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We show that in thermo-field-dynamics (TFD), with a
particular choice of the parameters, intemal times cannot be
larger than the largest external time for a Feynmann diagram
with any number of extemal points. We present a simple
recipe which finally makes Feynmann diagram calculations in
TFD feasible. In fact, frequency integration becomes trivial
compared to Matsubara approach when the time property is
utilized.
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I. INTRODUCTION

Among equilibrium finite temperature quantum field
theories, the imaginary time approach is the most pop
ular [1]. The time variable is rotated and shrunk into a
finite segment on the imaginary axis and the frequency
is thus discretized also on the imaginary axis. When a
two point retarded function is needed, an analytic con
tinuation is performed at the end of the calculation. This
approach is straightforward and easy to learn. However
there are certain unpleasant features related to it: (1)
One must be very careful in performing the frequency
continuation from the discrete imaginary axis to the real
axis since this requires that the function be analytic espe
cially when numerical computations are involved. (2) It
is not certain when one should perform this continuation.
It turns out that in certain cases such as broken symme
try the 'continuation at the very end of the calculation
leads. to results that violate the spectral representation
properties of Green's functions [2]. (3) When a diagram
is complicated the frequency summation itself becomes
very tedious.

A relatively less known theory is the Thermo-Field
Dynamics (TFD). This theory is based on a theorem that
an ensemble average can be replaced by an expectation
value over a properly chosen pure state vacuum [3], when
the degree of freedom is doubledl Le., to every'" opera
tor A is associated an operator A so that [A, A]er = 0
where (f = ±1 for boson and fermion like operators re
spectively. If H denotes the dynamical energy opera
tor in the usual quantum field- theory, the total Hamil
tonian in TFD is given by iI = H - iI. If a, a+,
ii, and ii+ denote the free operators in TFD that sat
isfy the usual operator algebra [a, a+]er = [ii, ii+]er = 1,

[a, a]er = [a, al er = [a, a]er = [a+, ii+]c7 = 0, and 10> de
notes the thermal ground state (or vacuum) in terms of
these operators, then aIO>¥: 0 and aIO>¥: o. However we
can find another set of free operators ~ and ethrough a
linear Bogoliubov transformation:

(1,~ ) = B (ii"+ ) ,({+ ,171,) = (a+ ,l7ii)T3B - 1,

so that ~IO >= elO >= 0 where the matrix B will be
given later. This approach has been proven very use
ful and powerful in dealing with non-equilibrium situa
tions. This is so because unlike the Matsubara approach,
time is treated on equal footing as the space variables.
TFD shares some common features with the Schwinger
Keldysh approach [4]. The Green's functions in both ap
proaches are 2 x 2 matrices. People feel reluctant to, use
TFD because of its matrix structure. However we show
in this paper that when the time property is utilized, it is
the very matrix structure that actually makes the Feyn
mann diagram calculations very easy in TFD. Frequency
integrations can be easily taken care of.

II. PROPERTIES OF THE GREEN'S FUNCTIONS

TFD has the symmetry of a three parameter (0:, s, n)
group [3]. The best choice for a is a = 1 with
which causality is preserved and the calculations become
the simplest. It has been successfully applied to non
equilibrium situations [5,6]. Hence we shall use a = 1
throughout this paper unless stated otherwise. The
Green's function for a free oscillator is

G(t t') = B-1(t) (~o(t - t') ) B(t')r- (1)
, ~o(t' - t) 3

where ~o (t, t') = -i(}( t - t')e-iw(t-t') ,

B-1(t) = ( 1 n(t) ) .
(f 1 + (fn(t)

The 13 matrix is a trivial factor with no physical signif
icance but a vital ~ic~ for com,putational conve
nience. This factor

Li cdiftttw'JL~1!Jse in the original
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which is just a two component vector and a 2 x 2 matrix

is denoted by .

(6)

G(q,w)= n(q). ({ 1} {e
q

})
q-w+u (T 1

+ n(-q). ({ e-
q

} { 1 }) .
q-w-u 1 (T

where u = VI + un and v =Vii. We should not pursue
the matter any further.

