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By averaging out Cartan's structure equations for a fc

dimensional Riemannian space over space regions, the struct

! equations for thg_averaged space . have been derived  with.
procedure being valid on an arbitrary Riemannian space.

o averaged space ls characterized by a metric, Riemannian

4-forms, .an affine deformation 1-form being . due .to

i
, ! non-Riemannian curvature 2-forms,. .and corxelation 2-, 3-
o H t : - 2
i

TOWARDS A THEDRY oF MACROSCOF;IC GRAVITY , non-metrlcity . of one of two , connection, l-forms.. Using

procedure for the space-time averaging of the Einstein  equatic

5;% o brings the. averaged ones with the terms of geometric correcti
o3 . RSP Sl e .
o

\

i

Roustam M. Zalaletdinovl :; . by the correlation tensors. The.equations of motion for averag
e

I

Rxﬁx - " energy-momentum, obtalned by averaqging out the contracted Bianc

' - : betet Sl 2 .

%?TA Wt ) . identities, do also linclude such terms. Considering t
- w :

Submitted to General Relativity and Gravitation \ K gravitational 1ndﬁction tensor to .be the Riemannian - curvatu.
tensor (thg non-Rliemannlian one is then the £field tensor),

t@eoxgm is proved which relates the algebraic. structure .of ti
averaged microscopic metric. with that of the induction.tensor. 1
is shown that the averaged Ein;telnAequaticns can.be put in th
form 9£~the Elnstgjn equatgons .with the conserved.-macroscopi
energy-momentum tensor of a .definite structure .including th
cogrelation functions. By.using:the,highrfrequency, approximatio

of Isaacson with second-order. correction .to .the. microscopi:

metric, the self-consistency and.compatibility of . the _equation

and relatlons .obtalned have been.shown. Macrovacuum .turns out. t¢

e

e : be Ricci non-~flat, the macrovacuum source being defined in . term:
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TRODUCTION

In general relativity there

exists a

problem o

f s

stent macroscopic description of grdvity [1-3]. Just as

.rodynanmics, the process of constructing the fleld

\acroscoplc gravity consists in averidging out °the

Eins

elf-

“in

equations

tein

‘fons and includes two steps: a space-time averaging of ~the

3

i operator and‘é'mlcroscopic matter distribution. However, in

‘al relativity, unlike electrodyuamics, doing even the first

one meets a nomber of difficulties of principle. Until now

>roblem of the space-time averaging of the Einstein equétions

‘dered as microscopic in their ﬁﬁyslcal meaning has not been

:d to some considerable content. All the attempts ha

mainly in the framework of llnearized'theory and no

in fact been achievéd for a

ve

res

been

ults

full theory of macroscopic

ity (see Refs. 2, p.215-288, 3, 4 and references thezeinz).

Sut Lo a correct  setting ‘of the-?problem {4] one "should

v, flrst of all, the-

1do~)Riemannian space itself,

tions. The questions are which average geometrical

ic, connection or curvature - can-

problem "of  "how to

i.e.§ Car

character

“average

tan's

ize "an

e and how to define a metric'and a connection on the

‘her important t6p1C'1§ the

‘ucts of the objects, béing found in- éﬁeragihg

‘ctire equations:i‘’ It is the

splitting  of

probleh‘ of

In Ref. 4 a full list of the references 1is

out "a

structure

object =

averaged

space.

the averages of

introduc

given

ing-

and

out Cartan's

the

the

<ting approaches to treat the macroscopic gravitational fields

related topics are discussed.

correlation functions. Upon deriving the structure equations for

the averaged manifold, the Einstein equations, £following the
Riemannian character. of the space-time geometry and knovn to be
additional  conditions to Cartan's structure equations, can
successfully. be. averaged out, . Then, the main problem one
encounters is which average object plays the role of the average
gravitational f£ield and what. object plays that of induction, if
exists. The nonlinear pha:acfer of the Riemannian geometry and,

as- a consequence, the Einstein equations may cause the change of

* geometrical and physical meaning of macroscopic gravity compared

wvith microscopic Einsteinianﬁone. Moreover, averaging out .the

equations of motion for matter (the energy-momentum conservation

lav) may lead to the appearance of additional texms of . geometric

correction (correlation functions). in the averaged ones. .

This paper presents ar.  approach for éalving the problem

{part of the results has been given in Refs. 3-6} and provides a

system of the structure and field equations of a full geonmetric

theory of macroscopic gravity. The paper is. organized as follows.

The formalism necessary for treating the space-time averages in a
covariant manner is given in. -Sections . 2-7. - Sections. 8 .and .9
present a-bllocal iozmulation-of Cartan's structure equatlons of
a. Riemannian -manifold. By averaging out the: Cartan's  equations
the structure equations for the averaged space have béen Qerlved
in Sections 10-12. It is in these sections that the coz;elation
forms arébiﬁtroduced ang.a geometric theory of splitting out the

averages of products of the metric, connection and curvature has

been developed. The averaged‘Elnstein equations, the equations of

motion for the averaged matter, and the structure of the averaged

space-time are discussed in Sections 13 and 14. The averaged



Einstein equations can be shown to be put in -the form of the
Einstein equations with the conserved macroscopic energy-momentum
tensor of a definite structure :including. the : correlation
functions. Tvo last sections are devoted to .the high-frequency
approximation analysis of the equations and zrelations of the
theory up to ® the fourth order:-in the amplitude of :metric
perturbation for the case of second-ordex co¥tected -microscopic
metric. The self-consistency and compatibility of them have been

shown. “In Section 17 an important result has: been established:

the macrovacuum equations being Ricci: non-flat become Isaacson's’

ones in the high-frequency - ‘limit  with the: macrovacuum source
coinciding with Isaacson's stress tensor for gravitational waves.
It is a realization of the correspondence: principle 1in the

framework of the theory of macroscopic gravity.

