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~ 
By averaging out Cartan's structure equations for a fc 

dimensional Riemannian space over space regions, the struct 

equations for ,the. averaged space, have been derived ~ith 

procedure being: valid on an arbitrary Riemannian space. 

averaged sp~ce is characterized by, a metric, Riemannian,~ 
(" . .~ .." , 


non-Riemannian curvature2-forms,.. and correlation 2-, 3­

4-forms~._ an affine deformation I-form being due .to 

non-metr lei ty of one .oLL: two, -:_ connection.:: l~formf)_.", ,U~ing
TOWARDS A THEORV OF MACROSCOPIC GRAVITY 

procedure for the sP<i:ce-.~ime .averaging of the.. ~in~tein ., equatic 

\ brings .~.~~: _av!!rag~d .~ne5 Wlt~,. the terms of geometr ic correcti~ -\ 
-..u. ~ by the correlation tensors. T~e equat~ons of motion for averagRoustam M. Zalaletdinov1 
\_,~
i ..,.....1. energy-moment~.~! o.btained br averaging out: the contracted Bianc,-
~ 

' 

identities, do also include such terms. Considering t<: /A 
.. v 

gravitational induction tensor to be the Riemannian curvatu., _____ISubmitted to General Relatiu(t~ and Grauitation 

\ 

tensor (the non-Riemannian one is then the field tensor), 

theorem is proved ~?ich :relates the algebraic. structur~ .of tl 

averaged microscopic metric with ~?at of the inductio~~~~sor. 1 

is shown.that the, averaged Einstein.equations can.be put in '.tt 

\c 
form ?f. the Einste.~n equat~ons with the. conserved. macr_oscopi 

energy-momentum:tensor.of a defini~e s~ructure .;~cluding th 

correlation functions. By using. the high.,.frequency.. approxim.atio.\~ 
of Isaacson with second7~rder~ correction ,to ~th~: micro~~opil\,,.."'",-- , \\).:~ 
metric~ the self-co~sistency and compatibility of ~he _equ~tion; 

" ...~f' •~·~ 

1 
and rela~ions_obtained have been shown. Hacrovacuu~.~urns out t, 

be Ricci non-flat, the macrOVacuum source being defined In_ termL 
) --' 

1 Department of Theo ~-'":'Ph~~'~'~s, Institute of Nuclear of the correlation functions. In the high-frequency limit thE 

Physics, Uzbek Academy of SCiences, Ulugbek, Tashkent 702132, equations are shown to become Isaacson's ones with the aource as 

Regublic of Uzbekistan, C.I.S. Isaacson's stress tensor for gravitational waves. 
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TRODUCTION correlation functions. Upon deriving the structure equations for 

the averaged manifold, the Einstein equations, folloving the 

tn general relativity there exists a problem of self­ Riemannian character of the space-time geometry and knovn to be 

stent macroscopic description of gravity "(1-3]. Just as-i:n additional conditions to Cartan's structure equations, can 

,rodynamics:, the' process of constructing the' field equations successfully. be, averaged out. Then, the main problem one 

1acroscopic gravity consists in averaging out..l the Efnstein (' (' encounters is which average object ~lays the role of the average 

ions and includes two steps: a space-time averaging of' the gravitational field. and vhat. object plays that of induction, If 

I operator and'a 'microscopic matter distribution. Hovever, in exists. The nonlinear ~haracter of the Riemannian geometry and, 

al relativity~ unlike electrodYllami'cs, doing even -the first (' as' a' consequence, the Einstein equations may cause the change of 

one meets a numbe~ ~f difficultie; of princi~le. Until nov geometrical and physical meaning of m~croscopic gravity compared 

lroblem of the'space-time averaging of the Einstein equations vith microscoplc Einsteinian·one. Moreover, averaging out "the 

dered as microscopic In the'i:r physical'meaning has not been equations of motion for matter (the energy-momentum conservation 

:d to some considerable content. All'the attempts have been ,lav) may lead to the appearance of additional terms- of 'geometric 

mainly in the framevork of linearized theory and no :results correction (correlation functions)· in the averaged ones., 

in fact been achieved for a full theory of 'macroscopic This paper presents an approach for solving the problem 

ity (see Refs. 2, p.2l5-288, 3, 4 and references therein2 ). (part of the results has been given in Refs. 3-6) and provides a 

~Ul to a-~o:rrect· setting :~f the- 3 problem [4] one shOUld system of the structure and field equations of a full geometric 

y, first of all, the' problem . of- 'how to' <':lverage out ,"a ~he~ry of macroscopiC ~ravity. The paper is· organized as follows~ 

~o-)Riemannian space itself, I.e.: Cartan's structure The formalism necessary for treating the space-tim~ averages in a 

tlons. The:~~eit16ns are vhich average geometrical object covariant manner is given in·, ,Sections, 2-7 •. Sections" 8 ,and .. 9 

ic, connection or c~ivature - can~ characteriz~ an averag~d present a,bilocal formulation of Cartan's structure equations of 

e and hoy to d~flnea metric'and a connection on the space. a. Riemannian ,manifold. By averaging out the Cartan's equations 

her important topic' 115 t'he spli ttlng"- of the averages of the structure equations for the averaged space have been derived 

','lCts of the objects, being found in averaging out Cartan '5 in Sections 10-12. It is in these sections that the correlation 

'cture equations~' It is the problem of introducing' the forms are introduced and a geometric theory of splitting out the 

averages of' products of the metriC, connection and curvature has 

In Ref. 4 a full list of the references is given and the been developed. The averaged Einstein equations, the equations of 

~ting approaches to treat the macroscopic gravitational fields motion for the averaged matter, and the structure of the averaged 

related topics are discussed. space-time are discussed in Sections 13 and 14. The averaged 
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Einstein equations can be shown to be put in the form of the 

Einstein equations with .the conserved macroscopic energy-momentum 

tensor of a def ini te structure· ·including, the correlation 

fUnctions. Two last sections are devoted to', the high-frequency 

approximation ana lys 1s 'of the equations' and relat ions of the 

theory up to the foux:th order' Jln the' am.plitude of ;metric 

perturbatio~ for the case of second-order co~rec~ed' micz:oscopic 

~etric. The self-consistency and compatibllit¥ of them .have been 

shown. In Section 17 an important result has; been established: 

the macrovacuum equations being Ricci: non-flat become Isaacson~s' 

ones in the high-frequency limit· with the Of macrovacuum source 

COinciding with Isaacson 1 s stress tensor for graVitational waves. 

It Is a realization of the correspondence; principle in the 

framework of the theory of macroscopic gravity. 

