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ABSTRACT

i
t

The effective interactions of electron liquids in two and

three dimensions, which are constructed from the Monte Carlo data

for the spin-dependent ground-state energy with the use of the

compressibility and spin-susceptibility sum rules for response

functions, are compared. The density dependences of the spin-

parallel and antiparallel effective interactions in two

dimensions are found to be remarkably similar to those in three

dimensions over the entire liquid phase.
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Electron liquids serve as model systems for strongly-coupled
Coulomb systems, which are realized under laboratory or
astrophysical conditions. Such strongly-coupled Coulomb systems
are represented by bulk metallic electrons, dense fusion plasmas,
and ions in large planets, white dwarfs, and neutron stars in the
case of three dimensions (3D), and by electron layer(s) in Si-
MOSFETs, GaAs/AlGaAs and other semiconductor heterostructures,
and on the surface of liquid helium in the case of two dimensions
(2D). The many-body theoretical study of electron liquids in two
and three dimensions thus provides a basis for understanding the
physical properties of these Coulomb systems.l:2 So far the study
has been carried out separately for each spatial dimensionality.
Apparently, these systems possess certain qualitative
similarities. In particular, in the case of degenerate systems in
either dimension at high densities, the electrons interact
weakly, and the random phase approximation (RPA) gives a
satisfactory description of the system: whereas,‘at low
densities, the systems crystallize, with either the body-centered
cubic (3D) or triangular (2D) Wigner lattice formed as their
ground states. The purpose of the present paper is to compare the
ground-state properties of the two systems of different
dimensionality and look for similarities and differences. In
order to do so, it is necessary to examine some physical
quantities which do not depend on the spatial dimensionality
explicitly. Recent Monte Carlo calculations have given accurate
numerical data on the ground-state properties of electron liquids

in two and three dimensions3:4,. Subsequently, we have constructed




the dielectrié functions and the spin susceptibilities of
paramagnetic electron liquids in two and three dimensions at zero
temperature in such a way that they are consistent with the Monte
Carlo data in terms of the compressibility and the spin-
susceptibility sum rules.5-7 In this work, the frequency moment
sum rules provide exact relations that the response functions
must satisfy, and which may be applied to systems of arbitrary
coupling strengthsa. The formulations in these terms are given
such that the dielectric properties of both systems reduce to a
small number of density dependent effective interactions. In the
present paper, we find these effective interactions particularly
suitable for comparing the two systems in order to answer the
question as to whether there are any similarities between the
systems. We then show that their density dependences of the two

systems are strikingly similar.

At zero temperature, the electron system is characterized by
only one parameter--the area density n(2D) or volume density
n(3D). Equivalently, at zero temperéture, the system can be
characterized in terms of the dimensionless coupling constant
rg(dD) = rg(dD)/ag, where rg(dD) is the mean-particle distance,
rg(2D) = 1/(nwn(2D)]1/2 and rp(3D) = [3/4nn(3D)]1/3, and ag =
K2/me2 is the Bohr radius.9 Here, the spatial dimensionality is
denoted by "d" as in n(dD), where d = 2 or 3. Currently, the
variational and fixed-node Green's function Monte Carlo
calculations give the most accurate spin-dependent ground-state

energy of these systems for the entire liquid regime. The



discrete Monte Carlo data points may be interpolated for the
entire range of densities in the liquid phase,10 from which the
compressibility may be calculated. It is found that, as the
density is decreased, the compressibility diverges at rg(3D) =
5.2 [= rg(x,3D)]11! and rg(2D) = 2.03 [s rg(x,2D)]13 and it becomes
negative at lower densities.l2 Furthermore, the systems
crystallize at rg(3D) = 100 £ 20 [= rg(W,3D)]% and rg(2D) = 37 + &
[= rg(w,2D)].3

The formulation in both dimensions starts with the screened

response function of the form5-7

Xsc(d.@) = x9(q,w)/[1 + v(q)G(q)x°(q.@)], (1)

and the nonlocal spin susceptibility of the form

xp(g.0) = -ug2x%(q.0)/[1 + v(q9)63(q)x%(q,@)], (2)

where v(q) [= 2ne2/q (2D) and 4we2/q2 (3D)] is the Coulomb
interaction, xo(q,w) the Lindhard function in d dimensions,!3 and
4p the Bohr magneton. The spin-symmetric (antisymmetric) static
local-field correction G(q) (G2(q)) takes into account the
deviation of electron-electron interactions from those in the
RPA. The local-field corrections are closely related to the
effective interactions the electrons feel. To obtain these local-
field corrections, we first express the effective potentials
between electrons of parallel and antiparallel spin as a sum of
the bare Coulomb potential and the deviation from it vtt.t¥(q) =

v(q) + fq’f"*; and define the spin symmetric and antisymmetric



effective potentials as
vers£3(q) = (1/2)[vt(q) + vt¥(q)] = v(q) + fg°, (3)
vert2(a) = (1/2)[v?t(q) - vt¥(q)] = £4?. (4)

The local-field corrections are then given as GS:3(q) =

-£qS+3/v(q) with GS(q) = G(q).

