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ABSTRACT

The longitudinal and transverse collec~ive modes in a

nonrelativistic electron-positron plasma are studied in two

cases: where a static uniform magnetic field is present or

absent. The dispersion relations for the longitudinal and

transverse collective modes in the absence of a magnetic field

and those for the longitudinal mode in the presence of a magnetic

field (Bernstein mode) are found-to be similar to those for the

one-component electron plasma. The transverse modes in the

presence of a magnetic field, on the other hand, are found to be

quite different trom the electron-ion plaslDa: The dispersion

relations tor the left- and right-circularly polarized waves

propagating parallel to the .agnetic field are found to be

identical. In addition to the transverse plasm. oscillations, the

low frequency Altven mode exists, while the whistler mode does

not exist. Por waves propagating perpendicular to the magnetic

field, the extraordinary wave becomes a pure transverse mode. In

the cold plasma limit, there is only one resonance at the

cyclotron frequency and one cutoff for the extraordinary mode, in

contrast to the electron-ion plasma, where there are two hybrid

resonances and two cutoffs.
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I. nrntODOC'fIO.

Recent experiments have opened up the possib1l1ty of

creating a nonrelativistic electron-positron plas.. in the

laboratory. There are at least two sche.es in wh1ch the

nonrelativ1stic electron-positron pIasa. can be produced in the

laboratory. In one sche.e, a relativistic electron beam impinges

on a high-Z target, where positrons are produced copiously. The

relativistic pa1r plasma is then trapped 1n a magnet1c a1rror and

is expected to cool rapidly by radiation. 1 In another scheme,

positrons are accumulated trom a beta source. 2 ,3 The purpose ot

the present paper is to stUdy the collective modes in a

nonrelativ!stic electron-positron (e-e+) plasma by deriving the

dispersion relations and daaping rates in two cases when a static

spatially-uniform magnetic tield 18 absent or present. We

consider only a homogeneous neutral electron-positron plasma in

thermal equilibrium.

In general, the study of the collective modes in a plasma is

of importance trom the diagnostic point of view, since the

observation of the propagation characteristics of the wave modes

may be used in order to determine the physical parameters in the

plasma •• So far. the properties of the electron-positron plasma

have been studied mostly in the relativistic regime in the

astrophysical context. This is because pair production, which is

one of the most etfective aeans for producing an electron­

positron plasma, involves high energy processes under most

astrophysical conditions, such as solar flares, pulsars, black
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holes, and the jet phenoaena associated with active galactic

nuclei. S ,6

Soae of the unique features of the neutral e-e+ plasma may

be stated as follows.

1) Same dynamical properties for electrons and positrons:

Owing to the same aasses and electric charge aagnitudes for the

electron and positron, their dynamical behavior is the same. This

is to be contrasted with the electron-ion (e-i) or electron-hole

Ce-h) plasaa. The dynaaical time scales are d1fferent from those

in e-i and e-h plasmas. In the case of the e-i plasaa, for

example, the relation among the electron-electron (ee), ion-ion

(ii), and electron-ion (ei) relaxation time scales is1

Tee Tei fa 1 ( 1. 1)

where ai and me are the aasses of the ion and electron,

respectively. Due to this hierarchy of the tim. scales the e-i

plasma may exist as a two temperature plasaa where the electrons

and ions are both in thermal equilibrium but at d1fferent

teaperatures'Te and Ti' respectively. Par an e-e+ pIasa., on the

other hand, the electron-electron (--), positron-positron (++),

and electron-positron (-+) relaxation tim. scales are

coaparable: 8

T __
T++ T_+ =- 1 1 1/2. (1.2)

Thus, it is not possible to produce an e-e+ plasma with each
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component in thermal equilibriua and either with T_ » T+ or with

T_ « T+. Here, T~ is the temperature of the species ~ (- tor

electrons and + for positrons). That is, when an electron plasma

in thermal equilibrium at temperature T_ is mixed with a positron

plasm. in thermal equilibrium at temperature T+ (~T_), thermal

equilibrium for each component w111 not be attained until the

whole e-e+ plasma reaches a thermal equilibriua state.