2. THE AVERAGING SCHEME 

The averaging scheme proposed in [7,8] and 'applied in [3,5] 

vill b~ used throughout the paper, being ~generalized for an 

n-dimensional differentiable' manifold A. Let us consider a regiori 

~C.i~ vlth a supporting point XE~ chosen arbitrarily. Any bilocal 

«' ~ 8 ~' «' 
operator .A = ~ e~, ax , ~ =~ (X, X'), satisfying the proper"t:ies 

.c.:.o
11m.A dP (la)
"' ..... ,, 

and, in A there locally exists a coordinate system in which 

.4 ::: eO(, dxO( (lb) 

(summation over a' and al, can be considered as an averaging 

operator (for an affine connection space the condition (lb) can 

be requi~ed globally 1n the limit of vanishing curvaturej see 

5 

Refs. 3,8 for a Riemannian case). Such an operator, a bile 

extension of Cartan 1 s unit tensor dP = e~&dx~, establishes 

mapping of the tensor 1 s values at x'eZ to the supporting point 

For a vector field V on A it acts as ~: V'~ V = ~(V') for ev. 

X'EZ, V being a scalar at X' and a vector at X. The average va 

of a tensox: field p = n~'" .8t"'p ••• e~e ••. 8O.'L" 8 ••• ovez: Z at 

suppoz:ting point xeZ is defined as 

- 1 J -1P ;: VI: p' (A , ... ,.A, ... )B' == -1<p' (~ , ... ,A, ... » 
I: ' .. , . ' , 

whez:e VI: = IB' is the volume of ~ and B is the volume n-fOI 
I: 

both the ways of denoting the average (2), a bax: and angul 

brackets, will be used throughout the paper. The condition (1 

l ensures the existence of an inverse operator, A(.A- ) dP a 

A(~-l), = d'P', and a correct limit of (2) as VI: ~ 0, the 11m 

x' ....x for all X'EZ. The condition (lb) provioes the nstandar, 

definition of the average (2) 

j5~' •• (X) =! Jp~'" (X' )ffLx' c p. .• VI: p •.. 
-. I:" 

-C(. •• 0in the coordinate system with considering subsequently pp •.• 

the tensor components at X in. any other coordinate system. 

The average of a sum of tensors is equal to the s~m of th 

averages and, consequently, the averaging commutes with 'contrac 

tlon, as well as preserving the algebraic symmet~yproperties a 

a tensor. A tensor field q is shown [8] to be taken out of the 

averaging Sign, pq =pq, if and only if this field ~s .A-constant 

q' (.A 
-1 

, .•• ,A, ... );: q. Note that the concept of 
. 

A-constant fiel( 

generaliz~s that of a covariantly constant field for which .A:' ie 

the parallel-displacement bivector 8;' [9]. 
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BILOCAL EXTERIOR CALCULUS 

To average out differential equations on a differentiable 

:old in accordance ~ith the averaging scheme proposed, it is 

;sary to be able, firstly, to write a bilocal extension of 

~quations under study and, secondly, to express the average 

<terior derivative of a form through the exterior derivative 

Ie average of the form. 

The solution of the first problem requires a bilocal 

:ior calculus [10J to be developed. For a differentiable 

Eold the exterior derivative is known to be the only local 

~rential operation. ConSidering on M a bilocal (~,l')-form 

. a R-form at X and an I-form at X', 1 ~ R,l ~ n) 

<D - 1 ~ ax~' 8 I 
- Jall1 ~ •.• 13' ••• A•.• ox A••• 

IS introduce the antisymmetrized-at-X exterior derivative 

lV) acting according to the rule 

I 1 y' 5 a. 6' 
d ~(AW) = Jail! ~a ••• 13' •. • ,y,W5 d.1: Aax A ••• ax A••• 

I ..!I_8 ' I

W = W; e~/QX', ~ = W; (X,X'), is another biloca1 operator 

iding the displacement of d at X' to point X 

01'
W(dx ) == 

...,0(' , '" _8 
HI =,~ ax (4 ) 

same properties (la,b) as for ~ should be required for W. 

On defining now a bilocal exterior derivative, a, as 

d: = d + d ' (AW) (5 ) 

follo~lng important theorem takes place. 

rem 1. The bilocal exterior derivative a is nilpotent, au 
if and only if 

7 

(6 )a:ufX' = 0 

Proof is straightfor~ard, using the property (dd'+ d'd)~(AW) O. 

It should be noted that in an analogy ~ith (5) one can introduce 

the antisymmetrlzed-at-X' exterior derivative d(AW- I
) and another 

biloca: exterior derivative ~ = d' + d(AW
-1 

) ~hich is also 

nilpotent, ~~ = 0, if and only if (~) holds. Both the bilocal 

devivatives are related by d(AW-1 
) = ~ or ~(AW) = a. 

'There is a bilocal e~tension of the Maurer-Cartan equations 

l~' ~'y' I ~' ~_BdCX' 2:11 . 13 I y' i;: At 2:B. 13 yax Ad:/! 
, , •. E 

for the (l,O')-form CX = e; ax, a bilocal generalization of the 

coordinate I-form basis. Here Ba~y = 2(t7~,Yl + C7~,o,~;) are 

the bianholonomicity coefficients ~hich can be shown [10] to 

serve as a measure of anr~'lonomicity of the bilocal vector basis 

e + ~~A" a bilocal generalization of the ordinary (local) one. 
a a ~ 

An operator t will be said to be biho1onomic if aCX' = O. In 

~' 
such a case B J3y O. Any operator e satisfy!ng (la, !:.) 1S 

biholonomic since in the cO'jrdinate system (lb) dE'.;(' C and 

11a ' J3y = 0, these relations being tensorial. Futhermore, de' 0 

taken as the differential equations to find turn out to bee;' 
always integrable on M with the biholonomic operator W (6). 

4. Ai~ AYEJV,r-l""-?...EGION COORDINATION 

To solve the second task and obtain the commutation formulae 

for derivation and aver- ~g, it is necess~ry to define a scheme 

of comparison (coordination) of neighbouring averaging regicns (3 

correspondence ~~tween the regions' points). 

Let ~ dlcJ<.. he a vector 'fieid on J(.::a%ing ::~e ~ fielj 

s 



the supporting point X of a region Zr let us define the shift 

field for every point X' of the reglon due to [3,7] 

Sa' = UJ'A' (~) (7 ) 

~here the same bilocal operator lV as in {4} is suitable to be 

applied. Thenr'Lie-transporting Z along the integral lines of the 

So' field on a parametric lengthAA defines a family of regions 

Z(AA). Using such a family enables'one to calculate a family of 

the average values (2) of a tensor and, upon applying the' usual 

procedure from analysis, to define the directional and partial 

derivatives of the average tensor. 

