8/)0

Inflation, Gravitational Waves and the Cosmic
Microwave Background: Reconciling CDM with
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Abstract. We cxamine the production of tensor (gravitational wave) perturbations in a universe where
infiation is driven by a scalar field interacting via an exponential potential. In such a scenario, the
Universe undergoes a power-law rather than exponential expansion and density perturbations have a
power-law but non scale-invariant spectrum. We show that models which lead to only slight departures
from scale-invariant density perturbations also produce significant gravitational wave perturbations
that lead to significant anisotropies in the Cosmic Microwave Dackground. For a spectral index
n < 0.95, more than half the quadrupole anisotropy detected by COBE could be due to tensor, rather
than scalar, perturbations. This result has profound implications for the Cold Dark Matter (CDM)
model of galaxy and large-scale structure formation. If the standard version of CDM, in which the
scalar perturbatious are scale invariant and tensor perturbation production is negligible, is normalised
to produce the correct level of CMB anisotropy it fails to account for the small scale velocities and
clustering properties of galaxies. On the other hand, if non-scale-invariant fluctuations are generated by
the inflationary mechanism we suggest, a CDM model can simultaneously account for these properties
and the COBE quadrupole anisotropy. The model may still have problems with large-scale clustering
and bulk streaniing motions but observations on such scales are less well established and interpretation
is made difficult by any scale-dependent bias.

Key Words: radiation mechanisms: gravitational - galaxies: clustering, formation - cosmic microwave
background - cosmology: theory - large-scale structure of the Universe - early Uniyerse.
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1 Introduction

One of the attractive features of the inflationary model for the evolution of the very carly Universe is
that it leads to a prediction of the amplitude, spectrum and statistics of the density fluctuations in
the Universe on very large scales. These fluctuations manifest themselves as temperature fluctuations
in the cosmic microwave background radiation (CMBR) and create the distribution of linear density
irregularities from which galaxies and clusters subsequently form. Besides offering a self-consistent pic-
ture for the origin of galaxics and large-scale clustering, these predictions permit inflationary universe
scenarios to be tested against observations.

Unfortunately, models of large-scale structure formation based upon the inflation picture have
fared very badly when confronted with observed data. The most successful such model has been
the Cold Dark Matter (CDM) model, but this has suffered a series of severe setbacks at the hands
of the observers. Longstanding difficulties for CDM have been posed by the high amplitude of the
cluster-cluster correlation function (Bahcall & Soneira 1983) and the apparently large amplitude and
coherence length of the peculiar velocity field (Lynden-Bell et al. 1988; Bertschinger et al. 1990).
More recently, the APM angular galaxy-galaxy correlation function (Maddox et al. 1990) and the
QDOT IRAS galaxy redshift survey (Efstathiou et al. 1990; Saunders et al. 1991) have demonstrated
- with an impressive consistency between the two - that the standard version of CDM fails to generate
enough large-scale structure compared with the observations. Peacock (1991) has demonstrated that
some, at least, of these failings can be remedied by choosing a larger normalisation amplitude for
the fluctuation spectrum. However, this resolution is unsatisfactory because it requires there to be
a much higher degree of gravitational evolution of the dark matter than is consistent with galaxy
peculiar motions and clustering properties on small scales. The CDM model has been very successful
at explaining small and intermediate-scale observations but only at the expense of requiring there to
be a bias in the distribution of dark relative to luminous material (Davis et al. 1985). The unbiased
CDM model favoured by large-scale clustering observations cannot account for small-scale properties
from which direction its support has always been greatest.

The knockout punch for standard CDM appears to have been delivered by the COBE detection of
large-scale temperature anisotropy on the CMBR sky (Smoot et al. 1992) at a level roughly consistent
with Peacock’s (1991) proposed normalisation of the mass fluctuations. This result has led some of the
major adherents of the CDM model to abandon the standard form and appeal to either a cosmological
constant (Efstathiou, Bond & White 1992) or a mixture of Hot and Cold Dark Matter (Taylor &
Rowan-Robinson 1992; Davis et al. 1992) to solve the large-scale structure and CMBR problems
without posing difficulties on small scales.