ii) Coupling to electromagnetic waves in the pre.ence ot a

magnetic field: In the presence of a magnetic field, the electron

and positron pertorm a gyromotion at the sa•• frequency (10_1 •

0+) in opposite directions. This is to be contrasted to the case

with the e-i plasma, where 01 « 10el. Por a charge-neutral e-e+

plasm., i.e., when n_ • n+, the plasma couple. to the lett- and

right-circularly polarized waves equally, which 1s 1n contrast to

the e-1 plasma.

iii) Annihilation processes:

e- + e+ ~ 2T, 3T, ••. (1.3)

In addition to the ordinary plasm. processes, pair annihilation

can take place in an e-e+ plasma, which also applies to the

nonneutral case. The pair annihilation processes are of

particular importance in astrophysics since the gamma rays

produced give a clear signature of the presence of positrons in

the astrophysical object. The annihilation-line gamma-ray source
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found near the Galac~1c Center, which has recen~ly been

iden~1tied9 as the x-ray source 1£1740.7-2942, has allowed an

estimate of the number of posi~rons and the tim. variability, as

well as the .nvironmen~ in which the annihilations take

place. 5 ,6,10-13

Iv) Annihilation time scales versus time scales tor collective

oscillations: Under realistic conditions, the electron-positron

plasma is well defined in the sense that its litetime against

pair annihilation is much larger than the characteristic

time scales tor collective oscillations. In order to illustrate

this point, let us consider a neutral (n_ • ft+) electron-positron

plasma. As a characteristic tim. seal. for collective

oscillations, one may tak.~he plasma frequency (ct. Sec. II)

(1.4)

where the cgs units will be used throughout this paper with n_

the electron number density in c.-3 • The thermally-averaged rate

coefficient (rate/target density) tor direct annihilation (e- +

e+ ~ 2T), which dominates at temperatures T > 7xl05 K, Is12

Here, vrel is the relative velocity, re ~ e 2/me c 2 , c the velocity

of light, and aa is the annihilation cross section in the Born

approximation,14 nre 2c/Vrel' times a Coulomb correction tactor,12
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which, after thermal averaging, yields a dimensionless function

3(a) of a parameter a • (2w2 Ry/ksT)1/2. The function 3(a) is

weakly temperature dependent, varying, e.g., 1.1 < 3(a) < 81.3

for 3.1xl08 > T > 3xl02 K. At temperatures T < 1x105 X, on the

other hand, positroniua formation via radiative recombination

dominates at a temperature dependent rate. 12 Por example, the

rate coefticient vari••

(1.6)

for T a 3xl02 - 3xl06 K. Once the positronium is tormed, its

annihilation depends on the spin of the ground state: 15 The para­

positroniua decays into two photons with a lifetime TO •

1.24x10-10 s, while the ortho-positroniua decays into three

photons with a lifetime Tl • 1.39xl0-1 s. Pro. (1.4) and (1.5),

one obtains

Ra/~p • O.937xl0-19 3(a) n-

at temperature T and

(1.1)

(1.8)

at T • 103 K, tor example. In either case, the electron-positron

plas.a will live sufficiently long tor many collective

oscillations before it annihilates.
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The organization ot the present. paper i8 as follows. In Sec.

II, we derive the dispersion relations for the longitudinal aodes

in an electron-positron pI.... at finite temperatures in the

cases where a magnetic field is absent or present. In the

pre.ence of a magnetic field, the longitudinal ~plas.. wave and

the Bernstein mode are considered. In Sec. III, the transverse

modes are studied with or without a magnetic field. For the waves

propagating parallel to the magnetic field, the dispersion

relations for upper and lower branches are derived. For wave

propagation perpendicular to the magnetic field, the dispersion

relations for extraordinary and ordinary waves are derived in the

cold plasma limit. In Sec. IV, a summary and soae discussion are

given.
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II. LOBGIroDI.AL MODIS

The dielectric tensor may be obtained fro. the combination

of the Maxwell equations and the linearized Vl.sov equation. 16- 19

We first consider the longitudinal modes in the plasma with and

without an external magnetic field.

