difference it is
not easy to compare our results with those in the closed
path formalism. The definition of the on-shell self-energy
leads us to a self-consistent renormalization, from which
the Boltzman equation followed. This equation deter­
mines the temporal behavior of the number parameter
nk(t) and leads to the entropy law.

With the doublet vector algebra we obtained a simple
recipe for treatment of the internal vertices and the exter­
nal vertices in the Feynman diagrams. We showed some
examples of self-energy calculation which are tremen­
dously simplified by this recipe. vVith the help of this
recipe we also derived the equation which determines the
temporal behavior of the observed number. The latter



equation resembles the Boltzman equation for the num­
ber parameter derived from the self-consistent renormal­
ization, providing a support for our on-shell definition.
Further elaboration of the recipe is under study.

In this paper we used mostly the fields of the type 1.
The entire consideration can be extended to the fields of
the type 2 by introducing diagonal propagators of both
the quasi- particles and their anti-particles. Such a con-

, sideration may follow the steps presented in [17].
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