In this paper, we shall take #*different approach to the large-scale structure problem. We shall
question the usual assumption that primordial density fluctuations generated by inflation need nec-
essarily be of the scale-invariant Harrison-Zeldovich form invoked in the standard CDM model. Non
scale-invariant perturbations have been discussed previously (Salopek, Bond & Bardeen 1989; Liddle,
Lyth & Sutherland 1992) but these authors have attempted to fit the excess fluctuations seen in galaxy
clustering directly by invoking a primordial power-spectrum with n < 1. The prospects for achieving
this are limited since the COBE detection constrains 0.6 < n < 1.6 and we require n ~ 0.6 to fit
the extra power seen, for example, in APM (Liddle ¢t al. 1992). We shall argue that a specific (and
theoretically well-motivated) inflationary model does exist that produces n < 1. However, it is not the
extra primordial power that is important for structure formation theories. In the model we consider,
the generation of non scale-invariant (scalar) density perturbations during inflation is accompanied
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by a significant production of gravitational wave (tensor) perturbations. These are not relevant to
structure formation at late times, but do produce the same distortion of the CMBR temperature via
the Sachs-Wolfe effect as do the scalar gravitational potential fluctuations. If scalar and tensor modes
contribute equally to the CMBR anisotropy then a given AT/T implies a §p/p that is a factor of V2
lower than if all the AT'/T had been produced by scalar perturbations.

We begin by looking at the generation of scalar and tensor perturbations during inflation,

2 Scalar and Tensor Perturbations from Inflation

One of the most important questions cosmology lias had to answer is why the observable universe is
almost, but not quite exactly, homogeneous and isotropic. The inflationary scenario offers a possible
explanation for these observations (Olive 1990). Consider a Friedman universe containing matter with
density p and pressure p. The evolution is governed by the Einstein acceleration equation

Gi = ~a(p +3p) (1)

and the mass conservation equation
p+3H(p+p) =0, (2)

where the Hubble expansion rate, H(t), is defined by H = @fa (the dot denotes differentiation with
respect to cosmic time, t).

The horizon, flatness and isotropy problems can be solved if the Universe undergoes a sufficiently
long period of accelerated expansion (& > 0). From equation (1), this is equivalent to the requirement
that p + 3p < 0. The simplest way to achieve such an anti-gravitational effect is by the presence of a
homogeneous scalar field, ¢, with some self-interaction potential ¥ (¢) 2 0. In the Friedman universe
such a field is equivalent to a fluid with

p= ,l,é"+V(c‘>) (3a)
1 22 i b
p= §¢ -~ V(o) (3b)

Other matter fields play a negligible role in the evolution during the period of inflation so their presence
will be ignored. Hence —p < p < p and we have the inflationary requirement & > 0 as long as < V.
Inflation is thus achieved when the matter sector of the theory applicable at some stage in the early
Universe is dominated by decaying vacuum energy (Guth 1981).

The consequence of inflation is that any initial inhomogencities become undetectable on observable
scales. On the other hand, short wavelength quantum fluctuations in the matter fields are redshifted
beyond the Hubble radius and re-enter during the radiation or matter dominated eras. These fluctua-
tions may provide the primordial density spectrum that leads to galaxy formation (Bardeen, Steinhardt
& Turner 1983).

Such a spectrum can be described in terms of the Fourier components of the perturbation: cach
scale has a wavenumber k/a associated with it, where k is the comoving wavenumber. At any given
time microphysical processes are only important on scales < O(H~!). Hence, the quantity k/aH > 1
for a given mode before inflation, but decreases through unity as inflation proceeds. The perturbation
is said to ‘cross the horizon’ when k/eH = 1, where the term horizon refers to the Hubble radius at that
time. After reheating k/aH grows and the perturbation “re-enters the horizon” when k/eH reaches

unity again. The amplitude of the perturbation remains constant for k/aff < 1 and is determined by
the particular particle physics model driving inflation.

These perturbations affect the isotropy of the CMBR. Angular scales on the CMBR are related to
linear scales Iy at the present epoch by 8(lg) = %Hoﬂolo and the Hubble radius at decoupling subtends
an angle of § = 1°. Hence, detection of anisotropy on scales § » 1° yields information on the form of
the primordial fluctuation spectrum and also provides a direct window on the physics of the universe
during the grand unified era (¢ &~ 1073%) when these fluctuations were generated.

There exist a number of physical effects that lead to a CMBR anisotropy, but the dominant con-
tribution on large angular scales is from the Sachs-Wolfe effect (Sachis & Wolfe 1967). At decoupling,
perturbations in the gravitational potential cause the photons to become redshifted as they climb out
of potential wells. The amplitude of the temperature fluctuation in the direction f as seen by an
observer at r is related to the density perturbation &(r) by (Sachs & Wolfe 1967; Turner 1991)

AT . 1a?H?
T =5

é(r), (4)

where any dipole cffects have been removed. During matter domination «2H?%4 is time-independent
(Turner 1991) and can therefore be identified with the perturbation at horizon crossing, since kfoHf =
1.