A. Without external magnetic fields: The Langauir mode.

The frequency and wave-number dependent longitudinal

dielectric function i.20

~

e(k,~) • 1 + ~ (ka2/k2) W(~/k(kBTa/~)1/2),
a--,+

where W(x) is the plasma dispersion function,21 ka •

(4nnaqa2/kBTa)1/2 the Debye wave number with Da the number

(2.1)

density, qa the electric charge, Ta the temperature, ma the mass

for the particle species a (- for electrons and + for positrons),
~

and kB the Boltzmann constant. In addition, k • Ikl and m_· m+

• m. When the temperature of the electrons 1s the same as that of

the positrons (T_ - T+ • T), (2.1) reduces to

(2.1a)

where kD 5 k_2 + k+2 • In order to find the dispersion relation

tor collective modes, we seek a solution to the equation E(k,~) =
o. A well-defined collective mode exists where the phase velocity
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of the wave is much larger than ~he.thermal velocity of the
. \

particles. ~/k» (kBT/m)1/2. In' such a region. one finds

~ ( k) • ~p [1 + (3/2) (k/k~ )" 2 + ••. ],

T(k) - -(w/8)1/2 ~p (kD/k)3 exp[-(kD/k)2/2 - 3/2].

(2.2a)

(2.2b)

,-
where ~p2 • ~p_2 + ~p+2 with ~pa2 • 4ttna~2/ma.·The dispersion

relation (2.2) is quite similar to that for a one-component

electron plasma. The latter may be trivially obtained from the

tormer with the replacem~nts' kD2 ~ k_2, ~~2 ~ ~p_2.·

B. In the presence of an external uniform magnetic field.

In the presence of an external constant uniform magnetic

field, the longitudinal dielectric function 1s given by 20

~ m
f(k,~) • 1 + % (ka2/k2) (1 + ~ [~/(w-nna)]

a--,+ n--m

.[w«~-nna)/lklll(kBTa/m)1/2)- l]An (Ba )},

(2.3)

where aa • ~B/mac 1s the cyclotron frequency including the sign

ot the electric charge qa (i.e., Q+ • leIB/m+c ~ Q > 0, Q_ - - Q+

< 0), Sa - k.2 ksTa /IIlaQa 2 • (c.Jpcr2/Qa 2) (kJ.2 /kcr2 ), An(Sa) :I

In(Ba)exp(-Ba ), and In(x) is the modified Bessell function of the
...a. ~~

first kind with k:l Ikl = (kI12+k~2)1/2 and kl I a k-S/lkIIBI. In

the following, we consider the case T- • T•• T (i.e., S- = B. 5

St. Then, noting that22 I_n(S) • In(S), one finds that
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~

e(k,,,,) - 1 +
CD

(kD2/k2 ) (1 + ~ [w/(w-nQ_)]
n--aa

1. Longitudinal plasma wave.

When the magnetic field is weak such that 0 2 « ~p2, the

dispersion relation for Langmuir wave is little modified from its

field free case. Let us study the longitudinal collective mode in

the presence of a strong magnetic field (02 » ~p2). We look for

a solution near w • ± ~p in the long-wavelength limit k « kD of

the form

... ~

w • ± ~O(k) + iTO(k).

One finds

~ ~

To(k)/wO(k) - - (W/8)1/2(kD/k)3[AO(S)]3/2

.exp[-(kD2/2k2 )Ao(S»).

(2.4)

(2.5)

(2.6)

The condition that the .agnetic field be strong (02 » wp2) may

be physically stated in the following equivalent forms.

(1) The particles perform many Larmor motions during one plasma

oscillation.

(2) The energy density of the magnetic field is much larger than

the rest mass energy density of the particles. This is because
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D_2/wp_2 • (S2/4w)/n_Sc2 » 1.

(3) The Larmor; radius (rL) is JaUch saaller than the Debye length

( ~D). This' is because 10_:' /"p_ -, '~D/rL » 1.

"li .....

'. • t· .. ~ ':

2. The Bernstein sode.
I •

• . L .; ••

Next, we study the collective mode near the cyclotron

harJDonics20 ,23

(n • :1:1, :1:2, ••• ). (2.1)

We look tor a solution of the tor.

~ ~

• nQ_(1 + An(k)] + iTn(k),

under the conditions that

~

nQ_[1 + 6n(k)] < (n + 1)0_ 1

and

~

The condition on 4n (k) tro. (2.9) and (2.10) is

(2.8a)

(2.8b)

(2.9)

(2.10)

(2.11)

The condition (2.11) allows one to use the asymptotic form of the

plasma dispersion function,21 which yields

(2.12)

12



~ ~ ~ /2
Tn(k)/wn(k) • (U/2)1/2[nO-An (k)21Iklll(kBT/a)1 1

.eXP{-[nO-An(~)]2/2IkII12(kBT/m)]. (2.13)

One finds that there is no daaping as kll ~ 0 (i.e •• kL~ k ).

