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Predictability of Charmonium Levels
\ From a Range of Good Fits

Eric Altshuler and Dennis Silverman
Department of Physics, University of California, Irvine, Irvine, CA 92717

A QCD motivated potential with five parameters and a cutoff on high virtual
momentum is used in a relativistic bound state equation to examine the predictability
of such models by comparing with the seven well established charmonium levels. The
predictions of potential models are really ranges for new levels given by the ranges
of parameters that give good fits, rather than the single best fit. The best test of the
models are done using parametrizations which are physically expected from QCD.
The range of parameters that give good fits is presented in three dimensional plots by
surfaces at fixed standard deviations from the known levels. Predictions for new levels
in terms of splittings from related levels are shown across these surfaces by color or
shading. We also show the minimum deviation analog of maximum likelihood plots
with two different level splittings for axes. These show the best fits for each pair of
values for the predictions and any correlations between them. For the 1P, — 3 Peog
splitting we find the predictions not to be sharp but to cover a range of several MeV
both positive and negative with V5 = 0.3 GeV closest to experiment. The correlation
with the ¢’ — n splitting prediction is weak, and values for this splitting center
around 40 MeV with a range of order 20 - 60 MeV. To range as high as the single
experimental observation of 92 MeV, such a poor fit to the seven levels is needed
that the model lacks any significant predictability.
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I. INTRODUCTION

The predictability of a potential model with parameters is only in a very limited
sense given by the predictions with the best fit parameters. At the least one would
like to give error bars to the prediction, which should arise by considering all “good”
fits with the corresponding range of parameters, and the range of predictions given by
this range of parameters. In actual fact the shape in parameter space of a surface of
constant standard deviation is not a simple oval about the best fit, but a more compli-
cated surface, which is convex in some dimensions and approaches an asymptotically
constant shape in other variables. In this paper we begin by showing such a contour
shape in four variables of a six parameter fit. We then can make predictions which
are weighted by the goodness of the fit. These can be shown in a histogram for each
splitting separately. We can also show the analog of maximum likelihood plots and
contours show the correlations among two output splittings predictions. These could
be useful in using the information when one splitting is found to put further limits
on an unknown splitting. In this paper we apply this to the charmonium spectrum
and show the range of predictions for the 1P, — 3P, splitting, the ' — n, splitting,
and for the 3Dy and ! D, levels the splitting from the ¥’ or 3D, level,i. e. 3Dy — 3Dy,
and also the 3D, — 1D splitting. The D, levels are supposed to have narrow widths
due to having the wrong quantum numbers for decay into D — D states.

We use a relativistic bound state equation[l, 2| which has a four component
wave function, reduces in the non-relativistic limit to the Schrodinger equation with
Fermi-Breit spin-orbit and spin-spin couplings, and reduces to the Dirac equation
in the limit of a heavy fermion with a light fermion. The vector and scalar in-
teractions are separated with the gauge invariant vector containing asymptotically
free gluon exchange and the scalar containing a linear potential. In this paper
we modify the previously considered interactions[l] by including a parameter ¢ in
as(q?) = (127/27)/In(co — ¢*/A%) and a constant V; in the linear scalar potential
Vs = kr+ V,. The bound state equation was previously applied with good agreement
to the radiative transitions of charmonium and b-quarkonium(3], to fp, and to the
W-exchange contribution to the Dy lifetime[5].

We demonstrate ways to visualize predictions in the space of the parameters of
the potentials using isosurfaces of equally good overall fits. The values of a given
prediction can be displayed by different values of gray scale or by different colors
on these surfaces. We also demonstrate the minimum deviation or best fit method
(the analog of the maximum likelihood method) for finding the minimum standard
deviation for a single value of a prediction or for a pair of predictions. The latter is
shown in correlation plots. We find that the predictions for the !P, — 3P.:os range
from -4 MeV to +3 MeV when V5 = 0.3 GeV in a good fit region. We also find



that the single experimental observation for the ¢’ — n’ splitting of 92 MeV can be
accounted for at the edge of a poor fit region that allows any value from 5 MeV to
90 MeV and in which the model then lacks predictability..

