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Abstract

We improve the Feynman-Kleinert variational apprqad t%ﬂgtif-w 19 EXEK) LRkl
~ clidean path integrals rendering it much more powerful in the low-

temperature regime. The new power is illustrated by an application

to the anharmonic oscillatdr with a potential V(z) = m?2?[2 + g2t /4

where it yields not only a better approximation to the low-temperature

part of the partition function but delivers; in additition, all bound-

state energies uniformly well for any principal quantum number n and

coupling constant g.
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1) Some time ago, Feynman and Kleinert [1, 2] have considerably improved °
a crude variational approach to éuclidéan; path infégrélé developed earlier
by Feynman in his textbook on statistical mechanics [3]. (A similar impro- |
" vement was given by Giacetti and Tognettl [4]). This made it possible to
calculate quite accurately the effective claeszcal potential [5] of a quantum
mechanical system at all tempelatmes by means of a single numerical in-
tegration. This quantity contains information on ‘particle distributions [6]
and correlation functions [2; 7). The method has been applied to a variety
of more complicated physmal systems, most recently with success to a.nha.l-'
monic quantum chains [8], and quantum c1ystals [9]. Tt also has 1mp01tant
applications to tunneling processes (10].

The purpose of this note is to present an essential improvement to thxs ,
appmach in the low temperature regime. As an illustration of the new power
we calculate with great accuracy the enelgles of all excited states of the an-
harmonic oscillator f01 small and lalge couplmgs and any p1mc1pa,1 quantum
number. : :

2) The Feynman-Kleinert approach is Béysed on the following observation:
The partition function of a quantum'rﬁec’ha,nical particlé of mass M in a
one-dimensional potential V(x) can always be expressed as a classmal pha,se ,
space integral ’

Z / (110/ (lp ‘/3[P2/21\1+1e];d(1‘o)l it /M ——ﬂ-——e-ﬁv‘”*“(%).

, =~ /2xh2B /M
| ’ (1)
‘with 3 = 1/kgT. The variable of integration xo coincides with the time-
averaged position ¥ = (1/h3) fowdr 2(7) of the fluctuating path. The
function Vgss.(20) appearing in the Boltzmann factor is called the effec-
tive classical potential. It has the obvious path integral representation

e"ﬁvelfycl(ro) = /D.l'a(.i"" ago)e_‘i‘/ﬁb ' ‘ : (2)
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. where A is the euclidean action
Mo sz L

A = / dr [M—‘)— + V(:c('r))] 1 3)

0. . : -~ . ‘ : ’ “ ‘

" and § the modified 6-function

| 5(% — o) = \/20R°B/M 5(2 o)

- which restricts 7 to the value zo. The paths have the same values at initial
‘;_Iancl final imaginar y times 7 = 0 and 7 = K B, so that the path 1nteg1al yields.

~ the quantum mechanical trace. : |
The usefulness of this decomposition deuves from the fact that at finite
tempera.tules the fluctuations rarely ca,rry’a:( T) far from Z; the square devia-
tions (x(r) — 7)? are for larger 'tempémtuies only of the order of A23/12M
and remain finite down to zero temperature where they are of the order of

h/2/ MV"(&min) (with Tmin being the posﬂflon of the potential minimum).

. The main thermal fluctuations take place in # th_h the average square de-

“viation of # from the potentiéi.l.fnvinimﬁm being of the order of 1/8V"(min)-

- .. Thus, at largér temperatures these must be integrated out exactly which is

~done in (1). At low temperatures the # = z integral can be evaluated in a
saddle point expg,uision./ The fluctuations #(7) — 7, on the other hand, can be
“treated approximately with satisfactory accuracy on the basis of a variational
approach which is excellent at high and satisfactory at low temperatures. .
The variational ansatz makes use of the trial partition function of a har-
‘monic oscillator centered at zp with the action ‘
; .
Ao = [ arnt [

4]

+ 0%(x0)

i 7;9)2] | (4)