This i. because the electron'. aotion is not tree in the

direction perpendicular to the magnetic tield. so that the

resonance condition cannot be satisfied when kl I • o.
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III. 'tRABSVBRSB MODES

...... .... v'·

A. Without external magnetic fields.

In the absence of an external .agnetic field, the frequency

and wave number dependent trans~erse dielectric function for an

isotropic electron-positron plas.. at temperature T(_ T_ • T+)

1820

fT(k,w) • 1 - ~ (w~2/w2)[1 - W(w/k(ksTa /ma)1/2)]
~

(3.1a)

(3.1b)

where wp2 • wp_2 + wp+2. Solving the equation eT(k,w) • (ck/w)2,

one finds the dispersion relation for a transverse plasma mode of

the fora w - w(k) + iT(k) as

T(k) =- o.

"

(3.2)

(3.3)

The damping is absent because the phase velocity at the wave

obtained fro. (3.2) is always greater than the velocity of light,

so that no particles can be resonant with the wave. This result

is analogous to the one-component electron plas.a.

B. In the presence of an external magnetic field.

We now consider the electron-positron plasaa in an external
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uniform constant magnetic field. The dispersion relation for the

transverse collective modes m.y be obtained by solving the

equation20

1. Wave propagation parallel to the magnetic field.

(3.4)

We first study the waves propagating parallel to the
~

magnetic field with the wave vector k-(O,O,k), where the z axis

is chosen in the direction of the magnetic field. It is

convenient to introduc~ a unitary matrix20

, 1/12 -i/./2 0 "
U • I -i/~ l/R 0 I,

, 0 01'
(3.5)

where U u+ - U+ U • I. Then, the electric field component in the

Cartesian coordinates may be transformed to

.. , Ex I
• U I Ey I,

I Ez I
(3.6)

where

Under this transformation, the dielectric tensor becomes20

15
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where

Er 0 0 1
o fl 0 I,
o 0 • 1-

(3.9)

fr(k,~) • 1 - ~ i~a2/~(~ + ca)l
a

.[i~ N«~ + 0a)/k(ksTa /ma)1/2)],

El(k,~) - 1 - ~ [~a2/~(w - 0a)]
a

.[1 - W«~ - 0a)/k(ksTa /ma)1/2»),

E(k,w) • 1 + ~ (kq2/k2 )2 N(~/k(kSTa/ma)1/2)].
a

(3.10)

(3.11)

(3.12)

Por the waves propagating parallel to the magnetic field, the

dielectric functions simplify considerably with only the

fundamental cyclotron frequency contributing. Pro. the charge

neutrality condition (n_ • D+),

Er(k,~) • El(k,~)

• 1 - [~p_2/~(w - 0)][1 - N«w - O)/k(ksT/m)1/2)]

- [wp_2/w(~ + 0)][1 - W«~ + O)/k(ksT/a)1/2)],

(3.13)

where wp_2 _ 4nn_e2/m • wp+2 • 4wn+e2/a and Q B leiS/me> o. In

the region 1~ - 01 » k(ksT/m)1/2 (thus ~ + 0 » k(ksT/m)1/21,

(3.13) becomes

(3.14)

so that one obtains the dispersion relation
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w2 • (1/2)[[02 + Wp 2 + (ek)2]

± {[02 + ~p2 + (ck)2]2 - '(ckO)2}1/2]. (3.15)

a. Opper branch. Equation (3.15) expresses two solutions.

Let us first consider the upper branch, with the plus sign in

(3.15). In the long-wavelength li.it (ek « 0, wp)' the

dispersion relation becomes

w(k) - (02 + Wp2)1/2(1 + wp 2 (Ck)2/2(02 + wp 2 )2 + ••• ]

k ~ 0, (3.16)

while in the short-wavelength limit (ek » 0, ~p)

w(k) • ek[1 + (1/2) (wp/ck) 2 + .~.] (3.17)

The dispersion relation (w versus k) is schematically shown in

Fig. 1. When wp > 0, (3.15) with the plus sign reduces to the

magnetic field tree case. In addition, Pig. 2 illustrates the

dielectric function fl(k,w) [- fr(k,w) • (ck/~)2] versus

trequency w. Pro. Pig. 2, one tinds that there is a resonance at

w • 0, and the wave is totally reflected when Q < w < wc' where

Wc s (02 + wp2)1/2 is the cutoff frequency.

b. Lower branch. Let us now consider the lower branch, with

the minus sign in (3.15). In the long-wavelength limit (ck « a,

wp)' the dispersion relation becomes

k ~ 0, (3.18)

which is the Altv6n mode. In the short-wavelength limit (ck » 0,
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~p)' on the other hand. the dispersion relation becomes.

