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Abstract

Statistical operators of von Neumann are examined in the wave
operator formation. A whole feature of the “state reduction”, which
occurs in subspaces during the evolution of the total system
according to the Schrédinger equation, is presented explicitely.

Thus both processes are compatible and inherent in quantum systems.




Let S be the quantums mechanical system which is composed of
subystems ST and ST™ . States of statistical ensembles of systems
ST, ST and S are represented by normalized vectors of the
Hilbert space LI' , K™ and LI=KIT @I , respectively, and time
development of state vectors is determined by unitary operator
UT(t) =exp[—1HT t], UX(t) =exp[—1H* t] and
U(t) = [—1Ht] generated by Hamiltonian H® in &I , HT in
LI and H=Ho+H (Ho=H* @I + T®H?* ) in kI, respectively.
Here H' is the interaction Hémilioniéﬁ between ST* and ST and

I denotes the unit operator in the Hilbert space under considera-
tion. ST is scattered by ST and ST and ST are considered as
the object system and the measuring apparatus in the measurement.
Throughout the scattering both sets of constituent particles of S
and ST are invariant, S* is always in some of bound states of

Hamiltonian H* , and S?* is not absorbed by S?T .

Wave operator!’

The scattering of S!' by ST is assumed to be described in
terms of wave operators W. and their ajoint

W. =s —1lim (U(t)) 1Ug(t)
t-to

Wi =W, "1=s—1lim (U(t)) " 1Ue(t) (1
to1w
where Ug(t)=exp[—1Hg t], s —1lim means the strong conver-
gence of the operator in A&f, and the double sign *+ is ordered.

W. is unitary and satisfies the intertwining property



HW. =W. Ho in Al (2)
We have the one-to-one correspondence between vectors { % (0)} and
{$’'+ (0)} of kI such that
W. ¥ (0) =9(0) (3)
and (1) means the asymplotic rélatioﬁ {n the sense of norm of Al;
»(t) =U{)¥»(0) = ¥« (t) =Uo(t)¥= (0) t—xoo (4)
We see that (4) implies the replacement of U(t) by the inter-
action free evolution Ug(t) together with the mapping by Eq.(3).

Hereafter we consider only t = 0, thus W..

von Neumann's statistical operator?’

Statistical operator for the statistical ensemble of S, is
defined from normalized state vectors » (t), v (t)ekl (j=1,2,-)
as follows,

p(t) =1 v) >P)], (5)

en(t)=Esw, [,;(1)><p,(t) |, Ewy=1,w,;=0. (6)
o is the statistical operator for a pure state and om is for a
mixture (mixed state) with probability distribution {wy,} , and
we use frequently Dirac’s notation of bra and ket,<1 and 1>.
Expectation value of physical quantity (observable) O for a pure
state ¥ or a mixture {¥,,wy) is given by TrOp or TrO pmn,

respectively, where Tr denote the trace on the Hilbert space &f.

Subspace of ki

We denote the complete set of commuting observables in 447

_3_



and /" by A= {A, ---,A,}and B= {B;, -+, Bq} ,the set of

their eigenvalues asa= {ai, *,apt and b={by, -, ba} ,
and the corresponding normalized eigenvector by | a>=| a >
] ap> and | b>=|bi> | bq>, respectively. We

introduce a special assumption that H* € A and H?* €B, thus
each observable from A UB is commutable to H' and H* . We
divide the set A and B

A=A"UAN , B=BRFRUBS (7)
and construct Hilbert spaces KI™, LIV, LI®, LL° whose bases are
constructed from eigenvectors | a™>, | a™>, | b®>, [ bs>,
of AM, AN, BR, BS, respectively. Then we have divisions of
LI* and K™ into subspaces;

WY =KMOKY KT =P (8)

Projections of the statistical operator into subspaces of &J

We construct traces of o (t) on subspaces KNI =LINQLIT

and K" ° =TS,

PpMt)=Tr 110 (t) (9)

p*Mt)=Tra.s) p(L). (10)
Then oM(t) or o®(t) becomes operator on LI™ or kIR and is
regarded as projection of o into the subspace K&IM or LIR, re-
spectively. Here Tr(wn 11y or Tr¢i, s, means to construct trace
with respect to the complete orthonormal set of WM ™ or LI" S,
respectively. Expectation value of observable O in KM or LIF

is given by Trimy OoM or Tr(ryO p® by constructing trace in



terms of the complete set of I™ or KLI®, respectively.