2
for which the path integral with restncted T = xo can be done and gives the

- local harmonic pm'tiﬁon'fnncﬁo-n

—3V=0 _ 4%0 Tzﬂﬂ(.u; )/2
To — —BVa'(x0) = _ AR /R _ : _
Zf € /Dl 5(1 o)e smh[h/m(lo)/)] (5) |
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The right-hand side differs from tlrlé"ﬁnrestrict.ed global partition function
Za(e) = 1 o . (6)
S0 ™ 3 5inh[7BQ(z0)/2] -V

by a factor ApB8Q(xo). E:{pectations within the local trial partition function -
will be denoted by ( ... )g’, i.e., E

(e = (22 /’Drﬁ(r——fo)e _An L
o t =
~ Using (5) and (7) one can write © :

/Drﬁ(a" .—‘xo)e"qh E f‘b:ﬁ(i—.arb)eia"‘go./"e'“"‘g)/ﬁ
| o eAmAEmE (g

and ab_ply the_ Jensen-Peiefl.s inequalit_yr |
(AR Ry s W ()

to derive the Feynman-leemeLt appm*mnatlon PVI(TO) to the effective clas-
sical potential [1, 2, 4}

Vigrailzo) = wl(xu)_vm(ro)+h(ro) o) o). (10)

The last two terms are the expectatlons :

1 EHE0Y
FAME = (V)R = Via(ao)

) Q?(xo) - Q%(x0) ,, '
Lsmpy = I @ aynp = n o). )
It is easy to see that the restricted jsquafé deviation {(x — z)2)Z° is given by
N U C N |

”.2 z | => —_— 5 2
@) Mﬂ(ro) coth 2 . MAM(zo)’ (12
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The first term is the well- l\nown unrestricted average while the second term
“subtracts from this the square: deviations of 7 from zo. The restrlcted ex—
~ pectation of the potential is V;2(zo) obtalned by a s1mple Gaussian smearing

process of width a?(zo):

>
d’ro

o v/ 2wa?(xo)

The best appm‘umatxon is reached by mmmuzmg the functlon Ier('z'o) of

Vaalo (b2l [1%0) (gl (13)

Eq (10) with respect to Q(xo) which gives

2 OVa(zo)
M 08a?

The apprommate effectlve classical potential Wj () is always shghtly larger

Q) = (14)

o  than the exact V,s,q(0).

 The equations (12) and (14) are solved numerically, most comfortably by
1terat10n The resultmg a.ppxoxxmatmn to the partltxon function

0 (110 L i | . s .
7, = /_} e [3\1(1'0) } (15)
Nhas \/27r7i2,(3/111 ‘ ' ‘ L

§ o=

leads to a free energy Fy = kpT log Z; which desc1ibes~the true free ehelgy
- F = kT log Z of the system quite well at all temperatures. At high tem-
' peratures this is not astonishing since ¥ has the correct classical limit. At |

low temperatures the accuracy is due to the’ fact that F tends to the lowest

energy of the Hamiltonian operator in a Gaussian trial wave packet. This
" is known to be quite accurate for poténtials with a smobth minimum (even
.~ for singular potentials such as 1/r the vaua,tzonal energy is accurate to 15%

[1, 2]). At a1b1t1a1y temperatmes the applonmatxon is always better than

: that

A simple integral leacls from the app1o‘<1mate effective classical potentlal
Wi(ag) to particle distributions, response functions to an external source,
and thus to correlation functions.



- 3) The improvement to be proposed in this note comes about in the following
way: First we write the mtegrand of the appxoxlmate partition function (15) .
with (10) exp11c1tly as

e=BWilzo) Z»zoe—_ﬁ'(‘t’,,z(;5)—2;192(“)‘:’(_:3)1. (16)

Then we expand the local partition functlon Z given by (5) into its spectral
‘content ' : : :

hﬂﬂ(t )Z —hﬁﬂ(ro)(n+1/2) o ' | | ‘ v(17) "

n—O

Since the e\ponent in (16) is the average of V (x) = MQ%*(z — 20)?/2 with
1espect to this partition function it is suggestne to try.and apply the Jensen-
Peierls inequality (9) separately at each level n. Thus, mstead of