2. THE AYERAGING SCHEME - - it

Lot

The averaging scheme proposed in [7,8] and applied in [3,5]
will e used throughout the paper, being -generalized for an
n-dimensional differentiable manifold M. Let us consider a regioﬁ
JoX vith a supporting point Z€Z chosen arbitrarily. Any bilocal
operator A = Jg‘eu,diﬁ, Ag'= Jg‘(r,x'), satisfying the properties

Mm A= , < A o o (1a)
T T R

and, in X there locally exlists a coordinate system in which
N .
A=e  dr . L o . 1k

(summation over @’ and @), can be considered as ‘an averaging
cperator (for an affine connection space the condition (1b) can

be reqguired globally in the limit of wvanishing curvature; see

Refs. 3,8 for a Riemannian case). Such an operator, a bile
extension of Cartan's unit tensor dP = eaedm“, establishes
mapping of the tensor's values at I’ €5 to the supporting point
For a vector field v on M it acts as A: v'» V = A(V’') for ev
z’ €3, V being a scalar at 2’ and a vector at Z. The average va
of a tensor fleld p = pg"’e e...807%0... over I at

aes X

supporting point T€Z iz defined as
’ - : -1 B
=%—, qul,...,x,...)e'sm (A7 o AP (
bX
z

where Vé = Izs’ is the voiume of‘Zﬂénd € is the .voluie n-for
both the ways of denoting tbe average (2),< a bar{}and angul
brackets, will be used throughout the paper. The condltion (1
enéu:es the existence of an 1nveise operator, ,4LA—1) = dﬁ a
,dLA.l)’ = A’P’, and a correct limit of (2) as Vi - 0, the lim
Z’-Z for all Z'€3. The condition (1b) provgaes the "standar.

definition of the average (2)

DY

By = ZIPb:::(I')d“:z" - «

P> SR

.in the coordinate system with considering subsequently pﬁ B

the tensor components at T in. any other coordinate system.

The average of a sum of tensors is equal td\the sum of tﬁ
averages and, consequently, the averaglng commutes with ‘contrac
tion, as well as preserving the algebraic symmetxry properties o
a tensor. A tensor field q is shown [8] to be taken out of th
averaging sign, PG = DG, i{f and only 1f this field is A-constant,
q’(d_l,...,A,...) = (. Note that the concept of A-constant fielc
generalizes that of a covarlantly constant field for which Ag' ic

the parallel-displacement bivector g; [#].



BILOCAL EXTERIOR CALCULUS

To average out differential equations on a differentiable
‘old in accordance with the averaging scheme proposed, it 1is
;sary to be able, firstly, to write a bilocal extension of
rquations undexr study and; secondly, to express the average
<terior derivative of a form through the exterior derilvative
e average of the form.

The solution of the £irst problem requires a bilocal
“ior calculus [10] to be developed. For a differentiable
fold the exﬁerior derivative is known to be the only local
arential operation. Considering on M a bilocal (R, 1’ )-form

a R-form at I and an l-form at z’, 1 € %, 1 < n)

.1 o . B’
= g7 O . pr.. A0 A,
1s introduce the 'antizymmettized-at-x exterior derivative
W) acting according to the rule

. _ 1 v’ 3.5 4 ’
@AWY = gigr Oy pr. .., W 2°Ad A0 AL
W= Hg ea,dzﬁ, ug = ug (z,2'), is another bilocal opeiatot
iding the displacement of d at I’ to point T

, , 2

Wz ) = W= W a® . , (4)
same properties (la,b) as for A4 should be required for W.
On defining now a bilocal exterior derivative, d, as
d=d+dmw , ' ’ 3
following important theorem takes place.

rem 1. The bilocal exterior derivative d is nilpotent, dd =

1£ and only {f

aw* =0 . (6)

Proof is straightforward, using the property {(dd’+ d@'d)®(AW) = 0.
It should be noted that in an analogy with {5) one can introduce
the antisymmetrized-at-Z’ exterior derivative d(Aﬂfl) and another
bilocal exterior derivative g = d' + A(AW™1) wvhich s also
nllpot;nt, qq_: 0, if and only if (6) holds. Both the bilocal
devivatives are related by d(Aurl) =qor q(AuU = g.

There is a bilocal extension of the Maurer-Cartan equat;ons

de = - %—B‘?‘};,r.ﬁ',\s”' = - %B‘f'éydz‘a/\dxy
for the (1,0’)-form £a’ = £g’d1P, a bilocal generalization of the
coordinate 1-form basis. Here Baér = 2( té,rl + é?é,a'gg;) are
the blanholonomicity coefficients which can be shown [10] to
serve as a measure of anh-lonomicity of the bilocal vector basis
e, + Eiéﬁ" a billocal generalization of the oidinary {local) one.

An operator £ will be said to be biholonomic 1if d€* =0. 1n

such a case Edﬂy = 0. Any operator & satisfying (la,b} iz

biholonomic since in the cowrdinate system (1D) d& = 0§ and
4 ’

Basy = [, these relations being tensorial. Futhermore, d@a = 0

taken as the differential eduations to find Eg turn out to be

always integrable on M with the biholonomic operator W (6).
4. AN AVERAGIVI-REGION COORDINATION

To solve the second task and obtain the commutation formulae
for darivation and aver»"'r3, it 1s necessary to define a schenme
of comparison (coordination) of nelghbouring averaging regicns {a

correspondence batween the reglons' points).

