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ABSTRACT

y

A nonperturbative renormalization theory of Euclidean field theories in hier

archical approximation is presented in this paper. The ultraviolet limit is related

to the thermodynamic limit of a polymer system on a multigrid. General meth

ods to present a hierarchical model as a multigrid polymer system are discussed.

We provide a sufficient condition for the existence of the continuum limit by a

bound for Moebius transforms. The use of renormalization conditions for polymer

activities is described. We study a recursive calculation scheme for polymer activ

ities. We state a general cluster expansion formula, which is useful for estimating

Moebius transforms.
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1. Introduction

Perturbative renormalization theory deals with divergences in Feynman per

turbation expansions of field theoretic models. Renormalization shows the way

how to define a "bare" interaction such that the effective theory becomes finite.

The approach starts with a regularized model which is finite by definition. The pa

rameter which regularizes the model is called a cutoff. Regularization is achieved

by suppressing low momentum modes (infrared cutoff) or high momentum modes

(ultraviolet cutoff). For example, we may define an infrared cutoff by restricting

the model to a finite volume and an ultraviolet cutoff by putting the model on a

lattice. There are various other possibilities to provide a regularized model. The

ultimate aim is to remove the cutoff in such a way that the physical quantities

of the model stay finite. A model is called ultraviolet or infrared (perturbatively)

renormalizable, if it is possible to find a "bare" interaction which is parametrized

by a finite number of coupling constants such that the effective interaction stays

finite to all orders of perturbation theory when the cutoff is removed. A pertur

bative renormalization theory was presented by Zimmermann [1] who introduced

the notion of "forest" for Feynman graphs. Gallavotti and Nicolo [2-5J invented

a perturbative renormalization theory in terms of a tree graph expansion. Each

tree graph may be represented by a sum of Feynman graphs. The GN tree graph

expansion comes from a successive iteration of truncated expectation values of the

interactions.

The GN tree expansion is related to Wilson's renormalization group approach

[6-7]. In Wilson's renormalization group approach high momentum modes are

integrated out step by step. Each such step is called a renormalization group step.

The renormalization group procedure starts with a local "bare" interaction. We

may consider the model with this "bare" interaction as a model where ultraviolet

and infrared cutoff are equal (and finite). Each renormalization group step lowers

the infrared cutoff. The interactions after applying renormalization group steps

are called effective interactions. They contain nonlocal terms which are induced

by the nonlocality of the free propagator. The idea of Wilson's renormalization

group approach is that this nonlocality of the effective interactions is of the of

the momentum range, which will be integrated out in the next renormalization

group step. In other words, the renormalization group method analyzes a system,

where an infinite (or a large) number of degrees of freedom are strongly coupled, by
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reducing it to a system, where only a finite (or small) number of degrees of freedom

are strongly coupled after an infinite (or large) number of renormalization group

steps.
Power series expansions for field theoretic models are in general not conver-

gent. For a rigorous construction of field theoretic models one needs convergent

expansion methods. Such a method, called phase space cell expansion, was intro

duced by Glimm and Jaffe [8-9] and further developped and applied to various

models [10-13]. A rigorous block spin approach was introduced by Gaw~dzki and

Kupiainen [14-16]. The main technical problem of these methods is to deal with

large field configurations (large field problem).

A strategy to avoid divergences, coming from perturbation expansions in pow

ers of coupling constants, is to control the flow of effective Boltzmannians instead

of the flow of actions. The action is the logarithm of the Boltzmannian. Intro

duction of this logarithm in the renormalization group equation is the source of

divergences in perturbation expansion. In cluster expansion methods the usual

logarithm log is replaced by a new logarithm LOG (cp. [17,18]). LOG is a func

tion which maps partition functions to polymer activities. Polymer systems come

from expansion methods of (classical) statistical mechanics and were introduced

by Gruber and Kunz [19-20]. Polymer systems can be applied to quantum field

theories [21-24]. The idea to introduce a polymer system, is to describe a sys

tem with infinite (or a large) number of degrees of freedom by subsystems which

contain only a small number of degrees of freedom. The original system can be re

covered by performing a thermodynamic limit for these finite subsystems. We see

that Wilson's renormalization group method and the method of polymer systems

have a similar underlying idea.

Effective interactions are nonlocal, but well localized. This nonlocality of the

effective interaction causes the large field problem. Because of the nonlocality

of effective interactions suitable definitions of polymer systems are complicated

[25]. To avoid such problems, coming from nonlocalities, we consider here only

the renormalization theory of hierarchical models. A hierarchical model [26-28] is

simply defined by omitting all nonlocal terms in the effective interactions. Effec

tive interactions for models in hierarchical approximation are by definition local

and each renormalization group step concerns only a small number of degrees of

freedom. A further reason to study a renormalization theory of hierarchical models

is that renormalization can be studied in its pure form.
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Polymers for a field theory are subsets of a special space. This space will

be the multigrid. The use of multigrids for field theory were introduced by Mack

and Pordt [21-24] (cp. also [17] for hierarchical q>4-models and complete massless

lattice q>~-model). In the following, we shall explain what a multigrid is.

Consider a d-dimensional hypercube x· with unit side length in Rd. Divide

the hypercube x into L d , L E {2, 3, ...}, hypercubes Yb" . ,YLd which have equal

side length L -1. Furthermore, divide all obtained hypercubes Yi, i E {I, ... , L d }

into hypercubes which have equal side length L -2 and so on. After the nth step

we obtain a split-up of the hypercube x· into hypercubes with side length L -n.

Representing the hypercubes by its center points, we obtain after n steps a lattice

An with lattice spacing L -n. The disjoint union of all these lattices An, where the

lattice points represent hypercubes, is called a multigrid A = Ao + Al + A2 + ...
with ba8e 8pace x· C Rd. The lattice An is called the nth layer of the multigrid.

For Y E An+I and y' E An, a relation yfJJ' is given, if and only if the hypercube Y

is contained in y'. The multigrid A = Ao+Al +..., can be used for a definition of a

polymer system of a continuum field theory on a finite volume. The corresponding

multigrid for a theory on a finite volume and with ultraviolet cutoff would be the

multigrid A'5:N = Ao + Al + ... + AN.

For infrared problems we consider the following multigrid. Split R d into

hypercubes x with unit side length. Denote the corresponding lattice by Ao.

Define A-I by disjoint hypercubes with side length L which contain L d hypercubes

of Ao. In this way, define A_n for all n E N. Then, we obtain the multigrid A =

Ao+A-I +A_2 +... with base space Zd. Define An, for all n > 0, by the splitting

procedure, for all hypercubes of Ao, which was described above. The multigrid

A = L:jEz Aj with base space R d is considered for models where ultraviolet and

infrared cutoffs are both removed.

The "bare" action of a field theoretic model consists of the inverse free prop

agator and a local "bare" interaction. The free propagator is splitted up into high

and low frequency (momentum) parts. Correspondingly, fields can be splitted into

high and low frequency parts. After this split-up of the free propagator, all cou

plings in a field theoretic model come from the nonlocality of the free propagator

parts and the coupling of different high and low frequency parts of the fields. In a

hierarchical model approximation the free propagator parts are replaced by local

operators. Then, we have to deal only with couplings which come from the dif

ferent frequency parts of the propagators and fields. These couplings of different
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frequency parts are responsible for ultraviolet resp. infrared divergences in quan

tum field theory. In multigrid language, the couplings of blocks x, YEA, where y

is contained in x and y is very small compared to x, and the large number of such

blocks y, are responsible for ultraviolet and/or infrared divergences in field theory.

To formulate a field theoretic model as a multigrid polymer system, one has

to define polymers and partition functions of polymers. The ultraviolet and/or

infrared limit can be considered as a thermodynamic limit of a multigrid polymer

system. The definition of a multigrid polymer system is recursive, starting with the

smallest polymers. Partition functions of polymers are defined in such a way that

they obey renormalization group equations. Polymer activities for hierarchical

models are Moebius transforms of the partitions function. When the polymer

system is well-defined, the corresponding polymer activities are small for large

polymers. By large polymers we mean polymers which contain a large number of

elements or polymers of large extension. The polymer activities are proportional

to a power of a small constant, where the power is proportional to the number of

elements in the polymer. This constant depends on the coupling constants and is

small for weakly coupled models.

The property that polymer activities are small for polymers with large exten

sion can be achieved by imposing renormalization conditions on partition functions

respectively polymer activities.

This paper is organized as follows. Section 2 discusses the geometry of a

multigrid and provides definitions of multigrid polymer sets, which will be use

ful in later sections. Furthermore, a sufficient condition for the existence of the

thermodynamic limit of multigrid polymer systems is presented in proposition 2.9.

Two versions of defining multigrid polymer systems for hierarchical models

are studied in section 3. In the first version, the partition fuctions for polymers are

explicitly cutoff-dependent. To show the existence of the thermodynamic limit, in

this version, one has firstly to remove the cutoff and then to show that the sum

over all polymers stays finite. In the second version, no explicit cutoff is required.

The cutoff comes only from the finiteness of the polymers. In this case, there are

no "bare" coupling constants introduced a priori. This is achieved by introducing a

polymer-dependent function (renormalization group flow function), which relates

the corresponding "bare" and effective coupling constants of one renormalization

group step. Like in the renormalization of perturbation expansions, where it is nec-
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essary only to renormalize divergent parts of Feynman graphs, it is not necessary

to renormalize all polymer activities in a multigrid polymer system. Considering

this item, we introduce the notion of (n)- renormalization part polymer systems.

Section 4 studies the formulation of renormalization conditions (by introduc

ing operators £) for multigrid polymer systems. These renormalization conditions

determine the renormalization group flow functions. Therefore, they are part of a

definition of a multigrid polymer system. As examples for renormalization condi

tions, we consider hierarchical approximations of the c)4-theory (cp. [17]) and the

twodimensional O(N) u-model (cp. [29-31D.
Section 5 is the technical core of the paper. It describes in four steps, how to

compute recursively Moebius transforms of multigrid partition functions. We will

do this for two kinds of polymer systems.