/D.’l’ﬁ(fi‘ : .’l?o)e—A/h > Zme-ﬁ("({l-‘)—ﬂ f:g (Ifl’olg):f’ : (]_S) ;

we resolve the expectation on the left-hand sxde into the contubutlons of
' elgenstates of the harmonic osc:llatox thh quantum numbex n and wnte

n=0

/D18 (T — x0)e” —Alh _ Z,‘,BQ(T )e h/3ﬂ(wo)(n+l/2)(<n|e~(A/h A?,"/h)ln))ro
| | (19)

where the averages ((n|...|n))g are.l.tb_‘be. defined precisely below in Sec. 5.
At this point we appeal to their intuitive meaning and pl'eéent what we
expect to happen, postpomng its venficatlon Applymg the Jensen-Pexells
inequality to each term in the sum glves

/DIS(I — 10)6 A/h, > Zhﬂg(lo '1139(1‘0)(11+1/2)

n-—O -

x =PIV (21~ #‘D—(r-zoﬂn» L @)




~ The exponent contains now the contribution to the expectation (11) of the
“state of principal quantum number n. We now separate, as in (12), all
~restricted expectations into a contribution from the ordinary unrestricted

quantum mechanical fluctuations and the fluctuations of z. All unrestricted

- expectations are then resolved into their spectral conte.nt For az(zo) the

sepa.ratidn is by (12)

1

-2'-? = 2o(x ’—'--—--—--——-—‘ 2
a*(wo) = x2(%o) - MRBY(o) (Z 1)
‘and the spectral decomposition of the first term lS ‘
— -n'.l ‘°° fiﬁﬂ(ro)(n-f-l/?) | ‘ 29 o
22 = [Zageo) Z_j g MQ )(n+1/) SN

Thus, for any given’ value of n, we replace az(;vo)' is by its spectral content;:

a*(xo) — a%(xo) = 22 — 1/M B3 (20) E -~ (23):
Cwith S ,
Tom = MOz )(n+1/ 2). | - (24)

For polynomial interactions, the smeared potential will contain increasing

powers of a*(xo) [each term 2°" in V(x) is being smeared out to a sum

e T | ro(’f"l)(ﬂ )”azl( 7:0)] We express the a?(x0)’s via (21) in terms

of powels rz( xo) and observe that these have the spectral decompositions

: i - 1= _hsGn L
- (2k - 1)”1"2‘(.1"0) = [Zﬂ(ro)] 1 Z hﬁ?( +1/2)mn2k (25)

n=0

" where ny; are the expectations of [M BN (wo)( 2 — x0) )?]¥ in the states [r)
'~ (i.e., the diagonal matrix elements of the creation and annihilation operators

[(a* + a)/\/_]” between states (at |0)/\/—

n, = (n+ 1/"



ng = S(n2 +n+ 1/2), |
| ne = -Z-(?.n3 +3n? +4n +3/2),

ng = -1%(7011.4 + 140n° + 344n? + 280n + 105),

| | | (26)
With these rules, 3(4'4(370) is to be repla.céd by |

nyh? - figh 6 .3 -

[MQ zo)2  MQ(zo) MﬂQ2 ao) [1\1/392(:::0)] N
Expanding V,2(20) in powers of az(ro) and treating each expansmn term in

this way yields the spectlal content hz,,,(.ro) Thus we obtain an apploxl-
- mation H a( ro) to the effective claSSlcaI potential V;fj cz(.z'o) a.s follows:

'3a4(;ro) -

o)

-13"2(1'0) = max ﬁﬁﬂ(.r )e-ﬂ{ﬁﬂ(wo)(ﬂ+1/2)+["02 (ro)—ﬂﬂz(ro)an(%)]} (76)

(-1‘0) ~o
This expression suggests now a- furthex implovement Which leads to a
more powerful low-tempemtule approxxmatlon to be proposed in this note:

Instead of finding a single optimal Q(zo) we may try and minimize each term

in the spectral decomposition with an own Q,(zo). Then we arrive at the

a-pproxima.tion W, ';1:(,) defined by

_,.31!2(1'0) — Z max ﬁﬂQ (20) fl{fifl,.(.::c.)(11-4-1/1)4.[;:12 (z0)-4 Q%(.’vo)ai(zo)]}. -

n=0 @n (o)

This approximation is pzesently of a heunstlc nature a.ncl _]ustxﬁed only by

its success to be exhibites in the next section. Hopefully, some modification

of it may eventually be derived by proper analysis.