I
ot

Let £ = d/dA be a vector fieid on M. Taking the . Eield



the supporting point Z of a region X, let us define the shift

field for every point I’ of the reglon due to [3,7]
$% =W () . S

where the same bilocal operator W as in (4) is suitable to be

applied. Then, Lie-transporting I along the integral lines of the

o’

S field on'a parametric length AA defines a family ' of réglons
Z{AA). Using such a family enaSle;:one to calculate a family of
the average values {(2) of a tensor and, ﬁpoh épﬁlyina the usual
procedure from analysls, to define the directional and partial
derivatives of the average tensor. ~

Thus, it is the bilocal operator W that allows one to
calculate the shift £ield Sa’ (75 for any averaging zregion in
accordance with a given fleld £ at the reglon's supporting point,
and, by choosing such 7 linear independent fields; one can build

a covering of a differentiable manifold by the averaging regions

for all points Z¢M as the supporting ones.
S. THE COMMUTATION FORMULA FOR EXTERIOR DERIVATIVE AND AVERAGING

As & result of using the averaging-region coordination the
sxterior derivative and averaging of a B-form O permute due to

& o= dra (W .. A) 4+ <ALV WAQ (A, ..o A -

1 (8)
<ALV WOAT + 5<a’ (Ag, ., AVAB® >AdZ”

vhere dlveulis the e£-divergence [11] of the l-form-valued-at-ZT
l-vector uﬂ' at z', the (0,0’) form As = Ag‘eu, and the
bianholonomicity (1,07 )-form 3?Y = A°1E,Be;6dxa.

Upon taking the biholoncmic averaging operator, dAa’= 0, and

reeping the xegiocns' volumes constant during their coordination

div,W = 0 (

the exterior derivative and averaging are seen to commute.
| The commutation formula (8) proves to yleld a natur:

property of the exterlor derivative of an average form.

P Theorem 2. For any R-form ¢ on M the exterior derivative of tt
averaged E-form O is closed, ddd = 0, if and only if tr

’

coordination opézator'qus biholonomic,”(ﬁﬂa' = 0.

Proof‘ls straightforward, using (é). The lgeo&etric me;nin
of Theorem 2 is thaﬁ, éftez shifting a region ¥ along a 'contou
built from the Lie~-dragged vector fields; the zegionr § obtéine
coincides with the original one, E = &, If duP'¢ 0 it is not th
case {an analogous theorem has been given for the case of
Riemannian spaée in [8]; see also Ref. 3).

Thus, the biholonomocity of W provides a standard exterio.
calculus for the averaged forms, they behaving as the 1loca:

functions of supporting point.
6. COMMUTATION OF COVARIANT EXTERIOR DERIVATIVE AND AVERAGING

Let us consider an affine connection space. For a tensor-
valued R-form p = pg"' e&ol..edzﬂe... with a R-form p;"' there

is the following commutation formula:

DPg . =<d'Pg i (Wik, ..., A)> + <<11v;wm;‘j;;u,...,.4)> -
AT WOATG L + (IR (A NS + L - (10)

S AP (A AD> = e+ BCPE (A AAB® SAdT

where Pg“‘ = p‘LA—lu,...,Aa,...) and the covariant exterior

derivative is defined as ng::: = dpﬁ::: + (—1)kp::::AweB +

10
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;"' with waﬁ being the connection 1-form. The so~called

tural (1,0°)-form

Py = AN DA DS o) | (11)
not vanish in a curved space and is expressible through the
‘ture tensor of it. P;esencevof them iq_the formula (10} ~}§
tal importance and reflects‘thé fact §f non—cqmmu#atiy;ty of
veraging and covarlant exterior derlvgt;on‘;£ a tensor even
¢ requires (9). (A commutation formula f;r the case of .the
:iént'aééibéfive‘of a éenso? inAa ﬁkemaﬂﬁian space has been
ined in [7]; see also Ref. 3.)

bndar'conditién (9) the formulae (8)'and (10) reads
dbgr ol = <d[PR (A LA (12)

cthe formulae have a correct local limit as Vo -+ 0 and the

.

~idence limit of (11) is 1im Sag =0 {similar . coincidence
'~

ts can be determined by using a theorem of Christensen [12]).

Upon assuming the coordinate systems (1b) for A and W to be

same and the volume fi-form £ to be standard, one arrives at

=0, .. lw‘J e g . ) v .
ap, =z dp (z’)ydz*- ' (13)
B Vs . B...

permutation of the operations of derivation and averaging.

- flat space (3) and (13) are "standard".
THE CHOXCE OF THE OPERATORS

The biholonomicity condition (6} for the operator W

aw’ = [ + a'uw omladz® = 0

21d be considered as the equations in the unknowns 1»; vith

boundary conditions (la), these equations being integrable

11

due to dd = O and serving to find the Z-dependence of W. The

"inverse" equations

Qv = [@w s, e s = 0
are integrable too and serve to find the Z’-dependence of w. A

factorized solution for the equations has been obtained in [8]

(see also Ref. 3)
i

l

Wy o= eYel o W = (as™vagpt)@et/ad®) (14a,b)
{summation over { = 1,...,n) where e% is any viel-bien field with

i
constant anholonomicity coefficients Cijh' The solution (14D}

depends on 1l arbltrary scalar functions ¢‘, freedom of choice of
vhich ‘sllovs one to satisfy the condition (9) as well. It should
be noted that the well-known bivectors gg’ and G;l [9] nave
turned out to be n%ithez biholomomic (6} noxr volume-preserving
{3) ones.