The errors or range of standard deviation of the fits for a given theoretical model
is analogous to the statistical error associated with an experiment. The standard
deviation improves as more levels (data) are fit, restricting the range of good param-
eters and the range of predictions. This improvement is illustrated in the correlation
plots where knowledge of one new level restricts the range of another. The differences
between different theories which include different effects is then more analogous to
the systematic error. Researchers often take the less well defined differences between
models as the range of predictions, while here we try to illustrate that each model also
has its own intrinsic statistical range of uncertainty as well. Comparisons of these
between different models may well show overlaps of their statistical ranges. We use
as many parameters as possible here in order to simulate a whole range of models.

In section 2 we describe the potential and the spectra we fit to. In section 3 we
describe the six parameters and show how we treat them to analyze all six of them
together. In section 4 we show the multidimensional plots for good fit iso-surfaces in
the parameter space. In section 5 we show the minimum deviation method for showing
the range of predicted splittings and correlations between predictions. Section 6
summarizes the use and value of these methods.

II. RELATIVISTIC INTERACTIONS, PARAMETERS, AND SPECTRA

We refer the reader to Ref. 1 for the formulation of the relativistic integral
equation being used for charmonium. Here we only describe the modified interactions
which include additional parameters. For the asymptotically free gluon exchange
treated as a vector interaction coupling to v, quark currents we use the form

Vi (¢%) = (4/3)4ra,(¢%) /4%, (1)
a,(q%) = (12r/27)/In(co — ¢*/A}), (2)

where ¢? = ¢2 — ¢®. The new parameter is ¢o which is kept greater than one so that
the ¢ cuts are only in a physically correct region, and also since ¢p = 1 would result
in the Richardson potential which has a Fourier transform which is linear in r. The
.linear potential must not occur solely in a vector interaction in a relativistic equation
since it produces a Klein paradox with the lower Dirac components seeing a linearly
falling potential. Recent studies of QCD also show that the linear potential is scalar.
In the plots, a, at ¢> = 0 will be shown instead of ¢g, since its strength is more
directly related to effects on the spectra, and since it is dependent only on ¢ and not
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ag = a,(0) = (127/27)/In(co)- (3)
For the scalar interaction we use
Vs(r)=kr+ VW (4)

where 1 represents the gluon field surrounding the quarks in addition to the linear
part from the length of the string.

In order to get very accurate predictions we use only the seven well established
levels of charmonium, namely J/4(3097), (3685), ¥(3770), 1.(2980), x0(3415),
X1(3510), and x.2(3555). The n’ has not been confirmed, and its location is far
from our and other potential model calculations. The 1(4040) and (4160) are not
unambiguously seen, and it is not easy to identify /(4160) as the 2D state since it
should have a small coupling to ete~ (see the minireview in Review of Particle Prop-
erties[7], 1986). In any case, these two levels, along with the 1(4415), are expected to
be heavily shifted and broadened by coupling with the D — D set of channels above
threshold. Thus we constrain our search for good fits to the seven established levels

listed above.

III. PARAMETERS AND THEIR RANGES

While we formally evaluate results for 6 parameters, to do it in finite computing
time we take advantage of understanding the physical dependence on them. For the
charm quark mass, m., we note that the spin-orbit and spin-spin splittings depend as
mZ?, but the shift in m. over the good fits is at most 300 MeV. The splittings thus
vary slowly with m,, but the overall levels shift together rapidly since the basic energy
is 2m.. The mass m, is adjusted for each set of parameters to minimize the standard
deviation of the calculated values of the seven levels from their experimental values.
The final m, is then an output function of the other parameters. This eliminates
displaying the obvious variation in predictions with this parameter.

In varying the zero point of the linear potential, we take only a few values of V4.
Since the scalar V; adds to 2m, to give the base meson mass for the spectra, a positive
Vo gives a lower m.. To start each set of parameters then the J/4 is calculated first
from an initial m?, and a §m? is found which is necessary to be added to give the
J/1 at its correct value. This is iterated again until no significant shift occurs. The
effect is that the dynamical quark mass in the potential and splittings varies over the
parameter ranges and enhances or decreases the splittings. This produces a ém? with
a range of at most -300 to +300 MeV from the starting m? = 1.58 GeV — V;/2 over
our wide range of parameters.