This shows how inflationary density perturbations give rise to anisotropies in the microwave back-
ground. But this is just the contribution from scalar perturbation modes. Could tensor modes give
rise to a comparable signal? To answer this. it proves convenient to re-write equations (1) & (2) in
the form

ne 3 2 K

(H ) - ;}-N Hfo) = —T" (o) (5(!,)
. 11

K= 20, H=" 6;;“, (8b, ¢)

(Muslimov 1990; Salopek & Bond 1990) where a prime denotes d/dé, «* = 817111/?,2 and mp is the
Planck mass. Units are chosen such that i = ¢ = 1.
The amplitude at horizon crossing arising from scalar fluctuations is (Lucchin & Matarrese 1985a)

4oz M H:  mx? H?

S= g T SR ET ©)
where the quantities on the right-hand side are evaluated when the perturbations first cross the Hubble
radius approximately 60 e-folds before the end of inflation (Steinhardt & Turner 1984) and As is the
corresponding amplitude when they re-enter the lorizon at t = ty¢. The constant, m, is 4 or 2/5 if the
universe is respectively radiation- or matter-dominated at ty¢; perturbations leading to temperature
fluctuations on large angular scales re-enter during matter domination.

However, tensor fluctuations (i.e fluctuations in the graviton field) will also lead to temperature
anisotropies via the Sachs-Wolfe effect. A graviton may be viewed as a massless, minimally coupled
scalar field which has two degrees of freedom. o4 x. corresponding to the two modes of the transverse,
traceless metric perturbation (Abbott & Wise 1984). For these perturbations, the amplitude at horizon
crossing is given by (Abbott & Wise 1984; Lucchin & Matarrese 1985h)

[

AG:_T-S/‘IH‘ (7)
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The ratio of scalar to tensor perturbation amplitudes is therefore given by

4s _x H
Ac T SET )

and gravitational waves will become important when this ratio is less than unity, i.e. |[H'|/H > x/5.
This simple relation is very useful and is valid for an arbitrary functional form for H(¢) and hence
for the inflaton potential. It should be emphasised that no simplifying assumption concerning the
dynamics of the scalar field has been made in our analysis. Both Salopek (1992) and Liddle & Lyth
(1992) make use of the the friction-dominated, |§] < H|¢|, and slow-roll, ¢? & V(¢), assumptions.
These assumptions lead to a quasi-exponential expansion during which the condition |H'|/H < &
holds. In the limit |H'|/H — 0, it is clear from equation (8) that 4¢/As — 0. However, an
accelerated expansion will occur if (Carr & Lidsey 1992)

H+H?>0 = |H|/H < x[V2,

(where equation (5b) has been used to rewrite & in terms of H'): a condition which does not necessarily
entail the slow-roll condition. We therefore consider it more appropriate to drop these assumptions
whenever possible. This is particularly relevant in the case of power-law inflation (see below), where
the use of these assumptions is expected to lead to an underestimate of the production of tensor
perturbations.

It is now casy to sce that the tensor modes will dowminate the scalar modes in the non-negligible
region of parameter space defined by x/5 < |H'|/H < «/v/2. In conclusion, it is clear that gravitational
waves beconie significant whenever the kinetic energy of the fickd as measured by (H/)? is sufficiently
Ligh, regardless of the functional form of the inflaton potential.

Furthermore, when the ratio (8) is constant, the two spectra have the same scale dependence and it
is easy to see that this is possible if and only if H x H'. Clearly H{¢) must have an exponential form
in this case; eq (5a) then demonstrates that the functional form of the potentialis V() o« exp(—Ak¢),
for some constant A, In other words, the scalar and tensor fluctuations have the same scale dependence
when the inflation is driven by an exponential potential. This is important because such potentials
arise generically in a number of particle physics models. For example, many higher-order and scalar-
~tensor gravity theories are conformally equivalent to general relativity with a scalar field which
self-interacts through such a potential (Maeda 1989; Barrow & Cotsakis 1988). One example is the
extended inflationary scenario based on a first-order phase transition in the Brans-Dicke theory (La
& Steinhardt 1989). Consequently, we shall consider this model in the following discussion.

