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Abstract

By averaging out Cartan's structure equations for a £four-

dimensional Riemannian space over space zregions, the structure

equations for the averaged space have been derived with the

procedure being valid on an arbitrary Riemannian space. The

averaged space is characterized by a metric, non-Riemannian and

Riemannian curvature 2-forms, and correlation 2~, 3- and 4-forms.

The procedure allows the space-time averaging of the Einstein

equations. It is shown that the averaged Einstein equations can

be put in the form of the Einstein equations with the conserved

nacroscopic energy-momentum tensor of a definite structure

including, in particular, the correlation functions.

Talk given at the 5th Regional Conference on Mathematical

Physics, 15-22 December 1991, Trakya University, Edirne, Turkey,

to appear in the Proceedings (to be published by WSPC).




In general relativity there exists the problem of self-
consistent macroscopic description of gzavity% The way of
constructing the equations for macroscopic gravity consists in
averaging out Cartan's structure eguations and the Einstein
equations over space-time regions.

Averaging out Carfan‘s structure equations of a Riemannian
space M for matrix-valued ﬁetric O-form &, connection 1l-form w
and curvature 2-form I by using the averaging scheme2 and bilocal
exterior calculu53 vields the structure equations for an averaged
space M. The connection l-form on M is taken as {1 = <> where @
is a bilocal extension3 of W with the coincidence limit 1Im Q =
= . The first equation for a coordinate l-form basis O takes the
form ﬁAB = 0 that means the absence of torsion. Averaging out the
second one gives the following structure relation:

¥ =R - <QAQ> + QAQ (1)
where ¥ is the curvature 2-form for the connection l-form ﬁ, H =
= dQ + ﬁAﬁ, and R is the average of the microscopic curvature‘
2-form ", R = <R> (R is a bilocal extension of r, 1Im R = ).
Withvthe 2-form KR assumed to be a curvature 2-form £for another
connection l-form [I, R = dll + IIAIl, the formula (1) can be
considered to establish a relation between the curvature 2-forms
# and R for the two connections that are distinguished by an
affine deformation l1-form 4. There are two alternative choices to
identify the curvatureé: () R is a non-Riemannian curvature and
¥ is a Riemannian one, 4 = {1 - II, and (II) conversely, 4 =1 - Q.
For the metric & of the averaged space the structure equations
DHG = N and DﬁG = 0 hold (I), and conversely for (II), 1l-form 4
being defined in texrms of the non-metricity l-form N (D; and Dg

are the exterior covariant derivatives with respect to II and Q).
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The last equations for & (I) have the integrability conditions
GR+RG=-D,N , GE+¥G=0 |, (2a,b)
(T is a transposition sign) and there are similar ones foxr (II).
The equations for A (variants (I) and (II), respectively)
D:d-AAA=Q , Dpd-AMd=-Q (3)
wvhere 2-form @ = — <QALD> + QA (see (1)), are shown to be always
integrable on,ﬁ and hence the affine deformation 1-form does
always exist!
The algébraic identities for R, RA8 = 0 and 1trR = O,
together with @QAB = 0 and tr@ = O provide, in addition to (2b),
the algebraic identities HAB = 0 and tr¥{ = 0. Hence the Ricci

—_— Y — Y oy 3 4
tensors ¥ . = ¥ By and Raﬁ =R apy 3E€ symmetric. Note that the

g
non-Riemannian geometry for the two cases (I} and (II) is always
equiaffine since due to (2) Weyl's 1l-form tT4 is always gradient.

in averaging out the Bianchi identities Dr = 0, the eguation
Dg = 0 and its integrability condition gr + rTg = (0, theze
appears the problem of splitting out <RALD>, <K and <GR> (G is a
bilocal extension of g, 1Im G = &). The first splitting =rule Iis

achievable by introducing a 2Z2-matrix-valued correlation 2-form

Z = <OA> - QA0 (4)
so that @ = — €©Z. The structure equation for 7 reads
DsZ = - CY + 2P (<RAQ> - RAQ) (5)

which is simultaneously the splitting rule for <EAQ>. Here T is a
matrix contraction operator acting on a ZXR-matrix-valued XR-form

