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ABSTRACT

The longitudinal and transverse collective modes in a
nonrelativistic electron-positron plasma are studied in two
cases: where a static uniform magnetic field is present or
absent. The dispersion relations for the longitudinal and
transverse collective modes in the absence of a magnetic field
and those for the longitudinal mode in the presence of a magnetic
field (Bernstein mode) are found to be similar to those for the
one-component electron plasma. The transverse modes in the
presence of a magnetic field, on the other hand, are found to be
quite different from the electron-ion plasma: The dispersion
relations for the left- and right-circularly polarized waves
propagating parallel to the magnetic field are found to be
identical. In addition to the transverse plasma oscillations, the
low frequency Alfvén mode exists, while the whistler mode does
not exist. For waves propagating perpendicular to the magnetic
field, the extraordinary wave becomes a pure transverse mode. In
the cold plasma limit, there is only one resonance at the
cyclotron frequency and one cutoff for the extraordinary mode, in
contrast to the electron-ion plasma, where there are two hybrid

resonances and two cutoffs.




I. INTRODUCTION

Recent experiments have opened up the possibility of
creating a nonrelativistic electron-positron plasma in the
laboratory. There are at least two schemes in which the
nonrelativistic electron-positron plasma can be produced in the
laboratory. In one scheme, a relativistic electron beam impinges
on a high-Z target, where positrons are produced copiously. The
relativistic pair plasma is then trapped in a magnetic mirror and
is expected to cool rapidly by radiation.l In another scheme,
positrons are accumulated from a beta source.2:3 The purpose of
the present papér is to study the collective modes in a
nonrelativistic electron-positron (e~e*) plasma by deriving the
dispersion relations and damping rates in two cases when a static
spatially-uniform magnetic field is absent or present. We
consider only a homogeneous neutral electron-positron plasma in
thermal equilibrium.

In general, the study of the collective modes in a plasma is
of importance from the diagnostic point of view, sincé the
observation of the propagation characteristics of the wave modes
may be used in order to determine the physical parameters in the
plasma.4 So far, the properties of the electron-positron plasma
have been studied mostly in the relativistic regime in the
astrophysical context. This is because pair production, which is
one of the most effective means for producing an electron-
positron plasma, inveolves high energy processes under most

astrophysical conditions, such as solar flares, pulsars, black



holes, and the jet phenomena associated with active galactic
nuclei.5.6 )

Some of the unique features of the neutral e"e* plasma may
be stated as follows. ”

1) Same dynamical properfies for electrons and positrons:
Owing to the same masses and electric charge magnitudes for the
electron and positron, their dynamical behavior is the same. This
is to be contrasted with the electron-ion (e-i) or electron-hole
(e~h) plasma. The dynamical time scales are different from those
in e-i and e-h plasmas. In the case of the e-i plasma, for

example, the relation among the electron-electron (ee), ion-ion

(ii), and electron-ion (ei) relaxation time scales is?

Tee : Tii : Tei 1 : (my/mg)1/2 : my/mg, (1.1)

where mj and me are the masses of the ion and electron,
respectively. Due to this hierarchy of the time scales the e-i
plasma may exist as a two temperature plasma where the electrons
and ions are both in thermal equilibrium but at different “
temperatures To and T3, respectively. For an e~e* plasma, on the
other hand, the electron-electron (--), positron-positron (++),
and electron—pésitron (-+) relaxation time scales are

comparable:8
Tee 2 Tyg 2 Ty =1 : 1 : 1/2. (1.2)

Thus, it is not possible to produce an e"e* plasma with each



component in thermal equilibrium and either with T. >> T, or with
T. << T4. Here, T, 1is the temperature of the species o (- for
electrons and + for positrons). That is, when an electron plasma
in thermal equilibrium at temperature T. is mixed with a positron
plasma in thermal equilibrium at temperature T, (# T_), thermal
equilibrium for each component will not be attained until the

whole e~e* plasma reaches a thermal equilibrium state.

ii1) Coupling to electromagnetic waves in the presence of a
magnetic field: In the presence of a magnetic field, the electron
and positron perform a gyromotion at the same frequency (|Q_| =
Q,) in opposite directions. This is to be contrasted to the case
with the e-i plasma, where Q3 << |Qe|. For a charge-neutral e~et
plasma, i.e., when n_ = n,, the plasma couples to the left- and
right-circularly polarized waves equally, which is in contrast to

the e-1 plasma.