The question is how to choose the two bilocal operators A
and W. It is reasonable to take ‘

A=W
for, firstly, the only operator for averaging and averaging-
region coordination is determined by the equations duﬁ'= 0 (the
averages can be treated as ordinary local functions) and divsui =

= 0 (the volume-dependent terms disappear) and, secondly, the

of the commutation formulae is exactly the average of exterior

derivative). Then, the commutation formula (12) reads

d_ﬁg::: :<d‘P‘;:"(w,..‘,W)> . {151



8. A BILOCAL EXTENSION OF CONNECTION 1-FORM

Hereafter we will consider a 4-dimensional pseudo-Riemannian
: ‘ r

space LK,gqﬁ) with a metric gaﬁ of signature (—,+,+,+).
‘ Writing the structural (l,yo"‘.)—f;orm Sc"a3 (11) as SO'B'”; Qa'ﬂ -

s - -

- wap; one can observe that the bilocal dbiéét‘h;

0% = WY [+ Dy )] . (16)
' S - E Vi
behaves as a connection l-foram under coordinate transformations
at I. The coinclidence limit of (16) is : v o
lm 0% = o . )
z’ =z . . -

Therefore, 1t can be coné#dered as a b?lécal exteqsion vef thg
ordinary (local) connection l-form. Whenﬁ avexage@out the object‘
<Qag> = (_]uﬁ = ?dgyd.ry is; supposed to be an _vag'fir)e cqnnel;tion
i~-form of an averag=zd space :{(, the affine connection coefiic;en;s
fagy being symmetric due to (6}). Note Fhat for the = factorized
Lorm of le(léb) there aliways exists the‘coq;dlnate.system le{,
¥ = tfpl, where w{;' = Gg 3o that in the system ﬁap is mani.festly

the averasged w*, defined due to (3).

B

8. A BI1LOCAL EXTENSION OF CARTAN'S STRUCTURE EQUATIONS

Let us consider the vector-valued-at-Z’ (0,0°)-form wy =

= W 8, @ bllocal generalization of the vector basis €,- Then,

the definition of the bilocal connection l-form (16) is
aw, = wee, . : o {17a)

and the value of the last expression on (0,1’')-form wie o

= w’lg,d.ra (the bilocal 1-form basis dual to wﬁ) is equal to

13

tley o ; : (17t
dw %) = a7, ;
The first and second bilocal structure equations read
Q“BAd.z'B =0 , ‘ (1«
(> Ot € = . (1
o, + Q° A% = R, ,
where the (2,0°)~form Rua = W-l:,wg 1‘76, (W, W) 1s a biloca

extension of the curvature 2-form r%, = = 1 dirAdzb, 1im ®*
82" pro oz P
= I‘“a. The bilocal extension of the covariant constancy conditlio

of ‘the metric O0-form gaﬂ" Dg“B = (0, ‘is found to be- . -
e e . Ny . . .
dg‘?'ﬂ - g“gn p = Geply = 04 ‘ (20
;h‘eze (6,0'—)-§oxm G . = u}”'u}“'g ipey MG o = & -
3] o 7B y‘b,,m,’.zdﬂ op

The integrablility conditions of (18)-(20) are of the form
i - . . . .

RigAdz® =0, ) (21

dr%, - R AT, + QAR =0 T : (22)
3 &

R + GpRy =0 . (23

10. METRIC, CONNECTION AND CURVATURE OF THE AVERAGED SPACE

Averaging out the structure equations (18)-(23) yields the
structure equations for the averaged space .R The connection
l-form of the space is defined from (17a,b) as

@, o= dw,w % . ,

B B = -
The first equatlion is
ﬁaﬁl\d‘zﬁ =0 , (24)

that means the absence of torsion. The second one takes the form

By = B = <@ Q%> + 7 AT, (25)

14



Maﬁ is the curvature 2-form for the connection l-form {i

. i)
g = d

B!
8% ABe
s 47 Al g (26a)

x o

al
<Ra5>. The averaged 2-form Ra3 is assumed to be a curvature

P is the average of the microscopic curvature 2-form T

n for another connection l-form, Héﬂ,

R"“3 = <:1II°‘,5 + II“'e/\IIG‘5 . o (26b)

according to [13] the formula (25) can be consldered to
1ish a relation between the curvature 2;£orms for the two
ctions that are distinguished by an affine deformation
m Aua = A“gydxr‘ There are two alternative possibilities to

:1fy the curvature 2-forms:

Ra5 is a non-Riemannian curvature 2-form and u?a is a
Riemannian one, A,ag = ﬁaﬁ - ﬂép; ~=
The forms are ldentified conversely, with Aéﬁ = Hc'p - ﬁua.

The affine deformation l-form is defined in terms of the

- - Y
netricity l-form NaB = N“ﬁydx as

o _ 1 o8 -
ABY—ZG"‘(N&M+NWp Na,s)

2 Gaﬁ and Gaﬁ are metric and inverse metric tensors of.ﬂ and
Dn(}m’3 = Nas r DgGa =0 (27a,b)

he case {(a) and conversely in (b). (Dn and Dﬁ denote the
ixiant exterior derivatives with respect to connectlons ﬁ?p
ﬁaa, respectively). The integrability conditions of (27a,b)

found to be

€ -4 &
GueR'g + GgR°, = - DN o Gagm"ﬁ + G =0 (28a,b)

h analogous equations in the case (b).

According to (25) there are the folloving equations for A“B:

15

(a) DA% - A% AA%, = Q% (o) DA%, - A AT = - QT 29

1

€

B
vhere 2-form Qaa = - <Qa€AQ£§> + ﬁmeAﬁfﬁ. These equations can be
shown to be always 1ntegzable<on the averaged manifold X and
hence the affine deformation l-form does always exist.

The algebralic identities for Ra which follow from the

g

averaging out of the algebraic identitites £for 2-forn ™ are

B
R"ﬁmrs =0 , R* =0 (30a,b)

o

. o dzﬁ o . .
and, together with Q BA = J and Q « = 0, they provide, in
additlon to (28b) or thelr analog in the case (b}, the folloving

algebraic identities for |

%
M"‘ﬁﬂmJa =0 , ¥, =0 (31a,b)

- Y o) - 4
Therefore the Ricci tensors HGB = ¥ oBy and Fa = R «py 3T

symmetric. It should be noted that the non-Riemannian geometry in
the twvo cases (a) and (b) i3 always equi-a“fine since due to (29)
Weyl's l-form A = Aqa is always gradient.