XM P, SRR S < BV L. 28 N T . :
MBVO,...aS CM_M&BV.»- Mﬁa\/...+ ¢ .. andﬂ’lsamatrlx

s 1 o e o] ‘e o . e
permutation one PM = —ET-(M B“Vpc.. ~:M“V apo.”ﬂprU 5Hv.. N N

The 3-matrix-valued correlation 2-form Y defined as

Y = <QAQAD> - 3PZAD - QAQAD . . (6)

The contracted structure egquation (5) turns out to average
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out the differential Bianchi identities Dr = 0, to yield the
Bianchi identities for the curvature 2-form i, D5M = 0!

The correlation 3-form Y satisfies the structure eguation

DFY = - ©X + 6PZAZ (7

~ 3P (<KQARADD> - QACRAC - <QARDAQ + RAZ + QIARAD)

which is simultaneously tie splitting rule for <QARA{l>. Here the
4-matrix-valued correlation 4-form X defined as

X = QAQAQAQ> - 3PZAZ - 4PYAQ - 6PZADAQ - QADAOAQ . (8)
The egquations for 7 and Y are shown to be always integrable on }Q.
In a four-dimensional space there are no other correlation forms
and structure equations. Given X and the structure of correlators
in the right-hand sides of (5) and (7), these should be taken as
differential equations to f£ind 7Z and Y. For example, one possible
choice is Dﬁz = 0 with integrability condition P (RAZ - ZAR)Y = 0,
which permits using in fact only 7 and restricting the geometry
of curvature R to a class defined by DzR = O and the condition.

To average out Dg = 0, for the fields C changing slowly on M
{such as covariantly constant, Killing ones and all that) it 1is
assumed to be the following splitting rule:

KQAC> = QAC . , (9)
(1lim € = ¢). The rule provides immediately for g = <G> and G

D8 =0 , Dzg*>=0 (10a,b)
(siﬁilary, a Killing tensor on M becomes that on ;ﬂ), which is
clear from the geonetric point of wview - any averaging must
conserve the symmetries of original space. Choosing without loss:
of generality g = {7, one has <Q~1> # G* in general.

With an additional assumption <QAQAC> = <QALI>DAC in agreement
with (8), exterior derivative of (8) gives the following rule for

splitting out <RACL>, written here in indices for the case D¢ = 0
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X R _ =M s g, =D . =M o B P

REGACY > = REGATY = = 25N AC° ) + 29 Az, (11)
This rule applied for g averagyges out gr + rTg = (0, giving

Gk + G =0 , MG™>+GHY =0 , (12a,b)

wvhere the identification g = (¢ is used, these equations being the
integrability conditions of (1lza,b)! Compare them also with (2b).
The splitting rule {(11) turns out to allow one to average

out the Einstein eqguations in the mixed form, which yields

€ . 1 LV - act » 13
G, - 56,GH,, = - &g . (13)
where the macroscopic energy-momentum tensor Tg is of the foxrm
e (micro) Ot let —py € 1 oAuy
= - + - ' (14
®Ty = ®<Ty > = (2%,,5 * 5550,,)8" + U o - 300U°VH . (19
€ £ . . . . o o -
Here 7 avy = 27 ua vy 1S 2 Ricci-tensor like object for 2-form _,
-& H - o M Y o - < (micro) s -
Zg Z By uce ABT, va Q uve ’ <T§ > iz the averaged
energy-momentum tensor and g=® =_§a5 - G*® is the tensor defined
by simultanecus analysis3 of (12b) and ¥G* + G'W = 0 (I) or
B+ T = - GdD5N61 (IZ) by means of algebraic classifica-

tion of éaﬁ. Averaging out the contracted Bianchi identities
proviaes3 the equation of motion for the averaged energy-mcmentum
a<’f§‘"’"°’°’>1€ = (Zspo[e + %leﬁ)g“” : (15)
(bar is the covariant {-derivative). Taking the choice (I) with ¥
and R being the induction and field tensors, one arrive53 at
Z’gle =0 | (16)
and the Einstein eguations (13) as macroscoplic ones with the
macroscopic (continuously distributed) source of the form (14).
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