Finally, section 6 presents an explicit representation of Moebius transforms

by using cluster expansion formulas. Proposition 6.1 states a general cluster ex

pansion formula for Moebius transforms. Corollary 6.4 gives a cluster expansion

formula for Moebius transforms, which are introduced in section 5. This completes

the recursive procedure for calculating Moebius transforms of multigrid partition

functions.

We shall use the following set-theoretic conventions in this paper: N:=

{a, 1,2, ...}, R:= set of all real numbers, C := set of all complex numbers, R+ :=

set of all non-negative real numbers, + := union of disjoint sets, 3 := exists, IXI :=
number of elements in the set X, 0 := empty set, C:= subset, but not equal, and

the I\:ronecker delta defined by

6x,¥ := {~: if X = Y;
otherwise,

for all sets X and Y. We write "iff" for "if and only ir' .

2. Hierarchically ordered sets, entropy factors and tree graphs

Before we represent a field theoretic model by a polymer system on a multi

grid, we have to discuss the geometric structure of a multigrid and have to define

sets of polymers. This is done, in this section, by introducing some definitions and

notations. We present here three different kinds of polymers. The special feature

of describing hierarchical models is revealed by the fact that all polymers defined
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in this section contain only one maximal hypercube. We can define an equivalence

relation of the polymer set, such that each equivalence class is related to a tree

graph. These tree graphs for polymers correspond to tree graphs introduced by

Gallavotti and Nicolo [2-5]. The difference of these two kinds of tree graphs is

that the Gallavotti-Nicolo tree graphs are part of a perturbation expansion, while

the tree graphs introduced here are part of a nonperturbative expansion.

We start this section by defining hierarchically ordered sets. We shall see that

the multigrid A = Ao + Al + ... with base space x* C R d (x* = unit hypercube)

is an example of a hierarchically ordered set.

Definition 2.1. Let A be a denumerable set with a relation E such that there

exists x· E A with x*iY, for all yEA, and for all yEA - {x*}, there exists

one and only one element y' E A - {y} such that Yf1J'. Furthermore, there exists

n E N such that

y = Yofil/lf1J2E ... f.1Jn-IfYn = x*,

where Ya ~ Yb if a ~ b, a,b E {O, ... ,n}. Then (A,E) is called a hierarchically

ordered set (h. o.s.).

The unique element Y' with Yf.1J' is denoted by [y]. We will suppose that, for

all yEA, the number of elements in

y:= {y'l y' f.1J} (2.1)

is finite and equal to L d
, L E {2,3, ...}, dE {1,2, ...}. This is the case for the

multigrid A with base space x* C Rd (x*= unit hypercube), previously defined in

the introduction.

The relation E induces an (partial) order relation -< in A, in the following

way. Let us recall that -< is called a partial ordering of A, iff (a) x ~ x, (b) x ~ y

and y ~ z imply x ~ z, and (c) x ~ y and y ~ x imply x = y for all x, y, z E A.

For y, y' E A, define y -< y', iff YSl/' or there exists YI, ... , Yn E A, such that

The order relation -< is called the vertical order relation in A. Obviously, max(A)

:= set of all maximal elements in A = {x*}.

For all n E N and a h.o.s. (A, f), we define An C A recursively. Define

Ao := {x*} and for n ;::: 1,

An := {y E AI 3x E An-I: YEx}.

6

(2.2)



An is called the nth layer of A. A is equal to the disjoint union of all layers

An, n E N. We obtain the following split-up

(2.3)

Obviously, IAnI = L nd. IX I denotes the number of elements in a set X.

For x E A, defineitsjrequency indexj(x) EN byx E Aj(x), i.e. x is contained

in the j (x )th layer of A.

Definition 2.2. Let (A, f...) be a h.o.s.. A subset X of A is called convex, iff (X, f...)

is a h.o.s..

The name convex is motivated by the following lemma.

Lemma 2.3 . A subset X of A is convex, iff

(a) Imax(X)I = 1

(b) For all y, y' E X with y -< y', the following condition holds: if y" E A such

that y -< y" -< y', then y" E X.

Proof: (i) Suppose that X is convex. By definition 2.2 there exists a unique element

x E X, such that max(X) = {x}. This proves (a). Consider y, y' E X with y -< y'

and y" E A such that y -< y" -< y'. By definition 2.1, there exist Yl, ... ,Yn E X,

such that YSlIl E ... SlInSll' and the elements Yl, ... Yn are uniquely determined.

Then, the definition of -< shows that there exists an i E {I, ... , n}, such that

y" = Yi E X. This proves (b).

(ii) Suppose that (a) and (b) hold. By (a) there exists x E X with max(X) = {x}.

Consider Y E X - {x}. We have to prove that [y] EX. This is obvious, if [y] = x.

Suppose that [y] # x. Then, we have y -< [y] -< x. Since y,x E X, we see that (b)

implies [y] E X. 0

In the following, we introduce polymers on A in a general way. For a set A,

define the set Pjin(A) of all finite subsets of A

Pjin(A):= {XI X ~ A, IXI < oo}. (2.4)

A set of polymers P (in A) is a subset of Pjin(A) - {0}. We use the following

definitions for X, X' ~ A, X' ~ X

P(X) :={Y E PI Y ~ X},

P(X, X') :={Y E PI X' ~ Y ~ X}.
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For example, for a multigrid A, we may define the set of all polymers P, consisting

of all finite convex subsets X of A. We call these polymers convex-polymers. All

convex sets are nonempty. Therefore, all convex-polymers are nonempty. Further

more, for all x E A, define

P x := { ..J[ E PI max(X) = {x}}. (2.6)

Then Px may also be considered as a set of polymers. For a subset X ~ A and

yEA, let us introduce the notation

X y := {y' E XI y' ~ y}. (2.7)

We will define recursively an equivalence relation "-I on the set PI := {X ~

AI IXI < 00, Imax(X) I = I}. Suppose that < is a total order relation of A. Let

us recall that < is a total ordering iff < is a partial order relation and x ~ y or

Y ~ x for all x, yEA. Since A is denumerable, there exists always a total ordering

< of A. Consider X, X' E PI with

max(X) = {x},

max(X') = {x'},

max(X - {x}) = {Yb ... , Ym},

max(X' - {x'}) = {Y'l'··· ,y'm'}'

where
YI < ... < Ym,
, ,

y I < ... < Y m'·

Then the sets X, X' E PI obey the following equations

m

X = {x} + L:Xyca'
a=l

m'

X' = {x'} + L:X'y'o.
a=l

We call X and ..1[' equivalent, X "-I X', iff

m = m', j(x) = j(x'), j(Ya) = j(y'a)
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and

(2.12)

for all a E {I, ... ,m}. Denote the equivalence class of X E PI by [X].
An extended equivalence relation I'Ve is recursively defined as follows. Consider

X and X' as above. X I'Ve X', iff there exists h E Z such that

and

m = m', j(x) = j(x') + h, j(Ya) = j(y'a) + h

X x ,
YG I'Ve y'G'

(2.13)

(2.14)

for all a E {I, ... , m}.

For a finite subset X of A with Imax(X) I = 1, define the entropy factor E(X)

by the number of elements in the equivalence class [X]

E(X) := I{X' ~ AI X' I'V X}I. (2.15)

For instance, E( {x* , y}) = Lj(y)d, for all yEA and x* = max(A). We see that

E( {x*, y}) can be very large for very large j(y), i.e. very small hypercubes y. The

largeness of the entropy factor E(X), for all polymers X, which contain elements

x, y with Ij(x) - j(y)llarge, is the reason for the divergence of multigrid polymer

systems. This divergence is related to the infrared or ultraviolet divergence in field

theory.

Let P be the set of all convex-polymers. For x E A, we have an equivalence

relation I'V on Px as previously defined. The equivalence class for X E Px may be

represented by a tree graph r(X), i.e.

X I'V X' <===} reX) = reX'), (2.16)

for all X, X' E Px . We consider here only "plane" trees. Trees which differ by a

reordering of distinct subtrees are distinct. Then tree graphs may be considered

as embedded in a plane. To define the tree graph reX), we have to specify the

vertices and lines of X. Define the core of X E P x by

core(X) := {x} + {y E X - {x}1 l1Jn XI :f I}, (2.17)

i.e. y E core(X), iff y = x or y E X and there exists not one and only one y' E X

with y'f1J. The vertices of reX) corresponds to the elements of core(X). For
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y, y' E core(X) with y -< y', there is a line (yy'), iff there exists no y" E core(X),

such that y -< y" -< y'.
For each vertex y of rex), assign a number n E N defined by n = j(y). This

mapping is called the momentum assignment of r. We consider x = max(X) as

the root of reX) and if y' is a successor of y, then j(y) < j(y'). The fact that

equivalence classes [X] can be represented by tree graphs reX) is stated in

Lemlna 2.4 . For all X,X' E Px , we have

x '" X' <===? reX) = reX'). (2.18)

Denote by £(r), V( r) the set of all lines resp. vertices of r. For 1= (vv') E £(r),

define the length of line 1 by III := Ij(v) - j(v')I·
For a subset X ~ A, define the boundary of X by

ax := {y E XI ,BYI E x: yf:1j1 or ,BY2 E x: Y2f:1j} , (2.19)

I.e. ax consists of all minimal and maximal elements of X. The interior of X is

defined by

int(X) := X - ax.

The following lemma is a direct consequence of the foregoing definitions.

(2.20)

Lemma 2.5 . Let P be the set of all convex-polymers. For all X, Xl, X 2 E P we

have
aXI = aX2 => Xl = X 2

ax ~ core(X)

core(XI ) = core(X2 ) => Xl = X 2 •

(2.21)

We see that a convex-polymer P is uniquely determined by smaller sets like

its core or even its boundary. Therefore, some elements of a convex polymer Pare

redundant for the definition of P. Furthermore, we see that all interior elements

of P are irrelevant for the determination of P. But we shall see later on that not

all interior elements of P are irrelevant in a renormalization point of view. The

minimal subset of P, which is necessary for renormalization, is the core set of P,

core(P). Therefore, introduce the set of all core-polymers by

P c := {P ~ AI3X E P:P = core(X)}.