The standard deviation used for N = 7 levels is then formed from calculated

levels E* and experimental levels E} by



o= Ji(E@ +26m, — E)?/(N - 1). (5)

i=1

dm. is chosen to minimize o giving

N
0= (E:+26m, — E) (6)
N
dme=1/(2N) 3 (E; - E;) (7)

=1

Eqgn. (6) is equivalent to moving the center of mass of the calculated levels to that of
the experimental seven levels. Using this ém, in Eqn. (5), the value of & for each set
of parameters is output. The final m, is given by

me = m2 + 6m? + ém, (8)

The relativistic equation which is an extension of the Dirac equation requires a cutoff
at high virtual three-momentum[l] p, and we take the strong form which has been

needed for some calculations[5]
S(p) = 1/(1 +p*/Ac)? (9)

making A. the third parameter.

The parameter controlling the falloff of the vector coupling strength with ¢ is
A%. We observe in Eqn. (2) that as Ag approaches infinity, the coupling strength
approaches a constant, namely, ag in Eqn. (3). Thus the surfaces of constant standard
deviation approach a shape which does not vary with Ag as it increases indefinitely.
In practice, we find that beyond Ag = 1 GeV, there is little variation, and we use
this as the upper limit for Ag in the displays.

In order to present minimum deviation plots, which are the analog of maximum
likelihood plots, and include contours up to ¢ = 20 MeV, we should include all
parameters that yield such a o or less. However, the shape in the parameter space
(see figures below) is not a contained ovular shape. Extremely small Ag will cut
down the effective a,, and can be compensated for by large A., increasing the virtual
momentum phase space, or by larger &, confining more. However, very large A, will
make the wave function at the origin and thus the ete~ decay width unacceptably
large, and « cannot be too large from Regge trajectory slopes. So we limit the x and
A. parameters, but over a still very large range. The lowest standard deviation we

get is about 9 MeV for V5 = 0.3 GeV, and the “good fit” range about that is not
quantifiable in terms of a confidence level, but as a matter of experience in making
predictions and in the accuracy level needed for the specific predictions.
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IV. ISO-SURFACES OF STANDARD DEVIATION FOR THE CHARMONIUM
LEVELS

Taking only certain values for Vp we proceed to display three dimensional sections
of the standard deviation surfaces in the four variable space of Ag, &, A. and ap. With
the above seven spectral levels and computing strategy, we found the best standard
deviation was about 9 MeV for ¥ = 0.3 GeV. Since most of the splittings are on
the order of 100 MeV, in order to work to 20% accuracy we display the surfaces of
standard deviation of 20 MeV or 25 MeV to make effects in the isosurfaces clearer.

To begin, we demonstrate the relative constancy of the shape for Ag approaching
1 GeV. In Fig. 1 is plotted the standard deviation surface of ¢ = 20 MeV, using
the axes A., Ag, and ap for fixed k = 0.157 GeV? and V, = 0.3 GeV. The ranges
of the parameters for which the calculations were made and plotted are: A, = 1.5
to 12.0 GeV, Agr = 0.07 to 1.0 GeV, ap = 0.1 to 1.3, and « = 0.05 to 0.30 GeVZ2.
In each parameter the calculations were carried out for 15 values uniformly spaced
in the range. We note the effect in Eq. (2) that as Ag — oo, the strength a, does
not decrease with increasing |¢?|. Thus at large Ag the shape becomes asymptotic or
independent of Ag. In this limit then, smaller g is needed to give the same binding
effect as seen in the constant standard deviation surface in Fig. 1. Conversely, as Ag
gets small, the logarithmic cutoff occurs rapidly, and larger aq is needed.

We also show in Fig. 1 by the grayness on the surface the value of one of the
predicted splittings. In this case we show the 1P, — 3P, splitting as white when
it is in the range of 0 to 2 MeV, and as dark gray elsewhere. This covers the range
containing the experimental result[8] of E760 and occurs for most Ag but only for the
larger ap > 0.3 with larger ap at smaller Ag required.

The A, cutoff acts in the integral over the virtual three momentum p’ of the
momentum space integral equation[l] for the wavefunction ¥(p) at momentum p.
This effectively limits ¢ = (p — p’)* < O(4A2?). Thus this acts as a short distance
cutoff to the coulombic-like QCD potential, effective at r. =~ 1/A.. The S(p, A.)
cutoff represents the physical effects of multiquark or two-meson channels removing
probability from the ¢ — g channel in the integral equation. At small A., the effective
strength is reduced by a lack of phase space, and is made up by an increase of ag
strength for the good fits.