Initial values and asymptotic forms of o (t), o™(t) and o R(t)

Let us put
¥ (0) =§:bC(a, b) la>]| b> € W, (11)
t/)+(0)=aZéﬂ (a, b)) la>]| b> e W, (12)

then we have from Eq.(3)

d(a,b)=X2W.*(a,b;a’ ,b’)c(a’,b), (13)
a b’

where Wi*(a,b; a’,b’) denotes matrix element of W.*=W. ! with

basis |[a> | b> and [ d(a,b)|? gives a transition probability

from the state ¥ (0) at t =0 to the state | a > | b> for t—

after scattering.

Since W4 is unitary, we have the relation, for | ¥ (0) Il =1,
ldifz=1cl? =1. (14)

Let us assume that ' € AN and H{* € BS, and set the initial

state as

|¢W)>=§§umﬂa>lb>

| =1 »pM0O)> | »"(0) > | »*0)> (15)
[ »™0)>=1 1 (a") | ">,
a

| »NS(0) >=L g (@M b%)[a"> | b5>,
aN,bs

| w“(0)>:bZRh(bR) | bR>, (16)



I fll2=01gll?2=1hl? =1,
then we have from Eqs.(3)~(5),(9)~(12),(15), (16)

p(0) =1 ¥() ><v () | on Kl (17)
p (t) —%Oo(ot) = | P (t)><pP.(t)] on Kk, ,t—oo (18)

pM0)={L f@") ">} {(Lf ") |}
M aM

a
on LM (19)
eMt)— oM = £ (aMa%") | a"> <aM'|
o M M’
on KM, t —oo (20)
5(aM,aM')zNﬂd(aM,aN,b)a_(aM',aN,b) (20&)
a“,b
oRO)={LZh(b¥ | bF>} {Lh (b? )<br |}
bR bR’
on KLI® (21)
oR(t)=p® =L 7 (% bR) | bR> bR
© bR bR’
on KWI®,t —oo (22)
77(bR.bR')'—“Zéﬂ(a,bR,bs)E(a,bR',bs), (227)
a,b

where o denotes complex conjugate of «.

Diagonal representation of the asymptotic forms ,og and p;

Since the matrix {&(a™,a"")} and {7 (b%,b*")} is Hermite
symmetric on W™ and KI®, it can be diagonalized by applying a
unitary operator U™ in /¥ and U® in &/® , respectively, in
the following way.

E=UMgU™ [a">=U"a"> |a">=U"a">=]a">
n=URpUR [ BR>=URB*> [ DbS>=URbS>=|b5>,

__6.._



pM =T & @M |a" ><a" |, p® =7 (bR) bR ><bR | (23)
w bR

M
© aM
Here we choosed UM and UR, respectively, in such a way that it
transforms quantities in &/ and W™ but is identity in KN and
LS. We obtained diagonal representation of ,oo“‘; and ,og of Eq.(23),

but we may construct o initially by using transformed vectors

| a> and | bR> etc. in place of | a> and | bR> etc. and
get Eq.(23) directly, and in this sense we are allowed to omit the

symbol Aeverywhere, without loss of generality. Thus we use in

the sequel the following relations in place of Egs.(20),(20 £),

(22), (2277 ), respectively;
pM(t)— oM =L & (a") | a> <aM| on KMt —oo (207)
© a
E@M=x|d@",a"b)l2, &%) =1 (20&7)
aN,b aM
pR(t)— ok =§n(b“)lb“><bkl on WI?, t —oo (2277)
[}

7 (b?)=1|d(a,b®,b%) (2, En(b*)=1 (20m7)
a,bs bR

Characteristics of the development of p(t), o™(t) and pR(t)

from t=0 to t—o

We examine the characteristic feature of the time development
|

of p(t) on K, o™M(t) on LI™ and poR(t) on LI® along the

general theory of von Neumann?’.

First, we get from Eqs.(3) and (4)

__7__




b =Uot)Wr (@), (20)
Hence, in our case where o (0) of Eq.(17) is a statistical
operator for a pure state 1 (0)€ k!, operators o (t)=1{ ¥ (t)>
<P ()= 1 Ut)$(0)><Ut)$(0)] and pét)——- | ¥+ ()><

w+(t) | represent pure states in L/, since ® (t) and ¥.(t) are
obtained always by unitary transformation in &f of ¥ (0). On the
other hand, although ©™(0) and pR(0) of Egs.(19) and (21) is a
statistical operator for pure state ¥»™M(0)€ L™ and ¥ *(0) € LT,

respectively, it approachs the constant operator pz and ,o;

asymptotically as t —oco, which is nothing but a statistical
operator for mixture in /™ and KLI®, respectively, as clearly seen
in Eqs.(20")~(227"). Exceptions are special cases where £ and
77 vanish except at only one values of a™ and b¥®, respectively.
Such a phenomenon that, while o (t) in K& continues to represent
the pure state in &/, its projection into the subspaces WM or IR
represents the pure state or the mixture, generally the mixture,
is already described in the general theory of the statistical
operator by von Neumann?’. Thus it is possible and completely
rational that, when, in the total system S, the causal and quantum
mechanical development proceeds according to the Schrddinger
equation, in its subsystems S* , ST or in the subspaces WI®, &M,
the transition from the pure state to the mixture, which is
apparently acausal and not describable in the Schrédinger’s law.