It is possible to solve the equations (5) exactly for a potential of this form. The result is that
at) x 12/3; inflation therefore requires A? < 2. One can also compute the spectrum of fluctuations
which turns out to be As « k=**/(2-2*) for this potential {Lucchin & Matarrese 1985a). Such a scale
dependence is consistent with the COBE analysis; a power spectrum of the form P(k) & A%k o &7,
with spectral index n, fits the COBE observations if 0.6 < n < 1.6. Hence, n and A are related by

33 -2 3 1-n
ﬂ:w = /\232(3Tn)7 (9)

which implies A? < 1/3 for consistency. For 4s < 4¢, we require A? > 4/25 which is equivalent to
n < 0.83. We note that the scale-invariant spectruni 2 = 1 is recovered in the limit as A2 — 0,
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3. Effect upon the Cosmic Microwave Background

Now let us sce what these results mean for the large-scale anisotropy of the CMBR. To proceed, we
assume the quadrupole anisotropy observed by COBE is due to both scalar and tensor perturbations
which we take to be uncorrelated and obeying gaussian statistics (Barrow & Coles 1990), i.e.

2 AT\?  (AT\?
(F)a= (7). () o

T Jobs T /s T/g
The (AT/T)% contribution is related to A% via eqs. (4) and (6). We do not need to calculate exactly
the Sachs-Wolfe cffect of a gravitational wave background upon the CMBR. Indeed it is sufficient to

parameterise it as (AT/T)% = A% for some positive constant 3 &~ O(1) which will depend on I, the
order of harmonic considered. Hence, one may write

AT)2 1
= =4k + 4% 11
( T )~ 375 + 84z (11)
and gravitational waves are the dominant contribution if the condition A%/A% < 44 is satisfied. In

other words, these waves contribute to at least 50 per cent of the quadrupole if

5043 - 3
503 - 17

25807 > 1 S n< (12)
It is important to note that this condition is not strongly dependent on 4 if 4> 1/50, which suggests
that a small deviation from a scale-invariant spectrum will significantly increase the amplitude of the
tensor perturbations.

We can eliminate cither Ag or Ag with the use of eqs. (6) and (8) to derive the key result

AT\? 1 2 24) 42
il = e 42, = 25 AL/4,
( . )m - (25/\2 +;3) 4t = (14250%) 43/a (13)
The relative amplitudes of the scalar and tensor perturbations can thus be determined ezactly for a
given A. In terms of the spectral index these expressions hecome

ATN? 5 1(n~3)] 1 2[ ,(n—l)]
—_— = e | —— || = —AS (1 +508{ ——= ] |. 14
(T)obs 4a[5+50 n-1 477 +508 n—-3 (14
It is possible to predict the contribution of these gravitational waves to the total energy density of
the universe. The dimensionless amplitude 4¢ for a given wavelength [ is related to the energy density
per octave, dpg/dInl, by Ag = I,/8xGdpg/dInl (Kolb & Turner 1990) and the fraction of the critical

energy density contributed per octave by these waves is given by Q¢ = (87Gdpg/dInl)/3HE. Hence,
Qg is directly related to the quadrupole anisotropy and spectral index by

et =g 5 (1)) ()L

A gravitational wave with wavelength ! = 3000 Mpc is re-entering the horizon at the present epoch
and leads to the quadrupole anisotropy. Hence, we predict in this model a value of Qg(! = 3000Mpc) <
10—,
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Thus far in this analysis, we have not needed to place any slow-roll restrictions on the evolution of
the scalar field. This is important because such assumptions certainly become less accurate as we move
further away from the n = 1 spectrum. Furthermore, these results are not sensitive to § in the sense
that, whatever value f takes, there will always be a value of A that makes the tensor contribution
large. It is helpful, however, to make an estimate of 3. Fabbri & Pollock (1983) have related the
anisotropy of the CMBR to the vacuum energy, e, in the slow-roll approximation by expanding the
temperature fluctuations in spherical harmonics: AT/T = ¥, @1 Yo (8, %) . It follows that the i~th

harmonic contributes 2
AT 1 2 e,
(7), = &S lant = gt (16)

where I; is a constant and €, represents the vacuum energy. Numerical calculations indicate that
I = 0.425. By writing 3H? = £%p, we can express the quadrupole (I = 2) in terms of H?/m% and
hence A% via eq. (7). This implies ,
AT\ 9zl .
(_.) = 2 4% (17)
T 1=2 16

and we deduce § = % For this value of 4, the limit {12) on the spectral index becomes 1 < 0.95,

4 Discussion: Implications for a CDM Cosmology

We have shown that a power-law inflationary model can lead to a universe with a near scale-invariant
fluctuation spectrum, but with CMDBR anisotropies dominated by gravitational waves rather than
scalar density perturbations. Gravitational waves have a negligible effect on matter at late times,
so we can suppress the amplitude of scalar perturbations required to be compatible with the COBE
limit. It is helpful to quantify the various problems for CDM iu terms of the ubiquitous — but rather
confusingly named ~ bias parameter, b, defined by

(), -(2)
4 gals » nmss.