~(k) - Q (3.19)

This collective mode is strongly damped when I~ - QI <

k(ksT/m)1/2, i.e •• when Q - kvT < ~ < Q + kvT with vT •

(ksT/m)1/2. This daaping is due to the Doppler-shifted cyclotron

resonance, where the frequency of the wave seen by the electron

with the velocity co.ponent parallel to the magnetic field VII «

vT) is ~, - ~ ± kV11 with the plus (minus) sign corresponding to

the the wave propagating anti-parallel (parallel) to VI I. Por the

electron-positron plasma, the right circularly polarized wave is

resonant with the electrons and the left circularly polarized

wave is resonant with the positrons. The lower branch is also

illustrated in Pig. 1. It is instructive to compare the

transverse collective modes propagating parallel to the magnetic

field in the electron-positron plasma with those in the one­

component electron plasma and electron-ion plasma. One finds the

following unique features ot the electron-positron plasma.

(1) The dielectric function of the right circularly polariZed

wave er(k,~) is identical to that of the left circularly

polarized wave el(k,~). This results fro. the fact that the

electric charge to the mass ratio is equal in magnitude and

opposite in sign tor the electron and the positron.

(2) The resonance occurs tor both the right and left cirCUlarly

polarized waves. The electrons (positrons) are responsible for
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the resonance with the right (lett) circularly polarized wave.

This feature is also the direct consequence ot the equal electric

charge to ..ss ratio with opposite sign.

(3) The electron-positron pI.... being a two coaponent plasma.

the helicon .ode does not exist, wbich is in contrast to the one-

component electron plasma. while the Altv6n aode exists as in the

case of the electron-ion pl•••••

(4) OWing to the symmetry between the positively and negatively

charged particles, the dispersion relation for the right

circularly polarized wave is identical to the left circularly

polarized wave. Therefore. the whistler aode doe. not exist,

which is in contrast to the electron-ion pIa....

2. Wave propagation perpendicular to the .agnetic field.

We consider the transverse collective aode. whose wave

vector. are perpendicular to the aagnetic field. Without loss ot

generality, one may choose the x axis to be the direction of the
~

wave vector, so that k-(k,O,O). In this case, the dielectric

tensor take. the fora20

where

o I
o I,

fa I

19
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fl(k,~) - 1 - ~ (ka2/k2) ~ [(nQ~)2/~(w - DCa)] An(B~),
a n

(3.21)

f2(k,~) • 1 - ~ (ka2/k2 ) ~ [(nQa)2/w(~ - nOa)]
a n

-[An(Ba )' - (~Ba2/n2)~n'(Ba)]'

f3(k,~) • 1 - E (~a2/w2) E t(Wi(8' - nQa)] An(B~),
a n

fx(k,~) • ~ (wa2/ w2 ) ~ [(8/(W - nea)] nAn'(Ba ),
~ n

(3.22)

(3.23)

(3.24)

One immediately notice. that fx(k,w) • 0, since the electric

charge to mas. ratio i. of the same magnitude with opposite sign

for the electron and the positron. Therefore, the dielectric

tensor becomes diagonal. This feature i8 unique to the electron-

positron plasma. ~or .i.plici~, let us consider the cold pIasa.

limit (T ~ 0), where only the fund...ntal cyclotron frequency

contributes. Then, the nonzero components of the dielectric

tensor are

(3.25)

(3.26)

a. Extraordinary wave. The dispersion relation tor the

extraordinary wave may be obtained by solVing the equation

(3.27)

Because Ex - 0, (3.27) simplifies to
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(3.28)

The electric field components are Ez • 0 and Ex/By • i(fX/E1) •
~o. Therefore, E • (0, Ey , 0), i.e., the extraordinary wave is a... .- ..... ~

pure transverse wave such that E~ k and E~ B. Contrary to the

one-component electron pl.s.a, the extraordinary wave in the

electron-positron plasma is not a hybrid mode, since the

longitudinal component of the electric field is absent (Ex • 0).