10

(2.22)



In analogy to the definition (2.6), define for all x E A

Pc,x := {X E Pel max(X) = {x}}. (2.23)

We see that X E Pc,x and y E int(X) imply X - {y} ¢ Pc(X). Therefore,

to construct all elements of Pc(X) := {Y E Pel Y ~ X} from X, we have to

eliminate step by step all minimal elements of X.

By lemma 2.5, there exists for P E Pc one and only one X E P with core(X) =

P. We call this polymer X the hull of the core-polymer P, X = hull(P). Obvi

ously, we have for the mappings core: P --+ Pc and hull: Pc --+ P

core 0 hull =l!Pe

hull 0 core =llp.

Thus core and hull are bijective mappings and core = (hull)-l .

For all y, x E A with y -< x, define the tower

[y, x] := {y' E AI y -< y' -< x}.

(2.24)

(2.25)

The tower [y, x] is linearly ordered by -<. We say that the tower [y, x] has length

1( [y, x]) := j (y) - j (x). (2.26)

For core-polymers P, the number k = l([y, xn, where y, x E P and int([y, xn n
P = 0, can be arbitrarily large. Imposing for this number k ~ n, leeds to the

following definition of a third kind of polymers. These polymers will be called

(n )-renormalization part-polymers. To define this kind of polymers, we start by

defining a special subset of the set of all convex-polymers P in

Definition 2.6. A polymer X E P x, x E A, is called a renormalization part of

length n (~ 1), iff there exists y E core(X) such that l([y, xn = nand

X = [[y], x] + X y. (2.27)

The set of all renormalization parts of length n is denoted by piren
). We will use

the notation
-n(ren).= U -n(ren)
r~n' r m ·

m:m~n

11
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For all n E {I, 2, ...}, define a mapping hn:P --+ Pjin(A) by recursion. Consider

X E Px, x E A. If X E p~e:: and X = [[y], x] + X y with l([y, xn 2: n, then define

and if X E Px- p;e::, define

hn(X):= {x} + L hn(Xy ).

liEi"':
XII""

Start the recursive definition by

hn({x}):= {x},

(2.29)

(2~30)

(2.31 )

for all x E A. We say that a polymer X E P contains no renormalization parts of

length 2: n, iff hn(X) = X. We see that the mapping hn is injective.

The mapping hn does the following. Consider a tower [y, y'] ~ X E P,
y,y' E core(X) and suppose that there is no y" E core(X) with j(y) = j(y"),

y -:F y" and [y", y'] ~ X. If l([y, y'n 2: n, then eliminate all elements of int([y, y'n

from X. Doing this for all such towers [y, y'] ~ X, we obtain hn(X).

For x E A, we may also define hn(Px) as the image set of Px. Obviously, we

have hn(Px) = hn(P)x.
Consider the elements of the image set hn(P) as a new kind of polymers.

These polymers are called (n) -renormalization part-polymers.

Since core and hn:P --+ hn(P) are bijective mappings, we can also define the

entropy factor E(X), the equivalence relation "J and the tree graph reX), for all

core-polymers resp. (n )-renormalization part polymers X.
An upper bound for the entropy factor is given by the following

Lemma 2.7 . For all )[ E P x , we have

E(X) ~ II LI'ld.
lEC(r(X»

(2.32)

In this section we have defined three examples of polymers. The notion of a Moe

bius transfonn for these kinds of polymers is important for the following sections.

For general polymer sets P, define a P-Moebius transform by

12



Definition 2.8. Let 'P be a general set ofpolymers. Fora complex-valued function

B: 'P --+ C, we call B: 'P --+ C the 'P-Moebius transform of B, if for all X E 'P

B(X) = L B(P).
PE1'(X)

(2.33)

When it is evident from the context, we write Moebius transform instead of

'P-Moebius transform. Rewriting eq. (2.33) as

B(X) = B(X) - L R(P),
PEP(X):
IPI<IXI

(2.34)

we see that the Moebius transform R is uniquely defind by eq. (2.33).

When speaking of a Moebius transform in cases of the set of all convex

polymers 'P, the set of all core-polymers 'Pc and the set of all (n )-renormalization

part polymers, we mean in the following the 'Px-, 'Pc,x- and hn('P)x-Moebius trans

form, where x E A. For instance, the Moebius transform B of B: 'P --+ C is defined

by

B(X) = L R(P),
PE1';c(X)

(2.35)

for all X E 'Px •

Let us remark that in the following definitions and proposition the term poly

mer may be replaced by the terms convex-polymer, core-polymer and (n )-renor

malization part-polymer.

The formal thermodynamic limit of B: 'P --+ C is given, for all x E A, by

B(A x ):= lim B(X):= L B(P).
X/A;c PE1';c

(2.36)

To show the existence of this limit, we will show that the series on the rhs of

eq. (2.36) is absolutely convergent. In the next proposition, we shall present a

sufficient condition for the existence of the thermodynamic limit. For P E 'Px ,

define the degree of P by

deg(P) := 1 min(P)I· (2.37)

Consider the function B: P x --+ C. We call B ---invariant, iff P -- pi implies

B(P) = B(P'). We have the following relations

IV(r(P»1 = 1£(r(P»1 + 1,

13

1
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Proposition 2.9. Let q: N -. R+ be positive function and A be a positive

constant. Suppose that B: 'Pz -. C is ",,-invariant and the following bound for the

Afoebius transformB

IB(P)I ~ [ II q(lll)] Adeg(P)

lE£(T(P»

holds, for all P E 'Pz . Define G(L, q) := l:~1 Ldiq(i) and suppose

(2.39)

G(L, q) ...1/2 ~ 1/4. (2.40)

Then the thermodynamic limit of B exists and we have the following bound

(2.41)

Proof Using ",,-invariance, we obtain

(2.42)
TT PE'P~:

r(P)=r

L IB(P)I = L L IB(P)I = LE(r) IB(r)l·
PE1'~

With help of lemma 2.4 and lemma 2.7, bounds (2.39), (2.42) and (2.38), we get

L IB(P)I ~ L[ II LdI1Iq(lll)] )...tIV(T)I.

PE1'~ T lE£(T)

(2.43)

Define, for all k E {I, 2, ...},

Ik := L [II LdI1Iq(lll)] At k

T:IV(T)I=k lE£(T)

(2.44)

and for all n E {I, 2, ...},

I n := L Ik.
k:I~k~n

(2.45)

Byeq. (2.43), we have to prove that

(2.46)

holds, for all n E {I, 2, ...}. This is done by induction. Obviously, 'it = II = K)... t.
Suppose that eq. (2.46) holds for all n E {I, ... , N - I}. Split up the tree r into

its subtrees rI, ... , rm, we see that for all n > 2,

(2.47)

14



Thus, using eq. (2.40) , we obtain

00 m

IN ~ At + L: L: L: At[II Ldlldq(llil)]IN_l
m=l IIl,···,lIm : h,...,lm~l i=l

l: lIi=n-l

This proves the assertion.

(2.48)

o

As we have seen in the proof of proposition 2.9, all polymers P in formulas

containing ",,-invariant functions B: P -+ C can be replaced by trees rep). In

the next sections, we shall formulate all relations in terms of polymers. We could

always replace these relations in terms of tree graphs for ",,-invariant functions B.

In this section, we have defined polymer sets on a multigrid A. The aim of

the next section is to represent hierarchical models by multigrid polymer systems.

3. Renormalization group equations and polymer systems

Hierarchical renormalization group equations are related to polymer systems

on the multigrid. The definition of a polymer system is in no way unique. We

present in this section two definitions of a polymer system. The first one needs

an explicit definition of the bare coupling constants. In the second definition of a

polymer system bare coupling constants will be polymer-dependent and recursively

defined. This is in analogy with Gallavotti and Nicolo [2-5] where the bare coupling

constants are expressed as a formal power series of effective (renormalized) coupling

constants.

Let 0 ~ R m be a space of parameters (coupling constants), which will not

be further specified here. Consider parameters A = (AI, ... , Am) E 0 ~ Rm and

assign to each A a function Z..\

(3.1)

The choice RM for the field space is not essential for the following discussion. Let

us remark that the choice of 0 will depend on the model defined by the function

Z..\. How the region 0 depends on Z..\ is an important question, which will not be

ans,vered in this paper.

15



In the following, we shall define the hierarchical renormalization group equa

tions in d dimensions. To be specific, choose a special hierarchical renormalization

group equation introduced by Gallavotti et al [28]. But all results stated here do

not depend on the special manner of defining a hierarchical approximation. For

N E Nand "y ~ 0, define recursively ziN
) by

(3.2)

for k E {O, ... ,N -I} . The recursion starts with

(3.3)

for a parameter AN E O. We call Z.\N('1J) the bare partition function. dJ1."Y(~) is

the Gaussian measure with mean zero. It is defined by

We have supposed here that the Gaussian measures of ziN
) exist.

malization constants which will not be further specified.

The ultraviolet limit is defined by choosing parameters AN,

following limit

(3.4)

C(N) are nor
O,k

such that the

(3.5)

exists, for all kEN, '1J E R M. For a given N, the parameters AN are called bare

coupling constants and ziN
) is called effective partition function with ultraviolet

cutoff N. The effective interaction is defined by V('1J) = -In Z(\l1).

We study two versions to define a polymer system, which represent the renor

malization equations eqs. (3.2) and (3.3) of a model defined by the function Z.\.

In the first version, we need an explicit ultraviolet cutoff, which is defined by im

posing for polymers that they are contained in the first N layers of the multigrid.

In the second version, we do not need an explicit ultraviolet cutoff. Throughout

this section, when we speak of polymers, we mean convex-polymers.

16



3.1. Polymer system defined by an explicit ultraviolet cutoff'

Define, for all yEA(N) := Ao + Al + ... + AN, coupling constants Ay E 0

and relevant partition functions by

(3.6)

For all x E A(N) and X E p~N) = Px(A(N», define recursively partition functions

Z(N)(Xlw) by

if X = {x},x E AN and

ZIN)(XllJI) :=co(X) [ XI JdJl-y(oJ1)zre/(yloJ1 + L 1
-

d
/

2 lJ1)]

XJI='

[XI JdJl-y{oJ1)ZIN)(Xy loJ1 + L1
-

d
/

2 lJ1)] ,

XJlfI':'

(3.7)

(3.8)

if IXI ;:::: 2. co(X) is a normalization factor which will not be further specified here.