4) As a first application take an anharmonic oscillator with the potentlal _

V(z) =m?2?/2 + gr" /4 and m? >0 which becomes after smearing

"";2(.1?0) =m ——+ 10+m_ + iglgfl2+ 34 Lo (30)

u

en

e



e

“

With (23), (27) we obtain the new ’approximate effective classical partition.
function - L

: 22 / -/m (zo)_/ Z -ﬁWzn(so) (31)
,/mh’ﬂ/zu \/wﬁﬂ/u n=0 o

where PVg ,,(ro) is the sum of three terms:

Wan(2o) = Wé’n(ro) + W2 n(l‘o) + V(20). (32)

In natural units _with h'\= kg =1.M = 1‘, the first térm reads [12]

0 11 ‘m + 3ga : . -
W2a(es) = 5 [nn($9)+_—-_ i ] +§m( S Gy

" and collects all parts of W, (o) with no explicit dependence.on B, while the

second term

1. m? +‘3_‘q:c§‘

] H,‘rgn(xo) — ____log[BQn(lo] )/3 M
g, 6 3 , !
+Z‘[_ﬁﬂ,3,(mo) 2+ﬂ2Q“(To)] o o (34)1 |

" contains all'3-dependent parts. _

- In the limit g — 0 where the system becomes harmonic, the minima lie

~all at Qu(70) = 1 and e=P2(=0) reduces to [Bm/2sinh(Bm [2)]e~PV (o) Wlth 
. the pmtmon functlon Z, given by the classwal integral

7 = ,Bm/?. = \d —ﬂm’ 2/2 | ’ 11
2 sinh(Bm/2) J_. . /2;;-/3/1\ | 7smh(/3m/’)

" as expected. Both HG.(%) and Z, are exag¢t in this lirnit and coincide, of

course, with the former approximations Wi(x), Zy of [1,2].
To judge the quality of the new effective classical potential we observe
that it contains pi'ecise information on the energies of all the excited states of -

- the anharmonic oscillator. At low temperatures, we can ignore Ifo (%) and

9




all' Q,(x0)- dependence 1ests in W} n(’t’o) “Its minimization giveS the cubic
equation R ' '

Qa(ro) - (m? a1 391:0) n(flo) g-— =0 K (35)
solved by | - ' | |

Qn (20) = { s(wo) cosh {1 é'cos}t[c(;tq)]-}: i c{z0) > 1

 —s(xg) sin ‘{%arcsi‘n[c(a:o)]} - o e(mo) <1

(36)
with

) ; dgng . " e .”
3(;1’0) \/37\/7712 + 3g:1 0, : = 33_(.1'_0_)4;—; | (3()

At small temperatuxes, the 1nteg1als over o in (31) will be dommated by the o

~ minima of IVgn(To) which lie at zo = 0 and have the values

o2 : AT ey
2PP = [0 Q.(0 e 38
B = 03,0 = & 00+ 52 a4 o
In the saddle point applo‘nmatlon, the partttlon functxon is
Z ~ Z éf'f’E"-""., o (39)
n=0' - : '

Hence E2FP are appro‘nmatlons to the bound state enelgles E,, of the anhar—
“monic oscxllatm '

For large g or large n (or both) we fincl Q.4(0) — /7)1/3 1/331/3 and the o
energies E7PP grow like = '
‘ 173\ Y .8 12\ :
app 1/3 4/3 e o 2 2i= ~ o 5 (.,
E7PP — hg =g (2) + 3 (3) 0.858 5‘36.‘ (40)A

This agt'ees extremely well with the exact g:owth behaviour which can be
obtained from the semiclassical expansion and has the same. power law as
(40) but w ith the shghtlv (~ 1%) larger plopomonahty factor

_ 2'2/3,3 4/3“ “ e : .
Kexact = (‘;) ; (Z) l'\8/3(3/4) ~ 00867145 - . (41) ‘

10



:"good

“a non- vamshmg right- -hand side

A comparison of our energies with the precise numerical solutions [13] of the
Schrédinger equation is shown in Table 1. The agreement is seen to be quite