In equilibrium situations, for notational convenience
we denote frequency by q instead of qo . The Green's
functions are expressed in terms of frequency q and en
ergy w since the momentum k should appear through the
momentum suffix of energy w =Wk. With the above def
inition and the choice Ct = 1, and with energy measured
in kBT, Green's functions for free oscillator operators in
equilibrium TFD are

({ :~ }{ :~ }) ({ ~~ }{ ~~ })
=(b,C, + b2 C2) ({ :~ } { ~~ }) ,

({
u(t) } { u(t') })

G=~o uv(t) vet')

• ({ V(t)"} { vet') })
+ ~o u(t) uu(t')

Gl(W; t, 1') =Ao(t, t')n[/l (1')] ( { ; }{ Il ~t') })

+Ao(t', t)I>[/;I(t')] ({ I;~(t') } { ; }) . (4)

G= q_n~Wlif ({; }{e;})
+ n( -w). ({ e-"" } { 1 }) . (5)

q-w-u 1 0'

Since the number density n matters only for the imagi
nary part which is proportional to a 6(q - w) function,
we can thus replace the energy in n(w) by n(q) and hence
the above Green's function can be written as

However this form of the Green's function is not unique
to the choice of Ct = 1. Green's functions with other
choices of Ct can also take similar structure with different
elements. For instance if Ct = 1/2 we have

which is related to an n point Green's function. A free
Green's function can be thus denoted as

which simply amounts to a contraction of two columns.
This is generalized to higher dimensions

This form is very convenient in calculations. For insta.nce
the product of two matrices is

..
-w

=-
w

The first term is the retarded part of the Green's function
and the second term is the advanced part. The Green's
function has the property that if a forward propagator is
denoted as G(w, f; t, t') a backward propagator is

as shown in Fig. 1. This is very useful in practical cal
culations since we can fix the direction of a propagator
arbitrarily as we see convenient. At the end of the cal
culation we put back the proper signs for the Green's
function and its energy.

with the following definitions

Owing to the particular structure of TFD, many ma
trix manipulations are rather simple. To facilitate our
calculations we define the following tensors

r(l) ,. { :~ }

Gk(W; t, t') = ~o(t, t')n[fk(t')]T~ToT(fk(t'))

+ ~o(t', t)n[f-l !A:(t)]T(fkl(t»ToT~ (2)

-+- c - -+ c _(2)_(2)a· a,' =vi J' + ua,'a· =Vi J' - a· a· .I , I , J I

G(w, f; t', t)T =-G(-w, f-l; t, t') (3)

r(2) ,. ({ :~ } { :~ }) .

FIG. 1. A backward propagator is replaced by a forward
propagator

T" = (~ ~), To = (~ ~),T(f) = (~ ~).

The choice of our Green's function is equivalent to a re
definition of (i(2) as uti.

Notice that in general the number parameter cannot be
expressed as a function of energy w. Instead we should
simply write it as n(t) = l/[f(t) - 0'] where f in equi
librium becomes e"" when j3 = 1. Therefore the number
density is determined by f through n(t) = n[f(t)). The
free Green's function can be easily cast into the following
form by calculating the matrix elements explicitly:

formulation of TFD, the doublet notation is defined as
(i(2) = -uti, however the Hamiltonian iI is written in
terms of
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We caution that this replacement of energy w by fre
quency q cannot be done freely. "Ve must use the en
ergy or the frequency consistently for any propagator so
that the real part is not affected. It is more convenient
to prove certain relations using frequency. However it is
more convenient to do practical calculations when energy
is used since the frequency integration involving n(q) is
formidable. Again if a forward propagator is represented
by G(q,w) a backward propagator is (see Eq. (3) and
Fig. 1)

GT(-q,w) = -G(q,-w).

When cr = 1, the Green's functions are identical to the
ones in Schwinger-Keldysh formalism in equilibrium sit
uations. However the difference becomes evident in non
equilibrium situations. We shall leave the discussion to
a future article [7].

III. FEYNMANN DIAGRAM CALCULATIONS

It has been shown that the vacuum state <01 is sta
ble in TFD, <OIS =<01. All closed diagrams are zero.
Feynmann diagram technique can be proven valid with
out using Gell-Mann-Low theorem.

In addition to the ordinary Feynman diagram rules,
the rules for calculating diagrams in TFD are: (1) each
vAertex carri~s a matrix T3 since the total Hamiltonian is
H = H - H. This is similar to the minus sign. related
to the time path integration below the real axis in the
Schwinger-Keldysh formalism. It is important to note
that there is no mixing of tilde and non-tilde operators
at all vertices. (2) At each vertex, multiply the contri
butions from all the internal lines for each thermal index
(1,2) separately. (3) Sum over the thermal doublet index
fo~ all internal vertices. When applied to loop diagrams,
thIS rule can be shown to be identical to the loop rule
defined by Eqs. (9.78) in Ref. [3] which cannot be used
for more complicated diagrams.

