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ABSTRACT

This talk surveys our current understanding of deconfin­

ed phases of strongly interacting matter at high energy

density -- quark matter, or quark-gluon plasma -- as is

likely to be produced in ultra-relativistic heavy ion

collisions. Following a review of aspects of the normal

and perturbative vacua in quantum chromodynamics,

elementary properties of deconfined matter and ways in

which this state can be explored in both laboratory and

astrophysical settings are described. Finally, the

possible existence of an intermediate deconfined massive

quark phase, in which chiral symmetry remains spontan­

eously broken, is discussed.

1. Introduction

Ultra-relativistic heavy ion collisions present the enticing

possibility of allowing us to study extended matter in the laboratory

under extremes of energy density reachable otherwise only in the hot

early universe, or in certain astrophysical situations of strong

gravitational collapse. In particular, such collisions can possibly

create regions of matter so energetic that the normal forces that

confine quarks and gluons into individual hadrons are
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overcome, and the matter in the interaction region is in the form of

an extended quark-gluon plasma. In this talk I would like to give an

overview of the possible states and properties of deconfined quark

matter that one may hope to produce in heavy ion collisions. [The

confinement of this talk itself to the present volume limits the de­

tail with which many of the topics here are discussed, and the reader

is referred to earlier reviews l - 3) for more leisurely treatments.] In

order to understand the deconfined phases, let us set the stage with a

brief review of the several states of the vacuum in quantum

chromodynamics (qcd).

2. States of the Vacuum

On the short distance scales within hadrons, aSYmptotic freedom

implies that the effects of qcd are small and can be treated pertur­

batively; on the other hand, on the large distance scales outside

hadrons, interactions are very strong and drastically affect the pro­

perties of the vacuum. In the absence of a complete solution of qcd,

one can describe confinement and possible deconfinement of quarks to a

first approximation in terms of a picture of the vacuum having two

possible phases. The first, the normal vacuum outside hadrons, is

that in the absence of physical quarks and color fields. Quarks and

gluons modify the vacuum in their neighborhood, transforming it into a

second, higher energy state, the perturbative vacuum, the form of the

vacuum inside hadrons. The crucial difference between these two

states is that the normal vacuum excludes physical quark and gluon

fields, while they can propagate freely throughout the perturbative

vacuum. In terms of quark masses, one would say that in the normal

vacuum the mass of an isolated quark is infinite (provided confinement

is exact), while in the perturbative vacuum the quarks have the

current mass values, ~ 10 MeV for u and d quarks (in order for the

chiral symmetry of strong interactions to be so nearly exact) and -300

MeV for the strange quark. [By ~ontrast, the constituent or effective

masses of light quarks in hadrons are -300 MeV.]

The picture of the vacuum having two states is the basis of the

MIT and related bag models of hadrons. The higher energy density B of

the perturbative vacuum, compared with the normal vacuum, is essenti­

ally the "bag constant" of these models (although its value may
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differ from the phenomenological value, B~56 MeV/fm3, for example,

deduced from fitting hadron masses in the MIT model). In a bag model,

the quarks composing a hadron are assumed to transform a finite region

of space to which the quarks are confined, the bag, from normal to

perturbative vacuum. The energy density B then acts as an effctive

pressure of the normal vacuum on the bag.

A very appealing characterization of the confining property of the

normal vacuum, the exclusion of quark and gluon fields, is in terms of

the color dielectric constant £ of the two vacuum states. 4 ,5) The

dielectric constant is defined, as in Maxwell, by the relation

(1)

Fig. 1

between the color D field, the field produced by the source charges,

and the color E field, the total color field including that produced

by induced charges. Then one can characterize the perturbative vacuum

by £ = 1, so g = ~, and the normal vacuum by £ = O•. The vanishing of

the dielectric constant produces confinement of color D fields, since
2the total energy density of a physical field « ~.~ = D 1£ can be

finite only if D = 0 in the normal vacuum.

As emphasized by Lee,5) the vanishing of £ in the normal vacuum

leads to confinement of quarks, as

well as color fields. One may see

this by computing the electrostatic

self-energy of a single charge of

strength g, assuming that in the

normal vacuum E < 1, that the charge

converts its immediate neighborhood

(a sphere of radius R; see Fig. 1)

to normal vacuum with £ = 1, and

that it costs energy B per unit vol-

ume to have E = 1. Suppressing-the

SU(3) color algebra we have

(2)

since the normal component of D is continuous across the boundary at
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R. Then the energy of the configuration is given by

3
E = 4nR B + ! J~ d3r D-E

3 2 - -a
3 2-1

= 4nR B + L [E -1 + 1. ] (3)
3 8n R a'

where a is a small cutoff_ If E > 1, the energy is minimized by

having R be as small as possible, while if E < 1 the energy has a mi­

nimum at a finite R « (E-1_l)1/4; hence at the minimum E « (E-1_l)3/4,

which diverges as E + O. In other words, the total energy, or mass,

of a single charge becomes infinite as E + 0, so that a single charge

cannot exist in isolation but rather must be confined by forming

charge neutral combinations with other charges. The infinite energy

arises because in order to satisfy Gauss' law, the field of a single

charge must have a long ranged component. In contrast, a neutral pair

of charges has only a short ranged field, and a finite energy as E +

O. Thus, vanishing of E in the normal vacuum provides a simple

mechanism for both field and quark confinement •.