Nov there is a puzzlé of how to average out the cther

structure equations: the Blanch! identities (22),

@Ry - RO M > + QT ARS> =0, 32
the conditions (20) of the covariant constancy of metric, »

g = <G> - G 0> =0 , ' (33)
Bup = <Gp>, and their integrability conditions (23),

GueRg> + G R > =0 . : (34)
The relations seem mystv:iousland evidantly 1t it necessary to
somehow split out the =orages of 2roducis of  the qeometricai

objects ~ metric, conmnzolicon andg CuLvitnyre.



11, CORRELATION FORMS AND THE DIFFERENTIAL BIANCHI IDENTITIES

Thus, the averaged manifold M has twvo curvature 2—forms,>M°‘ﬂ

and R?ﬂ’ and'they satiSfy the differential Bianchl identities

it

=e =, y€ y ) : )
dgfﬁ_.we@ﬂi'ne’\mﬁ o . (35)

[« 1 [« ‘ £ ) v ‘
dRﬁ—-REAl‘fgljr_H"eARg=o e o o 38)

Let us introduce a correlation Z-Eozm3

0, = <A > - WA, ’ (37

so that Qaﬁ = - ZdeeB [see {25} and (29)]. Taking the exterior

derivative of the 2-form gives the structure eqguation for Zaapv
X H o & u ~ _ p%
Dz2%", PY s gty + APIRIG A > - RO AT ) - 38
which is simultaneously the splitting rule sought. Here P is 'a

matrix permutation operator acting on a RXR-matrix-valued XR-form

X H P
as M B v a.
- SEVEN - E .
Here Y B v o iz the correlation 3-form. defined as

1 =4 e X Paa. o M.,
=___;T(M M P _MN P +Mp H - ).

Bwv a... v g a... oB v...

Yoo = <A AT > - 3P (@R AR ) - AR AT, . (39)

A marvellous fact is that the equation (38) contracted over
8 and W, vith (25) taken into account, turns out to average out
(32), to yleld the Bianchi identities (35) fox Maﬁ.

The correlation 3-form satisfies the structure equation
Dav™H 0 = - 3N e @M A8 B ) 4 B (R A AR > -

<R°‘5Afi‘u>/@9x + <7€°‘5Aﬂex>,@‘v - R"‘ﬁ/\z“vex + R A AP ) o

v

Note that the correlation 2-form, as well as the correlation
forms (39) and (41}, is a tensor object built up from the affine

connection l-form, which diffexs from an affine curvature 2-form.

&

17

wvhich can be considered as a splitting rule for (RuﬁAﬂvaﬂ:

o 4B T

Here the correlation 4-form X is defined as

Bvas
o 8 T o 5 T o H 8 T
X, = <CQAE A AT > - 2P (25N AT ) - (
4 (v M P ATT) - 6P (Z°H AC AT ) - DA AT AT

The equations for 2“5HV and Yappuek have been shown to be alvw
integrable on.ﬁ. Due to four~dimensionality of the space th
are no other correlation forms and structure equations. Glven :

aﬁpveva and the structure of correlators

correlation 4-form X
the right-hand sides of (38) and (40), these equations should

taken to find Zaﬁuv and Yaﬁpvex‘ For example, one possible choi

is to fix
CDgz%H, =0 ’ (42
with the Integrability conditions
PROGAZ G, - %M AR ) =0, (s
which enables one to use in fact only the correlation 2-fo
Zaapv, take

Yu H e =0

e Xu Mo T _ 0

Bvarsw

I

(42b,¢

and restrict the geometry of the curvature 2-form Raﬁ to a cla:
defined by the conditlons '
R* AT

X (~ 4 s € - ‘ » ’ .
DaRﬁ-dRﬁ— . B+Q€AR5~O . L (4

and (43) [the integrability conditions of (44) are in (43)].
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AVERAGED MICROSCOPIC METRIC TENSOR AND SPLITTING OUT THE
:RAGE OF METRIC TIMES CURYATURE
- average the metric structure equations (33) and (34), it
2ssary to be able to split out the averages of metric times
tion and of mwetric times ‘curvatuze.' Consider on a
nian manifold a class of slowly changing -tensor £fields,
ing the covariantly constaﬂt tenéors (1.e. g-constant ones;
2tion 2), Killing ones, and similar onects,’ which have
large-scale mode of length I, and a. small-scale mode A,
« L, vhere d is the typical diameter of averaging .regions.
.e fields denoted as a R-form ct::' it has been assumed

.

z] to be the following splitting rule:

@GACh > = AT, (45)

ve..
is a bilocal extension of ct"', 1im C:"' = Cs"' {due to
ot g Ve -

‘1le a W-constant field is taken out of the averaging sign).

rule provides immediately for (33) and its analogue for SQS

nagas =0 , Bﬁg“ﬁ =0 (46a,b)

gaﬁ = <§“B> {similary, a Killing tensor on M beconmes that

1, vhich is clear from the geometric point of view -~ any -

‘ging must conserve the symmetries of an orlginal space. The
rison of (46a,b) with (27b) shows that one can always put
gaﬁ = Gaﬁ (47)
she case (a) from Section 10 with éaﬂ # &*® ana gﬂrédg # 8%

Y
:neral.