iii) Annihilation processes:

e~ + et - 27, 37, ... (1.3)

In addition to the ordinary plasma processes, pair annihilation
can take place in an e~e' plasma, which also applies to the
nonneutral case. The pair annihilation processes are of
particular importance in astrophysics since the gamma rays
produced give a clear signature of the presence of positrons in

the astrophysical object. The annihilation-line gamma-ray source



found near the Galactic Center, which has recently been
identifiedd as the x-ray source 1E1740.7-2942, has allowed an
estimate of the number of positrons and the time variability, as

well as the environment in which the annihilations take

iv) Annihilation time scales versus time scales for collective
oscillations: Under realistic conditions, the electron-positron
plasma is well defined in the sense that its lifetime against
pair annihilation is much larger than the characteristic
time scales for collective oscillations. In order to illustrate
this point, let us consider a neutral (n_ = n,) electron-positron
plasma. As a characteristic time scale for collective

oscillations, one may take -the plasma frequency (cf. Sec. II)
wp = (8nn_e?/mq)1/2 = 7.98x10% n_1/2 g-1, (1.4)

where the cgs units will be used throughout this paper with n_
the electron number density in cm~3. The thermally—averaéed rate
coefficient (rate/target density) for direct annihilation (e~ +

et & 27), which dominates at temperatures T > 7x10% K, is12
Ra/N. 3 <0aVrel> = Mre2cJt(a) = 7.48x10-15 J(a) cm3d s~1. (1.5)
Here, vpa] is the relative velocity, re = e2/mgc2, c the velocity

of light, and o5 is the annihilation cross section in the Born

approximation, 14 nrg2c/vpe;, times a Coulomb correction factor,b12



which, after thermal averaging, yields a dimensionless function
J(a) of a parameter a = (2n? Ry/kBT)l/z. The function J(a) is
weakly temperature dependent, varying, e.g., 1.1 < J(a) < 81.3
for 3.1x108 > T > 3x102 K. At temperatures T < 7x105 K, on the
other hand, positronium formation via radiative recombination
dominates at a temperature dependent rate.l2 For example, the

rate coefficient varies

Rpg/n- = 1.1x10"11 - 2.4x10"14 cm3 s-1 (1.6)

for T = 3x102 - 3x10% K. Once the positronium is formed, its
annihilation depends on the spin of the ground state:15 The para-
positronium decays into two photons with a lifetime 7o =
1.24x10°10 g, while the ortho-positronium decays into three
photons with a lifetime 7; = 1.39x10-7 g. From (1.4) and (1.5),

one obtains

Ra/wp = 0.937x10719 J(a) n. (1.7)
at temperature T and

Rpg/wp = 6.36x10717 n_1/2 ‘ (1.8)
at T = 103 K, for example. In either case, the electron-positron

plasma will live sufficiently long for many collective

oscillations before it annihilates.



The organization of the present paper is as follows. In Sec.
II, we derive the dispersion relations for the longitudinal modes
in an electron-positron plasma at finite temperatures in the
cases where a magnetic field is absent or present. In the
presence of a magnetic field, the longitudinal ‘plasma wave and
the Bernstein mode are considered. In Sec. III, the transverse
modes are studied with or without a magnetic field. For the waves
propagating parallel to the magnetic field, the dispersion
relations for upper and lower branches are derived. For wave
propagation perpendicular to the magnetic field, the dispersion
relations for extraordinary and ordinary waves are derived in the
cold plasma limit. In Sec. IV, a summary and some discussion are

given.




II. LONGITUDINAL MODES

The dielectric tensor may be obtained from the combination
of the Maxwell equations and the linearized Vlasov equation.16-19
We first consider the longitudinal modes in the plasma with and

without an external magnetic field.

A. Without external magnetic fields: The Langmuir mode.

The frequency and wave-number dependent longitudinal

dielectric function is20
e(k,0) =1+ I (kg2/k2) W(w/k(kgTy/mg)1/2), (2.1)
o=n-,+

where W(x) is the plasma dispersion function, 21 kg =
(4mngqy2/kpTy)1/2 the Debye wave number with ngy the number
density, q4y the electric charge, T, the temperature, m, the mass
for the particle species o (- for electrons and + for positrons),
and kg the Boltzmann constant. In addition, k = f;n and m_ = m,

