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Hyperextended Chaotic Inflation

In this paper, the hyperextended chaotic scenario is proposed for an exponential inflaton

potential, V(0') <X exp( -AO'). In contrast to the model based on general relativity, inflation occurs

for A2 > 2 and ends naturally. The predicted scale-dependence of the density spectrum rules
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Introduction: The idea that the universe was dominated by vacuum energy about 10 Gyr ago

is attractive because it allows a number of difficulties associated with the hot, big bang model to

be resolved through the production of entropy [1]. This process is referred to as inflation and in

most versions the potential energy of a quantum scalar field, a, dominates the energy-momentum

tensor. This violates the strong energy condition (SEC) and causes the scale factor to accelerate

with respect to cosmic time. The standard model is recovered when the false vacuum decays and

the universe reheats.

However, the origin of the scalar field remains uncertain. The first models were based on

general relativity and identified the field with a Higgs boson of some grand unified theory, but

failed to reproduce a sufficiently homogeneous universe [2]. This led to the introduction of the

'chaotic' scenario, but this model requires fine-tuning of the coupling constants and is not based

on a definite particle physics model [3]. The 'extended' scenarios modify the gravitational sector

of the theory by introducing a second scalar field - the dilaton 'l/J - which is coupled to gravity

through a non-minimal interaction h( 'l/J)R. In principle, the evolution of the dilaton during inflation

allows a first-order phase transition to complete. However, these models are either ruled out by

time-delay tests or are themselves severely constrained [4,5,6].

On the other hand, it is well known that scalar fields which self-interact through an exponential

potential, V(a) = Vo exp( -AKa), arise generically in higher-dimensional supergravity [7], super

string [8] and higher-order gravity theories [9]. {Vo, A} are independent constants, K2 == 81rmp2

and mp is a constant of dimension mass, which is identified as the Planck mass in the standard

Einstein scenario. Inflation driven by such a potential in general relativity occurs in the limited

region 0 < A2 < 2, but can never end unless the shape of the potential is altered. This grace

ful exit problem arises because the ratio of the field's kinetic energy to potential energy is fixed.

Furthermore, most particle physics models predict ,X2 > 2. For example, A2 = 8 when a ~ 0 in

the six-dimensional Einstein-Maxwell theory, where (J is identified as the degree of freedom of the

internal space S2 [7].

Therefore, it is important to develop a working scenario based on this potential. We proceed

to consider these points by proposing a chaotic version of the hyperextended scenario [10] with an

action

(1)

where 94 = det9jlv and V(a) has the exponential form discussed above. Eq. (1) can be expressed in

the J ordan-Brans-Dicke (JBD) form through the field redefinition 'l1 == h( 'l/J) and the gravitational
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sector becomes L g = 'l!R - w('l!)(V'l!)2 /'l! where

h(t/J)
w('l!) = 2(dh/dt/J)2.

As an ansatz, we shall assume that the functional form of h( t/J) is a truncated Taylor series

(2)

(3)

where n, f, J.L = constants> 0 and we consider initial conditions ("'t/J)n-2 <: nf/(2J.L) with n >

2. Hence, the JBD theory is recovered in this regime. The field equations for a spatially flat,

Friedmann metric become [11]

. 1 4V
3H"p= --

1 +6f "p ,
(4)

where the slow-roll conditions ~ <: H"jy, {"jy2,o-2} <: YeO') and a <: Ho- are assumed, a subscript

0' denotes d/dO' and a dot denotes d/dt. In this case, the JBD parameter is given by Wo = 1/(4f)

and observations imply that Wo > 500 (f < 5 X 10-4 ) [4]. The solution to these equations is

(:J = (:f+6E

)/4E

"p2 _ "p~ = __8 _jU da'V(a') (dV)-l
, 1 +6f U i dO"

and "jy > 0 for all "p > o.
The SEC is violated if [12]

(5a)

(5b)

(6)

for arbitrary V(O'), which implies that inflation occurs if ",2"p2 < 2/(fA2 )[(1 + 2f)/(1 + 6f)] for an

exponential potential [12]. Hence, inflationary solutions exist for A2 > 2 in theory (1). Furthermore,

when the effective gravitational constant is time-dependent, inflation ends naturally when "p reaches

t/Jf defined as

(7)

and the expansion becomes subluminal.