For larger temperatures, the optlmal va.lues of Q, (a:o) obey Eq (35) with

- 2Qs(zo)aw (o) - | '
,,r._hjs.—f g 6&'22,,(1:0) o (42)

and can no longer be found analytically. For not too la;rge[ temperatures

(those are relatively uninteresting in this context being described by the
classical limit), however, we make use of the smallness of (42) (being of the
order of T') and iterate the equation, by inserting the T' # 0 value of Q,(zo)

into (42) and solving once more the cubic equation at the non-zero value of -

the. rlght hand side. The solutxon is given by (36) with ¢ in (37) replaced by
no ,

cqc(l—ﬁxrhs) L (43)
The new value is again inserted into (42), etc. The numerical va-
lues of Wy(zo) are a better approximation to the true ‘effec‘tivga classi-
cal potential than Wj(zo). As an example take ¢ = 40 and zo = 0
(the worst possxble place). There (W;(0), W(0)) have for 8 = 2,3,4,5
the values (0.514599465, 0.514534682), (0.712742725, 0.712741086)
(0.843 466 072, 0.843466038), (0.935482984, 0.935482 983) respectively.

- There is no improvement at § = oo (T =0) since there Wg(zo) Wi(zo).

“The new approximation still has the defect that at high temperatures it

‘does not properly reduce to the classical limit. The heuristic minimization

in Q(zo) at each n has obviously destroyed this property. A further impro-

~ vement will be necessary to correct for this.

'5) Let us end this note by giving a simple explicit procedure for calcula-

ting the total restricted averages ( ... )5 of (7) used above, as well as a

‘precise definition and evaluation procedure of the projected restricted expec-
tatlons ((n| | oo '

11



First we rewrite (7) as

i ) 2o
e = (23] 27rh2ﬁ M / / 'Dze-*‘ MhiME==) | (44
()= ]\/ o R
and complete-the potentlal part of .A qua.dra.tlcally to '

2 LT ‘ ' 2
Q ($0) / dT[.'t(T) x 370 )‘]2 m
with z) = A\/MB0?%(z0). Now the path 1ntegra,1 over () can be done wzthout
‘the restriction of Z to zo, the trial osc1lla.tor being recentered at zo + ). '
Within this path integral, the eXpeéiétion of z¥(r) is calculated as follows:
First we replace z2(7) by [z() = zo— 2)2 + (z0 +21)? since the odd powers in -
[£(7) — 20— 1] do not contribute. Now {z(7) = 2o — z,]? has the expectation
z3. Then we do the Gaussian A—integral which replaces (zo + :1:,\)2 by z2 —
1/MBQ?(zo). Thus 22 has the expectation z3+z—1/M BQ*(20) = z3+a*(xo)
which coincides with z? when smeared via (13). lThé higher powers are
treated likewise with the result given after Eq. (25).
" We are finally ready to define and calculate the projected expectations

{((n]...|n))% which play the principal role in the present work. We decom-
pose the path integral over the shifted trial harmonic oscillators i m (44) into
its spectra.l content and wnte ‘ |

(e = (22 ]"‘\/27rhzﬂ/MMBQZ(ro) T ey

—iss 2mE =

X"/ dxa‘l’n(‘ — To — zA)f(za)¢u(za 1 x,\)e hﬁﬂ(xo)(n+1/2) Mﬂﬂ i(s : 23

- with the standard real oscillator Wa,ve functions. As an exa.rnple, the expec-
‘tation of z%() is found by replacing 22 by (z, — 2o — z)? + (zo + )2, since
odd powers in (za'— zo — ) change n of one wave function by one unit and
thus cannot contribute between states of equal n. After this we substitute

- (zs — o — x))? in front of wn(z,, — z¢ — z,) by its diagonal matrix elements

xz,,, Now we mtegrate over dz, and the wave functions dlsa.ppear Fmally we

25
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perforr‘ri ‘the Xintegra,l With the wave functions havin disappeared there is

no more A-dependence except in the Gaussian exponentla.l Hence (zot+2 2 )*

may be repla.ced by 23 + z3 which becomes z2 — 1 /M ﬂﬂz(zo) Thus we ﬁnd

~ for a:2('r) the spectral content of the restricted expecta.tlon value

((nlx?(f)ln))n = mo + 220 — 1/MBO*(20) = 25 + aﬁ(wo),

~ as stated above. The hlgher powers are > treated likewise.