= m. When the temperature of the electrons is the same as that of

the positrons (T_ = T, = T), (2.1) reduces to
e(iﬁw) =1 + (kD2/k2) W(w/k(kBT/nc)l/z). (2.1a)

where kp s k-2 + ky2. In order to find the dispersion relation
for collective modes, we seek a solution to the equation ¢(k,w) =

0. A well-defined collective mode exists where the phase velocity



of the wave is much larger than the ‘thermal velocity of the

particles, w/k >> (kBT/m)l/z. In such a region, one finds

@(k) = wp [1 + (3/2) (k/kp)2 + ...1, (2.2a)

7(k) = -(x/8)1/2 uy (kp/k)3 exp(-(kp/k)2/2 - 3/2], (2.2b)

where wpz s wp_z + up+2 with aé,z a 4nnc§&2/ma./The dispersion
relation (2.2) is quite siuilar to that for a one-component
electron plasma The latter nay be trivially obtained from the

former with the replacements kD - k.2, mp - mp_z.‘

B. In the presence of an external uhiform'magnétic field.

In the presence of an external constant uniform magnetic

field, the longitudinal dielectric function is given byzo

S [+ ]
e(k,w) =1+ = (ky2/k2) (1 + £ [w/(w-n0g)]

g=~—,+ n=-w
«[W((w-nQq)/|R|||(kpTe/m)1/2) - 1]An(8q)},

(2.3)

where Q; = qyB/mgzc is the cyclotron frequency including the sign

of the electric charge q5 (i.e., Q, = |e|B/m,c = Q > 0, Q_ = - Q

< 0), By = ki2kpTy/mg052 = (0pg2/0g2) (ka2/kz2), An(Bg) =

In(Bg)exp(-84), and Ip(xX) is the modified Bessell function of the
-l - D

first kind with k = |k| = (k||2+gx2)1/2 and k|| = keB/|k||B|. In

the following, we consider the case T- = T+ 2 T (i.e., B- = 8+ =

B). Then, noting that?2? I_,(8) = I,(B8), one finds that

10



- - : . @ :
e(k,0) = 1+ (kp2/k?) (1 + £ [w/(w-nQ.)]
| Do B

[W((0-nQ.)/|k||](kgT/m)1/2) - 1]An(8)}. (2.3a)

1. Longitudinal plasma wave.

When the magnetic field is weak such that Q2 << wp2, the
dispersion relation for ﬁandnuir wave is little modified from its
field free case. Let us study the longitudinal coliective mode in
the presence of a strong magnetic field (02 >> 092). We look for

a solution near @ = t wp in the long-wavelength limit k << kp of

the form
-y -
@ = % wg(k) + ivg(k). : (2.4)
One finds
—~—
wg(k) = (lk||I/k)eplAg(8)]2/2 5 (|k|||/k)up, (2.5)

70(R) /0g(R) = - (n/8)1/2(kp/k)3[Ag(8)13/2

eexp(-(kp2/2k2)Ag(B)]. (2.6)

The condition that the magnetic field be strong (Q2 >> wpz) may
be physically stated in the following equivalent forms.

(1) The particles perform many Larmor motions during one plasma
oscillation.

(2) The energy density of the magnetic field is much larger than

the rest mass energy density of the particles. This is because

11



0-2/wp-2 = (B2/4n)/n_mc2 >> 1.

(3) The Larmor radius (rL)iis much smaller than the Debye length

(Ap) - This is because [Q_]/wp- = Ap/Tp >> 1.

2. The Bernstein mode.

Next, we study the collective mode near the cyclotron

harmonics20.23

@w = nQ_ (n = £1, £2, ...).
We look for a solution of the form

N -
W = wn(k) + irp(k)
- -
= nQ_(1 + Ap(k)] + irp(k),

under the conditions that

nQ_[1 + An(ibl < (n + 1)Q_,
and

l@ - nn_I/Ik|||(kBT/n)1/2 >> 1.
—
The condition on Ap(k) from (2.9) and (2.10) is
~
Ik|||(kpT/m)1/2/na_| << |ag(k)| < 1/n.

The condition (2.11) allows one to use the asymptotic

plasma dispersion function,?! which yields
N
An(k) = kp2Apn(8)/(k2 + kp2[1 - Ag(B]),

12

(2.7)

(2.8a)

(2.8b)

(2.9)

(2.10)

(2.11)

form of the

(2.12)




Ta(®) /on () = (7/2)1/2(na_an(¥)2/|k| || (kgT/m)1/2]

eexp(-[n0_8,(K) 12/21k| | | 2(kgT/m) 1. (2.13)

One finds that there is no damping as kll -+ 0 (i.e., kp. - k).
This is because the electron's motion is not free in the
direction perpendicular to the magnetic field, so that the

resonance condition cannot be satisfied when k|| = 0.