Thus, it is the bilocal operator W that alloys one to 

calculate the shift field So' (7) for any averaging region in 

accordance vith a given field e at the region's supporting point,. 

and, by choosing such n linear independent fields; one can build 

a covering of a differentiable manifold by the averaging regions 

for all points XE~ as the supporting ones. 

5. THE COM.MVTATIOH FORMULA FOR EXTERIOR DERIVATIVE .AND AVERAGING 

As a result of using the averaging-region coordination the 

~xterior derivative and averaging of a R-form a permute due to 

00 == <d/ a:(W,,A, .•. ,..4.» + <d1Ve:WAa/(..4., ... ,.A»­

<d1VIi: W> AU + ~<a' (.Ar;' ... ,.A)ABr; y>Ac:txY 
(8 ) 

'.'here dlv.. W is the a-divergence [11] of the 1-form-valued-at-x 

l-vect.or ur;)<1 at x' , the ( 0 , 0' ). torm.Ar; .A; 'ea' and the 

bianholonomicity (l,O/)-form nP .A-l~ Ii: , d..::l) 
'y e,B yo • 

Upon taking the blholonomic averaging operator, ctA°' = 0, and 

keeping ~he :egi~ns' volumes constant during their coordination 

d1ve;W = 0 

the exterior derivative and averaging ate seen to commute. 

The commutation formula (6) proves to yield a nature 

property of the exterior derivative of an average form. 

Theorem 2. For any R-form Cl on .N. the exterior derivat'ive of tl'. 

averaged R-form a is closed, ddCi = 0, if and orily if tr. 

coordination operator W is biholonomic,' d:l.tf'~ = O. 

Proof is straightforward, using (8). The geometric meanir. 

of Theorem 2 is that, after shifting a region Z along a canton 

built from the Lie-dragged vector fields, the region 
~ 

Z obtaine 

coincides with the original one, E= Z. If auf' ~ 0 it is not th 

case (an analogous theorem has been given for the case of 

Riemannian space in [8]; see also Ref. 3). 

Thus, the biholonomocity of W provides a standard exterio~ 

calculus for the averaged forms, they behaving as the loca: 

functions of supporting point. 

6. COMMUTATION OF COVARIANT EXTERIOR DERIVATIVE AND AVERAGING 

Let us consider an affine connection space. For a tensor­

valued R-form p= p;::: eO/.f)~ •• ell.7?e..• vith a R-form p;::: there 

is the following commutation formula: 

DP;::: = <d/~::: (lV,.A, .•. I.A» + <d1VeWA~::: (.A, ... ,,,4.» ­

<d1V W>AP;::: + (_1)A<~:::(.A, ... ,.A}~~> + ... - (10)e 

<~6AP::::(.A, ... ,.A» - .•• + ~<~:::(.A8,···,,,4.)AB6y>ActxY , 

where ~::: = pi (.A-la, •.. ,A~/.") and the covariant exterior 

01 • ••
derivative is defined as Dp~::: + (-1 )~o ••. Awe 

13 +dPI3 ••. e • . • 
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~::: with Wa~ being the connection I-form. The so-called 

tural (l,O')-form 

...a 
). ~ .A-l~, (D.A:' + D' .A;' (W)] (11) 

not vanish in a curved space and is expressible through the 

ture tensor of it. Presence of them in the formula (10) is 

tal importance and re£lect~ the fact of non-commutati~~ty of 

veraging and covariant exterior derivation o~ a tensor even 

Ie requires (9). tA commutation formula for the case of the 
,,':, '/.' 

:iant derivative of a tensor in a Riemannian space has been 

~ned in [7]; see also Ref. 3.) 

Under'condition (9) the formulae (8) and (10) reads 

dp;: :: = <a[~::: (.A, •.. ,.A)) > (12) 

the formulae have a correct local limit as V~ ... 0. and the 

~idence limit of (11) is Itm ~~ = 0 (similar ·coincidence 
$ -+$ 

ts can be determined by using a theorem of Christensen [12]). 

Upon assuming the coordinate systems (lb) for .A and W to be 

same and the volume n-form E to be standard, one arrives at 

apa. .. = !.." Jdpa... (X' )cfix' . ~ (13) 
~... V:r ~ ••• 

:r 
permutation of the operations of derivation and averaging. 

; flat space (3) and (13) are "standard". 

i"ItE CHOl CE OF THE OPERATORS 

The biholonomici ty c,ondi tion (6) for the operator W 

dUfC' := [~' + d'W;' (W)]Ad:J! = 0 

lid be considered as the equations in the unknowns l~' with 

boundary conditions (la), these equations being integrable 

11 

due to dd 0 and serving to find the X-dependence of W. The 

"inverse" equations 

qHf1a := [d'W- I ;, + dW-1 ;, (W-l)]A~' :: 0 

are integrable too and serve to find the X'-dependence of W. A 

{ . 
factorized solution for the equations has been obta1ned 1n [8] 

(see also Ref. 3) 

, a' I 
or ~' (OXa;o<f>!) (aq>! lo:!) (Ha,b)W; :: ~i e~ 

.. : r :"~ ~. 

{summation over { = l, ... ,n) where e~ is ~ny viel-b1en field with 

constant anholonomicity coefficients ei 
Jk 

The solution (14bl 

depends on n arbitrary scalar functions q>i, freedom of choice of 

which~llows one to satisfy the condition (9) as well. It should 

be noted that the well-known bivectors g~ 
a' 

an~l 
Ct.' 

[9] haveO'~ 

turned out to be neither biholomomic (6) nor volume-preserving 

(9) ones. 

The question is how to choose the tvo b110cal operators .A 

and lV. It is reasonable to take 

.A=W 

for, firstly, the only operator for averaging and averaging­

region coordination is determined by the equations dwP' = 0 (the 

averages can be treated as ordinary local 'functions) and diveW = 

= 0 (the volu:e-dependent terms disappear] and, secondly, the 

f~;:~;)r ,I ._. ,0 rl:,aPP':;iH3 :::;~ first t.~;:::n. t:--. the right-hand sides 

of the commutation formulae is exactly the ~v~rage of exterior 

derivative). Then, the commutation formula (12) read3 

dna •.• =:: <~ ... (W, •• . , W» {ISl
• 13 • • • J3 ••• 
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8. A BI LOCAL EXTENSI ON OF CONNECT! ON 1-FORM 

Hereafter ve vi11 consider a 4-dimensional pseudo-Riemannian 
r 

space (~~,ga~) vith a metric Bop of signature (-,+,+,+). 