The exterlor derivative of (45) and an additional assumption

(> o e (=] 0.,
QM ACT > = QAR SATT (48)
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in agreement with (45) (see Section 15 below) yield the following

remarkable splitting rule:

ot .o s =M. . Haewo .. _
- < BAﬁﬂcﬁ...> +,Q ﬁADﬁcu... + <RQBACV... > - Rg Ac - .
o -8 (49)
—_ZB}JGAC '."'--u"’“—c.g...

o B
[V .W.AZ g v +oe..
vhere Bﬂ is the bilocal covarlant exterior derivative built £from
d ana ng. When applied for the case of metric tensor thls rule

averages out (34) and its aﬁa}ogue fozdg“ﬁ, giving
M. +E M =0 P =0 (50a,b)
;gae B8 ~8E5 o« ’ & & - 4

that are exactly the integrability conditions of the equatlons
(46a,b). Compare them also with (28b) and its analogue for GaB.
Thus, the scheme proposed allows the averaging out of a
Riemannian space, which tesulfs in the appearance of the averaged
one vith a metric and tvo -equi-affine connections, the affine
deformation tensor being a result of nonwmet:;city of one of the
connections. The geometry of the space is described by the
non~Riemannian and Riemannian curvatures and correlation tensors.
It is remarkable that the number of the tensors is finite due to
finite dimensionallity of the space. Moreover, the procedure |is
seen to be valid on An arbltrary Riemannian manifold and does not

require any restrictions on its curvature.

13. THE MACROSCOPIC EINMSTEIN EQUATIONS

Ar intent look at * EZinstein equations written in the form
oe 1n0 v g O{micro) R

-3 g“ = - 2t 51
8 reﬁ 7V T'“V 2 ( )

reveals that the rule (49) is the single one Aeeded to average

out them. Then, the space-time averaging of (31) (see Ref. 3 for

20



details) yields the following eguations [5,6]:
GO(E _ L [Py - - { macro)
€ - 38.GVY, iy (52)
vhere the macroscoplc stress tensor Tg(mamv) is of the form

&Tg(mucro) = z(74;!(:'!#‘4'“::'(:)) -

: {53)
o 1.0 = € 1y - 1 Ofyrav B .
(e + 5°ﬂqu)gp + T xeﬁ - iaﬂu“ g, -
Here 2% R Ricci-tens g : .
{ g = up UB s a cc ensor like -object for the
. _ ap » €
correlation 2-form 2 B v = 37 VOdIyAdI va = Q pve’

( R
CTa m““°)> is the averaged microscopic enexgy-momentum ~ tensor,

1im Ta(m“”°) = t;(m“”°), and U*P = *“5 - G*® (see next section
'z

to inquire about the structure of the tensor).
An averaging of the energy~momentum conservation law means
1 v
€Bir 28H Tav;p

= 0. In order to carry out that, it is necessary to be able to

that of the contracted Bilanchi identities gerr

split out the averages <RQBA£PVA£2"'>. Such a rule is obtainable
by the exterior .derivation of (48) [see relatlons (24) of Ref. 3}

and when applied gives the averaged contracted Blanchi identitles

in the form

-ae 1~ v .
& aﬁie 8“ “Vlﬁ =0 (54)

and, as a consequence, the equatiéns of motion for the averaqged
energy mowmentum 4 » ’ h

€(m\.cro) — € 1 =iV
T, Yle = (2 I 7Q'Wm)g“ . ‘ - (55)

(the bar denotes the covariant derivative with respect to the

connection coefficlients faﬁy)

Taking the choic £ ]

g e (a) from Section 10 with Raﬂyﬁ and Haayﬁ
as the average field and induction tensors, respectively, one has
been shown by using D(—)G‘:"3 = 0, (46b), (54) and (55) to arrive at

the conservation law
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(macre} _
Ble =0

and the Einstein equations (52) as wmacroscopic ones with
macroscopic (continuously distributed) source of the form (53)

The appearance of the additlonal terms in (55) compared w

€ (micro) _
Bie =0 is

the changing of the geometrlcal structure of ;he macrosco,

the microscopic consexvatian'lav t connected w
space~time as a whole, although the fleld equations (52)
macroscopic gravity remain the Einstein equations and have k¢
their Riemannian character. The Aspace-time acquires some
properties described, in particular, by the tensor ZaBy“L
wvhich has emerged as an.independent geometric object. From t
physical point of view this object is 1likely to represent
tensor of elastlc modull for the macroscopic space-~ time.. Due
eqgs. (55) it influences the behaviour of continuously distribuz
matter on the averaged manifold. Being included into t
macroscopic stress tensor (53). these correlation terms can
considered as providing a geometric cb:rection of the averag
enexrgy momentum.

Upon_ defining the mIcrovacuum state: of mACroscop
gravitation as the state corresponding to the microvacuum o
after an averaging out, the macrovacuum equations following fr

the microvacuum equations raﬂ = 0 and from egs. (52) read

—oe _ & v .

Up = Qp + BTG =278 - (57a,:
It follows from (57b) that g“f’aqﬁ = 0.

In view of the importance of the cozreiation 2-form Zaa“VA
Is worth writing here its algebraic properties

o _ _oE oo

%K, =-7°% .
oM Vo
% adz” =0,
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5t relation being a consequence of equi-affinity. The

z“vpa has the following properties:

- R PN
' {Bolv - 7Q vBo M

200 -
“Bluel = o .,
€ -

eve o ‘
€ -
‘ Beo T Qﬁa -

‘IE STRUCTURE OF MACROSCOPIC SPACE-TIME

The choice (a)- taken allows ' one to prove an important
2m on the algebraic structure of the averaged (mac:oécopic)
~time and of the tensor Uaﬁ = g“a - Gmﬁ appearing in the
scopic stress tensor (53). Indeed, the simultaneous analysis
0b) and the relations EueGsﬁ + Maeth = (0, the integrability
tions of ]35(}0'B =0 [ﬁote that (28b) and (50a) are identical
-dopting (47)], by means of the invariant algebraic
‘1fication [14] of the symmetric tensor gqﬂ through the
‘scopic metric tensor Gaﬂ of signature (-,+,+,+) yields the

‘wing theorem.