The dielectric behavior of the normal vacuum is analogous to the

perfect diamagnetism of a superconductor, which when placed in a mag-

netic field expels the magnetic flux from its interior the Meissner

effect. This property can be described by a vanishing of the perme­

ability ~, defined by ~ = ~M, inside the superconductor. Outside a

superconducting cylinder placed in a diamagnetic field with the cylin­

der axis parallel to the field, one has ~ = ~, while ~ = 0 (although

g is non-vanishing inside the superconductor, since the tangential

component of ~, and hence g in this geometry, is continuous across the

surface). In qcd the D field is expelled from the normal vacuum -- an

"electric" Meissner effect. If in a (type I) superconductor the ex­

ternal field exceeds a critical value Hc the material becomes normal;

analogously one expects a critical field Dc in qcd in the sense that

at an interface between normal and perturbative vacuum the mean D

field cannot exceed Dc, since then the stress D2/2 of the field would

exceed the inward pressure of the normal on the perturbative vacuum,

turning the normal vacuum into the perturbative state.

While the confining properties of the states of the vacuum can be

described in terms of their color dielectric properties arising from

the underlying structure of the color fields in the vacuum, measure-
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ment of the dielectric proper~ies by the usual procedure of determi­

ning the force between test charges is, however, elusive, since if one

puts in a pair of test quarks in the confining vacuum, at large sepa­

ration they will, because of the possibility of qq pair creation, have

their charges perfectly screened and will experience no long distance

force. One may ask whether there is a more fundamental order para­

meter distinguishing the two phases. For example in a (BeS) super­

conductor, rather than the local magnetic permeability, ~, the

fundamental order parameter is the off-diagonal amplitude <W+(!)W~(!»

for removing a pair of electrons, one with spin up and one with spin

down, from the ground state, and returning to the ground state; in the

normal state this order parameter vanishes. [The permeability ~, and

hence a magnetic field, falls to zero only over a distance of a

penetration depth in from the surface of the superconductor, although

within the penetration depth the material is superconducting.]

A possibly more fundamental characterization of the two states of

the vacuum is in terms of the way they realize the ~U(2)xSU(2) chiral

symmetry corresponding to conservation of the vector current and

(partial) conservation of the axial current. In the normal vacuum

chiral symmetry is, as we know, spontaneously broken, and realized in

the Goldstone mode; the corresponding Goldstone boson is the pion,
2 2whose small mass (m 1m = 1/50, where m is the nucleon mass) is a
n n n

mea~ure of the accuracy of the chiral symmetry of strong interac-

tions. This realization of chiral symmetry is analogous to the way

rotational symmetry is realized in a ferromagnet, where the magne­

tization vector picks out a particular direction in space. On the

other hand, asymptotic freedom strongly suggests that chiral symmetry

is fully restored, i.e., realized in the Wigner mode, in the pertur­

bative vacuum; the light quarks, u and d, are essentially massless in

this state. The two phases would then be characterized by an order

parameter ~ <qq) (where q is the light quark field operator), which

vanishes in the perturbative va~uum, but is non-zero in the normal

vacuum. There is certain evidence, which we will discuss later, that

in the transition, with increasing temperature or baryon density, from

the normal to perturbative vacuum, the deconfinement transition some­

what precedes the chiral transition; generally however, the connection

between the two characterizations of the states of the vacuum in terms
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of their dielectric and chiral properties remains an important and

difficult problem. [For further discussion of chiral symmetry and bag

models of hadrons see Ref. 6.]

3. Deconfinement at High Temperature or Baryon Density

When the density of quarks plus anti-quarks in a system is low,

the quarks are confined in individual hadrons, surrounded by normal

vacuum. However, as the density is raised, either by increasing the

baryon density, or producing hadrons thermally with increasing tem­

perature, the hadrons begin to overlap and the matter is expected

eventually to undergo a transition to a state -- quark matter, or

quark-gluon plasma -- in which the quarks and gluons are no longer

locally confined, but are free to roam over the entire system. If one

imagines hadrons as surrounded by little islands of perturbative

vacuum, as in bag models, then at sufficiently high density, the in­

between regions of normal vacuum are squeezed out, and the space

becomes filled with perturbative vacuum.

To a first approximation we expect the phase diagram of matter in

the baryon density nb' temperature T, plane to have the structure

shown in Fig. 2. At low nb and T matter is composed of confined

hadrons, but as the energy density is raised, with increasing T or nb'

or both, matter becomes deconfined. For example, if one could drop a

proton into the hot vacuum with T > Tdec ' the nb = 0 deconfinement

temperature, it would evaporate into three quarks. The temperature

Tdec has been estimated, by a variety of ways discussed below, to be

200 MeV, and the critical density ndec for deconfinement at T = 0 of

the order of a few to more than 10 times nuclear matter density (no

0.16 fm- 3).2) However the order of the deconfinement transition is

uncertain. If the chiral occurs after the deconfinement transition,

as Monte Carlo calculations indicate,7,8) then the lack of a satis­

factory order parameter to describe confinement suggests that the

deconfinement transition may smoothed out or perhaps be first order.