Writing the structural {l,O·')-form :ss~ (ll) as ~r-"'= (tt~ 
0( , ,- : ,- :. ' -I 

W ~' one can observe that the bilocal object ' 

n~p = W-1~1 [~. + D'W:' (W)] (16) 
. ... , .- . 'l 

b~haves as a connection 1-fo~m under coordinate transformations 

'f.'

at X. The coincidence limit of (16) is 
\'0 

al~ (t(~ = w p
a; "'a; 

Therefore, it can be considered as a bilocal extension of the 

ordinary (local) connection 1-form. When averaged out the object 

<QO(~> =5a~ ~~yctxY is supposed to be an affine connection 

i-form of an averaged space ~, the affine connection coefficients 

~6 being symmetric due to (6). ~ote that for the factorized 
,Y 

::'~'::4 of W;I (14b) there al ..... ays exists the coordinate system (;Ib)., 

~i, where W;' = 0; so that in the system Qa~ is manifestly 
0( ,

the averaged W ~ defined due to (3). 

9. A BILOCAL EXTENSION OF CAR-TAWS SfRUCTURE EQUATIONS 
~ 

Let us consider the vector-valued-at-x' (0,.0' )-form Wy'_.• J._ ... . ' .• 

1~~' e I, a bilocal generalization of the vector basis e . Then,Y a ' ..,., a 

the definition of the bilacal connection I-form (16) is 

dUly = wprf y (17a) 

W-1aand the value of the last expression on {O,l' )-form 

= W-1;/~' (the bilocal I-form basis dual to Wr-) is equal to 

13 

d:W 
y 

(W- 1a ) :: rl" 
y 

(171: 

The first and second bilocal structure equation. read 

O~r-Acti' = 0- (1< 

drt'j) + rlJl.etJt- ~ = 1t"~ (1 

vhere the (2,0' I-form 1t"r- W-1;,~rr~, (W,W) is a bUoca 

ex 1 ex ~..:.y & 11m-nC:I.extension of the curvature 2-form r ~ =2 r ~ 5~- Adx, , x ~ 
... Y a; .....a; ... 

ex ' = r ~. Thebiloca1 extension of the covariant constancy conditio 

of the metric O-form 801~" D80(~ :: A, 'is found to be' 

'dga~-":' gOlEOe~ ge.~rl 01 = a (20 

where (O,O')-form gO(~ = ~'~' ~>5" 1:m ga~ = 80(~·
a; ... a; 

The integrability conditions of (18)-(20) are of the form 

(211t"~Acti' = 0 

d7t"~ - 1t"eArt, ~ + OOle A1f ~ = 0 (22) 

gO(e.Re.~ + ge~Re.a = 0 (23 

10. METRIC, COHHECTION AND CURVATURE OF THE AVERAGED SPACE 

Averaging out the structure equations (18)-(23) yields thE 

structure ~quations for the aV,eraged space .i. The connection 

I-form of the space is defined from (17a,b) as 

001 = <d:W (W-Ia » 
~ ~ , 

The first equation is 

Oa~A~ = 0 (24 ) 

that means the absence of torsion. The second one takes the form 

<Qa fJ.t:. IIt'1' :: R
a 

I' ~ > + 50( Aft (25) 
e ~ e ~ 

14 



~ 	 ~ 
m ~ is the curvature 2-form for the connection I-form 0 ~' 

'~13 d.fr~ + We Mr ~ (26a) 

~~ is the average of the microscopic curvature 2-form ra~1 

<1fX~>. The averaged 2-form Ra~ is assu.med to be a curvature 

~ for another connection I-form, ~~/, 

(26b)Ra~ = ~~ + ~e~~ 

according to [13] the formula (25) can be considered to 

lish a relation between the curvature 2-forms for the two 

ctions that are distinguished by an affine deformation 

101om Aa~ ~. There are tvo alternative possibilities to 
~ ~y 	 . 

:ify the curvature 2-forms: 

Ra~ is a non-Riemannian curvature 2-form and is a~~ 
. a -IX .,....0'

Riemannlan one, 1 ~ = 0 ~ - 11 ~i 

The forms are identified conversely, vith la~ rfC~ - W~. 
The affine deformation I-form is defined in terms of the 

~etricity I-form N ~ = N Q dxY as 
(:It", a,...y 

AIX~y =i aot8(N6~Y + N6y~ - Nj3yo) 

e Ga~ and aot~ are metric and inverse metric tensors of ] and 

(27a,b)DnGa~ = Na~ DfPaf3 =0 

he case (a) and conversely in (b). (TIn and DO denote the 

lriant exterior derivatives with respect to connections ~~ 

aoc~, respectively). Th~ , tcScabllity conditions of (27a,b) 

found to be 

o (28a,b)GO(eRe~ + Gef3Re
a DnNa~ Gcxe~ ~ + Gej3M€ a 

h 	 analogous equations in the case (b). 

A.ccording to (25) there are the following eq~lations for Al:(",: 

15 

Qa n a a £ aCa) DnAa~ - ACI€AA€~ ;3 (b) -n\ ~ - A cAA ~ = - Q ~ (29 ) 

a OCI .n€ r~ ~neh 2-form p = - < €/~~ ~> + .~ e/~.~' These equations can bewere Q

shown to be ~lways integrable on the averaged manifold ] and 

hence the affine deformation I-form does always exist. 

The algebraic identities for RCI which follow from the 
~ 

a
averaging out of the algebraic identitites for 2-form r ~ are 

Ra~Ar1.'1? = 0 ROI ': 0 	 (30a,b)
01 

and, together with Qa~A~ 0 and QCla 0, they provide, in 

addition to (28b) or their analog in the case (bi, the followIng 

algebraic identities for ~~: 

If'~Ad.1! '" 0 J(.l! =0 	 (31a,b)
a 

y 	 YTherefore the Ricci tensors M~ = U ~ and R ~ = R ~ are 
a~ CI~Y ~~ CI~y 

symmetric. It should be noted that the non-Riemannian geometry in 

the tyO cases (a) and (bl is always equi-~:Elne since due to (29) 

101
Weyl's I-form 1 = '01 is always gradient. 

Noy there is a puzzle of hoy to average out the other 

structure equations: the Bianchi identities (22), 

dRIX~ - <1fXeAO€~> + <QaeA~~> = 0 	 (32 ) 