There are a number of constraints that must be satisfied for this analysis to be self-consistent.

Firstly, mp represents the Planck mass today if the present day value of"p = "po and is normalized

such that 2",2h("po) = 1. The specific value of "po can be determined by a mechanism similar to
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that discussed in the old hyperextended scenario [10]. If h("p) contains a maximum at "po, eq. (2)

implies that the dilaton's kinetic energy will decouple when dh/d"p = 0, because w("p) diverges and

the theory becomes identical to general relativity. If the dilaton continues to grow when tP > tPj,

the nth-order terms in the expansion of h("p) will become important and "p decouples at tPo if

f.n/2 = p,[n/(n - 2)](n-2)/2. We remark that recent constraints requiring n ~ 6 do not apply here

because no first-order phase transition occurs [5].

It is important that the field equations (4) are valid throughout inflation Le. that the quadratic

part of h(tP) dominates for tP < "pJ. This implies that we require (K"pJ)n-2 < nf./(2p,) and

tPJ < tPo· These conditions are equivalent to A2 > (n - 2)(2/n)n/(n-2)(1 + 2f.)/(1 + 6f.) and

A2 > 2[(n - 2)/n](1 +2f.)/(1 + 6f.) respectively. Finally, the slow-roll conditions are valid if f. < 1

and (6) is satisfied. Hence, the analysis is self-consistent for A2 > 2 and all n > 2.

There is a simple physical argument that explains this behaviour. The SEC is not violated

in general relativity when A2 > 2 because the ratio of kinetic to potential energies is too large.

However, the variation of the effective gravitational constant in the JBD theory acts as an additional

friction in the field equations. Hence, there is more friction on u and the field evolves more slowly

than in Einstein gravity for a given A. This implies that the potential can dominate over the

kinetic contribution for a wider range of A. On the other hand, the inflation causes tP to grow and

gravitational friction (fV "p-l) to weaken. In this sense, inflation brings about its own demise by

forcing "p to reach tPJ within a finite time interval. Moreover, for a given {f., A}, the strength of

gravity at "p = "pf is independent of any initial conditions.

Initial conditions: However, it is also necessary to know when inflation starts. Linde has

argued that the quantum boundary (QB) yields the most natural initial conditions for extended

chaotic inflation [11,13]. This corresponds to the hypersurface at the Planck density and represents

the earliest times at which initial conditions can be placed on classical fields. In this scenario,

the Planck mass is related to the dilaton by m~(tP) = 167rh("p), so the QB is reached when

V(u) fV 2567r2h2("p). Furthermore, the probability that the universe can be created from nothing

via quantum tunnelling is p fV exp( -3m1:>("p)/8V(u» [13,14], which is only high on the QB. The

initial conditions for theory (1) when (K"p)n-2 ~ nf./(2p,) are estimated by considering quantum

fluctuations in the fields {u,,,p}. Eternal inflation occurs when the change in the fields due to

quantum fluctuations with wavelength larger than H- 1 dominates the classical change in the time

interval H-I due to eq. (4) [11]. When f. ~ 1, such a process occurs if

(8)
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and this is easily satisfied for ",21fJ2 < 1. Therefore, the self-reproduction of this universe is a

natural consequence of the process of quantum creation. A local domain corresponding to our

own observable region is formed once the left-hand inequality of (8) is reversed and the initial

conditions become

(9)

This condition is sufficient to ensure af/ai > e60 for a wide range of {f,..x}, thereby solving the

horizon and flatness problems.

Density spectrum: The density perturbation spectrum, fJpjp, can be derived directly from eq.