13



III. TRANSVERSE MODES

A. Without external mgdnétié”fieldhfz
In the absence of an external magnetic field, the frequency

and wave number dependent transﬁersé;dielectric function for an

isotropic electron-positron plasma at temperature T(m T_ = T.)

ep(k,0) = 1 - T (0g2/02)[1 - W(w/k(kgTg/mg)1/2)] (3.1a)
g
= 1 - (0p2/02)[1 - W(a/k(kpT/m)1/2)], (3.1b)

where op? = wp_2 + wp+2. Solving the equation ep(k,w) = (ck/w)2,
one finds the dispersion relation for a transverse plasma mode of

the form @ = w(k) + iv(k) as
o(k)2 = ap2 + c2k2 " (3.2)
(k) = 0. (3.3)

The damping is absent because the phase velocity of the wave
obtained from (3.2) is always greater than the velocity of light,
so that no particles can be resonant with the wave. This result

is analogous to the one-component electron plasma.

B. In the presence of an external magnetic field.

We now consider the electron~-positron plasma in an external

14




uniform constant magnetic fieid. The'dispersion relation for the
transverse collective modes may be obtained by solving the

equation20

<
det f:(i‘.o) - (ck/w)2(1 -?@i‘/kzn = 0. (3.4)

1. Wave propagation parallel'to the magnetic field.

We first study the waves propagating parallel to the
‘ S
magnetic field with the wave vector k=(0,0,k), where the z axis
is chosen in the direction of the magnetic field. It is

convenient to introduce a unitary matrix20

| 1/V2 -1/V2

0 |
U= | -i/v¥Z 1/V2 0 |, (3.5)
l 0 o 1]

where U Ut = Ut U = I. Then, the electric field component in the

Cartesian coordinates may be transformed to

| Ep | € | Ey | .
| By | =0 | By |, (3.6)
| Ez | | Ez |

where
Er = (1/Y2)(Bx - iEy), (3.7)
By = (-1/Y2)(Bx + iEy). (3.8)

Under this transformation, the dielectric tensor becomes20

15



I :
=.’ (3.9)

er(k,0) = 1 - T [0g2/0(@ + Qg)]

o[1 - W((0 + Oy)/k(kgTg/mg)1/2)], (3.10)

€1(k,0) =1 - £ [0g2/0(0 - Qg)]
g .
o[1 - W((@ - Qp)/k(kpTy/mg)1/2)], (3.11)

e(k,@) = 1 + I (ky2/k2)2 W(w/k(kpTy/mg)1/2)]. (3.12)
o

For the waves propagating parallel to the magnetic field, the
dielectric functions simplify considerably with only the
fundamental cyclotron frequency contributing. From the charge

neutrality condition (n_ = n,),

ex(k,0) = €1(k,0)
=1 - (0p-2/a(e - Q)1[1 - W((e - 0)/k(kpT/m)1/2)]
- [wp-2/w(e + Q)]1[1 - W((e + Q)/k(kpgT/m)1/2)],

(3.13)

where wp-z = 4mn_e?/m = wp+2 = 4ﬂn+e2/n and Q = |e|B/mc > 0. In
the region |w - Q| >> k(kgT/m)1/2 [thus o + Q >> k(kgT/m)1/2],

(3.13) becomes
er(k,0) = 1 - wp2/(e2 - a2), (3.14)

so that one obtains the dispersion relation

16



w2 = (1/2)[[02 + upz + (ck)2]

+ {[Q2 + wp? + (ck)212 - 4(ckn)2)31/2;, (3.15)

a. Upper branch. Equation (3.15) expresses two solutions.
Let us first consider the upper branch, with the plus sign in
(3.15). In the long-wavelength limit (ck << Q, op), the

dispersion relation becomes

@(k) = (02 + wp2)1/2(1 + wp2(ck)2/2(02 + wp2)2 + ...]

k -0, (3.16)
while in the short-wavelength limit (ck >> Q, wp)
@(k) = ck[1 + (1/2)(wp/ck)2 + ...] k -+ o. (3.17)