?J,
the conditions (20) of the covariant constancy of metric, 

ctga~ - <gaea£~> - <ge~Oea> = 0 (33 ) 

ga~ 5 <9.~~>, and their integrability conditions (23), 

<9ae~~> + <ge~~£a> ~ 0 (34) 

The r!!lCl.tions seem ~y3t~ lou3 3nd eVlcently it it necessary to 

somehow split out th~ :. -; -;~2 ;) f 0d 'Jcts of th!! geomet~ica( 

ohj~c!:s - met!' ic, conn':.':~:,;~c)li .;;.,;(; .r. i ~.:l::::<:' 
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11. CORRELATION FORKS AND THE DIFFERENTIAL BIANCHI IDENTITIES 

Thus, the averaged manifold ~ has tvo curvature 2-forms,'~~ 
a . 

and R~, and they satisfy the differential Bianchi identities 

(35 )~~ - -v:xe. tlf ~ + nOle. AM£ ~ o 


dRO( 

~ 

RO(£AIf~~ uot£ARe~ o (36) 

Let us introduce a correlation 2-form3 

.;x j...l 01 • NJ -01 • N.t (37)Z. ~ v =, <0 ~ /\U' v>, - 0 ~ I'J.I v ':1 

01 0( e 
so that Q ~ = - Z e ~ ~ee (25) and (29)]. Taking the exterior 

derivative of the 2-form gives the structure equation for ZO(~~v 

DfJOI~j...lV - 2~~06~~v + 2~«~~~v> - Rex~~v) . (38) 

which is simultaneously the splitting rule sought. Here ~ is a 

matrix permutation operator, acting on a R-matrix-valued R-form 

as IPMOI j...l p... = _l_(Ma j...l p ••• - Mj...l 0( p •.• + MP 0( ~ ••• -_ ... ). 
~ V J... Al ~ v 0... v ~ J... CI ~ v ••• 

Here ~~~ e is the correlation 3-form.defined as 
..... v JC 

yOl !-!' e = <00( ~ ;..nS > _ 3!P (ZOI j...l tJ1) - oa iff iff . (39) 
~ v X ~I V at ~ V X ~ V X 

A marvellous fact is that the equation (38) contracted over 

~ and ~, with (25) taken into account, turns out to average out 

(32), to yield the Bianchi identities (35) for ~~. 

The correlation 3-farm satisfies the structure equation 

8D_Y':x' !..l e = _ 3£P".;x I) ~ d + 6? (ZOI ~ ;'7 e ) + 3iP' «1t' ~ Ml > n !3 v ;It X 1) P v ;I( j3 Cl'\.£. v x - : ~ v x 

<JtX Kf >~ + <~ Ana >~ - RO( Al~ S + RO( iIJl iff ) (40) 
~ v ~ ~ ~ v j3 v x j3v at 

3 
~ote that the correlation 2-form, as well as the correlation 

forms (39) and (41), is a tensor object built up from the affine 

connection l-form, which differs from an affine curvature 2-form. 

17 

which can be considered as a splitting rule for <~~~vAn: 

Here the correlation 4-form Xa~~ a ~ is defined as 
..... v H ljl 


XCX ~ a ~ = <Oa Mf 1\09 An~ > _ 3!P(ZCC ~ Ale ~ ) 

~ V H ljl ~ V X ljl ~ V H ljl 

4l? (yOl ~ e tJ:Y ) - 8P (ZOI ~ iff An'" ) - ax Mf tJ1 tJ:Y 
~ V:le If ~ v x If ~ V at ljl 

The equations for ZOl~~V and ya~~vex have been shown to be alw 

integrable on ~. Due to four-dimensionality of the space th 

are no other correlation forms and structure equations. Given 

cx j...l e ~ 
correlation 4-form X ~ and the structure of ' correlators ..... v at If 

the right-hand sides of (38) and (40), these equations should 

taken to find Zex~~ and ya~~ e . For example, one possible cho: 
..... v ..... v :Ie 

is to fix 

DoZa~j...lv = 0 ( 42 

with the integrability conditions 

~ (Rcc Al6 j...l _ zet ~ /J{6) 0 
5 ~ v ~ B v 

vhich enables one to use in fact only the correlation 2-fo, 

0( ~
Z ~ v' take 

Yex~e ::;;0 X()( j...l e ~ = 0 ( 42b,(
~ V :Ie ~ V H If 

and restrict the geometry of the curvature 2-form Rex~ to a clac 

defined by the conditions 

ex - ex Rex iriS ~a 010£DoR j3 = dR ~ - E: J\U ~ + € J\Ll. j3 = (4" 

and (43) [the integrability conditions of (44) are in (43)]. 
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AVERAGED HI CROSCO?I C METRI C TENSOR. AND SPLI TTl NG OUT THE 

:RAGE OF METRIC TIMES CURVATURE 

average the metric structure equations (33) and (34), it 

';ssary to be able to split out the averages of metric times 

tlon and of metric times curvature. Consider on 'a 

nianmanifold a class of slowly changing .tensor fields, 

lng the covariantly constant tensors (i.e. g-constant oneSi 

c:tion 2), Killing ones, and similar objects, which have 

large-scale mode of length Land a· small-scale mode A, 

«L, where d is the typical diameter of averaging regions. 

c~·· .. e fields denoted as a R-form it has been assumed v ••• 

;] to be the following splitting rule: 

~oa I\C~'" > = or AC~'" (45)
f) v... ~ v ••. 

is a bilocal extension of C~"', 11m ~ ... =C~··· (due to 
v... • v... v ...::c .....::c 

lIe a W-constant field is taken out of the averaging sign). 

rule provides immediately for (33) and its analogue for gaf3 

D~~ = 0 (46a,b)Dn8ct~ = 0 

ga~ = <ga~> (similary, a Killing tensor on ~ becomes that 

" which is clear from the geometric point of view any' 

ging must conserve the symmetries of an original sp~cp.. The 

!rison of (46a,b) with (27b) shows that one can always put 

( 47)Bctl3 = Gct~ 

':he case (a) from Section 10 with g:xf3 -F if~ and ~~13 -F oa 
y 

~neral. 