One easily sees that the screened response function of the
form (1) satisfies the f-sum rule8. The requirement that the
response functions (1) and (2) satisfy the compressibility and
spin-susceptibility sum rules determines the long-wavelength
limit of the local-field corrections uniquely. Here, the spin-
dependent ground-state energy from Monte-Carlo data gives
numerical values for both the compressibility and the spin
stiffness needed for applying these sum rules. We parametrize the
effective interactions in Yukawa form in the Fourier space,
fq?f,f&(gp) = - 2nez/[q2 + qf‘h“’(2D)2]1/2 and fq“‘"‘(3D) =
- 4me2/(q2 + q44,44(3D)2). The parameters q,, and q,, may be
determined from the two sum rules. The fq's may be made
dimensionless by multiplying them by the free-particle density of
states N0(d,0)/V = (d/2)n(dD)/Eg9(dD), where V = L9 is the volume
and EFO(dD) the free-particle Fermi energy in 4 dimensions. In
the long-wavelength limit, the dimensionless effective
interactions thus become FS = limg,g quNO(d,O)/V, etc.14 The
compressibility sum rule then reduces to the form FS = xq/x - 1,

where xg is the free-particle compressibility and « is the



compressibility calculated from the ground-state energy.
Similarly, the spin-susceptibility sum rule takes the form F2 =
xp®/xp - 1, where xp? is the free-particle spin susceptibility

and xp = limg,o xp(q.0).

The density dependence of the effective interactions F in
two dimensions calculated in Ref. 7 are plotted in Fig. 1. Since
the plot is made for one dimensionless quantity (FS, for example)
against another [rg(2D)], it is possible as well as illuminating
to compare the present results with those of the three
dimensional case.5:6 The density dependences of the F's in three
dimensions are takenl5 from Ref. 5, and are plotted in Fig. 2.
From the comparison of Figs. 1 and 2, one finds the following
features that are remarkably similar for two and three
dimensions:

(i) Both the spin-parallel and spin-antiparallel effective
interactions are negative and become stronger approximately
linearly as rg increases.

(ii) For a given value for rg, the spin-parallel interaction
is stronger (in absolute values) than the spin-antiparallel
interaction, while the relative difference between the strengths
of these interactions becomes smaller as rg increases.

(1ii) Because of (i) and (ii), the spin-symmetric interaction
also increases approximately linearly (with negative values) as
rg increases, while the spin-antisymmetric interaction takes on
small negative values for the entire range of rg in the figure

and its density dependence is very weak.




In addition to the above overall similarities, one finds the
following quantitative differences between two and three
dimensions:

(iv) The strengths of the interactions for a given value of rg
are different between two and three dimensions: For a given value
of rg, the effective interaction is stronger in two dimensions
than in three dimensions. For example, FS = -5.98 (2D) and FS =
-2.03 (3D) for rg(2D) = rg(3D) = 10, and FS = -27.64 (2D) and FS
= -9,52 (3D) for rg(2D) = rg(3D) = 40. In other words, a given
value of the effective interaction is reached with a smaller
value of rg in two dimensions than in three dimensions. For
example, FS$ = -5.98 [rg(2D) = 10] and F® = -5.89 [rg (3D) = 26];

FS = -12.96 [rg(2D) = 20] and FS = -12.99 [rg(3D) = 53].

One thus concludes that the electron-electron correlation is
stronger in two dimensions than in three dimensions for a given
value of rg. A similar conclusion has been regched by Jonsonl6,
who examined the RPA, the Hubbard approximation (HA), and the
Singwi-Tosi-Land-Sj8lander approximationl? in two dimensions. He
found that the RPA and HA are less satisfactory for two
dimensions than for three dimensions because the pair correlation
function near zero separation calculated in these two
approximations take on larger negative values in two dimensions.

(v) From the above values of the F's at different densities,
one can be more quantitative in comparing the two and three

dimensional systems. In particular, as far as the strengths of



the electron-electron correlations are concerned, the two
dimensional system at a given value of rg(2D) corresponds to the
three dimensional system at about rg(3D) = 2.5rg(2D). This ratio

# 2.5 is consistent with both the ratio of the coupling strengths

where the compressibility diverges
rg(k,3D)/rg(k,2D) = 2.6 (5)
and the ratio of the Wigner crystallization pointsl8.19

rg(W,3D)/rg(W,2D) = 2.70 + 0.65. (6)

In summary, the effective interactions of electron liquids
in two and three dimensions, which are constructed from the Monte
Carlo results for the spin-dependent ground-state energy together
with the compressibility and spin-susceptibility sum rules are
compared. The strengths of the dimensionless effective
interactions are found to be stronger in two dimensions than in
three dimensions for the same value of the dimensionless coupling
constant rg(2D) = rg(3D). More quantitatively, a particular value
of the dimensionless effective interaction in two dimensions with
the dimensionless coupling constant rg(2D) is attained for three
dimensions at a larger coupling constant rg(3D) = 2.5rg(2D). It
is to be stressed that the present analysis is based on the exact
sum rules combined with the accurate Monte Carlo data. While we
have parametrized the effective interactions within the framework
of our model, the static properties in the long-wavelength limit

so far discussed are exact and thus model independent.
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FIGURE CAPTIONS
FIG. 1. The dimensionless effective interactions that
characterize the effective potentials in the long-wavelength

limit in two dimensions for 0 < rg < 40.

FIG. 2. The dimensionless effective interactions in three

dimensions for 0 < rg < 80.
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