Comparing this definition with the definition of ziN
) (eqs. (3.2) and (3.3)), we see

that the relation

(3.9)

holds, for all x E Ak' A~N) := {y E A(N) I y ~ x}, if the normalization constants

are related by

c~~) = co(A~N» (3.10)

and Ay = AN for all yEAN. We see that Z(N)(A~N)lw) depends only on the

bare coupling constants Ay , yEAN. We set Ay = AN, for all yEAN. The other

coupling constants {A y , y E A(N-l)} determine the polymer system on A(N).

Obviously, we have Z(Xlw) = Z(X'/W), for all X,X' E P with X "J X'.

For y E A(N-I), the parameters Ay are chosen in such a way that zrel(xlw)
will be a "good" approximation to Z(N)(Xlw), for all polymers X E p~N). Then,

the parameters Ay are no longer independent from each other. For example, let

A}N) be the running (effective) coupling constant of layer Aj with ultraviolet cutoff

N. The running coupling constants are related by

(3.11 )

17



The functions G}N) determine the renormalization group flow of the running cou

pling constants A}N). Then a suitable choice for the coupling constants Ay , for all

Y E A(N) would be A .- A(N), y.- i(y)·

Define the irrelevant partition function R(N)(XI'lJ) by

(3.12)

for all X E p~N),x E A(N).

The definition of the relevant partition function ZeN) implies the following

renormalization group equations for the irrelevant partition functions R(N)

(3.13)

if X = {x},x E AN and

R(N)(XI\[1) = _zre'(xj\[1) + L co(X) [ IT Jdp-y(.;l»zrel(YI.;l> + L 1
-

d
/

2 \[1)]
P: P~X yEx-P

[IT Jdp-y(.;l»R(N)(Xyl.;l> + L 1
-

d
/

2 \[1)],
yEP

(3.14)

if IXI ~ 2. We could equivalently define R(N) by eqs. (3.13) and (3.14) first and

define ZeN) byeq. (3.12) . Obviously, zeN) would obey the renormalization group

equations eqs. (3.7) and (3.8) .

The proof for the existence of the ultraviolet limit consists of two parts.

Firstly, choose the bare coupling constants Ay = AN for all yEAN, N EN,

such that the limit

lim Z(N)(PI'11) =: Z(PI'11)
N-oo
N~h(P)

(3.15)

exists, for all P E P x , x E A(N), h(P) := max{jl Ai nP #- 0}. Let us recall that the

coupling constant Ay , yEA(N), is AN-dependent. Otherwise, the limit in eq. (3.15)

would be trivial. In the next step, we have to show that the thermodynamic limit

lim Z(PI'11) =: Z(Axl'lJ)
P/A~

exists. This can be done by proving

L 111(PI'11)1 < 00,

PE'P~

18
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where Ii is the Moebius transform of R.
We have seen in this section that we need two limit processes to prove the

existence of the ultraviolet limit. In the next section, we shall define a polymer

system for hierarchical models, such that we need only one limit process to prove

the existence of the ultraviolet limit. For the polymer system defined in this

subsection we have to know the bare coupling constants a priori. The definition of

a polymer system presented in the next subsection shows that the bare coupling

constants may be constructed in a canonical way.

3.2. Definition of a polymer system with no explicit ultraviolet cutoff

The reason that two limit processes were required for the ultraviolet limit in

the last section, was the introduction of bare coupling constants AN, or equivalently

the cutoff-dependence of the partition functions. Instead of coupling constants Ay

for all YEA, we introduce in this section functions Fx: 0 -+ 0 for all polymers

X E P. The functions Fx relate the coupling constants of one renormalization

group step. We call Fx renormalization group flow function of X. Suppose in

this section, that the functions Fx are arbitrarily defined. In the next section, we

shall see that the renormalization group functions Fx can be fixed by imposing

renormalization conditions on the partition functions.

Suppose that for all polymers X E P, there are differentiable functions Fx :

o -+ O. For all A EO, X E P:c, X E A, define recursively partition functions

Z>.(XIIJI) := co(X) [ITJdp-y( 41)ZFx(>')(Xy141 + L 1
-

d
/

2 1J1)]. (3.18)
ys,x

Start the recursive definition by

Z.x(01'1J) := Z.x('1J).

Define irrelevant partition functions R.x by

R.x(XI'1J) := -Z.x('1J) + Z.x(XI'1J).

(3.19)

(3.20)

By eqs. (3.19) and (3.20) follows R.x(01'1J) = O. Then the renormalization group

equations for R.x and X E P with max(X) = {x} read

R>.(XjlJl) = -Z>.(IJI) + L co(X) [ IT Jdp-y(4!)ZFx(>.j{4! + L 1
-

d
/

2 1J1)]
P: P~X yEx-P

[IT Jdp-y( 41 )RFx (>.)(Xy141 + L 1
-

d
/
2 1J1)].

yEP

(3.21)
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We could equivalently define R>. byeq. (3.21) first and then define Z>. byeq. (3.20).

Obviously, Z>. would obey the renormalization group equations (3.18).

The functions Fx are chosen in such a way that Z>.(\II) is a "good" approxi

mation to Z>.(XI\II), for all polymers X. We see in the next section, how this can

be achieved by introducing renormalization conditions.

Suppose that F. is ""-Ie-invariant, i.e. Fx = FX" if X, X' E P with X ""-Ie X'.

This implies ""-Ie-invariance of Z>.( .I\II).

We discuss now how the bare coupling constant AN and the effective partition

function Z~N) can be recovered. The bare coupling constant AN(A) is a function

of A. For all N E N and A E 0, define F N := FA(N) and

(3.22)

Suppose that Fk is invertible, for all k E {O, ... , N - I}. Then, we obtain the

effective coupling constants by

dN) F-1 F-1 F-1 (\ )/\i = j 0 i+1 0 ... 0 N -1 /\ N , (3.23)

for all j E {O, ... , N - I}. We see that the renormalization group flow equation

eq. (3.11) holds with

Moreover, we obtain

G<.N) = F:- 1
J J' (3.24)

(3.25)

The proof of the ultraviolet limit is equivalent to find functions Fx, for all polymers

X, such that the thermodynamic limit

Z>.(AI\II):= lim Z>.(XI\II)
X/A

exists, for all A E O. The thermodynamic limit may be shown by proving

L IR>.(PI\II)I < 00,

PE1'z:

(3.26)

(3.27)

for an arbitrarily chosen x E A, where R>. is the Moebius transform of R>..

The foregoing definition of a polymer system may also used to find fixed

points Z· of the hierarchical renormalization group equation ZI = H(Z), where
H is defined by

(3.28)
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Suppose that the thermodynamic limit of Z>.. exists and that the following limit

F(;\):= lim Fx(;\)
X/A

(3.29)

exists, for all ;\ EO. F is called the renormalization group flow function. By

eq.. (3.18) we get in the limit X /' A

(3.30)

Let ;\* E 0 be a fixed point of F, i.e. F(;\*) = ;\*. Then we see, using eq. (3.30),

that

Z*(w) := coCA) L}-l Z>..* (Alw)

is a fixed point of the hierarchical renormalization group equation (3.28).

(3.31)

There is one Gaussian integral for each renormalization group step. Up to

now, the partition functions Z>..(X Iw) are defined by performing stepwise renor

malization group equations. We could also rewrite the hierarchical renormalization

group equations by iterating n renormalization group steps and define partition

functions correspondingly. We follow this idea to define a polymer system for

(n )-renormalization part-polymers. For that, we want to distinguish two kinds of

polymers. The first kind of polymers needs renormalization and the second kind

needs no renormalization. This is further specified by the following discussion.

For weakly coupled models, we can suppose that R>.. is small. Then we see that

the main contributions on the rhs of the renormalization group eq. (3.21) for R>..

comes from terms with IPI = 1. Iterating renormalization group eq. (3.21) further,

we see that the most "dangerous" polymers X E 'F'x have the property that there

emerges only one line from the root x of the tree graph reX).

For the following lemma, we introduce some notations. Define, for all n E N,

X ~ A, where max(X) ~ Aj ,

X:=LV,
yEX

X n :=.X· n Aj+n,

X2: n :=X n (Aj+n + Aj+n+1 + ...),
X:5 n :=X n (Aj + ... + Aj+n)

21
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and for all ~Y E R M , yEA, X renormalization part of length no, n ~ no

Fjt) :=Fx~n-l 0 0 FX~l 0 Fx,

c~n)(X) :=co(x~n-l) co(X~l) . co(X),

<p~n) :=L(1-d/2)(n-j(y»~y.

(3.33)

Iterating the renormalization group eq. (3.18) for renormalization parts X, we

obtain the following

Lemma 3.1 Let X E 'Px , x E A, be a renormalization part of length no and

X = [[y], x] + .1[y, 1([y, xl) = no. Then, we have, for all n E {I, 2, ... , no}, '1J = <P x

and y = Ynf1ln-l E ... f1Ilf1l0 = x,

(3.34)

Proof (by induction): For n = 1 eq. (3.34) is equivalent to eq. (3.18). Suppose

that eq. (3.34) holds for n < no. By definition eq. (3.18), we have

n

ZF1n ) (.\)(XYn IL q,~~») =
i=O

c~n)(XYn)[J dJl.,(~)ZFX.n oFin)(>.lXyl~ + L 1
-

d
/

2~~~~»)].

(3.35)
Using X Yn = x~n, co(x~n). c~n>cX) = c~n+l>CX), Fx~n 0 Fin) = Fin+ 1 ) and
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Ll-d/2q,~7) = q,~7+1), we obtain by insertion of eq. (3.35) into eq. (3.34)

Since r n
= r n

-
1 + Xl, eq. (3.36) implies the assertion for n + 1.