In the following we shall state the rules in more detail
taking advantage of the tensors defined in the previous
section by using the retarded and advanced parts of the
Green's function separately. This is very useful because
when a propagator is connected to two vertices, for each
:vertex, .only the co:responding column vector in Eq. (4)
IS requIred, accordmg to the rule that if a propagator
leaves a vertex use the first column (the first index), if
a propagator comes into a vertex use the second column
(the second index) independent of the other column vec
tor. This remarkable property simplifies calculations in
TFD tremendously. Due to the above reasoning we only
need the operations for one column tensors. There are
two operations. For an external vertex, we take the cor
responding column vector from all the propagators at
tached to this vertex and multiply all the elements in
each row, according to rule (2)

3

which is an overall column vector factor to be inser1;ed
into the proper position designated for that vertex for a
diagram. For internal vertices only one more additional
operation is required according to rules (2) and (3) which
is to sum up the two elements obtained above

{ :: }.{~ }... {:: }=II a; - II b, (8)
a I

which is an overall numerical factor for the diagram.
Since TFD is a real time formulation of quantum field

theory, it is most often more convenient to calculate
Feynmann diagrams in time space rather than in fre
quency space. Before we state the recipes for a general
multi-point diagram we shall prove a time ordering the
orem in TFD which states that no internal time can be
larger than all external times. This reflects causality even
in calculations of time ordered quantities which cannot
be shared in other quantum field theories.

Fig. 2 shows an internal vertex with time t connected
to n incoming lines from t I , .•• , tn and m outgoing lines
to t~, ... , t~. We use the convention that the arrow cor
responds to {J. The n + m point Green's function is

where I = 1,2 is the ther~al index which represents con
tributions from Hi and Hi respectively. If the internal
time t > ti,tj, (i = 1,···,nij = 1,···,m), we take the
advanced part of C(ti, t) with the second column factor
Tun and the retarded part of G(t'., t) with the first col
umn factor Tu,l , Using the diagr~m rules stated above

h n m 'we ave a factor 1-11 O'i IT· O'j = 0 due to the summa-
tion of the thermal indices, ty requiring that the inter
action Hamiltonian be Boson type observable physical
quantity. The subscripts i and j are for incoming and
outgoing variables respectively. This shows that the in
ternal time cannot be larger than all external times. By
induction we can prove that no internal times can be
larger than all external times. We shall call this the time
ordering theorem.

t'1

~ fm

FIG. 2. n incoming lines and m outgoing lines meet at t.



This property is unique to the choice of a = 1. When
a = 0 it is when the internal time is before all external
times that the contribution is zero. Nothing can be said
about other choices of a. This property will also simpli
fies calculations significantly when we count the number
of possible time arrangements for internal vertices.

The time ordering theorem is just a consequence of
the thermal state condition proven in section (7.2.5) of
Ref. [3]. It asserts that when a = 1, < Ol(A+ - A) = 0
for a boson like operator A. An internal vertex carries
nothing but the interaction Hamiltonian Hi - iIi. If its
time is larger than all other times it's placed to the left
most and thus the matrix element becomes zero.

We are now ready to state the general procedures in
calculating a multi-point Green's function with some in
ternal vertices in a Feynmann diagram technique. We
shall point out that in a diagram, as far as the fre
quency integration is concerned, a point is defined by
time not space. Hence an instantaneous space like inter
action should be treated as a point in the following and
the interaction potential should be treated as an overall
numerical factor.

(1) Fix the time ordering of the external points. Af
ter this is done arrange all possible time ordering for the
internal vertices. Arrange the time ordering in a descend
ing order. Redraw the Feynmann diagram in a manner
that vertices with larger time are placed to the left of
the vertices with smaller time. This procedure is only to
help visualize things. Since we are using a = 1, no inter
nal times should be larger than the largest external time.
Thus an arrangement having some internal vertices with
no lines to the left is excluded, the left-most vertex has
to be an external one.