The dispersion relation (w versus k) is schematically shown in
Fig. 1. When wp > Q, (3.15) with the plus sign reduces to the
magnetic field free case. In addition, Fig. 2 illustrates the
dielectric function €j(k,w) [= ep(k,0) = (ck/w)2] versus
frequency w. From Fig. 2, one finds that there is a resonance at
©w = O, and the wave is totally reflected when Q < @ < w;, where

we 3 (02 + up2)1/2 is the cutoff frequency.

b. Lower branch. Let us now consider the lower branch, with
the minus sign in (3.15). In the long-wavelength limit (ck << Q,

@p), the dispersion relation becomes
@(k) = ck/[1 + (up/0)2]1/2 k -+ 0, (3.18)

which is the Alfvén mode. In the short-wavelength limit (ck >> Q,

17



wp). on the other hand, the dispersion relation becomes
w(k) = Q , k - o. (3.19)

This collective mode is strongly damped when |0 - Q] <
k(kgT/m)1/2, i.e., when Q - kvp < @ < Q + kvp with vp =
(kgT/m)1/2, This damping is due to the‘Doppler—shifted cyclotron
resonance, where the frequency of the wave seen by the electron
with the velocity component parallel to the magnetic field vi (<
vp) is @' = 0 £ kv|| with the plus (minus) sign corresponding to
the the wave propagating anti-parallel (parallel) to Vil For the
electron-positron plasma, the right circularly polarized wave is
resonant with the electrons and the left circularly polarized
wave is resonant with the positrons. The lower branch is also
illustrated in Fig. 1. It is instructive to compare the
transverse collective modes propagating parallel to the magnetic
field in the electron-positron plasma with those in the one-
component electron plasma and electron-ion plasma. One finds the

following unique features of the electron-positron plasma.

(1) The dielectric function of the right circularly polarized
wave €p(k,w) is identical to that of the left circularly

polarized wave ¢)(k,w). This results from the fact that the
electric charge to the mass ratio is equal in magnitude and

opposite in sign for the electron and the positron.

(2) The resonance occurs for both the right and left circularly

polarized waves. The electrons (positrons) are responsible for

18




the resonance with the righf (left) circularly polarized wave.
This feature is also the direct consequence of the equal electric

charge to mass ratio with opposite sign.

(3) The electron-positron plasma being a two component plasma,
the helicon mode does not exist, which is in contrast to the one-
component electron plasma, while the Alfvén mode exists as in the

case of the electron-ion ﬁlasma.

(4) Owing to the symmetry between the positively and negatively
charged particles, the dispersion relation for the right
circularly polarized wave is identical to the left circularly
polarized wave. Therefore} the whistler mode does not exist,

which is in contrast to the electron-ion plasma.

2. Wave propagation perpendicular to the magnetic field.

We consider the transverse collective modes whose wave
vectors are perpendicular to the magnetic field. Without loss of

generality, one may choose the x axis to be the direction of the

-—
wave vector, so that k=(k,0,0). In this case, the dielectric

tensor takes the form<20

© | €1 -1ex O |
€e(k,0) = | 1ex €52 0 |, 7 (3.20)
| O 0 €3 |
where

19



€1(k,@) = 1 - £ (kg2/k2) = [(n0Qg)2/0(@ - nQy)] Ap(Bg).
o n

. (3.21)
€2(k,0) = 1 - £ (ky2/k2) £ [(n0s)2/0(w - nQg)]

- 5 n

*[An(Bg) - (2842/n2)An' (B4) ], (3.22)

€3(k,0) = 1 - £ (0g2/02) £ [(&/(@ - nOg)] Ap(Bg). (3.23)
g n

ex(k,0) = £ (952/02) T [(&/(@ - nOg)] nAn'(Bg), (3.24)

g n

One immediately notices that eyx(k,w) = 0, since the electric
charge to mass ratio is of the same magnitude with opposite sign
for the electron and the positron. Therefore, the dielectric
tensor becomes diagonal. This feature is unigque to the electron-
positron plasma. For simplicity, let us consider the cold plasma
limit (T - 0), where only the fundamental cyclotron frequency
contributes. Then, the nonzero components of the dielectric

tensor are
€1(k,0) = ea(k,0) = 1 - wp2/(02 - 02), (3.25)

e3(k,0) = 1 - wp2/02. (3.26)

a. Extraordinary wave. The dispersion relation for the

extraordinary wave may be obtained by solving the equation
(e1€2 - €x?)/e; = (ck/w)2. (3.27)