(4) or by expressing the action (1) in the Einstein-Hilbert form by performing a suitable conformal

transformaton on the metric [15]. In both cases, we find

(10)

where f3 ~ 0(1). The quantities on the right-hand side are evaluated at the start of the last 60

e-folds of inflation, because scales of cosmological interest lie in the range IMpc ~ I ~ 3000Mpc

and crossed the horizon during In 3000 ~ 8 of these e-folds. Two regions of the power spectrum

may be defined in terms of the quantity

. 1/2
R, == 'ljJ, = [ Sf ] e240f/(1+6f)

a, (1 +2€)(1 +6f)
(11)

where 'ljJ, = 'ljJ(t = t60), 0'1 = a(t = t60) and we have used eq. (7) along with the expression

'ljJf/'ljJ, = exp(240€/(1 +6f». If liTl < I~I, it has been shown that

fJp (Rl > 1, k) ()( k-8f/(1-2f)
p

(12a)

where k(1fJ) = a(1/;)H(1/;) and V(a) is arbitrary [12]. On the other hand, one may assume that

1fJ ~ constant relative to a during these 8 e-folds if R, < 1. Consequently, we recover general

relativity to a first approximation, but with the strength of gravity scaled as 1/;0 -+ 1/;" This also

leads to a power law spectrum given by

(12b)

where k(a) = a(a)H(a) is calculated from eq. (4). By relating 1fJl to 1/;J and using the definition

(7) for 1/;j, it is clear that the scale-dependence of the fluctuations is independent of ..x in both
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(13)

regions and is uniquely determined by the value of £. Hence, observations of large-scale structure

can be employed to constrain the strength of this nonminimal coupling to gravity.

A suitable limit for the power, r, in the spectum 6p/ p ex: k- r is r < 1/6 [17]. The crossover

point R, = 1 occurs when £ = 6.5 X 10-3 and R, > 1 (R, < 1) if £ > 6.5 X 10-3 (£ < 6.5 X 10-3). It

follows that r < 1/6 when R, > 1 if 6.5 X 10-3 < £ < 0.02, whereas the corresponding constraint

for R, < 1 is 4.2 X 10-3 < £ < 6.5 X 10-3 • It is important to note that in both cases £ > 5 X 10-4

and this scenario is ruled out for the JBD theory. Hence, one must extend the gravitational sector

by either considering higher-order terms in h(1jJ) or introducing a dilaton self-interaction. On the

other hand, a density spectrum consistent with observation is achieved for a wide range of £.

Finally, the constraint arising from the quadrupole anisotropy of the cosmic microwave back

ground must be satisfied [18]. It has been demonstrated that this limit becomes K
4V(a,) <

4 X 10-6£3 if R, > 1 and £ < 1. When R, < 1, eqs. (4) and (10) imply that

4V() 5.8 X 10-
8

(1 +2£) 3 -1440e/(1+6e)
K a, < A4 1 + 6£ e

As £ --+ +0, the constraint (13) is independent of £ and a similar conclusion has been drawn by

McDonald for the polynomial inflaton potential V(a) ex: a 2m {16].

Post-inflationary epoch: It is necessary to reheat the universe after the scale factor has

stopped accelerating. The field can not oscillate since an exponential potential contains no global

minimum. However, the kinetic energy of a will increase significantly once general relativity is

recovered and its couplings to other fields will become important [19]. For simplicity, we consider a

toy model where a particle species X, with equation of state PX = (i-1)px for some constant i, is

coupled to the inflaton through an interaction PX == r xu2. The constant r X represents the decay

constant for a. Hence, matter is produced through the dynamical evolution of the cosmological

constant. A more accurate description assumes the coupling varies in direct proportion to the

effective mass of the inflaton Le. r x ex: v'Vqq [19].

The Bianchi identities and Friedmann equation for this system become

(1+2rx)a+3(1+irx)Ha+Vq = 0 (14a)

3H2 = ",2(pV + px) = ",2 [(~ + rx ) &2 +V(<T)] , (14b)

where PV defines the energy density of a. Eq. (14b) may be rewritten in the Hamilton-Jacobi

form by defining a new time coordinate t == -K2(1 + '"'Irx )/2 Jq da'H;,l. We find

(15)
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which yields the attractor solution

H = v'Aexp ( -~I<<7) , (16)

(17)

where A = constant. Hence, the scale factor grows as a power law a Q( tP, where p == 2-X-2(1+-yrx).