(2) Since in non-equilibrium situations the energy dis
tribution may have no meaning, we shall use I in place of
eW and denote n as n(/). Assign arrows to all the-lines
according to the time ordering so that arrows point to
smaller time. If the arrow of the time direction does not
agree with the arrow of the Green's function itself I is
replaced by 1-1 and n(/) replaced by _n(/-1).

(3) Put an overall factor

IIn(ll(tl,<)) II[-n(I,;I(tl',<)).].
I I'

The first factor is for propagators with time ordering
agreeing with the arrow of the propagator and the second
for the ones with opposite directions. t < stands for the
smaller of the two times at the two ends of a propagator.
This is because every Green's function carries a factor n
according to Eq. (2).

(4) For each external vertex tj, accoring to Eq. (7),
assign a column factor

(
ITI II (t j) )
IT'I (J'I'

to be placed to the appropriate position designated for
the vertex and for each internal vertex assign a numerical
factor

4

II !l(ti) - II (J'I' = II I,(ti) - II UI

I I' I I

according to Eq. (8), where I represents lines with arrows
pointing into the vertex and m represents lines leaving
the vertex according to the time arrows. This is because
we only need to use the retarded part of a Green '5 func
tion, since the advanced part can be replaced by the re
tarded part

When the time arrow points to a vertex the second col
umn is used and when the time arrow points away from
a vertex the first column is used. Particularly for two
point diagrams if we assume that t > t' and if I > 0, we
have a matrix factor

({ ;}{Ift;./~;.) }) = u' ({ ; } { u'I1l/'(t') })

=u'n-1 (F(t'))B- 1(F(t)) II (~ ~) B(F(t'))T3,

where (J" = ITm (J'm = (J' ITI (J'l and F(t') = U' ITI I,(t'),

(J"n- 1(F) = IT /l- IT UI·

I I

Thus for the retarded part of a two point function
to be sandwiched between the B-matrices, the factor
IT, II - Il, (J'l denoted as n-1 (l:, w,) in equilibrium is
to b~ attached to all vertices except the vertex t, the one
with the largest time.

(5) Put back the factors 6 o(t, t') from the Green's
functions and integrate over all the internal vertex times.

(6) Method of projection for equilibriums. Project the
Green's functions onto the time ordering determined in
(1) utilizing the properties of the step-function O(t - t').
If a time segment (ti+l, td with ti > ti+l and no other
internal time in between, belongs to the time domain
of a particular propagator G,(t" tD with energy WI, i.e.,
t, > ti and t1< ti+l, assign a factor

Repeat for all the Green's functions satisfying the above
condition, multiply them together we can build a factor

-i8(ti - ti+t}e-' E, WI(ti - ti+d.

For all the external points we multiply by a factor eiqjtj.

F?r convenience we also multiply the internal lines by
e1q,t, with the understanding that qi = O. Hence we have

Jdt. IT dt/eiq,t, [-i9 (t/ - t/+1) e-iW,( t, - ' ..,)

1=1

=(ql - WI + ie)-I(ql + q2 - W, + ie)-l
n

... (L qj - W n + ie)-lo(L qj).
j
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Note that Wi = LI Wi,l with Wi,l the energy of a propa
gator whose time domain contains the time segment I.

This method of time projection also works for zero tem
perature quantum field theory. However there can be a
great many more terms involved since there is no time
ordering theorem at work.

(7) Repeat the process for all other possible time or
dering arrangements and add up all the contributions.

Example 1. A loop diagram with n lines joining two
external points. Assume that all lines point from t to
t'. Otherwise we use Eq. (3) which means that I is
replaced by 1-1 and n(l) is replaced by -n(1/I). There
are no internal vertices. According to (3), we have F (t) =
IIi !;(t) an overall factor

s = n-1 (F(t'» IIn(lj) = II[l + un(!;)] - IIn(lj)·
j i i

The rest comes from the factor

-i8(t _ t')e -i2':j INj(t-t')

whose Fourier transform is

(qO- LWj+ie)-I.
i

Hence in equilibrium F = IIi Ii = IIi eINj = e2':j (wj we
have

representation is valid it can be cancelled by other terms
using the following

where I represents a time ordering and by assumption

0 0 =L{O, + [n(qo) - n(vz)](DI - n;)} =0,
I

D~ = :En: = :ED; = D;.
I I

The spectral representation of a Feynmann diagram can
be proven in two ways. First, it has been proven that
any two point function satisfies spectral representation.
If perturbation is valid, it should be satisfied order by
order. The second proof relies on two stages. (1) the
independence of theory in equilibrium on the choice of
a which can be proven using the frequency formulation
of the Green's functions Eq. (6). (2) the relationship
among the two point functions. We have already proven
that the matrix sandwiched between the B-matrices has
only upper-right off-diagonal term when Q: = 1 which we
denote by O. When a = 1/2, the off-diagonal terms have
the following form

which must be related to the Q: = 1 term in the following
manner

which is the spectral form.