The effect of lighter m,. for Vg positive is to give larger spin-orbit and spin-spin
splittings, which depend on the short distance vector potential, and this is balanced
by restricting the phase space with smaller A, thus disallowing shorter distances in
the potential in the good solutions.

Next, for fixed Agr = 0.43 GeV we show in Fig. 2 the 25 MeV standard deviation
surface with axes A., &, and ag, as shown. We see that larger % in the positive linear




kr potential is balanced again by increased ag attraction. By shading we indicate
in this figure the regions producing various values of the ¥’ — 7’ splitting. The light
region is for a splitting above 50 MeV, the medium gray region for splittings between
30 and 50 MeV, and the black region for below 30 MeV.

Extending the ranges of parameters further is not necessary. Either the parameter
has already become asymptotic in the iso-surface shape, or it goes well beyond limits

imposed from other considerations.

V. RANGES AND CORRELATIONS OF PREDICTED SPLITTINGS FOR MINIMUM
STANDARD DEVIATIONS

In describing the range of predictions for a given splitting, we consider separately
each possible value of the splitting, and search over the entire parameter set for the
minimum value of standard deviation associated with that predicted value of the
splitting. This can then be plotted as a histogram over a given range of the splitting.
Since each point in the parameter space is considered equally possible, this is the
appropriate method. For making predictions of two splittings simultaneously, and
looking for their correlations, we search through the parameter range and find the
minimum standard deviation for each given choice of the two predicted splittings,
and show the result with contours at fixed values of the minimum deviations, with
the predicted splittings as the axes.

We first consider the levels or splittings being searched for in Fermilab E760 in
proton anti-proton annihilation. The best values are shown in Fig. 3a for V5 = 0.3
GeV. On the y-axis is the splitting 1'(3686) — . from 0 to 100 MeV, and on the x-axis
is 1P — 3P, from —15 to +15 MeV. The contours are at minimum deviations of
10, 15 and 20 MeV. The calculations over the parameter ranges of the potential were
carried out by taking 15 uniformly spaced values in each range. The contours in this
“best fit” plot are smoothed over 10 bins in each of the axis variables. The contours
for V5 = 0 are shown in Fig. 3b and the central contours are seen to be moved to
about 3 MeV lower in the !P; — 3P, splitting.

For Vo = 0.3 GeV, Fig. 3a, we see that predictions of ¢’ — 5. peak around 40
MeV at the o = 10 MeV contour, and range from 20 to 60 MeV at the o = 15 MeV
contour. The contour o = 23 MeV is needed (by extrapolation) for V5 = 0, Fig. 3b,
or for V5 = 0.3 GeV, to reach the splitting of 92 MeV in the only observation[6, 7] of
the .. At this contour, the model lacks predictability as the whole range from about
5 MeV to 90 MeV is included. Comparing Figs. 3a and 3b shows that the ¢’ — 5.
splitting predictions are fairly independent of V.

The range of the 1P, — 3P, splitting for V5 = 0.3 GeV in Fig. 3a is centered
around zero at ¢ = 10 MeV and —4 to +6 MeV at ¢ = 15 MeV. For V; = 0 the




o = 10 MeV contour ranges from —5 MeV to +1 MeV.

The new observation of the ! P; in Fermilab E760[8] giving the ! P, — 3 P, splitting
at +1 MeV weighs in favor of V5 = 0.3 GeV and indicates that these contours may
be useful near the 10 MeV contours.

These ranges may also be useful to experimenters to estimate what interval must
be considered in which to evaluate the statistical significance of any peak found within
this range. The presence of the 1P, — 3P, splitting in our calculations is due to
the fact that we do not use a pure 1/r coulombic gluon potential, but have the extra
asymptotic freedom logarithmic ¢? dependence built in (Eqn. (2)). At large Ag where
the ¢ dependence decreases, we notice that this splitting also decreases, as in the
white region of small positive splitting in Fig. 1.