This is a unique feature of the electron-positron plasma. Solving

(3.28) with (3.25), one finds that the dispersion relation for

the extraordinary wave propagating perpendicular to the magnetic

field is identical to that for the transverse wave propagating

parallel to the magnetic field (3.15). The dispersion relation

for the extraordinary wave propagating perpendicular to the

magnetic field is illustrated for the two cases Q > ~p and a < ~

in Pig. 3. It is instructive to compare the extraordinary waves

in the electron-positron plasma and the electron-ion plasma in

the cold plasma limit. The comparison is made in Table I. The

electron-ion plasma has two cutoff frequencies. while the

electron-positron plasma has only one. In addition, the electron-

ion plasma has two hybrid resonances, while the electron-positron

plasma has only one (cyclotron) resonance. One can obtain the

results for the electron-positron plasma by replacing the ion

mass (mi) by the positron mass (m+). However, some care must be

taken. By taking the limit -i ~ m+, the upper (OH) and lower

hybrid (LH) resonance frequencies in the electron-ion plasm.

reduce to ~OH ~ (~p2 + 0 2 )1/2 and wLH ~ a, respectively. On the
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other hand, there is only one resonance (cyclotron resonance) ~ a

n in the electron-positron plas.. tro. (3.28). Obviously, this

cyclotron resonance in the electron-positron plasma corresponds

to the' lower hybrid resonance in the electron-ion plaama.

Apparently, no resonance exists in the electron-positron plas..

that corresponds to the upper hybrid resonance in the electron­

ion plasma. Therefore, it appears that the the limiting procedure

m1 ~ .. in the electron-ion plas.a does not give correct results

tor the resonance in the electron-positron plasma. Let us now

take a look at the cutoff frequencies. In the limit mi ~ ~, the

two cutoff frequencies in the electron-ion plasma merge into one

cutoff frequency Wc a (Wp 2 + 02 )1/2. Thus, this limiting

procedure does correctly reproduce the cutoff frequency in the

electron-positron plasma. The origin of the discrepancy in the

resonance frequencies may be explained as follows. Por the

electron-ion plasma there are two solutions each for the

resonance and cutoff, which are respectively given by the zeros

of the denominator and numerator of the dielectric function. 19

When the limit -i ~ m+ is taken, there is a cancellation of a

factor between the denominator and numerator of the dielectric

function. Therefore, there is now only one solution each for the

resonance and cutoff. This is why another solution disappears in

this limit.

b. Ordinary wave. The dispersion relation for the ordinary

wave is given by solving the equation E3(k,w) a (ck/w)2, which in
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the cold plasma li.it (Eq. (3.26)1 yields w2 • ~p2 + c 2k2 • The

only nonzero electric field coaponent is Bz , so that B II B.

Therefore, the dispersion relation is the same as the field tree

case with the aagnatic field having no eftect. The dispersion

relation is schematically shown in .ig. 3. ror wara plasaa, the

higher cyclotron haraonics contribute to .1 and·.2 (affecting the

extraordinary wave) and to -3 (aftecting the ordinary wave). Por

the ordinary wave, Donlocal ettects beco•• iaportant at the

intersections at ~ • ck and w • nO with n a positive integer.
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IV. SUMMARY AIm DISCUSSIOR

The nonrelativistic electron-positron plasma sustains well­

defined collective aode•• The longitudinal collective aodes both

in the absence and presence of an· external static uniform

magnetic field and the transverse collective aode in the absence

of a magnetic field are found to be analogous to those either in

the one-component electron plasma or the electron-ion plasma. On

the other hand, the transverse collective 1I10d•• in the presence

ot a magnetic field are found to be quite different froll those in

the one-component electron plasma and electron-ion plas.a.

When the charge neutrality condition is satisfied (n_ •

D+), many of the unique features of the electron-positron pla••a

arise from the facts that the electric charge to mass ratio 1s

the same in magnitude but opposite in sign. Due to this symmetry,

it is found that the dielectric function of the left circularly

polarized wave fl(k,w) is identical to that of the right

circularly polarized wave fr(k,w) for the collective modes

propagating parallel to the magnetic field. Therefore, the

dispersion relation for the left circularly polarized wave is the

same as that for the right circularly polarized wave. Another

consequence is that the whistler mode does not exist, which is in

contrast to the electron-ion plasma.

