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Abstract 

By averaging out Cartan's structure equations for a four-

dimensional Riemannian space over space regions, the structure 

equations for the averaged space have been derived with the 

procedure being valid on an arbitrary Riemannian space. The 

averaged space is characterized by a metric, non-Riemannian and 

Riemannian curvature 2-forms, and correlation 2-, 3- and 4-forms. 

The procedure allows the space-time averaging of the Einstein 

equations. It is shown that the averaged Einstein equations can 

be put in the form of the Einstein equations with the conserved 

macroscopic energy-momentum tensor of a definite structure 

including, in particular, the correlation functions. 

* Talk given at the 5th Regional Conference on Mathematical 

Physics, 15-22 December 1991, Trakya University, Edirne, Turkey, 

to appear in the Proceedings (to be published by WSPC). 
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In general relativity there exists the problem of self

consistent macroscopic description of gravity~ The way of 

constructing the equations for macroscopic gravity consists in 

averaging out Cartan's structure equations and the Einstein 

equations over space-time regions. 

Averaging out Cartan's structure equations of a Riemannian 

space M for matrix-valued metric Q-form g, connection I-form W 

and curvature 2-form r by using the averaging scheme 2 and bilocal 

exterior calculus 3 yields the structure equations for an averaged 

space JL The connection I-form on .M is taken as n == <0> where 0 

is a bilocal extension 3 of W with the coincidence limit 11m n = 
= W. The first equation for a coordinate I-form basis e takes the 

form 0A6 = 0 that means the absence of torsion. Averaging out the 

second one gives the following structure relation: 

M=R-<OAn>+OAO (I) 

where M is the curvature 2-form for the connection I-form 0, M = 

= an + OAn, and R is the average of the microscopic curvature 

2-form r, R = <1?> (n is a bilocal extension of r, 11m 1? = r) . 

With the 2-form R assumed to be a curvature 2-form for another 

connection 1-form TI, R = dTI + ITAIT, the formula (1) can be 

considered to establish a relation between the curvature 2-forms 

Mand R for the two connections that are distinguished by an 

affine deformation I-form A. There are two alternative choices to 

identify the curvatures: (I) R is a non-Riemannian curvature and 

M is a Riemannian one, A = n IT, and (II) conversely, A = TI -no 
For the metric G of the averaged space the structure equations 

DnG = Nand DoG = 0 hold (I) , and conversely for (II) , I-form A 

being defined in terms of the non-metricity I-form N (Dn and D-O 

are the exterior covariant derivatives with respect to II and 0) . 
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The last equations for G (I) have the integrability conditions 

, GM + MTG = 0 , (2a,b) 

(T is a transposition sign) and there are similar ones for (II). 

The equations for A (variants (I) and (II), respectively) 

D-A - AAA = Q DnA - AM. = - Q , ( 3 ) 
n 

where 2-form Q = <OAn> + OA.:' (see (1», are shown to be always 

integrable on ~ and hence the affine deformation I-form does 

always exist! 

The algebraic identities for R, RAe = 0 and trR = 0, 

together with QA8 = 0 and trQ = a provide, in addition to ( 2b) , 

the algebraic identities MAe = 0 and trM = O. Hence the Ricci 

tensors M~~ = MYa~y and Ra~ = RYa~y are symmetric. Note that the 

non-Riemannian geometry for the two cases (I) and (II) is always 

equiaffine since due to (3) Weyl's I-form trA is always gradient. 

In averaging out the Bianchi iden~:ities Dr = 0, the equation 

Dg = 0 and its integrability condition gr + rTg = 0, there 

appears the problem of splitting out <nAn>, <90> and <QR> (9 is a 

bilocal extension of g, lim 9 = g). The first splitting rule is 

achievable by introducing a 2-matrix-valued correlation 2-form 

Z = <(lAO> - 0An , ( 4 ) 

so that Q = - ~Z. The structure equation for Z reads 

Dol = - ~y + 2[P «nAn> - RAn) ( 5) 

which is simultaneously the splitting rule for <~An>o Here ~ is a 

matrix contraction operator acting on a R-matrix-valued R-form 

MC( J.l p... ~M M~ 0 J..l... MC( J.l B... + d [p. rna t r i x 
j3 v (]... as = 0 j3 v ..'. - j3 0 v... · .. an 15 a 

.... IPM 1 (M C( J..l p... MJ..l C( p... MP ex )..1. • • )permu t a ... lon one = ~ R - R + A • •• • 
.l'(oo I'" V (]... V I'" (]... (] I'" v ... 