While the 3’ — 7! is a spin-spin splitting, and the ' P, — 3P,,, is a tensor splitting,
their magnitudes both depend on the value of the short distance potential, and may
be expected to show some correlation, as they do in Fig. 3b, but do not significantly
in Fig. 3a. What is correlated is the increases of the range of the splittings in each
output for an increase in standard deviation.

The 3D, — 3D, splitting is shown on the y-axis versus the 1P, — 3P, splitting
on the x-axis in Figs. 4a and 4b for V5 = 0.3 GeV, and Vp, = —0.3 GeV, respectively.
The smoothing is over 16 bins on the y-axis and 10 on the x-axis. Little correlation
is seen between the two splittings for V5 = 0.3 GeV, but some occurs for V5 = —0.3
GeV. The range of the 3D; — 3D; splitting in Fig. 4a is seen to be +10 to +40 MeV
for the 0 = 15 MeV contours centered around 25 MeV at the o = 10 MeV contour.

For the D wave splittings, we note that if the tensor force is small, especially for
D waves as compared to P waves, then the splittings are given by spin-orbit splittings
and are related. For the 3D; — 3D; and 3D; — !D; splittings the differences in the
values of L - § are 2 and —1, respectively. In Fig. 5a and 5b, with x-axis 3D, — 3D,
and y-axis 3D; — 'D, the scales are such to make a spin- orbit correlation line
running through zero for both with a —45° slope. In the left half of the contours
such a correlation is seen, but not passing through zero. Thus a positive tensor force
contribution of order 20 MeV must be present in the 3D; — D, splitting. The
3D, — 1D, splitting centers around +5 MeV with a range from 42 to +10 MeV at
the 0 = 15 MeV contour.

VI. CONCLUSIONS

In the isosurface of fixed standard deviation in parameter space we have seen
how changes in one parameter of the potential can be compensated by changes in
another parameter. We have also seen by displaying predictions in gray scale across
the isosurface whether a given prediction is “likely” by occuring over a large range



of parameter, or whether it occurs only for a very small range of parameters, or at
the extremes of the parameter range for good fits. We can further identify what
features of the potential are important in each splitting. We also have seen how
the shapes become asymptotic in some parameters and unbearably large in others.
Later, additional constraints can be added such as those from QCD calculations of
the potential shape, and also radiative decay and annihilation rates. However, since
our intent here was in making predictions for spectral levels, using them as the sole
input and using their own deviation to evaluate the goodness of fit was the most
consistent method.

We have also shown how to judge predictions and to find correlations in the best
fit minimum deviation correlation plots. Ranges for predictions for n’, 3D,, 1 D,, and

1P, are then given.
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FIGURES

FIG. 1. Surface of AD = 20 MeV for V5 = 0.3 GeV and for fixed K = 0.157 GeV?
with: A. from 1.5 to 12.0 GeV; Agr from 0.07 to 1.0 GeV; and ag from 0.1 to 1.3. On the
isosurface is displayed in shading the predictions for the 1P, — 3 Peog With white for 0 to 2
MeV, and gray otherwise.

FIG. 2. Surface of AD = 25 MeV for Vy = 0.3 and for fixed Ap = 0.43 GeV with:
A, from 1.5 to 12.0 GeV; & from 0.05 to 0.30 GeV?; and ag from 0.1 to 1.3. The shading
shows the 9’ — 7. splitting with light gray above 50 MeV, gray between 30 and 50 MeV,
and black below 30 MeV.

FIG. 3. “Best fit” correlation plots for (a) V5 = 0.3 GeV, (b) Vo = 0, with x-axis
1P| — 3P, from —15 MeV to 15 MeV, and y-axis ¥’ — 7/ from 0 to 100 MeV, showing
contours of AD = 10, 15, and 20 MeV.

FIG. 4. “Best fit” correlation plots for (a) Vo = 0.3 GeV, (b) Vo = —0.3 GeV, with
x-axis 1Py — 3Py from —15 MeV to 15 MeV and y-axis 3D, — 3D; from —20 to 50 MeV
showing contours of AD = 10, 15, and 20 MeV.

FIG. 5. “Best fit” correlation plots for (a) Vp = 0.3 GeV, (b) Vo = 0, with x-axis
3Dy — 3D, from —10 to 50 MeV and y-axis 3Dy — D, from -5 to 25 MeV showing
contours of AD = 10, 15 and 20 MeV.
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