(3.36)

o

Lemma 3.1 and eq. (3.20) imply the following recursion relation for R.x(Xlw),

if X E Px, x E Ao, is a renormalization part of length no and n ~ no

where

and

ozin)(XIIlJ) := - Z,x(IlJ) + c~n)(X) [ IT Jdll"'(~Y)]
lIE~n-l

{[IT _IT Z Fk"+!l(,x)(~Y +:t ~~~+l»]
k=O lIEYk -{Yk+d &=0

Z Fin)(,x)(~ ~~7»}

oR~n)(XIIlJ) :=c~n)(X) [ II Jdll"'(~Y)]
YE~n-l

{[IT _II ZFk"+l\,x)(~Y +:t ~~~+l»]
k=O yEYk-{Yk+l} &=0

RFin)(,x)(XYn I~ ~~7»}.
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'\Ve want to define recursively partition functions nZ..\(Xlw) for (n)-renormalizati

on part-polymers X. In analogy with eq. (3.18), define in the following a partition

function

nZ..\(.lw): hn(P) U {0} -+ R+.

Consider an (n)-renormalization part-polymer X E hn(P). If I{y E xl X y i= 0}1 ;:::
2 or X = {x, Yb ... , Yk-l} + X YIc ' Ykf.Yk-l E ... f.Yl Ex, k < n, then define

nZ,\(XIIIt) := co(X) [II JdJl.,( iP)nZFx('\)(XyliP + L I-d/211t)].
y~x

If X = {x} + X yn , Ij(Yn) - j(x)1 = n, then define

nZ,\(XIIIt) := c~n)(X) [ II JdJl.,(iPy)]
YE~n

{ [

n-l k]II _II ZF~+l)(,\)(q>y + ?:q>~~+l»)
k=O yEYIc-{YIc+d 1=0

n Z Fln )(,\)(XYn I~ iP~7»)}.

Start the recursive definition by

(3.40)

(3.41)

(3.42)

We have used the abbreviations (3.33) of c~n)(X) and Fin), for all X E hn(P).

Then, we see that

(3.43)

for all X E hn(P). This can be shown using lemma 3.l.

We want to define an irrelevant partition function nR..\: hn(P) --+ R . Define

(3.44)

for all X E hnCP). Then the renormalization group equation for nR..\, X E hn(P),
reads

nR>.(XI'1I) = -Z,\('1I)+ I: co(X) [ II JdJl.,(iP)nZFx('\)(iP + L 1
-

d
/

2 '11)]
P:P~X yEx-P

[II JdJl.,(iP)nRFx(,\)(XyliP + L 1
-

d
/

2 11t)],
yEP

(3.45)
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if I{y E xl X y -:F 0} I ~ 2 or X = {x, Yl,· .. ,Yk-l} + X YIc ' YkSJ;k-l E ... SJ;1 Ex,

k<nand

nR>.(XI>IJ) = -Z>.(>IJ)+c~n)(X) [ II Jd{l.y{<I>y)]
yEXS

n

{ [

n-l k]II II Zplk+l)(,\)(q,y +~ q,~~+l»)
k=O yEYk-{Yk+l} 1=0

[nZFln)(>.)(~<I>~7» +n RFln) (>.)(XYn I~ <I>~7»]},
(3.46)

if X = {x} + X Yn ' Ij(Yn) - j(x)1 = n.

Let us remark that for n = 1 we have h1(,P) = P and lZ,\(XI\l1) = Z,\(XI\l1),

i.e. both polymer systems defined above are equal in this case.

4. RenorDlalization conditions, operator £, and the function Fx

The definition of the polymer system given in the last section depends on the

functions Fx, X E P. Fx will be chosen, such that the thermodynamic limit of

Z,\ exists. In the case Fx (..\) = ..\ E 0, for all X E P, we call the corresponding

polymer system not renormalized. In general, the thermodynamic limit of a not

renormalized polymer system does not exist.

For example, consider the q,4-model in 2 and 3 dimensions. Scalar q,4-models

are defined by

{
..\ 4 m 2

2
Z,\(q,) = exp - 4! q, - Tq, },

where q, E R. In two dimensions, we choose Fx =F , where

and in three dimensions

(4.1)

(4.2)

(4.3)

for all polymers X. Then it can be shown that the corresponding thermodynamic

limit exists [17]. The reason for such a simple choice of Fx is that the q,4-model is

perturbatively superrenormalizable in two and three dimensions. For superrenor

malizable models, the function Fx may be chosen as a polynom. Using eqs. (4.2)
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and (4.3), we obtain the following renormalization group flow equations of bare

coupling constants in two dimensions

(4.4)

(4.5)

and in three dimensions

2 L -2 2 ~j L -2 ~~ L -2 3
mj+l = mj - ""2 l' + 3f 1',

~j+l = L-1 ~j,

for all j E N. (m5, ~o) = (m2,~) are the renormalized coupling constants. Define

m-~ .= L-2jm~
J . J'

- (4 d)·\ ..- L - J \ ./\J .- /\J.

By eqs. (4.4) and (4.5), we obtain in 2 dimensions

-2 -2 ~j1'
mj+l = mj - 2'

(4.6)

(4.7)

and in 3 dimensions

(4.8)- -
Aj+l = ~j.

Using eqs. (4.7) and (4.8), the bare coupling constants expressed by the renormal

ized coupling constants in two dimensions are

(4.9)

and in three dimensions

(4.10)

By these equations, we see the ultraviolet asymptotic freedom and the logarith

mic (linear) divergence of the bare mass squared for the q>4-model in two (three)

dimensions.
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The functions Fx are in general not uniquely defined. Imposing some renor

malization condition3 on partition functions, we may define the functions Fx =

(Fl, ... , F'X) (or some components Fx)uniquely. For that, define linear operators

.c>.,x. The renormalization conditions are given by

(4.11)

for all polymers X E P, A E 0, '1J E RM.

The polymer-dependence of the operator .c>.,x may, for instance, come in by

where p(div) C P and- ,

.c>. X := { .c>.,
, 0,

if X E p(di.v);

if X E P - p(div) ,
(4.12)

O{Z(.)}('1J) := 0, (4.13)

for all functions Z: R M
-4 R. In other words, "renormalize" only polymers P E

p(div). Then the renormalization condition (4.11) is trivially fulfilled, for X E

p_p(div). For example, choose p(div) := p~:n) := {P E PI P is renormalization

part of length ~ n}.

Suppose that the operators L,>.,x fix the functions Fx, for all polymers X, by

renormalization conditions eq. (4.11) . Using eq. (3.20), we see that

.c>.,x{Z>.(XI.)}('1J) = L,>.,x{Z>,(,)}('1J). (4.14)

We shall give some examples for the operators L,>.,x. These examples are the ~4_

model and the 2-dimensional nonlinear D(N) O'-model. In the first example, the

operators L,>.,x do not depend on A and polymers X. In the second example, the

operators .c>.,x depend on the coupling constant A but are polymer-independent.

We could also define polymer-dependent operators L,>.,x in our examples by im

posing renormalization conditions on partition functions only for special polymers.

For the ~4-model, we may choose L,>.,x = L" where

.c{Z(.)}('1J) = exp{ -c'1J2} [1 + '1J
2

2
8~ ] [exp{cQ;2}Z(q;)] 1_ '

8iI!2 '11=0
(4.15)

where c is a positive constant. Let us notice that in this case eq. (4.14) is equivalent

to the more conventional renormalization conditions

Z.\(XIO) = 1, :;2 Z.\(XIII1)I.=o = m 2
,
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for all polymers X. Therefore, the renormalization condition eq. (4.11) defines

the component Fl (mass renormalization) and the normalization constant co(_\"").

Choosing

we would fix Fx = (Fl, Fl) (mass and coupling constant renormalization) and

the normalization constant co(X). The renormalization condition eq. (4.14) is in

this case equivalent to eq. (4.16) and

(4.18)

for all polymers X. The reason for the prefactor exp{ -cw2 } in the definitions

eqs. (4.15) and (4.17) of £, is to control large fields by a stability. bound. In

perturbation expansion, this term is not necessary. In the example considered

here, the renormalization conditions eq. (4.11) do not depend on c.

We see that the symmetry relation Z~(W) = Z~( -'11) for the "bare" partition

function holds also for all partition functions Z~(X I'11).

As a second example, we want to consider the case where the operator I:,~,x =
I:,~ depends on the coupling constants and does not depend on polymers. For in

stance, consider the 2-dimensional nonlinear O(N) u-model. This model is defined

by the function Z~: RN --+ R+, where

(4.19)

for c* := (L2 - 1)/(2,), A := 1/f E [0, Ao].· '\0 is a small positive real number.

Then, define I:,~ by

N

.c,x{Z(.)}(q,) := exp{ - 4;2 (q,2 - f2)2} [1 + ~)q," - fu") ~.]
a=1 8w

[exp { 4fC2(~2 - f2)2}Z(~)] 1_ '
lJIG=/u G

(4.20)

for all O(N)-invariant functions Z, W = ('111, ... ,wN ) E R N , '11 =F 0, and unit

vector u:= '11/11'1111 = (u 1, ... ,uN) ERN, lIull:= L:~=I(Ua? = 1. Ifw = 0, take

an arbitrary unit vector u on the rhs of eq. (4.20). c is a positive constant.
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We rewrite eq. (4.20) by

.c>.{Z(.)}('1t) := exp{ - 4;2 ('1t2- f2)2} [Z(JU.)+~('1t.- fu
a
)8~. Z(qi)I~.=fu. ].

(4.21)

Then, we see that the renormalization condition eq. (4.14) is equivalent to

Z>.(X I(J, 0» = 1, ;pZ>.(XI(J + p, 0» = 0, (4.22)

for all polymers X and 0 ERN-1 is the null vector.

The renormalizationcondition eq. (4.14) fixes the function Fx: [0, Ao] ~ [0, Ao]

and normalization factor co(X).
By definition, the bare partition function Z.x(\II) and the partition function

Z.x(XI\II) are O(N)-invariant, for all polymers X.