The exterior derivative of (45) and an additional assumption 

<oct I\f.f Aca···> = <Oa A~ >Aca ... (48 )13 v p... ~ v p ••• 
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in agreement with (45) (see Section 15 below) yield the following 

~emarkable splitting rule: 

<oa Afl ~ ••• > + or AD-C~'" + <~ AC~'" > - ~ A~'"f3 n v... f3 e v... )3 v... .~ v . .. 
(49) 

- Za ~ AC8 ••• + cJ-t ••• AZa 8 + ... 
~ 8 v ••• a.... f3 v 

where Be is the bilocal covariant exterior derivative built from 

ad and n • When applied for the case of metric tensor this rule
f3 

" a~ averages out (34) and its ana~ogue for g , giving 

~£ge~ + ~cgae = 0 (SOa,b),8ae~ ~ + 8e:~r: 01. = 0 

that are exactly the integrability conditions of the equations 

(46a,b). Compare them also with (28b) and its analogue for ~. 

Thus, the scheme proposed alloys the averaging out of a 

Riemannian space, which results in the appearance of the averaged 

one with a metric and two equi-affine connections, the affine 

deformation tensor being a result of non-metricity of one of the 

connections. The geometry of the space is described by the 

non-Riemannian and Riemannian curvatures and correlation tensors. 

It is remarkable that the number of the tensors is finite due to 

finite dimensionality of the space. Moreover, the procedure is 

seen to be valid on an arbitrary Riemannian manifold and does not 

require any restrictions on its curvature. 

13. 'THE ~ACROSCOPIC EINSTEIN EQUATIONS 

A:', i n ten t look at: ~ Einstein equations yritten in the fo~m 

gat!r _ ~Ot..J.Ivr _ -crt cx ( .mer-a) ( Sl)
£~ 2 ~~ ~v p 

reveals that the rule (49) is the single one needed to average 

out them. Then, the space-time averaging of (51) (see Ref. 3 for 
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details) yields the following equations [5,6]: 

~ell. _ ~~cfvM = _ ~(mct.ero) (52)
e~ 2 ~ ~v ~ 

"t:;t. (ma.cro)
whexe the macroscopic stress tensor r~ is of the form 

<f.T': (ma.cro ) = (£<:r; <' mi.cro) > 
~ 

(53) 
(z<lI + ~O(Q )~v + u:xeJl' _ ~orrf1v.v 

~v~ 2 ~ ~v ~ e~ 2 ~ ~v 

Here Z
0( 

~v~ 2Z~ P is a Ricci-tensox like . object for the ~p v~ 

correlation 0( ~ z~ ... J'~ a Ii:2-form Z ~ v .s Y vO l.I.:t.- Adx , Q~v Q ~v£' 
,,-::x(mi.c:ro) "1 
<1~ > is the averaged microscopic energy-momentum tensor, 

...,...cf ( m"cro ) _ to( (mi.cro ) d ...,a~ _ g-Ot~ rrOlf3 ( t11m , .1 f3 - 13 ' an u - - lr see nex section 
3: ....!II 

to inquire about the structure of the tensor) ... 

An aver~ging of the energy-momentum conservation law means 

ey l,J-lv
that of the contracted Bianchi identities g re~iY - 2~ r~vif3 

; O. In order to carry out that, it is necessary to .be able to 

split out the averages <"It" f.rf- ACa ••• >. Such a rule is obtainablef3 v p ••• 

by the exterior.derivation of (48) ~ee relations (24) of Ref. 3] 

and when applied gives the averaged contracted Bianchi identities 

in the form 

-ae l,.:;! . .lV.v 0 
B M~p!e - 26 ~vl~ (54) 

and, as a consequence, the equations of aotion for the averaged 

energy momentum 

a:.<yc- (mi.c..-o ) (Z£ 1('\ ~v 
i3 >j€ .. (55)I-lv~ Ie + 2""!-iV Ifl )~ 

(the bar denotes the covariant derivative with respect to the 

connection coefficients ~.sy) 

Taking the choice (a) from Section 10 with ~.sYO and gaflYO 

as the average field and induction tensors, respectively, one has 

been shown by using Dn~P = 0, (46b), (54) and (55) to arrive at 

the conservation law 
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~ (ma.cro) = a 

~Ie 


and the Einstein equations (52) as mactoscopic ones with 

macroscopic (continuously distributed) source of the form (53) 

The appearance of the additional terms in (55) compated w 

. t£ (mi.cro) athe microscoplC conservation law ~i£ = is connected v 

the changing of the geometrical structure of the macrosco; 

space-time as a whole, although the field equations (52) 

macroscopic gravity remain the Einstein equations and have kl 

their Riemannian character. The space-time acquires some 

za ~properties described, in particular, by the tensor 
~y 

which has emerged as an independent geometric object. From 

physical point of view this object is likely to represent 

tensor of elastic moduli for the macroscopic space-time. Due 

eqs. (55) it influences the behaviour of continuously distribu~ 

matter on the averaged manifold. Being included into t 

macroscopic stress tensor (53). these correlation terms can 

considered as providing a geometric correction of the averag 

energy momentum 

Upon defining the macrovacuum state of macroscop 

gravitation as the state corresponding to the microvacuum 01 

after an averaging out, the macrovacuum equations following fr 

the microvacuum equations r~f3 0 and from eqs. (52) read 

-a€Q zOt ~v (5'7a, ;Jla~= Q<Xf3 8 fle = I-Jvf3ts 

It follows from (57b) that gaf3 Qaf3 = O. 

In view· of the importance of the correlation 2-form Za~~v 

is worth writing here its algebraic properties 

za ~ = _ Z!-i Ot 
f:3 v v ~ 

ZCl.f3~vAd:J:v = 0 
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:x e: _ oCt 

e v v 


;: J..I :: a
€ V 

st relation being a consequence of equi-afflnity. The 

ZJ..lvPO' has the following properties: 

.Ct 1 Ct 
1 [~a]v iQ v~a 
,a a 
I j3[va] 

,e :: a 
J eva 

,e :: 
I j3ea Qj3a 

IE STRUCTURE OF MACROSCOPIC" SPACE-TIME 

~he choice Cal taken allows one to prove an important 

~m on the algebraic structure of the averaged (macroscopic) 

-time and of the tensor ua~ :: ga~ - ~ appearing in the 

scopic stress tensor (53). Indeed, the simultaneous analysis 

Ob) and the relations ~ Gf~ + ~ aet£ =0, the integrabilitye e 

tions of Dnaet~ = 0 [note that (28b) and (50a) are identical 

dopting (47)], by means of the invariant algebraic 

iflcation [14] of the symmetric tensor ga~ through the 

scopic metric tensor cet~ of signature (-.+,+,+) yields the 

",iing theorem. 

