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Abstract

Statistical operators of von Neumann are examined in the wave

operator forma.tion. A whole feature of the "state reduction", which

occurs in subspaces during the evolution of the total system

according to the Schrodinger equation, is presented expl icitely.

Thus both processes are compatible and inherent il1 quantum systems.
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Let S be the quantums mechanical system which is composed of

subystems 8 1 and SJI.. States of statistical ensembles of systems

S I , S][ and 8 are represented by normal ized vectors of the

Hilbert space IJ.I , WI and lJ.=kJ l ®kJ.JI. , respectively, and time

development of state vectors is deter~ined by unitary operator

U I (t) = exp [- i HIt ] , un (t) = exp [- i H JI. t ] and

U(t) = [-iHt] generated by Hamiltonian HI in kJI, H][ in

kJ][ and H=Ho+H'(Ho=H I 0 I + I 0H][ ) in kJ., respectively.

Here H' is the interaction Hamiltonian between 8 1 and S][ and

I denotes the unit operator in the Hilbert space under considera-

ti on. 8 I is sca ttered by 8][ and 8 I and 8][ are cons idered as

the object system and the measuring apparatus in the measurement.

Throughout the scattering both sets of constituent particles of 8 I

and 8][ are invariant, 8 I is always in some of bound states of

Hamiltonian HI, and 8 1 is not absorbed by S][.

Wave operator l )

The scattering of S 1 by S n is assumed to be described in

terms of wave operators W± and their ajoint

W± = s --':'lim (U(t»-1U O(t)
t~±oo

wr =W± -1= s -lim (U(t»-1U O(t) (1)
t~±oo

where U o( t) = exp[ - i Hot], s - I im means the strong conver-

gence of the operator in kJ., and the double sign + is ordered.

W± is unitary and satisfies the intertwining property
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HW± =W± H o in kJ..

We have the one-to-one correspondence between vectors

{ 7/J '± (O)} of kJ. such that

W± 7/J± (0) =7/J(0)

(2)

{ 7/J (O)} and

(3 )

and (1) means the asymplotic relation in the sense of norm of kJ.;

7/J(t) =U(t)7/J(O) ~ 7/J± (t) =U o(t)7/J± (0) t~+oo (4)

We see that (4) imp} ies the replacement of U (t) by the inter­

action free evolution Uo(t) together with the mapping by Eq.(3).

Hereafter we consider only t:2:: 0, thus W+.

von Neumann's statistical operator 2 )

Statistical operator for the statistical ensemble of S, is

defined from normalized state vectors 7/J(t), 7/JJ(t)EkJ. (j=1,2,···)

as fa II ows,

P (t) = I 7jJ (t) >< 1/; (t) I , (5)

Pm(t)=LjWj \7/JJ(t»<7Pj(t) I, LWJ=l,wJ~O. (6)

P is the statistical operator for a pure state and Pm is for a

mixture (mixed state) wi th probabi Ii ty distribution {w J} , and

we use frequently Dirac's notation of bra and ket,<l and 1>.

Expectation va Iue of physica I quanti ty (observab Ie) 0 for a pure

state 7/J or a mixture {7/J J, WJ} is given by TrO P or TrO PIn,

respect i ve} y, where T r denote the trace on the Hi Ibert space kJ..

Su bspace of kJ

We denote the complete set of commuting observables in kJ.1
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and kl n by A = {A 1, ... , A p} and B = { B 1, ... , B q} ,the set of

thei r ei genva 1ues as a = { a 1, ... , a p} and b = { b 1 , •.. , b q} ,

and the corresponding normal ized eigenvector by I a> = I a 1>

···1 a p > and I b>= I b 1>"'! b q >, respectively. We

introduce a specia 1 assumption that HIE A and H nEB, thus

each observab I e from A UBi s commutab Ie to H I and H n. We

divide the set A and B

r'\=AMUA N B=BRUB s (7)

and COJlstrucL Hi I bert spaces kJ.M, 1<:-1 N, hJ R
, lJ. s whose bases are

constructed from eigenvectors I aM:,">, I aN>, I b R>, I b S>,
of AM, AN, B R, BS, respectively. Then we have divisions of

kJI and kJn into subspaces;

tJI = kJM(g;kJ.N, kJn = t:J.R®kJ S (8)

Projections of the statistical operator into subspaces of kJ

We construct traces of p (t) on subspaces kJN. n = klN®kJ n

and kJ 1, S = tJ I ®kJ S;

pM(t)=Tr(N.Il)P(t) (9)

p R(t) = Tr( l. S) P (t). (10)

Then pM(t) or pR(t) becomes operator on tJM or kJR and is

regarded as projection of p into the subspace kJM or kJR, re­

specti ve Iy. Here T r (N. I I) or T r ( I. S) means to cons truct trace

with respect to the complete orthonormal set of kJN. n or kJI. s,

respectively. Expectation value of observable 0 in Id.M or Id. R

is given by Tr(M)OpM or Tr(R)OpR by constructing trace in

-4-



terms of the complete set of kJ..M or kJR, respectively.