We see in our examples, that the renormalization conditions eqs. (4.11) and

(4.14) do not depend on the positive constant c, which appears on the rhs of the

definitions (4.15), (4.17) and (4.20).

In the following, we want to discuss symmetry properties. Let S: R M ~

R M be a field transformation. For a function F: R M ~ R, define a function

S(F):RM ~ R by

S(F)(\II) := F(S\II), (4.23)

for all \II E R M. Suppose that a model is defined by a function Z.x: R M ~ R+,

which is S-symmetric, i.e.

(4.24)

and suppose that the Gaussian measure dJL~(~) is S-symmetric, i.e.

We see that, if

[£.x,x, S] = 0

(4.25)

(4.26)

holds, then Z.x(XI.) is S-symmetric, for all polymers X. Models, for which the

thermodynamic limit X / A exists and the eqs. (4.24) and (4.26) are valid, are

called anomaly-free. It is possible that the existence of the thermodynamic limit

requires the definition of operators £.x,x which violates eq. (4.26). For such models,
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the partition functions ZA(Xlw) are not S-symmetric. Nevertheless, the "bare"

partition function ZA may be S-symmetric. In this case, we say that such models

have anomalies.

In the following, we discuss how to determine explicitly the renormalization

group flow functions Fx by the use of renormalization conditions (4.11). Suppose

that the renormalization conditions eq. (4.11) are equivalent to

9X(A, A')IA'=Fx(A) = O. (4-.27)

Consider (Ao,A'o) E 0 2
, such that 9x(Ao,A'0) ~ 0, OA'9x(>"0,A'0) =f 0 and define

(4.28)

For fixed A, we consider the fixed point equation fX(A, A') = A'. The solution A'

of this fixed point equation fulfils 9X(A, A') = O. In the following, suppose that

the iteration procedure for this fixed point equation is well defined and converges

to its solution A' = Fx (A).

Let A be in a small neighborhood of Ao. Define Ai,X(A) recursively by

AO,X(A) := Ao,

Ai+l,X(A) := fx(A, Ai,X(A)).

If limi_oo Ai,X(A) exists, we have

FX(A) = .lim Ai,X(A),
1-00

(4.29)

(4.30)

for all A in a small neighborhood of Ao.

In the remainder of this section we shall discuss the question how to construct

the Moebius transform Fx of the functions Fx. Let ix be the Moebius transform

of fx. For fixed X' E P and X E Pz with X ;2 X' and Y E P(X,X') define
~i)

fYX,(A) by,
_ ~i)

fx,(A, Ai,X(A» = L fY,x,(A).
YEP(X,X')

Then the Moebius transform Xi,x(A) of ..\i,X(..\) is recursively defined by

Xo,x(A) := A08z ,x,
_ ~i)

Ai+l,X(..\):= L f x,x'(..\)·
X'EP(X)
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Then we obtain

FX(A) = .lim :\i,X(A),
1-00

if the corresponding limit exists. This is shown by

~i)L Ai+l,X(A) = L L J X,X,(A)
XE'P(Q) XE'P(Q) X'E'P(X)

~i)L L JX,X,(A)
X'E'P(Q) XE'P(Q,X')

- L fx'(A, Ai,Q(A»
X'E'P(Q)

= JQ(A, Ai,Q(A».

(4.33)

(4.34)

~i)

An explicit cluster expansion formula for the Moebius transform J X,X,(A) is given

in section 6, corollary 6.4.

5. Renormalization group equations for of Moebius transform R).

We have seen in the first section, that to show the thermodynamic limit of

a polymer system, we have to estimate Moebius transforms. In this section, we

present an explicit method to construct recursively the Moebius transform of R).
for convex-polymer and (n )-renormalization part polymer systems. We perform

these constructions in four steps. These steps are presented in detail for convex

polymer systems. For the (n )-renormalization part polymer system, we explain

these steps only briefly, since they are analogous with the steps for the convex

polmer system.

The general approach is described as follows. Suppose that we know already

R).(Plw), for all PEP with IPI < N. We want to construct R).(Xlw), for all

X E P with IXI = N. Furthermore, suppose that co(X) and Fx are known.

By definition of the Moebius transform, we know R).(Plw), for all PEP with

IPI < N. Using the renormalization group equations of R)., we may compute

R).(Xlw), for all X E P with IXI = N. By definition of the Moebius transform,

we obtain R).(Xlw). In the following, use the abbreviation

n).,X := 1 - L,).,x
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and for a function F: R M -+ R, define

p...,(F):= Jdp..,(~)F(~ + L1
-

d
/

2
(.)). (5.2)

If £x is polymer-independent, i.e. £>.,x =£>., then we see that the Moebius

transform R>. of 'R>. := 1 - £>. obeys

(5.3)

5.1. Convex-polymer system

We shall discuss the recursive construction of the Moebius transform R>. in

four steps. In the first step, perform the Gaussian integration and set co(X) = 1

and Fx(.A) = .A' E O. We take into account, in the first step, the polymer

dependence of the operator £>.,x. In the second step, we have regard to the

polymer-dependence of the normalization constant co(X) and in the third step,

the polymer-dependence of the function Fx. In the fourth step, finally, we recover

the Moebius transform R>. for larger polymers.

1. Step (Integration):

This step is the most important one. Here, we get suppression factors, which

control the entropy factors. This works only if the operators £>.,x are defined

correctly and if the model is renormalizable. Consider the not normalized and not

renormalized renormalization group equations (3.21), i.e. setting

co(X) = 1, Fx(.A) = .A' (5.4)

in eq. (3.21) for all X E P. Denote t-£>.,x of the rhs of eq. (3.21) by B~,>.,(XI'1').

Then determine the corresponding Moebius transform B~ >.,(XI'1').,
Define B~ >.,(XI'1'), for .A,.A' E 0, X E P by,

B~.,x,(XI'1t) := 'R,x.x{ -Z,x(') + L p..,(Z,x' )(.)Iz-PI II p..,(R,x,eXYI·))}e'1t).
P:P~x yEP

(5.5)

The following lemma gives the relation R>., 1-+ ii~,>.' where B!,>.' is the Moebius

transform of B!,>." Let R>. be the Moebius transform of'R>..
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Lemma 5.1 . The Moebius transform B~ >.' of B>. >.' is given by, ,

B! >.,('X"I'lJ) = - nA,X{ZA(.)}('lJ),

+ L -RA,Y {fl.Y{ZA' )(.)1 lYeZJ p. =0) I II fl-y(1~A' (PyI.))} (IJI),
Y,PE'P(X): IIEz:

YUP=X P II ¢.

(5.6)

and if £A,X is polymer-independent (£A,X = £A)'

B~,A.(XIIJI) =1<.A { -ol.lxl{ZA(')}

+fl-y(ZA' )(.)llYeZJ X.=0}1 Xl fl-y(RA'(Xyl.)) } (IJI),

X II ¢.

for all polymers x.

(5.7)

(5.8)

(5.9)

(5.10)

2. Step (Normalization):

For this step, we need the normalization constant co(X). Define BA,>.,(XI'lJ)

by 1-£A,X of the rhs of the not renormalized renormalization equations eq. (3.21),

where FX(A) = A'. Then determine the Moebius transform BA,A' in terms of

the Moebius transform B~ A' . Denote the Moebius transform of Co by co. For,
A, A' E 0, X E 'P, define BA,A,(XI'lJ) by

BA,A·(XIIJI) := 1<.A,X{ -ZA(.) + L co(X) fl-y(ZA' )(.)Ix-PI
p:pr;r:

II fl-y(RA·(Xyl·)) }(IJI).
yEP

The following lemma gives the relation B~,A' 1--+ B A,A' .

Lemnla 5.2 . The Moebius transform BA,A' of BA,A' for .A,.A' E 0 and X E 'P is

ih,A,(XIIJI) = -RA,X{ZA(.)}(IJI)+ L [CO(P1) [-RP2 {ZA(' )}(IJI)
P1> P 2E'P(X):

P 1UP2-X

+B!.A,(P21 1J1 )]] ,

and if £A,X is polymer-independent (£A,X =£A)'

BA,A·(XIIJI) = 1<.A { ( -ol,lxl+co(X) )ZA(')

+ L Co (PI )B~,A,(P21.) }(IJI).
P 1 ,P2E'P(X):

PI UP2=X
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3. Step (Renormalization):

For this step, we need the renormalization group flow function Fx . For a fixed

polymer Q E P, define the Moebius transform BA(P,QI'lJ) of BA,Fp(A)(QI'lJ), for
- -

all polymers P ~ Q. A cluster expansion formula of B A in terms of B A,A' is given

in section 6, corollary 6.4. By renormalization condition (4.11), we see

(5.11)

and therefore, by definition,

(5.12)

for all polymers X.

Let us remark that we could have replaced the operator RA,x by 1 in the

definitions eqs. (5.5) and (5.8) of B~,A' and BA,A'. Then we would also get the

relations eqs. (5.11) and (5.12).

In this third step, take the polymer-dependence of F into account. For this,

define the follo~ngMoebius transform. For a fixed polymer X', define the Moe

bius transform BA(.,X'I'lJ) of BA,F.(A)(X'\'lJ), for all X E P with X ~ X', by

BA,FX(A)(X'I'lJ) = L BA(Q,X'I'lJ)·
QE1'(X,X')

(5.13)

(5.15)

-
An explicit cluster expansion formula of BA is given in section 6, corollary 6.4.

4. Step (Induction):

In the last step determine RA by BA• We present the relation BA ...... RA by

Lemma 5.3 For all polymers X, the following relation holds

RA(XI'lJ) = L BA(X, QI'lJ)· (5.14)
QE1'(X)

In the following, we present the proofs of lemma 5.1, lemma 5.2 and lemma 5.3.