The CDM model has been successful at reproducing small-scale clustering with a bias parameter
in the range 1.5 < b < 2.5 (Davis et al. 1985). The correlations of rich clusters can, just about,
be accommodated by this ‘standard’ value of the bias parameter and these data are, in any case,
controversial (e.g. Sutherland 1988). The COBE CMBR detection, however, seems to require a b o~ 1.
This is the same order-of-magnitude figure as seeins to be required by large-scale galaxy clustering
data from APM, QDOT and radio galaxies (Peacock 1991).

Our argument can therefore reconcile small-scale clustering with the COBE results, but the large-
scale clustering data are still anomalous. These results may, indeed be irreconcilable with CDM.
There is, however, growing realisation that large-scale galaxy clustering may be heavily influenced by
large-scale, but very weak, astrophysical effects (Babul & White 1991; Bower et al, 1992). Constraints
from galaxy clustering alone on the value of b are likely to be controversial for some time. Neither can
we expect galaxy clustering studies to tell us directly if the primordial spectral index differs slightly
from unity as predicted in our model. On the other hand, observations of large-scale peculiar motions
can relate galaxy velocities to the underlying mass fluctuations and so can provide constraints on the
bias parameter directly. The analysis of peculiar motion data is by no means straightforward and the
results, though extremely important (Lynden-Bell et al. 1988; Kaiser 1988; Bertschinger et al. 1990)

are not yet conclusive for a high-bias CDM model. For example, analysis of QDOT data seems to
indicate the value of b for IRAS galaxies is 1.2 + 0.2 if Qy = 1 (Rowan-Robinson et al. 1990; Kaiser
et al. 1991). The value of b for optical galaxies may, however, be up to a factor 1.7 larger than this
(Lahav et al. 1990) and there need not even be a constant relationship between the level of bias
appropriate to Infra-red and optical galaxies.

There are, however, two possible direct tests of the picture we are proposing. The first comes
from smaller-scale CMBR anisotropy measurements. Although the Sachs-Wolfe effect provides the
greatest contribution to CMBR anisotropy on large scales, intermediate and small-scale fluctuations are
dominated by streaming motions on the last scattering surface and intrinsic temperature fluctuations
in the primordial plasma. Since these latter two mechanisms are essentially related to the scalar
perturbations they should appear, in our picture, at the level appropriate to the biased CDM model
rather than the b = 1 version the COBE data would seem to demand. The variation of AT/T with
angular scale is therefore very different in our model since we predict a higher amplitude of fluctuations
on large scales relative to small scales than would be the case for solely scalar perturbations. Indeed, the
observational limits on 1° scales are already close to the COBE level on 10° (Bond et al. 1990; Smoot
et al. 1992). If the COBE fluctuation is all due to scalar perturbations then a detection on 1° scales
must be imminent. If, on the other hand, tensor modes contribute to allow a larger value of b, then the
< 1° fluctuations can be roughly a factor 1/b smaller. The second possible test is by direct detection of
the gravitational wave background we predict. Although COBE is only sensitive to gravitational waves
on the scale of the horizon at recombination, the waves produced during inflation possess an almost
scale-invariant spectrum. There should therefore he other observable astrophysical consequences of
a stochastic gravitational wave background on swmaller scales. For the level of gravitational radiation
we predict, g ~ 107! there is a possibility that some of these consequences, such as the effect
on primordial nucleosynthesis, might be observable {¢.g. Thorne 1987). Obviously more detailed
computations are necessary in both of these cases but they do demonstrate that our model is testable.

Finally, it is interesting to note that the COBE analysis does not rule out the region n > 1,
corresponding to amplitudes that decrease with scale. However, the amplitude of tensor perturbations
always increases with scale in any model based on General Relativity with a flat Friedman metric and
a minimally coupled scalar field. This follows because H(t) decreases with respect to cosmic time.
Consequently, a value of n > 1 would strongly suggest that the quadrupole anisotropy of the CMBR
was predominantly due to scalar perturbations. However. gravitational waves could still dominate
when n > 1 if the Universe underwent a ‘super—inflationary” expansion where H > 0, but this would
require a more complicated matter sector than the one considered in this paper.
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