'em 3. Due to relations (SOb) there Is the following 

'~~dence between the algebraic structure of averaged tensor 

ad that of a Riemannian space with cll.rvature tensor If''a : ,...pa 

All· four algebraic types Al , A2' A3 and B without 

generations lead to the existence of four linearly 

independent covariantly constant vectors so that ~a O.,...pa 
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(B) For all the cases with generations, excepting A
1 

[(111 ,1)] .. 
and A3 [(11,2)] r the non-tr i'lial components of r I3pa are 

expressible through the Ricci tensor Ma!3 and the space-times 

are algebraically special and reducible· (there are different 

types~ depending on the algebraic types of g~~,. 

(el For the case A3 [(11,2)] when 

gCt~ = const.cet~ _ 2~a~~ (58a) 

space-time has a covarlantly constant null vector t a 
, i.e. 

cetj3 is a pp-vave metric [14]; for the case A1 [(111,1)] when 

tx~ const.[fX13 (58b) 

there are no conditions on the curvature tensor and 

space-time structure. 

The theorem gives a classificati~~ of possible macroscopi~ 

space-times and manifests the dependence between the algebraic 

properties of microscopic and macroscopic space-times - the more 

symmetric the original manifold, the more symmetric the final 

manifold. In the case (A) the microscopic space-time evid~ntly 

has no order and therefore the induction r!3Y6 vanishes. For all 

the cases (B) and (e) it has symmetries, which results in a 

non-trivial structure of macroscopic space-times, and the form of 

the tensor ~~ from (53) 1s manifestly established, in the most 

symmetric case (58b) this tensor being ~qual to %ero (canst.= 1). 

4 See Appendix of Ref. 3 with chang i:1g g,:v8 .far 
-e<j3g , •....hLch 

provides the full list of all the possibilitil'!s. 
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• 
15. THE HIGH-FREQUENCY APPROXIMATION ANALYSIS 

Let us study the self-consistency and compatibility of the 

equations and relations obtained, using the high-frequency 

approxima':icn of R. Isaacson [1.5-17]. Accordl" to the approach 

there exist5 a family of the geometries for which'the microscopic 

metric takes the form 

(59)gQ(~ ;: Ga~ + 71.0I~ 

where Ga~ is the macroscopic metric (called the background one in 

Ref. 15) slowly changing over a characteristic macroscopic length 

L and h.a~ is the high-frequency oscillating part (a ripple) with 

a microscopic lenght A, A« d « L, where d is the typical 

diameter of averaging regions. The Brill-Hartle (BH) space-time 

averaging of Refs. 16,17 was carried out over the background's 

regions, i.e. the integration measure was [-det(Ga~)]1/2, and 

~' ~' A3 	 = g~ whereas the averaging over the microscopic space-timeI 

regions with the measure [-det(8~~)]1/2 and ~' = W;' Is applied 

in this paper. For convenience, a coordinate system (59) can be 

chosen, without loss of generality, as the system (lb) for both 

th~ cases, which enables one to use (3) and (13) in what follows. 

The averages of ha~ ~nd its derivatives evidently vanish 

o 	 o • •• I (60a)<ha~>BH <Oyh~P>BH 


<h.~I3> = 0 <ayha~> = 0 (60b) 


while averaging out the microscopic metric (59) gives 

<8ap >BH G~~ - ~<h~~h~>BH ia~p<h[~h~l>BH + (61a) 

<gap> =gap = G~p (61b) 

Hel:e 	 the extra terms in (61a) compared with (61b) emerge due to 
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det(8~~) = det(G~~)[1 + h~ + ~[~n:l + ~[~n:h~] + det(h~~)] . 

The averages of the inverse microscopic metric 

8~~ ;: (fX~ - (jXpr!ah + (fXp(fac!~h h ­
pa p~~a 

have the following forms 

~~ ~~ 1 ~~p~~ l~~<h v~~ (62a)<8 >BH = ~ + 2<" I~>BH - ~ [v/~l>BH 

<8~~> = ~~ + <haeh.~> (62b) 

where <gQ(~> s iQ(~. Compare (61b) ,and (62a,b) with the results of 

Sections 	12 and 14 to elucidate the origin of tensor ua~. 

Now let us c9nsid~r the second-order corrected metric 

of a up to a keeping for each object only dominant terms 

8Q(~ G~~ + h~~ + J~~ (63 ) 

Taking the amplitudes of 
,

8a~' h~~ and J~~ as 0(1), a and 
2 

a, 

respectively, a« 1, let us expand all microscopic objects in 

4 powers , 

8=G+h+J. 	 (64a) 
Z

0(1) 	a. a. 

8-1 =G-l + G- 2h + (8-1 )(2) (h2 ,J) + 
Z (64b,c,dlO{l) a. a. 

(8- 1 )(3) (h3,hJ) + (8- 1 )(4) (h4,h2J,ir 
II 

a. 	 a. 

1 = 'j: + ,(1) (h)- + ,(2) (h2/J) + ,(3) (h3,hJ) + ,(4) (h4,h2J,J2) 
L-j. a.A-j. a.2 A- 1 a.II A- 1 " 

" 

-j.a. A 

r =1+ r(l)(h) + r(2) (h2,J) + r(3) (h3 ,hJ) + r(4) (h4 ,h2J,J2) . 
L- Z CIA-2 a.2 A- 2 aSA-2 a."A-z 

Here all the expansions are obtained by using symbolically the 

structure of the inverse metric 8-18 = 1, the Christoffel symbol~ 

-1 	 -1 2 -2 2 ­1 = 8 ag and the Riemann tensor' r = 8 a 8 + 8 (08); ~ and M 

are the connection coefficients and curvature of background (see 
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., 

~ions 10 and 12) 

'f = G-loG M= G- lo2G + G- 2(oG)2 (65a,b) 

:aking into account the structure of (63) with 11 of frequency 

~d J of Wand 2w [16J, the averaging of (64a-d) brings 

) = G , (6Ga) 

0(1) 

-1> = G- l + «8-1 )(2) (112 » + «g-1)(4) (114,112J,i» (66b) 

0(1) a 
Z 

a• 

) ~ + <,(2) (112 » + <7(3) (h.}» + <7(4} (ll.4 ,h2J,J2» (66c) 

L- 1 o.ZL- t 0.3>.. -,t, • -1 
'0. L 

) == R M + <r(2) (h2» + <;"'(3) (ll.J» + <r('1) (h4.,ll.2J,J2», (66d) 