The resonance occurs tor both the right circularly polarized

waves (that resonate with the electrons) and the left circularly

polarized waves (that resonate with the positrons). Since the

electron-positron plasma is a two-component plasma. the helicon
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mode does not exist, whicb is in contrast to the one-component

electron plasma. On the other hand, the Alfv6n mode exists as in

the case of the electron-ion plasma.

Par the collective aodes propagating perpendicular to the

magnetic field, the dielectric tensor becomes diagonal due to the

symmetry. An immediate consequence is that the extraordinary wave

is a pure transverse wave, i.e., it is not a hybrid mode, which

is in contrast to the one-component electron plasma. The

comparison between the extraordinary waves in the electron-ion

plasma and in the electron-positron plasma reveals that the

number of cutoff frequencies and the number of resonances differ.

The dispersion relation for an ordinary wave in the cold plasma

limit is found to be identical to that for a transverse wave in

the absence of a aagnetic field. Par warm plasma, the nonloeal

etfects on tb. dispersion of the ordinary wave become important.

Pinally. let us mention a few directions which the present

work may be extended. Pro. the schemes that can produce the

electron-positron plasma, it is apparent that the plasma can be

either neutral or non-neutral. In the non-neutral case (n__ n+),

some of the features that are unique to the neutral electron­

positron plasma do not hold. We thus expect that the collective

mode depends on the charge excess (n_ - n+) for the electron­

positron plasma much more sensitively than for the electron-ion

plasma. In the present paper, we have considered the homogeneous

plasma in thermal equilibriua. The present analysis may also be

extended to the inhomogeneous case in order to allow for a

specific plasma-confine.ent geo.etry24,25 and/or to the
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nonequi11briua case, where a nuaber of instabilities, many ot

which are unique to the electron-positron plasma, are expected.

In analyzing the positron annihilation lines near the direction

ot the Galactic Center, pla••a effects have been neglected. This

is justified by the low density ot the positrons in lIlost ot the

astrophysical environment. In the laboratory electron-positron

plasma, the density may eventually reach to the degree where

annihilation processes must be treated as occurring in a

dielectric aediwa, not in a vacuws. The plasm. ettects can play

an important role in an annihilation, where an electron with a

screening cloud around it collides with a positron also with a

screening cloud to annihilate. One may use the dielectric

functions given in this paper to incorporate the plasma

etfects. 26 We wish to study and report these cases in the future.
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TABLa I. Comparison of the extraordinary waves in the

electron-positron plasm. and in the electron-ion plas.. in the

cold pla••• Ii.it. Here, Qp 2 • ~pe2 + Wp12 , ~e2 • ~pe2 +Oe2 , ~i2

• ~12 +Oi2 , Q • Q+ • -0_, and ~p2 • ~p_2 + ~p+2.

Electron-ion plasma

Cutoff frequencies

Resonance frequencies

Upper and lower hybrid resonances (UB and LB)

Electron-positron plasmc

Cyclotron resonance

~UH2 - (~e2 + Wi 2 )/2 ± [(we 2 - Wi 2 )2/4 + Wpe2wpi2 ]1/2

LH
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JlIGURB CAPTIORS

PIGURE 1. The dispersion relation for the transverse

collective mode propagating parallel to the .agnetic field. The

left (1) and right (r) circularly polarized waves have the same

dispersion (solid curves). The lower branch i8 subject to damping

due to Doppler-shifted cyclotron resonance at finite wave numbers

(the portion of the lower solid curve between the dash-dotted

lines). The ordinate and abscissa are in arbitrary units.

PIGURE 2. The dielectric function El(k,~) c- Er(k,~) •

(ck/~)2] as a function of the frequency ~. A cyclotron resonance

occurs at ~ • 0, and the wave is totally reflected in the region

Q < ~ < ~c' where ~c • (Q2 + ~p2)1/2 is the cutoff frequency.

PIGURE 3. The dispersion relation for the transverse

collective modes propagating perpendicular to the magnetic field

in the cold plasm. limit in the two cases where the magnetic

field is Ca) strong (0 > ~p) and (b) weak (0 < ~p). There are two

extraordinary (ex) wave branches (upper and lower) and one

ordinary (0) wave branch.
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