Initial values and asymptotic forms of p (t),pM(t) and pR(t)

Let us put

7/;(0) =LC ( a , b ) a>1 b>
a,b

l,b +(0) = L: d ( a , b ) a::> I b>
a,b

E kJ, (11)

E tJ., (12)

then we have from Eq.(3)

d(a,b)=LW+*(a,b; a' ,b')c (a' ,b'), (13)
a' ,b'

where W+*(a,b ; a' ,b') denotes matrix element of W+*=W+-l with

basis I a> I b> and Id(a,b)!2 gives a transition probability

from the state 7/; (0) at t =0 to the state I a > I b> for t~oo

after scattering.

Since W+ is unitary, we have the relation, for 111/;(0) II =1,

II d 11 2 = II C 11 2 =1. (14)

Le t usass uIne t hat HIE A Nan d II][ E D S, and set the i nit i a I

state as

I 7/; (0) > = L: c (a, b) I a> I b >
a,b

= I -ljJM(O» I 1jJ NS (O) > I l/JR(O» (15)

1/; M(O) > = L f (aM) I aM> ,
aM

(16)
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II f "2 = II g II 2 = II h 11 2 = 1,

then we have fro m Eqs. (3) ----- ( 5) , (9) --.. (12) , (15 ) , (16)

p (0) = I 1/J (0) >< 1/J (0) I on kJ (17)

p (t) ~p (t) = I 1/J+(t»<1/J+(t) I on kJ,t~oo (18)
00

on kJM (19)

on kJM,t ~oo (20)

(20g)

on IJ.R (21 )

pR(t)~pR =L 77(bR,bR') I bR>·<bR'/
00 bR,bR'

77 (b R , bR ') = L d (a, bR , bS)d(a, bR ' ,bS),
a,b s

where a denotes comp Iex conj uga te of a.

(227J )

Diagonal representation of the asymptotic forms pM and p R
- 00 - 00

Since the matrix {~(aM, aM' )} and {iJ (b R , bR ' )} is Hermi te

symmetric on kJM and ~~R, it can be diagonalized by applying a

unitary operator U M in kJI and U R in kJ JI
, respectively, in

the following way.

~=UM~UM* I aM>=UMla M> I aN>=UMla N>= I aN>

77=UR iJ U R* I bR>=URlb R> [j)S>=UR\b S:>= I bS>,
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~ -
P M =?= ~ (aM) IaM> <aMI , P R = ~ TJ (b R) IbR > <bR I (23 )

co aM co bR

Here we choosed U M and U R, respect ive I y, in such a way thatit

transforms quantities in kJM and kJR but is identity in kJN and

kJs. We obtained diagonal representation of pM and pRof Eq. (23
co co

but we may construct p initially by using transformed vectors

I aM> and I bR > etc. in place of I aM> and I bR > etc. and

get Eq.(23) directly, and in this sense we are al lowed to omit t

symbol everywhere, without loss of general ity. Thus we use in

the sequel the following relations in place of Eqs.(20), (20 ~),

(22), (2277), respectively;

(2077 '

(20g'

pM(t)~pM =L~ (aM) I aM><aMI
co aM

Characteristics of the development of p (t), pM(t) and pR(t)

from t=O to t ~oo

We examine the characteristic feature of the time cleve I

of p (t) on kJ, pM(t) on IJ.M and p R(t) on kJR along the

general theory of von Neumann2 >.

First, we get from Eqs. (3) and (4)
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(24)

Hence, in our case where p (0) of Eq. (17) is a statistical

operator for a pure state 1j; (O)E /.-1, operators p (t)= I 7/J (t»

< W(t) [= I U ( t ) W(0) ><u (t) W(0) I and p ~ t) = \ 1f; +( t) ><

w+(t) I represent pure states in f,J, since W(t) and W+(t) are

obtained a Iways by uni tary transformation in kJ. of W(0). On the

other hand, although pM(O) and pR(O) of Eqs.(19) and (21) is a

stat i s tica lopera tor for purestate WM ( 0) E /.J.. Man d 1/; R ( 0) E /.J.. R ,

respectively, it approachs the constant operator pM and pR
00 00

asymptotically as t-~oo, which is nothing but a statistical

operator for mixture in kJM and kJR, respectively, as clearly seen

in Eqs.(20')"-·(2277'). Exceptions are special cases where g and

77 vanish except at only one values of aM and b R , respectively.