The 3-matrix-valued correlation 3-form Y defined as 

y = <0A0An> - 3lPZAO - omAn ( 6 ) 

The contracted structure equation (5) turns out to average 
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out the dif=erential Bianchi identities Dr = 0, to yield the 

Bianchi identities for the curvature 2-form i, DoM = 01 

The correlation 3-form Y satisfies the structure equation 

DoY = - <CX + EiPZAZ ( 7 ) 

- 3r? «CAnAn> - OA <'RAr: - <OA'R> tJl + RAZ + 0ARAn) 
which is simultaneously t:le splitting rule for <OA'RAO>. Here the 

4-matrix-valued correlation 4-form X defined as 

x = <OAnAOAO> - 3l?ZAZ - 4lPYAO - BPzt\OAO - 0AnAQA(l (8) 

The equations for Z and Yare shown to be always integrable on ~. 

In a four-dimensional space there are no other correlation forms 

and structure equations. Given X and the structure of correlators 

in the right-hand sides of (5) and (7), these should be taken as 

differential equations to find Z and y. For example, one possible 

choice is Dol = 0 with integrability conditio"n IP(RAZ - Z/\R) = 0, 

which permits using in fact only Z and restricting the geometry 

of curvature R to a class defined by DoR = a and the condition. 

To average out Dg = 0, for the fields C changing slowly on M 

(such as covariantly constant, Killing ones and all that) it is 

assumed to be the following splitting rule: 

<OAC> = CAc (9) 

(lim C = C). The rule provides immediately for g = <~> and <g-1> 

D08 = a , (lOa,b) 

(similary, a Killing tensor on M becomes that on M), which is 

clear from the geometric point of view any averaging must 

conserve the symmetries of original space. Choosing without loss' 

of generality g = G, one has <g-1> ~ cr1 in general. 

With an additional assumption <OAnAC> = <OAO>AC in agreement 

with (9), exterior derivative of (9) gives the following rule for 

splitting out <'RAe>, written here in indices for the case Dc = a 



- 4 

= - Zap~oAC6v + C~6AZapov (11 ) 

This rule applied for g averages out gr + rT g = 0, giving 

(12a,b) 

where the identification g = G is used, these equations being the 

integrability conditions of (10a,b)! Compare them also with (2b). 

The splitting rule (11) turns out to alloy one to average 

out the Einstein equations in the mixed form, which yields 

(13) 

where the macroscopic energy-momentum tensor of the formr; is 

rna = '£<T:(m~cro» _ (Zo< + ~O<Q )::;t.lV + rfX€ M _ ~O(rrvM . (14 )
~.L!3!3 ~v!3 2 i3 ~v IS e!3 2 p ).lV 

Here Ze -_ 2Z€ 0< is a Ricci-tensor like object for 2-form :,
tJvy ~O( vy 

70( j....l - ZCX J..1 eY Aea Q Q'- <~(mi.cro» is the averaged'-!3 v - j3y va ' ~v = j....lV€' !3 
ap -o<fj ...,.0<13

energy-momentum tensor and U =g u is the tensor defined 

by simul taneo\;.s analysis 3 of (12b) and MC:'J. + C--1!iT = a ( I) or 

JlC:'J. + (J"''J.}JT = - C-i DnNrT1 (II) by means of algebraic classifica

tion of gO<j3. Averaging out the contracted Bianchi identities 

provides 3 the equation of motion for the averaged energy-momentum 

( 15 ) 

(bar is the covariant Q-derivative). Taking the choice (I) with M 

and R being the induction and field tensors, one arrives 3 at 

( 16 ) 

and the Einstein equations (13) as macroscopic ones with the 

macroscopic (continuously distributed) source of the form (14). 
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