The contribution of X to the matter content of this universe may be expressed through the quantity

fix == ,.;,2 PX /3H2 = px /(px +pv). For the solution (16) we find that

rx-x2

fix=~---""':"'"=""
3(1 + -yrX)2

is constant, implying that the matter and vacuum energy densities redshift at the same rate. It

follows that PX = 4rX/(-X2,.;,2t2) Q( pv Q( a-2Ip . Moreover, by substituting eq. (16) into (15), the

condition Vo > 0 implies this attractor only exists if

fix
rx > ( fi r21- x

(18)

There are a number of constraints on the maximum contribution of the vacuum energy [20].

To proceed, we shall assume that the inflaton is only coupled to radiation (-y = 4/3) which quickly

reaches thermal equilibrium with a temperature Pr = 7r29.Ti /30. 9. represents the number of

relativistic degrees of freedom and 9. f'V 0(102 ) in most grand unified theories. In this case, the

most important constraints arise from a) sufficient reheating; b) ensuring a matter dominated

phase follows a radiation dominated phase; and c) primordial nucleosynthesis arguments at t ~ 1

sec.

An upper limit on the reheat temperature, TRH' follows from eq. (13) by specifying f =
4.2x 10-3 • Ifwe assume that Pr < PV rv V(u) we find Pr < 2.5 X 10-13 -X -4m1>, which implies TRH <

3 X 1015 -X -1 GeV. Hence, it is straightforward to ensure that TRH > 109 GeV and baryogenesis

may proceed via the decay of supermassive Higgs bosons [21].

It is reasonable to assume that the inflaton does not couple to non-relativistic matter, Pm.

(pv is strongly constrained in the matter dominated era by observations of the gamma-ray flux if

such couplings do exist [20]). Hence, Pm Q( a-3 which implies Pm/Pr Q( a(2-3p)/p. It follows that a

matter dominated era (Pm> Pr) will follow radiation domination (Pr > Pm) if 3 +4rr < -X2 and

the vacuum energy will have rapidly redshifted to zero by the present epoch (Pm> Pr).

Finally, primordial nucleosynthesis with a decaying cosmological constant produces abun

dances of He4 and H consistent with observation if fir ~ 0.9 [20,22]. Hence, eq. (18) implies

rr > 9/2 for the attractor solution (16) and eq. (17) yields the limit -X2 > 29.4. The existence ofa
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lower limit on ).2 should be expected because Pr ex &2 decreases with decreasing ).2 and primordial

nucleosynthesis essentially places a lower limit on the amount of relativistic matter present at t ~ 1

sec.

In conclusion, we have presented a new scenario which allows inflation driven by exponential

potentials to end naturally by varying the strength of the effective gravitational constant. This

occurs when ).2 > 2, as predicted by many particle physics models. The scale dependence of the

density spectrum was employed to constrain the coupling constant of the dilaton to gravity, and

this rules out the standard JBD theory.

By invoking a simple reheating mechanism, it was shown how primordial nucleosynthesis argu

ments may be used to constrain ).2. This is an important new feature of the scenario and suggests

that current observations of the light element abundances may provide insight into the structure

of the inflaton potential. This is encouraging when one considers the successes of primordial nucle

osynthesis [22]. Moreover, the parameter). depends on the dimensionality of the internal space in

certain Kaluza-Klein theories [23]. Hence, the cosmological abundance of He4 may be directly re

lated to the number of internal dimensions in the space-time if this scenario is viable, even though

this internal space is thought to have a diameter O(m pI).

In principle, the arguments presented here can be applied for any functional form of h(1/J)

which contains a maximum at 1/Jo > 1/Jf. It can also be generalized to any inflaton potential which

exhibits a decaying tail as KiaI ---+- 00 that does not lead to inflation in general relativity. Finally,

the conformal equivalence of theory (1) to Einstein gravity containing two scalar fields implies that

we can realise this scenario within the context of general relativity if a second scalar field is coupled

to the inflaton Lagrangian in a suitable way [12,15].
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