Because ¢, = 0, (3.27) simplifies to

20



€2(k,0) = (ck/w)? (3.28)

The electric field components are E; = 0 and Ex/E, = 1(ey/€;) =
0. Therefore.'§'= (0, Ey, 0), i.e., the extraordinary wave is a
pure transverse wave such that—z‘.l.-l: and -E_I. ? Contrary to the
one-component electron plasma, the extraordinary wave in the
electron-positron plasma is not a hybrid mode, since the
longitudinal component of the electric field is absent (Ey = 0).
This is a unique feature of the electron-positron plasma. Solving
(3.28) with (3.25), one finds that the dispersion relation for
the extraordinary wave propagating perpendicular to the magnetic
field is identical to that for the transverse wave propagating
parallel to the magnetic field (3.15). The dispersion relation
for the extraordinary wave propagating perpendicular to the
magnetic field is illustrated for the two cases Q > @p and Q < @p
in Fig. 3. It is instructive to compare the extraordinary waves
in the electron-positron plasma and the electron-ion plasma in
the cold plasma limit. The comparison is made in Table I. The
electron-ion plasma has two cutoff frequencies, while the
electron-positron plasma has only one. In addition, the electron-
ijon plasma has two hybrid resonances, while the electron-positron
plasma has only one (cyclotron) resonance. One can obtain the
results for the electron-positron plasma by replacing the ion
mass (mj) by the positron mass (m,). However, some care must be
taken. By taking the limit m§j - m;, the upper (UH) and lower
hybrid (LH) resonance frequencies in the electron-ion plasma

reduce to wpy - (Wp? + 02)1/2 and wyy - Q, respectively. On the
UH P LH

21



other hand, there is only one resonance (cyclotron resonance) o =
Q in the electron-positron plasma from (3.28). Obviously, this
cyclotron resonance in the electron-positron plasma corresponds
to the lower hybrid resonance in the electfon—ion plasma.
Apparently, no resonance exists in the electron-positron plasma
that corresponds to the upper hybrid resonance in the electron-
ion plasma. Therefore, it appears that the the limiting procedure
m§ - my in the electron-ion plasma does not give correct results
for the resonance in the electron-positron plasma. Let us now
take a look at the cutoff frequencies. In the limit mi - m,, the
two cutoff frequencies in the electron-ion plasma merge into one
cutoff frequency wc = (wp? + 02)1/2, Thus, this limiting
procedure does correctly reproduce the cutoff frequency in the
electron-positron plasma. The origin of the discrepancy in the
resonance frequencies may be explained as follows. For the
electron-ion plasma there are two solutions each for the
resonance and cutoff, which are respectively given by the zeros
of the denominator and numerator of the dielectric function.19
When the limit mj - m; is taken, there is a cancellation of a
factor between the denominator and numerator of the dielectric
function. Therefore, there is now only one solution each for the
resonance and cutoff. This is why another solution disappears in

this limit.

b. Ordinary wave. The dispersion relation for the ordinary

wave is given by solving the equation e¢3(k,w) = (ck/w)2, which in

22



the cold plasma limit (Eq. (3.26)] yields w? = mpz + c2k2, The
only nonzero electric field component is E,, so that E || B.
Therefore, the dispersion relation is the same as the field free
case with the magnetic field having no effect. The dispersion
relation is schematically shown in Fig. 3. For warm plasma, the
higher cyclotron harmonics contribute to ¢; and ¢, (affecting the
extraordinary wave) and to ¢3 (affecting the ordinary wave). For
the ordinary wave, nonlocal effects become important at the

intersections of @ = ck and v = nQ with n a positive integer.

23



IV. SUMMARY AND DISCUSSION

The nonrelativistic electron-positron plasma sustains well-
defined collective modes. The longitudinal collective modes both
in the absence and presence of an external static uniform
magnetic field and the transverse collective mode in the absence
of a magnetic field are found to be analogous to those either in
the one-component electron plasma or the electron-ion plasma. On
the other hand, the transverse collective modes in the presence
of a magnetic field are found to be quite different from those in
the one-component electron plasma and electron-ion plasma.

When the charge neutrality condition is satisfied (n. =
n,)., many of the unique features of the electron-positron plasma
arise from the facts that the electric charge to mass ratio is
the same in magnitude but opposite in sign. Due to this symmetry,
it is found that the dielectric function of the left circularly
polarized wave €¢j(k,w) is identical to that of the right
circularly polarized wave ¢,(k,0) for the collective modes
probagating parallel to the magnetic field. Therefore} the
dispersion relation for the left circularly polarized wave is the
same as that for the right circularly polarized wave. Another
consequence is that the whistler mode does not exist, which is in
contrast to the electron-ion plasma.