Such a phenomenon that, while p (t) in kJ. continues to represent

the pure state in kJ, its project.ion into the subspaces kJM or kJR

represents the pure state or the mixture, generally the mixture,

is already described in the general theory of the statistical

operator by von Neumann2 ), Thus it is possible and completely

rational that, when, in the total system S, the causal and quantum

mechanical development proceeds according to the Schr5dinger

equation, in its subsystems SI , Sll or in the subspaces kJR,kJ M,

the transition from the pure state to the mixture, which is

apparently acausal and not describable in the Schrodinger's law.

We have ana Iyzed the sca tter i ng system S composed of S I and
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SU concretely and exhibited the above relationship between the

total and the subsystems which is inherent in quantum mechanical

systems. The situation does not and should not be altered when we

consider measurement problem for the same scattering system S,

only by nominating S I and SU as object system and measuring

apparatus. Of course in the measurement the reduction of pure

state to mixture occurs wi thin the system S. The process of the

reduction is described above elaborately and obviously the

reduction is proper to the system S developing by the Schrodinger

equation and is not infl uenced from the outside of S. Hence it

is neither necessary nor possible to introduce into the theory of

measurement the action of the subject, or abstract l'Ich" of von

Neumann, where the terms are used in the sense of philosophical

idealism. Thus the role of the observer in measurement is to

recognize the result of the reduction of state as described by

statistical operator, and this constitutes a separate problem and

is essential [y independent of the problem of the reduction of

state itself.

Example of the measurement

We set up a necessary condition such that our scattering

constitutes an ideal measurement of some observable of object

system S I by means of the measur ing appara tus S][. Let { a jM }

=aM (j=1,2,"') and {b J
R

} =bR (j=1,2,"') be a series of

sets of eigenvalues of AM of 8 1 and B R of S][ respectively,
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introduce a one-to-one correspondence in order of j : aJM+-~bJR

(j =1,2," '), and assume the following condition for the matrix

element of VV+*;

w+ * (a, bR , bS ; aM, aN' , b' )

= (IT 0 (b j R - aj M) ) w (a, bS ; aN' ,b' ) (25)
j =1

As assumed already we have HI EA N
, H][ E B S and provide 1/J(O)

at t =0 by Eqs.(15) and (16). From unitarity of W+, Eqs.(14),

L~(aM)=L77(bR)=l, (26)
aM bR

which shows that {~(ajM)} and {77 (b j R
)} gives probabi llty

distribution of the mixed state { \ a JM>} and {I b jR>} in

pM(20') and pR of Eqs.(20') and (22'), respectively. Further,
0) 00

we calculate

where it should holds that wo=l, since, we have from normal iza-

tion, Eq.(16), and unitarity, Eq.(26), of VV+*,

1,

and Wo is independent of aM, and hence

. (27)

We start from t =0, where pM(O) and pR(O) is given by pure

state of Eqs.(19) and (21) and AM and B R takes no definite
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value except the case where the state consists of one eigenstate

As t~oo pM(t) and

P R( t) tends to the asymptot ic form pM and p R gi ven by mixture,
00 00

related to the amplitude f (aM) of the eigenstate

observable AM of S I Thus in our sca ttery of S I by S 1I

the measurement of l\ R is attai ned by the apparatus S 1I wh ich

records va I ues of B R correspond ing to those of AM. One see that

the whole story is in accordance with Born's ansatz of probability

distribution in general quantum mechanical measurement.

Discussion

In the former half of the present letter we give the recogni­

tion that the reduction process of state in the subspaces kJM and

kl s is, as explained elaborately, the inherent property of the

tota I system S. Thus the problem of the reduction of state is

separated from the problem to determine {17 (b R )} of Eq.(27) by

the observer in the measurement, which should be discussed in

various aspects. The latter part given for the formulation of the

measuring process is owing much to works of Maki 3 ) and Fine4 ).

In the present study of measurement only the observables AM and

B Reomm utablew i t h H I and H 1I are consid ered, whereas Bo rn' s
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ansatz covers al I observables, and further the relation between

W+ satisfying Eq. (24) and the Hamiltonian H' is not clear.

These would be the subject of the future study.

Various studies on measurement are. seen using measuring

apparatus composed of an infinite number of particles3 ), 5) as well

as a finite number cases 3 ), 7). The relation between them also

would be clarified in the future?).
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