L- Z o.Z>,,-Z 9 -1 -1 a 6 >.-Za >.. L 

:e the properties <112> ~ 0, <non> 0, «oh)2> ~ 0, <J> 0, 

> = 0, <Jh> = 0, <Joll.> # 0, <hOj> # 0 and so on have been 

d. Note tha't although the leading terms for 7(2) and 7(4) in 

~) and r(3) in (64d) are a 2A-l, a 4A- l and a 3A- 2 , respectively, 

3e for <7(2», <,(4» and <r(3» in (66c,d) turn out to be 

-1, a 4L- l and a3A-1L- l . The formula (66d) clears up the origin 

the relations (25). The use of (64a-d), (65a,b) and (G6a-d) 

the structure equations (38) and (40) leads to the following 

~r-of-magnitude estimations: 

oz -2Y + 2<1'1'"> - 2<-1'" /-" 
\-ZL- 1 +a3 'A -tL-z+o!'A-zL- t a"'>.. -zL- 1 o.3 'A-"3+ 6>..-2 L ·1a 

(67a,b) 

oY = -3X' + 6ZAZ - 3<jjr> + 3<rr><r> - 6<7><rr> + 6<7><Tj<r>. 
.\-zL- z a·'A-· a·'A-· 

~ that Y has not any terms in a 3 power. The expansions for the 

ltting rules (4S), (48) and (49) are 

- <7><8> ~ a 2L- l + a3~-1 + a4L- l (68a) 

'..r;~> _ <n><g> ~ a2L- 2 + a3.:\. -lL- l + a4",-2 (68b) 
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<rg> - <r><g> 2Z<g> (6ae) 

a Z 'A- 2 +0."3 'A - 1 L - 1 +a.4 'A - z a.Z A - Z +0."3 'A - 1. L-1 +a • 'A - Z 

where sign ~ denotes the order of magnitude. 

The formulaeshov that the leading terms in every power in a 

under study are a 2/A2, a 3/A3 and a4/~4, respectively. Due to 

(68a,b) the rules (45) and (48) are seen to take place always in 

2 3 4 powers a , a and a with the error less than that of the 

averaging, AX- l . The expressions (67a,b) and (68c) manifest the 

self-consistency of the structure equations for rand Y and the 

splitting rule for- <rg>., Besides, one can see validity of the 

2 3choice (42a-c) in considering effectively the theory in a or 0 

powers in the amplitude of the metric corrections of the form 

(59) and (63). This high-frequency analysis carried out has 

revealed the compatibility of the equations and relations within 

the theory of macrosc~~i~ gravity and :the results of the 

high-frequency analysis can be shown to remain valid for the 

higher-order corrections to (63). 

16. THE HIGH-FREQUENCY LIMIT OF MACROVACUUM 

The macroscopic equations (57a) state ,a Ricci non-flat 

character of macrovacuum, the macrovacuum source being defined in 

terms of the correlation tensor Za~ ~ , 
~y vcr 

Q ~= ­
a~ 

Ze cr~. 
~cr e~ 

It seems 

somewhat puzzling and requires one to clear up the physical 

meaning of Q~J3 • 

Let us take the high-frequency limit of the equation (57a), 
~ 

using the results of Section 15 up to a~ for the metric (59). The 

tensor QC(!3 can be shown to have the form 

(iHF 
"'!cxp <t>{ ('(crt,-,(~ s 5 -" <--;r( ::"t' ·::-t 'J'> ( 6'3 ; 
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'* 
.,ith 

01 _ 01 r l...,ao (70 )0, /3y = '~y- f3y = rr (~Ol, + h,'cSif3 - ~Yl0) 

After calculation of QH! in the Lorent% gauge n~vl = 0 and hOIeei'" v 01 

o by using (70) and the averaging rules [16,171 (note that up 

to a-
~ 

there is no distinction betveen the Brill-Hartle averaging 

and the one adopted here), one can derive the remarkable result 

"JiF 1 j..IV h > j£f(GW) (71)
\.,!C;(f3 - 4'<11 Iat IJV If3 atf3 

I,Ihere GW} is Isaacson's stress tensor [16,17] for graVitational 

vaves. Thus, the object Qaf3 built up from the correlation tensor 

ZC;(R J..I is seen to represent the gravitational stress tensor for
",y va 

macrovacuum. The ,i;:,or Ricci 'eep has been shown in preceding 

section to describe the background and within accuracy of the 

approximation [see (66d)] one has Qatf3aaf3 = a from the contracted 

v~rsion of (S7b) and M~~~f3 = a from (57a). Then, the macrovacuum 

equations (57a) in the high-frequency limit are found to become 

MR - a!T(GW) (72)
"::'1-' OIP 

~(,ich are exactly the equations derived by Isaacson see eqs. 

(3.lb) of Ref. 16 and (35.60) of Ref. 17. The averaged contracted 

B~anchi identities (54) take the form aa£, ~I '= a and ensure the 
~~I€ 

P(GW)c':'[i::.ervation of 0:/3 • 

Th~ fact of the macrovacuum equations (57a) becoming 

I~3~cson's ones in the high-frequency limit is of vital 

i~portance for the theory, for such a limit establishes the 

C~>l:re5pondence pr l~,ciple [4] for any full theory of macroscopic 

gr.dvity, p13ying the role similar to Newton's limit in any 

con~istent microscopiC gravitation theory, for example, in 

s~neral relativity theory. The macroscopic field equations (52) 

derlv~d ~ithin the approach proposed have been shovn to have the 

correct high-frequency limit (72) for the case of macrovacuum • 

17. CONCLUSI ONS 

This. paper presents a self-consistent procedure to average 

out Cartan's structure equations of a Rlemannian space~time' and 

the Einstein equations of general relativity. A system of the 

structure equations (24) (31), (35), (36), (38) and (40) 

together vith the relations (46a,b), (47) .and (50a,b) describes 

the geometric structure of. the macroscopic space-time. This 

system, being supplemented by some conditions, for example 

(42a-c) - (44), and the averaged Einstein equations (52) having 

the form of microscopic Einsteinian ones with the source (53), 

can be taken as a system of differential equations to treat 

macroscopic gravity. , 

The simplest system of equations to be solved are the eqs. 

(52} and (42a-c) t~ find the macroscopiC metric tensor Gap and 

the correlation tensor Za l-1vO" That v111' enable' one to calculatepy
the induction tensor M0(

pycS" In order to find the average field 

R"pY6 it is ne~essary to solve :l:he equations (43) and (44) (the 

last ones can ~e vritten as the algebraic equations;. see Ref. 3), 

or to solve directly the equations (29) in the case (a) for the 

affine deformation .tensor A • A cosmological . solution to theAa 
. . ~y" 

system, as vell as the .~esults concerning the problem of 

finding the constitutlve relations vithin the theory and more 

geometrical and physical interpretations of the objects present 

in the theory,. will be given elsewhere. 
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