The resonance occurs for both the right circularly polarized
waves (that resonate with the electrons) and the left circularly
polarized waves (that resonate with the positrons). Since the

electron-positron plasma is a two-component plasma, the helicon
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mode does not exist, which is in contrast to the one-component
electron plasma. On the other hand, the Alfvén mode exists as in
the case of the electron-ion plasma.

For the collective modes propagating perpendicuiar to the
magnetic field, thg dielectric tensor becoués diagonal due to the
symmetry. An immediate consequence is that the extraordinary wave
is a pure transverse wave, i.e., it is not a hybrid mode, which
is in contrast to the one-component electron plasma. The
comparison between the extraordinary waves in the electron-ion
plasma and in the electron-positron plasma reveals that the
number of cutoff frequencies and the number of resonances differ.
The dispersion relation for an ordinary wave in the cold plasma
limit is found to be identical to that for a transverse wave in
the absence of a magnetic field. For warm plasma, the nonlocal
effects on the dispersion of the ordinary wave become important.

Finally, let us mention a few directions which the present
work may be extended. Froa the schemes that can produce the
electron-positron plasma, it is apparent that the plasma can be
either neutral or non-neutral. In the non-neutral case (n. # n,),
some of the features that are unique to the neutral electron-
positron plasma do not hold. We thus expect that the collective
mode depends on the charge excess (n_ - n,) for the electron-
positron plasma much more sensitively than for the electron-ion
plasma. In the present paper, we have considered the homogeneous
plasma in thermal equilibrium. The present analysis may also be
extended to the inhomogeneous case in order to allow for a

specific plasma-confinement geometry?4.25 and/or to the
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nonequilibrium case, where a number of instabilities, many of
which are unique to the electron-positron plasma, are expected.
In analyzing the positron annihilation lines near the direction
of the Galactic Center, plasma effects have been neglected. This
is justified by the low density of the positrons in most of the
astrophysical environment. In the laboratory electron-positron
plasma, the density may eventually reach to the degree where
annihilation processes must be treated as occurring in a
dielectric medium, not in a vacuum. The plasma effects can play
an important role in an annihilation, where an electron with a
screening cloud around it collides with a positron also with a \
screening cloud to annihilate. One may use the dielectric
functions given in this paper to incorporate the plasma \

effects.26 We wish to study and report these cases in the future.
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TABLE I. Comparison of the extraordinary waves in the
electron-positron plasma and in the electron-ion plasma in the
cold plasma limit. Here, Op2 2 wpe? + wpi2, we? 3 wpe? +Ne2, w2

= apiz +012, Q=Q.=-Q., and wpz = ap_z + 0p+2.

Electron-ion plasma Electron-positron plasms

Cutoff frequencies

oc = [(0g + 01)2/4 + 05211/2 & (4 - 01)/2 o = (02 + wp?)1/2

Resonance frequencies

Upper and lower hybrid resonances (UH and LH) Cyclotron resonance
oyr? = (0e? + 032)/2 t [(we? - ©32)2/4 + wpe2uwp;211/2 @ =0
LH
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FIGURE CAPTIONS

FIGURE 1. The dispersion relation for the transverse
collective mode propagating parallel to the magnetic field. The
left (1) and right (r) circularly polarized waves have the same
dispersion (solid curves). The lower branch is subject to damping
due to Doppler-shifted cyclotron resonance at finite wave numbers
(the portion of the lower solid curve between the dash-dotted

lines). The ordinate andrabscissa are in arbitrary units.

FIGURE 2. The dielectric function €¢;(k,w) (= e€p(k,0) =
(ck/w)2] as a function of the frequency @w. A cyclotron resonance
occurs at @ = , and the wave is totally reflected in the region

Q < @ < wg, where oc = (02 + 092)1/2 is the cutoff frequency.

FIGURE 3. The dispersion relation for the transverse
collective modes propagating perpendicular to the magnetic field
in the cold plasma limit in the two cases where the magnetic
field is (a) strong (Q > wp) and (b) weak (Q < op). There are two
extraordinary (ex) wave branches (upper and lower) and one

ordinary (o) wave branch.
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