Proof of lemma 0.1: We have by eq. (5.5) and the definitions of the Moebius
- -transforms R A and RA

B~.,\,(XI'1J):= L n,\,y{ - Z,\(.) + L L
YE1'(X) P:P<';xyEx-Pt-+QIIE1'(XII )

1- PI II - }J1-y(ZA')(.);';- J1-y(RA,(Qy l.)) ('lJ).
yEP
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We may replace the second and third sum on the rhs of eq. (5.15) by a sum over

all polymers, which are contained in X,

B~,,\.(XIIlJ)= L n,\,y{ -Z,\(.)
YE'P(X)

Furthermore,

B~,,\,(XIIlJ)= L [-n,\,Q{Z,\(.)}(ili)+
QE'P(X)

+ L n,\,Y {fI'Y(Z,\. )(.)lbEX! p.=0ll II fI'Y(R'\,(Pyl.)) }(IlJ)].
Y,PE'J'(q): liE:!::

YUp=q P ,I ¢'

(5.17)

This proves the eq. (5.6). If £>.,x is polymer-independent, then by eqs. (5.3) and

(5.6) follows eq. (5.7). 0

Proof of lemma 5.2 : Using definitions (5.5) and (5.8), we obtain

B>.,>.,(XI'1J) = - 'R.>.,x{Z>.(.)}('1J)

+co(X) [n,>.,x {Z>.(.)}('1J) + B~,>.,(XI'1J)]

= L [-n,\,Y{z,\(.)}(IlJ) (5.18)
YE'P(X)

+ Pl'P~(X)' [CU(Pl ) ('R,\,P2 {Z,\(.)}(IlJ) + B~,,\,(P2Iili))]l
P 1UP2=Y

This proves eq. (5.9). If L,>.,x is polymer-independent, then by eqs. (5.3) and (5.9)

followeq. (5.10). 0

Proof of lemma 5.3 : From the definitions of B>., B>. and B>. follow

- -L L B>.(X',QI'1J) = L L B>.(X',QI'1J)
X'E'P(X) QE'P(X') QE'P(X) X'E1'(X,Q)

= L B>.,Fx(>.)(QI'1J) = B>.,Fx(>.)(XI\l1) (5.19)
QE'P(X)

=R>.(XI\l1) = :E R>.(X'I\l1).
X'E'P(X)
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This proves the assertion.

The scheme for a recursive construction of the Moebius transform R>.. is

5.2. (n)-Renormalization part polymer system

o

-In this section, we shall show how to construct the Moebius transform nR>..
recursively. Since the steps for the calculation of nR>.. are in analogy with the steps

in the foregoing section, we state the formulas for the Moebius transforms without

proofs.

We use the following abbreviation. For a function F: R M ~ Rand

define

Jl~71(F) := [ II JdJl"Y(~Y)]
YE~n-l

[IT _II Z>'.+l (~Y +t ~~~+l) + L(k+l)(1-d/2)(.»] (5.20)
k=O yEYJc-{YJc+d a=1

k

F(E ~~7) + L n (l-d/2)(.)).
i=1

Let n-R be the hn('P)-Moebius transform of the operator 1(, = 1 - £. We

shall define nB~,>..,(XI'1J) and nB.x,.x,(XI'1J), for all X E hn(P) and ,X E O. If I{y E

xl X y =F 011 ~ 2 or X = [[y], x] +X y , y E X, Ij(y) - j(x)1 < n, then nB.x,.x,(XI'1J)
(nB~,.x,(XI'1J)) is equal to 1(,.x,x of the rhs of eq. (3.45), where FX(A) = A' (co(X) =
1, FxC'x) = ,x'). If X = {x}+Xyn , Ij(Yn)-j(x)1 =n, then A' = (Al, ... ,An) Eon,

nB >.,>,,(XI\I1) := n'R>.,X { -Z>.(.) + c~n)(X)Jl~71 (Z>.n (.) + nR>'n (XYn I.») }. (5.21)

nB~,>..,(XI'1J) is equal to the rhs of eq. (5.21), where c~n)(X) = 1.
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1. Step (Integration):

Let nE!,A' be the Moebius transform of nB!,A'. The 1. step is given by the

relation nRA ~ nE! A'. Suppose that X E hn(P). If I{y E xl X y =I 0} I ~ 2 or,
X = [[y], x] + X y, Y E X, Ij(y) - j(x)1 < n, then

nE~,A/(Xlw)= - n nA,X{ZA(.)}(W)

+ L n R>.,Y{JL.,(z>., )(.)llYEZI p.=0}1 11 JL.,(R>.. (Pyl·)) }(W).
Y,PE1'(X): ¥Ez:

YUP=X P¥~'

(5.22)

If X = {x} + X yn , U(Yn) - j(x)1 = n, then

- - (n)nBA,A,(Xlw) :=n 'RA,x{-ZA(.) + Jlx,~(ZAn (.))}(w)

""'" - (n) -+ L..J n'RA,Y{Jlx,~(RAn(PYn I·))}(w).
Y,PEh n (1')(X):

YUP..X

(5.23)

In the next step, we have to take the normalization constants nCO(X) into account.

2. Step (Normalization):

Let nCO be the hn(P)-Moebius transform of the normalization constant. Then

in analogy with lemma 5.2, we obtain the relation nB~,A' ~ nEA,A/ •

3. Step (Renormalization):

By renormalization condition (4.11), we see

(5.24)

and therefore, by definition,

(5.25)

where Fjt) , k E {I, ... ,nl is defined byeq. (3.33). For a fixed polymer X', define

the Moebius transform nEA(., X'lw) of EA,A/(X'lw), where

A' = (FJ!) (A), ... , F;t) (A)),

for all X E hn (,P) with X ;2 X', by

nEA,A/(X' /W)I A/=(F11 )(A), .."F1n)(A» = L BA(Q, X' 1'1J)·
QE'P(X,X')
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- -Then, the 3. step is given by n B ).,).' ~ n B )..

4. Step (Induction):

- -The last step is given by the relation nB). ~ nR).. In analogy with lemma

5.3, we have, for all X E hnCP),

nR).(Xlw) = L nB).(X,Qlw).
QEhn ("(X»

The scheme for a recursive construction of the Moebius transform nR). is

(5.27)

6. Explicit representations of Moebius transforms

The Moebius transform B: P -+ C of a function B: P -+ C can be expressed

by an alternating sum in terms of B(P), PEP. Since alternating sums are hard

to estimate, we shall present in this section a more convenient way to express a

Moebius transform in terms of B. We shall answer the question how to relate the

Moebius transform E and e, if E and e are related by E = Hoe where H: C -+ C

is a differentiable function. This problem is solved by proposition 6.1 which gives

a cluster expansion formula for E in terms ofe. We are going to apply this formula
~i) _

to the Moebius transforms f x and Bx (see corollary 6.4).

In the following, we introduce some notations and summarize properties of

Moebius transforms. We show that Moebius transforms and Fourier transforms

share analogous properties.

For B E M(P, C), where

M(P, C) := {B: P -+ C}, (6.1)

let M(B) be the Moebius transform of B. The inverse M-1 of M is given by

M-1(B)(X) = L B(Y).
YE"(X)

(6.2)

This is an immediate consequence of the definition 2.8 of Moebius transforms in

section 2. Let P ~ Pfin := Pfin(A) - {0} be a general polymer set. Suppose that
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(P,~) contains a least element X· E P, i.e. X· ~ P, for all PEP. Then for the

function I E M(P, C) defined by leX) := 1, for all X E P, the Moebius transform

1= M(l) is 1= hx *, where

hx(Y) = hx,Y, (6.3)

for all X, YEP. This corresponds to the property of the Fourier transform, that

the Fourier transform of 1 is the Dirac distribution.

We shall define an algebra A(P) for polymer sets P. M(P, C) is a vector

space with a sum and scalar product defined by

for all B, BI, B2 E M(P, C), X E P, >.. E C. Then {<5p, PEP} is a basis of

M(P, C). Define a product· by

(6.4)

Then A(P) := (M(P, C), ., +) is an algebra. The Moebius transform M: A(P) ~

A(P) is a linear mapping. Let us remark that A(P) is a commutative and asso

ciative algebra with identity l, in the case that (P,~) contains a least element.

Define a convolution-type multiplication * in M(P, C) by

(6.5)
PI'P2E1>(X):

PI+P2=X

for all X E P. Then A.(P) := (M(P, C), *, +) is a commutative, but not neces

sarily associative, algebra. Let us notice that the convolution-type multiplication

in M(P, C) is trivial, if there exists no disjoint PI, P2 E P. A.(P) contains no

identity element. But he is the identity of the algebra A.(P/in U {0}).

Define a homomorphism -: (C, +) ~ (M(P/in, C), *) by

q(X) := qlXI, (6.6)

for all q E C, X E p/in . Define the function M/in: M(P/in, C) ~ M(P/in, C) by

-M/in(B) := (-1) * B,

for all B E Af(P/in, C). Since - is a homomorphism, we obtain

-1 -M /in(B) = (+1) * B,
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(6.9)l(B)(P) := {B(P), if P E '!';
0, otherwIse

for all B E M(Pfin, C). Define the injective mapping l: M(P, C) ~ M(Pfin, C)

by

and the characteristic function X1' E M(Pfin, C) by

(P) ._ { 1, if PEP;
X1' .- 0, otherwise. (6.10)

We get the following relation for the Moebius transform M

M(B) = X1' . Mfin(t(B)), (6.11)

for all B E M(P, C). Thus we get by eqs. (6.7) and (6.8)

M(B)(X) = L (-l)lxl-IYIB(Y).
Y:YE1'(X)

(6.12)

We have used the explicit expression

(q* B)(X) = L qIXI-IYIB(Y),
Y:Y~X

(6.13)

for all q E C, B E M(Pfin, C), X E Pfin.
We may define another convolution-type multiplication *u in M(P, C), for

all P ~ Pfin by

(6.14)
Pl,P2~"(X):

P1 UP2""'X

for all B},B2 E M(P,C) and.JC E P .. Then A.u(P) := (M(P,C),*u,+) is a

commutative and associative algebra. 6e is the identity of A.u(Pfin U {0}) and

Sx. is the identity of A.u (P), if X· E P is the least element of P. We obtain the

following relations

(6.15)

and

(6.16)
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(6.17)

for all B 1 , B 2 E M(P, C). These equations correspond to the property of Fourier

transforms that the Fourier transform of a product is equal to the convolution

product of the Fourier transforms.