We have analyzed the scattering system S composed of ST and

M8“




ST concretely and exhibited the above relationship between the
total and the subsystems which is inherent in quantum mechanical
systems. The situation does not and should not be altered when we
consider measurement problem for the same scattering system S,
only by nominating ST and ST as object system and measuring
apparatus. Of course in the measurement the reduction of pure
state to mixture occurs within the system S. The process of the
reduction is described above elaborately and obviously the
reduction is proper to the system S developing by the Schrédinger
equation and is not influenced from the outside of S. Hence it
is neither necessary nor possible to introduce into the theory of
measurement the action of the subject, or abstract “Ich” of von
Neumann, where the terms are used in the sense of philosophical
idealism. Thus the role of the observer in measurement is to
recognize the result of the reduction of state as described by
statistical operator, and this constitutes a separate problem and
is essentially independent of the problem of the reduction of

state itself.

Example of the measurement

We set up a necessary condition such that our scattering
constitutes an ideal measurement of some observable of object
system ST by means of the measuring apparatus S* . Let { a M}
=a% (j=1,2,---) and { bR} =b® (j=1,2,---) be a series of

sets of eigenvalues of AM of S?! and BF of ST respectively,

— Q9 —



: 3. M R
introduce a one-to-one correspondence in order of Jj : a, —— by

(j=1,2,-+), and assume the following condition for the matrix
element of W.*; | '

we* (a,b®,bS; a%,a" b))

= (Jﬂlﬁ(bf‘”*ao-”))W(a,bS;a”',b’) (25)

As assumed already we have HY € AN, HY € B® and provide % (0)
at t =0 by Eqs.(15) and (16). From unitarity of W, Egs.(14),

LE(M=Ln (" =1, (26)

aM bR
which shows that { & (a;™)} and {2 (bs®)} gives probability
distribution of the mixed state { | a;M>} and { | byF>} in

p‘;(ZO') and ,o; of Eqs.(20°) and (22°), respectively. Further,

we calculate

7 (bR)=1L | d(a,b;" b%)|?

a,bs

=y | ¥ W.*(a,b® bs;aM a"",b’)
a,bs,aN" b’ ,aM

f (aM)g(aM",b% )h(bR") |2
= | f (") |2wo ,
where it should holds that woe=1, since, we have from normaliza-
tion, Eq.(16), and unitarity, Eq.(26), of W.*,
az“:qi'f<aLM>|2=1, 5w = 1,

and wo is independent of a™, and hence

n (bF)= 1| £ (b¥)|Z2. -(27)
We start from t =0, where oM(0) and o ®(0) is given by pure
state of Eqs.(19) and (21) and AM™ and BP® takes no definite



value except the case where the state consists of one eigenstate
| aM> and | b">, respectively. As t— o™M(t) and

o R(t) tends to the asymptotic form ﬁ)$ and g)i given by mixture,

Bqs. (20" )~(227 "), with probablity distribution { £} and {7},
respectively. Specifically the set of eigenvalues b ® of BR is
realized in the apparatus ST with probability =»= [ f (b*)|?
related to the amplitude f (a™) of the eigenstate | a™> of
observable AM of ST . Thus in our scattery of ST by ST
the measurement of AR is attained by the apparatus S which
records values of B® corresponding to those of AM. One see that
the whole story is in accordance with Born's ansatz of probability

distribution in general quantum mechanical measurement.

Discussion

In the former half of the present letter we give the recogni-
tion that the reduction process of state in the subspaces W™ and
Id% is, as explained elaborately, the inherent property of the
total system S. Thus the problem of the reduction of state is
separated from the problem to determine {7 (b®)} of Eq.(27) by
the observer in the measurement, which should be discussed in
various aspects. The latter part given for the formulation of the
measuring process is owing much to works of Maki®’ and Fine?®’.
In the present study of measurement only the observables AM and

BR commutable with HY and H® are considered, whereas Born’s



ansatz covers all observables, and further the relation between
W, satisfying Eq.(24) and the Hamiltonian H’ is not clear.
These would be the subject of the future study.

Various studies on measurement are seen using measuring
apparatus composed of an infinite number of particles®’ 3’ as well
as a finite number cases*’* 7., The relation between them also

would be clarified in the future?’.
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