‘em 3. Due to =relations (50b) there 1is the following
~rndence between the algebraic structure of averaged tensor
nd that of a Riemannian space with curvature tensor Haﬁpo:
All- four algebraic types Al, AZ’ A3 and B without

generations 1lead to the existence of four linearly

independent covariantly constant vectors so that yaﬁpc = 0.

{B) For all the cases vith generations, excepting Al[(111,1)]
and A3t(11,2)], the non-trivial components of Xaapa are
expressible through the Ricei tensor HGB and the space-times
are algebraically special and reducible- {there are different

typesf depending on the algebraic types of gqﬁ).

(C) For the case A3[(11,2)] vhen
g = const.¢*® - 28%¢? (58a)

o o
space-time has a covarlantly constant null vector £, 1i.e.

G#ﬂ is a pp-vave metric [14]; for the case Al[(111,1)] vhen

g® = const.c*P (58b)

8

there are no conditions on +the curvature tensor and

space~-time structure.

The theorem gives a classificaticn of possible macroscopic
space~times and manifests the dependence between the algebraic
propgrties of microscopic and macroscopic space-times - the more
symmetric the criginal manifold, the more symmetric the final
manifold. In the case (A) the microscoplc space-time evidantly
has no order and therefore the induction Haﬂy& vanishes. For all
the cases (B) and (C) it has symmestries, which results 1in a
non-trivial structure of macroscopic space-times, and the form of

the tensor Um3 from (53) is manifestly established, in the most

symmnetric case (58b) this tansor being equal to zero (const.= 1).

See Appendix of Ref. 3 with changing ENB for gaﬂ, which

provides the full list of all the possibilities,




15. THE HIGH-FREQUENCY APPROXIMATION ANALYSIS

Let us study the self-consistency and compatibility of the
equations apnd relations obtained, wusing the high-frequency
spproximaticn of R. Isaacson [15-17]. Accordiny to  the approach
there exists a family of the geometries for which the microscopic

metric takes the form

8. = G, + hm’3 ; ' (59)

of
vhere Gaﬁ is the macroscopic metric (called ghe background one in
Ref. 15) slowly changing over a characteristic macroscopic length
L and haﬁ is the high-frequency oscillating part {(a ripple) with
a microscopic lenght A, A « d « L, where d is the typical
diametex of averaging regions. The Brill-Hartle (BH) space~time
averaging of Refs. 15,17 was carried out over the background's
regions, i.e. the integration measure was [—det(Gaﬁ)]l/Z, and

,

A? = gg , whereas the averaging over the microscopic space-time
A4 >

regions with the measuze [—det(gas)}I/Z and Ag = ug is applied

in this paper. For conveniénce, a coordinate system (59) can be
chosen, without loss of generality, as the system (1b) for both
the cases, which enables one to use (3) and (13) in what follows.

The averages of h and its derivatives evidently vanish

Aoprgg =0 <arhaﬁ>BH = 0 P s (60a)

<ha§> =0 ’ (arha§> =0 ;e g (60Db)

while averaging out the microscopic metric (59) gives

= H -
Bus’pn = Gab <h h'>ou <h + ... . (8la)

af’ "u [v pl BH
B,p> = B = Gua ; (61b)

Here the extra terms in (6la) compared with (61b) emerge due to

25

det(g,g) = det(Gue)[1 + My + 3 ohE, + FryahEh)) + det(n,g))
The averages of the inverse microscopic metric
of B 0 AP0 0 € TP ae _
g® = ¢*® - Roo + G0C° PR e -
have the following forms

8Py = P+ TR - Py (62a)

By = P+ s - L. (62b)

where <g*®> = 2°P. Compare (61b) and (62a,b) with the results of
Sections 12 and 14 to elucidate the origin of tensor Uaﬁ.

Now let us conslder the second-order corrected metric

Bup = Gaa + hab + jag (63)
Taking the amplitudes of Bua h;a and f 4 as 0(1), a and a,
respectively, @ « 1, let us expand all microscopic objects in

povers of Q up to 04, keeping for each object only dominant terms

g=G+h+J ., , (64a)
ol1) a o '
gr=6¢t+6%m+ (g )‘“(h o+
T oty a a* (64b,c,d)
eH P e » @H"M atain Ay,
a - . N
a @ :

1 2
LRSS SUTEIR SR S Ot A
Lt at oAt a3at a‘A-‘
12 a2 agx-z a’k'z a¥r~?
Here all the expansions are obtained by using symbolically the
structure of the inverse metric gﬁlg = 1, the Christoffel symbols
T = g '8g and the Riemann tensor r = g"lazg + g—z(ag)z; F ana ¥

are the connection coefficients and curvature of background (see
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tions 10 and 12)
F-=6lac , WM=06%c+c%066)?° . (65a,b)

:aking into account the structure of (63) with h of frequency

nd J of @ and 2w [16], the averaging of (64a-d) brings

>=G, (656a)
o(1) 7 )
Ty 2@+ @B P @y + @ H' et et Ay, (66b)
o(1) az a‘ . .