In the final approxxmatlon leading to W;(zo) the expectation (46) is re-

- placed by the same expression. thh Q(zo) replaced by Q (zo), also in each

term of the sum in Z3°

- 6) Just as in the case of the eai‘liei' approximatien Wi(zo) it is possible
" to apply the present scheme to systems with several minima, such as the
~ double-well potential. Also evaluations of particle dlstnbutlons and response
" functions to external sources present no problem Such apphca.tlons and fur-
ther developments would carry us beyond the size limitations of a letter and

‘will be discus'sed el,,sewhere".' | L | |
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Table 1: Energies of the nth excited states of the anharmonic oscillator with

potential V(z)/= z2/2 + gz*/4 for various g and n. In each entry, the top = .
number is the precise numerical value obtained by solving the Schrodmger '

equatxon the second is our vanatxonal result.

g/a |  Ep Ey E;y - E, E, ' Es Eg Er Es )
o.1 0.559 146 1.769 50 3.13862 : 4.62888 - 6.22030 7.899 77 9.657 84 11.4873 13.3790 '
g 0.560 307 1.77339 3.13824 462193 6.20519 7.87522 9.62276 11.4407 13.3235
: 0.2 0.602405 -  1.95054 3.536 30 5.201 27 7.18446 - 9,196 34 11.3132 13.5249 - 158222
' 0.604 901 1.95804 3.534 89 527855 . 7.15870 9.156 13 11.2573 13.4522 15.7328
0.3 0.637 992 2.094 64 384478 579657 7.91175  10.1665 12.544 3 15.0328 17.6224
s 0.641 630 2.104 98 3.842 40 5.77948 - - 787823  10.1151 . 12.47363 - 14.9417 17.5099
04 0.668 773 221693 - 4.10284 €.31559 . 851141 . 109631 '  13.5520 16.2642 ' '19.0889 ~
: 0.673 394 2.229 62 4.099 59 6.194 95 847169 . 109028 - 134698 = 16.1588  .18.9591
0.5 | 0696176 2.324 41 4.32752 6.57840  9.02878 11.6487 144177 17.32204  20.3452
# 0.701 667 2.339 19 4.32352 6.55475  8.98383 . 11.5809 14.3257 © 17.20293 20.2009
. " 06 0.721 039 2.42102 4.528 12 6.90105 ©  9.48773 12.2557 15.1832 18.2535 21.4542
Ce d 0.727 296 243750 , 4.52343 - 6.87477 9.43825 = 12.1816 ' . 15.0828 18.1256 21.2974
. s ‘ . 4
o7 | 0743904  .2.50923 4.710 33 7.193 27 9.902 61 12.8039 15.8737 . 10.0945 22.4530
s 0.750 859 2.52729 470501  7.16464  9.84911 12.7240 15.7658 18.9573 22.2852
0.8 0.765 144. 2.590 70 4.87793 7.461 45 10.2828 13.3057 16.5053 19.8634 '23.3658
¢ 0.772 736 2.61021 - 4.87204  7.43071 10.2257 13.2208 16.3907 19.7179 23.1880
0.0 | 0785032 2.666 63 5.033 60 7.71007 10.6349 13.7700 ~  17.0894 20.5740 | 24.2091
: 0.793 213 2.687 45 5.027 18 7.67739 10.5744 . 13.6801 - 16.9687 ~  20.4209 24.0221
1 | owsosTn 2.73789 5.17929 7.942 40 10.9636 14.2031 17.6340 21.2364  24.9950
.0.812 500 2.759 94 5.17237 790793  10.9000 14.1090 17.5076 21.0763 24.7906
10 1.504 97 5.321 61 103471 16,0901 22,4088 29.2115 36.4369 44.0401 51.9865
1.53125 5.38213 .  10.3244 15.9993 22.2484 28.9793 36.1301 43.6559 51.5221
50 2.499 71 £.91510 17.4370 27.1926 37.9385 . 49.5164 61.8203  74.7728 ' 88.3143
2.54758 9.02338 17.3952 27.0314 37.8562 49.1094 = 61.2842 ©74.1029 . 87.5059
100 | 313138 . 111873 21.9069 34.1825 AT.T07T2 62.2812 77.7708 . 94.0780 .  111.128
3.192 44 11.3249 - ' ©21.8535 33.9779 47.3495 61.7660 77.0924 93.2307 110.108
6 5 . £
500 5.319 89 19.0434 37.3407 £8.3016 81.4012 106.297 132.760 160.622 ©  189.756
5.425 76 19.2811 37.2477 57.9489 ' 80.7856 105.411 131.598% 159.167 188.001
1000 6.694 22 23.9722 47.0173 73.4191 102.516 133.877°  167.212 202.311 '239.012 |
: 6.827 95 24.2721 © 46.8000 72.9741 101.740 132.760 165.743 200.476 . 236.799 -
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Table 1: Enelgles of the nth excxted states of the anharmomc oscillator with
potentlal V(z) = 2?/2 + gr“/4 for various ¢ and n. In each entry, the top
number is the precise numerical value obtained by solvmg the Schrédinger