In the following, suppose that a polymer system on A is given by a subset P

of Pjin, such that nP =: X* =i= 0
PEP

and X* E P, i.e. X* is the least element of (P, ~). Consider the following problem.

Suppose that the functions H: C ~ C, e: P --+ C and E: P --+ C are related by

E(X) = H(e(X)), (6.18)

for all X E P. How is the Moebius transform E of E related to the Moebius

traasform e of e? Define the induced mapping H*: M(P, C) ~ M(P, C) by

H.(e) := Hoe for all e E M(P, C). We are looking for a functional if*: M(P, C) --+

M(P, C), such that

or equivalently
- -1H*=MoH*oM ,

(6.19)

(6.20)

where M is the Moebius transform. To formulate an answer of this question, we

introduce some definitions and notations. Define the set of all n-clusters by

i

Cn(X*) := {(PI, ... , Pn)1 Pi E P, PI = X*, Pi+l n A - UPa =i= 0}
a=1

and for X ~ A, the set of all n-clusters in X

Cn(X, X*) := {P E Cn(X*)1 supp P ~ X},

(6.21)

(6.22)

where supp (P1 , ••• ,Pn ) := U:=IPa. The set of all complete n-clusters in X is

defined by

Cn(-J(, X*) := {P E Cnl supp P = X}. (6.23)

We omit J\.* in the notations of n-clusters, i.e. write in the following, for notational

simplicity, Cn(_X'*) =Cn , Cn(X, _J(*) =Cn(X) and Cn(X, X*) =Cn(X).
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For an n-cluster P = (PI, ... ,Pn) and parameters SI, ... ,Sn-l E [0,1] and a

function e: P --+ C, define recursively

if Y ~ U:=1 Pa ;

otherwise,
(6.24)

for all k E {1, ... , n - 1}, YEP. We use the notations

§.n-1 :=(S1, ... , Sn-l)

Jd~_l :=11

dS1 ••• dS n - 1

n

f(~n-l) := II(SI ... Sa-2).
a=3

(6.25)

When it is clear from the context or when it is irrelevant what n is, we omit the

subscript n - 1, i.e. we write ~n-l = §... Define e!Jp: P --+ C by

e!Jp(X):= L e~p(Y),
YE"P(X)

(6.26)

I.e. e" p is the 110ebius transform of es p. e" p is called the interpolated function
~ ~ ~

of e.

The answer of our foregoing question, i.e. the relation of E and e is given in

Proposition 6.1. Let H: C --+ C be a smootb function and E, e E M(P, C) be

complex valued functions, such that

E = Hoe.

Tben, we obtain

E= ii.(e),

where H.: M(P, C) --+ M(P, C) is defined by

(6.27)

(6.28)

ii.(B)(X) := L L Jd,u(,t) CIT B(Pa)]8~-1 H(A)I.\=M-'(B)"p(X),
n>1 PECn(X): 4=2

- P=(Pl ... ·.Pn)

(6.29)
for all X E P and B E l\l(P, C).

In order to prove proposition 6.1, we will showE = fi(f:) for the special case

H = expo
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Lemma 6.2 . Let E, e E M(P, C) be complex valued functions, such that

E(X) = exp(e(X)),

for all X E P. Then, we have for all k E {1, 2, ...},

(6.30)

k-l n

E(X) = L L Jd:in-I!(!n-l) [II e(Pa )] exp{ e!.._l'p(suPp P)}
n=1 PECn(X): a=2

P=(Pl.···.Pn)
k

+ L Jd§.k-I!(§.k-l)[II e(Pa )] exp{e!o_"p(X)},
PECA:(X): a=2

P=(Pl'···.P/c)
(6.31)

Remark: For k > lXI, we have Ck(X) = 0. Thus, the second term in eq. (6.31)

vanishes. Using the definition 2.8 of the Moebius transform E, we see then by

eq. (6.31) that proposition 6.1 holds, for H = expo

Proof of lemma 6.2: The proof is done by induction. The assertion holds trivially

for k = 1. Suppose that eq. (6.31) is valid for k. For P = (PI, ... ,Pk) E Ck(X)

and :U:-l = (sI, ... , Sk-l), Sk E [0,1], define

if Y ~ PI U ... U Pk;
otherwise (6.32)

and

Then,

e!«_l'''/c'P(X):= L e!«_l'''A:,P(Y).
YE'P(X)

(6.33)

exp{e!«_l ,pCX)} =exp{e!..l._l ,"A: ,p(X)} I"A: =1

=exp{e!o_l'p(suPp P)} +11

ds k 8•• exp{e!o_",.,P(X)}

= exp{es p(supp P)}
~-1'

+ L 11

dSk8•.e!o,P(Pk+l) exp{e!o,p,(X)},
PA:+l:PA:+l E'P(X) 0

(6.34)
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where §.k = (8b"" 8k), pi := (PI"'" Pk , Pk+l)' Since

8 - (P ) - { 0, if pi ¢ Ck+l (X); (6.35)
Sic e!.A, ,P k+l - 81' .. 8k-le(Pk+1 ), if pi E Ck+1(X),

we get by inserting eq. (6.34) into the second term on the rhs of eq. (6.31), the

assertion for k + 1. 0

Proof of proposition 6.1: Eq. (6.27) is equivalent to

8
E(X) = exp{e(X) 8A} H(A)I.\=o.

From the remark after lemma 6.2 follows

exp{e(X)~} H(.\)I>.=o = L L L Jd§.i(§.)
X'EP(X) n~l PECn(X'):

P=(Pl,""Pn )

n

[II e(Pa)]a~-l H(A)I.\=e!Jp(X)'
a=2

This proves the assertion.

For bounds on Moebius transforms, the following lemma is useful.

Lemma 6.3 For all n ~ 2, we bave

Jd~-d(~-l) = (n ~ 1)1"

Proof: Use
n

f( ) II< ) n-2 n-3 1
:!n-l = 81 ••• Sn-2 = 8 1 8 2 ••. 8 n -2'

a=3

This proves the assertion.

(6.36)

(6.37)

o

(6.38)

(6.39)

o

We state as an application of the abstract cluster expansion formula eq. (6.29)

the following

-:::.(i) -:::::.
Corollary 6.4. Suppose tbat f and B.\ are defined byeqs. (4.31) and (5.13).

Then the following cluster expansion formulas bold, for all polymers X, X' E P
with X 2 X',

(6.40)
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(6.43)

for all X ~ U:=1 Pa. We have used here the abbreviation §,k .- (SI,"" Sk).
In other words, e,!,p is constructed by a successive application of linear convex

combinations. Since linear convex combinations preserve positivity, we see by

induction that the interpolating function e!Jp is positive, for positive e.

for all X ::> U:=1 Pa and

k k

e~,p(X) = ske~_l,p(X)+(l-sk)[e!c_l'p(U Pa)+e~_l'P(X- U Pa)], (6.42)
a=1 a=1

In some cases, the conservation of positivity in cluster expansion formulas is

important. Suppose that e E M(P, C) is positive, i.e. e(P) E R+, for all PEP.

Then the interpolating function e,!,p is positive, for all n-c1usters P = (PI,' .. ,Pn )

and §. = (S1' ... , Sn-l). This is shown by

where Cn(X) =Cn(X, X').
(6.41)

7. Summary and Outlook

We have studied in this paper the renormalization theory of models in hierar

chical approximation. Iteration of the hierarchical renormalization group equation

leeds to definitions of multigrid polymer systems. We have presented two versions

of introducing an ultraviolet cutoff for multigrid polymer systems. The first (more

conventional) version of a polymer system, was defined by starting the renormal

ization group equations with a "bare" Boltzmann factor, given by "bare" coupling

constants. In the second version, an explicit use of an ultraviolet cutoff was not

necessary. Instead of "bare" coupling constants, we introduced polymer-dependent

renormalization group flow functions. These renormalization group flow functions

relate the corresponding coupling constants of one renormalization group step.

Using these functions, we may reconstruct the "bare" coupling constants. The

ultraviolet cutoff in this version is given by the finiteness of the polymers. The

ultraviolet limit is equivalent to the corresponding thermodynamic limit of the



multigrid polymer system. In later sections, we used only the second version of a

multigrid polymer system.
We have studied the use of renormalization conditions of polymer activities.

The renormalization conditions determine the renormalization group flow func

tions (or some components of it). The renormalization conditions were formulated

by requiring that the application of an operator £>.,x to the irrelevant activi

ties R>.(XI'lJ) gives zero. As examples of the operator £>.,x, we considered the

q-4-model in 2 and 3 dimensions and the 2-dimensional nonlinear O(N) cr-model.

We have studied the explicit and recursive construction of Moebius transforms

of irrelevant activities. For this, a general cluster expansion formula (proposition

6.1) was helpful. This recursive calculation method is necessary for a proof of

recursive bounds and ultimately, the proof of the existence of the thermodynamic

limit. The necessity of renormalization conditions, i.e. the introduction of oper

ators £, becomes evident by a thorough investigation of the recursive calculation

scheme for the Moebius transform of irrelevant activities.

Since we have considered renormalization theory of hierarchical models in a

general point of view, there are some items lacking, which are of importance. In

the following, we shall present a list of these missing items.

a) Specification of running coupling constants ,\ E 0 ~ Rm and the region

0; global and local renormalization group flow; distinction of relevant and

irrelevant coupling constants (operators)

b) Universality classes: In which way is the model uniquely specified by the

"bare" partition functions Z>.: RN -+ R+?

c) Explicit definition of the normalization constants co(X); definition of the

vacuum

d) The problem of stating recursive bounds on polymer activities

e) Large field problem, stability bounds, positivity, etc.

f) Convergent multigrid expansions of Green functions

These foregoing items have to be studied, if one is considering concrete mod

els. These items may also serve as starting points for further investigations on

renormalization theory of hierarchical models.

The strategy for a renormalization theory of hierarchical models, suggested

in this paper, can be used as an outline for a renormalization theory of complete

field theoretic models (without hierarchical approximation). The consideration of
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hierarchical models is not very restrictive for an investigation of a general renor

malization theory.
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