>=F+ '@y + 7P gy + ML R2L Ay . sse)

-t a1t ST L 'Lt

>=R=M+ <@ + P + M RURL P, (sea)

L-Z azx-z aSA-lL-i adk—Z

ce the properties <h’> # 0, <hdh> = 0, <(@h)%> #0, <J> = O,

> =0, <J = 0, <Joh> # 0, <hdf> #0 and so on have been

(2) (4)

d. Note that although the leading terms for 7Y and 7 in

(3)

=) and in (64d) are 02A~1' a’r™! ana @A7%, respectively,

(4)> and (r(3’> in (66c,d) turn out to be

se for <T(2)>, <7
1-1, a4L-l and a3k_lL—l. The formula (66d) clears up the origin
the relations (25). The use of (GAa—d); (65a,b) and A(SGa—d)
the structure equations (38) and (40) leads to the £followving

ar-of-magnitude estimations:

(a4 = -2y + 24> - 2y,
\-IL-1+GS)‘-1L—2+G4A-2L-A a.4l-2L-1 aax—3+ad)‘—21'--t
(67a,b)
Y = -3X + 6ZAZ - 3KTIT> + 3YPArD> = BT + 6K (o4
-2_-2 .- 4 46, -4
AL a A a A

2 that Y has not any terms in 03 pover. The expansions for the

itting rules (45), (48) and (49) are

g =Tt vt v a'st (68a)
s - ryeg> ~ @’ + aAint + a7, . (58b)
27

Arg> — MY<R> = 22<8> ’ (68c)
F4 1 4 2 2 2

a,z)\- +a3)~-£L- ra A" a )\-2+a,9X—1L-t+a‘A—

vhere sign = denotes the order of magnitude.

The fo:mulae.ghow that the leading terms in every powver in Q
under study are az/hz, 03/h3 and 04/L4, respectively. Due to
(68a,b) the rules (45) and (48).are seen to take place always in
povers 02, 03 and 04 wvith fhe error less than that of the
averaqging, KL—l. The expressions (67a,b) and (68c) manife;t the
self-consistency of the structure equations for Z and Y and the
splitting rule for- <(rg>. Besides, one can see vélidity of the
choice (42a-c) in considering effectively the theory in 02 or 03
povers in the amplitude of the metric corrections of the form
(59) and (63). This high-frequency analysis carried out has
revealed the.compatibility of the equations and relations within
the theory of macrosowgis gravity and Ithe results of the

high-frequency analysis can be shown to remain wvalid for the

higher~order corrections to (63).
16. THE HIGH-FREQUENCY LIMIT OF MACROVACUUX

The macroscopic equations (57a) state .a Riceci non-flat
character of macrovacuum, the macrovacuum source being defined in

terms of the correlation tensor %™ Qu5= -zt 1t ceems

W
By vo’ «o €f’

somewhat puzzling and requires one to clear up the physical

meaning.of Quﬁ'

Let us take the high-frequency limit of the egquation (57a),
il
using the results of Section 15 up to a@“ for the metric (59). The
tensor QaB can be shown to have the form
HE o2 P-4 . ° ~. T "
Qfxﬁ = - Y /:vch e3 B e M “.-J> 4 (633
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with

o =C(_— _‘1(7@5 N
o7 py = T ay Taﬁy = 5G (h5517 + hrﬁlﬁ hﬁr{b) . {70)

After calculation of Q:g in the Lorentz gauge h"Y = 0 and h: =

v

= 0 by using (70) and the averaging rules [16,17] (note that wup .

5 .
to @~ there is no distinction between the Brill-Hartle averaging

and the one adopted here), one éan dezive*the remarkable result

?

L gy _ _ plGW) "
B = <N IDhHVlﬁ> = &Iaﬂ _ . (71)
vhere T;gw) is Isaacson's stress tensor [16,17] for gravitational

waves. Thus, the object Qaﬁ built up from the correlation tensor

YA

By vo is seen to represent the gravitational stress tensor for

macrovacuum. The t.usor Ricei Huﬁ has been shown in preceding
section to describe the background and within accuracy of the
approximation [see (66d)] one has QaﬁG“& = {0 £from the cogt:acted
version of (57b) and HJaGaB = 0 from (57a). Then, the macrovacuum

eguations (57a) in the high-frequency limit are found to become

_ _ mlGW)
e (712)

B

wiich are exactly the equations derived by Isaacson - see eqgs.

(3.1b) of Ref. 16 and (35.60) of Ref. 17. The averaged contracted
Sianchi ldentitiess (54) take the form G ¥
GW)
"

Thz fact of the macrovacuum equations (57a) becoming

i. = 0 and ensure the
B e .

conservation of T;

Isaacson's ones in the high—frequency> limit s of vital

importance for the theory, £for such a limit establishes the

currespondence priuciple [4] for any full theory of macroscopic

gravity, playing the zrole similar to Newton's 1limit in any
consistent microscopic gravitation theory, £for example, in
jeneral relativity thecry. The macroscopic field equations (52)

derived within the approach proposed have been shown to have the

correct high-frequency limit (72) for the case of macrovacuum.
17. CONCLUSIONS

This paper presents a self-consistent procedure ,tQ average
out Cartan's structure equations of a Riemannian space-time and
the Einstein eguations of generai relativity. A ‘system of the
structure equations (24) - (31), (35), .(36), (38} and (40)
together with the relations (46a,b), (47) and (50a,b) describes
the geometric structure of+ the macroscopic space-~time. This
system, being supplemented by some conditions, . for example
(42a-c) - (441, and the averaged Einstéin equations (52) having
the form of microscopic Einsteinian ones with the source. (53},
can be taken as a system of differential equations 'to treat
macroscopic gravity. .

The simplest system of equations to be solved are the egs.
(52) and (42a-c) to find the macroscopic metric tensor & _, and

of

H . That will-enable one to calculate

By vo’
the induction tensor Habrs' In order to f£ind the average £field

R*

last ones can be written as the algebraic equations;.see Ref. 3),

the correlation tensor Z°
Bys it is neéessa:y to solve the equations (43) and (44) (the

or to solve directly the eguations (29) in the case (a} £for the

v A cosmological .solution to the

system, as well as the .results concerning the problem of

affine deformation .tensor Aéﬂ
finding the constitutive relations within the theory and more

geometrical and physical interpretations of the objects preseht

in the theory, will be given elsewhere.
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