equatlon, the second is our variational result.

g/4 Eq E, Ep E;3 Ey Ey Eg E; Eg
01 | oss9146 178950 | 313862 | 462888  £.22030  7.8997T  9.65784 11.4873 13.3790
: 0.560307.  1.77339  3.13824 462193 620519  7.87522  9.62276 11.4407 13.3238
02 | os02408 ' 190 54 333630 520127  7.18446  9.19634  11.3132 13.5249 15.8222
2 | o604 901 195804 ©  3.53489 527855  7.15870  9.15613  11.2573 13.4522 15.7228
03| 037992 200464  284a7e 579657  To117s 101668 12.544 3 15.0328 17.6224
921 0641630 210498  3.84240 577948  7.87823  10.1151 12.473€3  14.9417 17.5099
0.4 | 068773 221693 410284 621359 851141  10.9631 13.5520 16.2642 "19.0889
ik 0.673304  2.22962  4.09959  €.19495  B8.471€9  10.9028 13.469 8 16.1588 18.9591
05 | 9es1te 232041 432752 6.57840  9.02878  11.6487 14.4177 17.32204  20.3452
e 0.701667  2.33919  4.32352  6.55475  85.98383  11.5809 14.3257 17.20293  20.2009
0.6 | 0721039 242102 432812 690105 948773  12.2557 15.1832 18.2535 21.4542
. 0727296 243750  4.52343  6.87477 | 943825  12.1816 15.0828 18.125¢ |21.2974
0.7 | 0743904 250923 451083 79327 9.902 61 12,8039  15.8737 19.0945 22.4330
e 0.750859  2.82729  4.70501  5.16464  9.84911 12.7240 15.7658 18.9573 22.2852
0.8 | 0765144 250070 487793 746145 - 1028628  13.3057 16.5053 19.8634° 23.3658
g 0.772736  2.61021 487204 ° 7.43071 10.2257 13.2206 16.3907 19.7179 23.1880
09| 0788032 266663 3503360  7.71007 10.6249 13.7700 17.0894 - 20.5740 24.2091
ot 0.793213° 268745 502718  7.67729 105744 13.6801 16.9687 20.4209 24.0221
1 0.803 771 2.73789 517929 7.942 40 10.9636 '14.2021 17,6340 '21.2364  24.9950
0812500  2.73994  5.17237 7.90T93  10.9000 14.1090 17.5076 21.0763 24.7998
10 1.504 97 532161 10.3471 16.0901 22.4088 29.2115 36.4369 44.0401 51.9865
1.53125 538213 10.3244 15.9993 22.2484 28,9793 36.1301 43.6559 51.5221
50 | 2499m1 891510  17.4370 27.1926 37.9283 49,5164 61.8203 74.7728 . 88.3143
2.247 58 9.02338 17.3952 27.0314 37.6562 49.1004 61.2842 74.1029 87.5059 .
100 3.13138 11.1873 21.9069 34.1825 477072 [ 62.2812 77.7708 94.0780 111.128
319244 11.3249 21.83535 33.9779 47.3495 61.7660 77.0924 93.2307 110.106 -
500 5.31989 19.0434 37.2407 58.3016 81.4012 106.297 132.760 160.622 189.756
5.425 76 19.2811 37.2477 57.9489 80.7856 105.411 131.595 139.167 188.001
1000, | 6€%422 23.9722 470173 734191  102.516 122.877 167.212 202.311 239.012
€.827 95 24.2721 4€.9000 72.9741 101.740 132.760 165.743 200.476 236.709
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