t

t2
FIG. 3. A vertex correction.

t'

Hence C· = 0, which leads to 0 = O. Since the theory
with a = 1/2 is symmetric, we must have D~ = D;. In a
separate paper we shall prove that only n is relevant in
the calculation of the response functions [7].

In our present case there are only 4 possible ways to
order the internal vertices.

(1) t1 > t2 > t'. All time directions are the same as
the directions of the propagators we have a factor

Example 2. Fig. 3, one vertex correction in equilibrium
calculations. We work out the retarded part with t > t'.
If all the lines connected to vertex t' are to the right
according to the time direction, there is a contribution of
the form

for any n and thus it gives no contribution to the diag
onal part. This is to be discarded since if the spectral
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vertex t1 with line 1 going in a factor n-1(wl), vertex t2
with lines 2 and 5 going in a factor n -1 (W2 + ws), vertex
t' with lines 3 and 4 going in a factor n-1(w3 + W4).

Lines 1 and 2 project onto (t,tr) a factor (qo - WI 

W2 + ie) -1, lines 3, 5 and 2 project onto (tl' t2) a factor
(qo - W3 - Ws - W2 + iE)-r, lines 3 and 4 onto (t2, t') a
factor (qo - W3 - W4 + ie) -1. Collect all the factors we
have



(9)

(qO - WI - U,,'2 + ie)(qo - W3 - W4 + if)

n(WS)n(W2)n-I (W2 + ws)

qo - W2 - wa - Ws + if

(2) Similarly when t2 > tl > t', the time direction of
line 5 is opposite to the time direction of the propagator,
so the sign of its energy is to be reversed, this gives an
overall term

(qO - WI - W2 + ie)(qo - W3 - W4 + ie)
-n(-ws)n(wdn-I(wl - Ws)

qo + Ws - WI - W4 + ie

(3) When tl > t' > t2 we have a term

(qO - WI - W2 + if)(qo - W2 - W3 - Ws + if)

n-1(w2 + Ws - W4)
(W4 - W2 - ws) .

(4) When t2 > t' > tl we have a term

n(wdn( -w3)n( -ws)

(qo - WI - W2 + ie)(qo - WI - W4 + Ws + ie)
n-I(WI - Ws - W3)

(W3 +ws -wd .

Add up all the terms obtained above we have

where

D = 1 {n- I(W3 + w4)n(W3)n(w4)
(qo - WI - W2 + ie) (qo - W3 - W4 + if)

[
n(ws)n(W2)/n(W2 + W~) _ n( -ws)n(wt}/n(wl - ~s)]

qo - W2 - W3 - Ws + ze qo + Ws - WI - W4 + Z€

-n(W2)n( -W4)n(wS) n-l (w2 + Ws - W4)
+(qO-W2- W3- wS+ ie) (W4- W2- WS)

n(WI)n(-w3)n(-wS) n-I(wl -ws -w3)}
+(qO - WI - w4 + Ws + if) (W3 + Ws - WI) •

The rest is just momentum integration.
It is important to point out that we have only four

terms to work with, while in Matsubara we need 10 terms
to begin with. Another point to note is that we have
terms of the following form

This term does not give an imaginary part and does not
diverge, the limit that Li Wi =0 is 13. This point is non
trivial when one calculates the correction of the density

6

number NH to the bare Bogolibov number n. Take the
simplest interaction Hi = 6wa+ a for instance, the first
order correction is

NH(t) ~ new) - n2(w)ec.1i6w lim10

dt'(e f3 € - l)e- iEt
'

€-o -00

=new) + n2(w)ec.1j36w,

provided that j36w is sufficiently small. E is the energy
transfer. The same can happen in other situations,

In summary, we have presented a simple recipe to cal
culate Feynmann diagrams in TFD. Practical calcula
tions become possible for more complicated diagrams.
We have shown that calculations in TFD can be sim
pler than the imaginary time approach and causality is
preserved even for quantum systems.
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