The deconfined phase of matter can be explored in a variety of

ways, as indicated on the phase diagram. In addition to man-made

production of quark matter in heavy ion collisions, nature provides

several laboratories in which the presence of quark matter could be

detected, including, cosmic rays, supernovae, neutron stars, and the
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Fig. 2. Phase diagram of matter in the temperature,. baryon density
plane, with indication of the regimes that might be reached in
different physical situations.

early universe. Among cosmic ray phenomena that could involve large

droplets of quark matter9 ) are the spectacular Centauro events. IO ) In

supernovae, the explosions of more massive stars at the end of their

evolution, the central region is highly compressed on millisecond time

scales, through gravitational collapse and forms, it is believed, a

neutron star. [For an overview see Ref. 11.] The central matter,

which is in thermal equilibrium, follows a trajectory as shown, with

the temperature remaining less than NMeV, rather cold on a scale of

nuclear collisions, and the baryon density rising to at least several

times no' possibly crossing the threshold for deconfinement. Super­

novae can, in principle at least, provide information on the nature of

the dense matter reached in the collapse, as reflected through the

total energy released, for example.

Neutron stars, which are relatively cold (T ~ 1 MeV), may have

central baryon densities above the deconfinement density. The exis­

tence of quark matter cores in neutron stars could be detected from

observations of their cooling (reviewed in Ref. 1). In their first

106 years or so neutron stars cool primarily by neutrino emission
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processes from their interiors. The essential point is that, because

of phase space considerations, degenerate massless quark matter cools

much more rapidly via the neutrino URCA process,12)

-d+u+e +v
e e + u + d + ve ' (4)

than normal hadronic matter does via the analogous weak nucleonic

processes

n + p + e -+ v
e

e +p+n+v
e

(5)

Thus neutron stars containing massless quark matter (or pion condensed

matter) would, at a given age, be cooler than if they contained only

normal nuclear matter. While the recent Einstein Observatory X-ray

satellite measurements, which generally provide only upper bounds on

neutron star surface luminosities, do indicate rather rapid cooling of

the neutron stars studied, present obervations are consistent with

cooling by ordinary matter. 13 ,14) However, future observations, with

the Exosat or Rontgen satellites for example, could, by sharpening

these bounds, provide evidence of quark matter in neutron star

interiors.

The early universe, as it evolved in the first few milliseconds

after the big bang, followed a trajectory as shown, with the mean

baryon density much less than the density of thermally excited

quanta. As we know from present observations, nb - lO-9_10-10ny ,

where ny is the (now 3°K) black-body photon density. The mass

density, P, in the early universe is given by

(6)

where g(T) is the effective number of helicity states of the

elementary particles present. [For T < 1 GeV, this number is 27
± ± 7 -

from y, e , ~ and gravitons, plus 4 (Nv+6N
f
), where Nv is the number

of neutrino species and Nf the number of quark flavors.] Thus from

solving the equations of motion for the expansion of the universe one

finds that the temperature as a function of time is
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(7)

Fig. 3. Schematic picture of
an ultra-relativistic central
collision in the center-of­
mass frame of two heavy ions,
showing the two Lorentz con­
tracted nuclear fragmentation
regions, the central rapidity
region, and the transverse
expansion.

where T is measured in MeV. and t in seconds. Prior to the first few

microseconds. the temperature exceeded the vacuum deconfinement

temperature. and hadronic matter was in the form of a quark-gluon

plasma. Whether there exist present remnants of this early phase or

of the transition to hadrons. such as fluctuations created in a first

order phase transition. 13 ) remains an outstanding cosmological

problem.

Central heavy ion collisions at Bevalac energies (~ 1 GeV/A)

produce compressed excited matter. which to the extent that the

internal excitation can be described by a temperature. would follow a

trajectory to the upper right of the cold normal nuclear matter point

on the phase diagram. It is unlikely. however. that the energy

density reached in such relatively low energy collisions is sufficient

to cause deconfinement of the hadrons. On the other hand. central

collisions at ultra-relativistic energies. ~25-50 GeV/A. offer the

possibility of exploring two regimes of the phase diagram. with

production of quark-gluon matter in both. At these energies nuclei

are reasonably transparent to

each other so that. as shown in

Fig. 3, a central collision is

expected to result in two highly

excited fragmentation regions

containing the net baryon number

of the system, one corresponding

to the target and the other to

the projectile nucleus; in the

center-of-mass frame these

regions appear as very Lorentz

contracted pancakes. Similar to

nucleon-nucleon collisions, these

are joined together by a central

region, with small net baryon

number but substantial energy

density. As Anishetty, Koehler
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and McLerran16 ) estimate, in the collision of two uranium nuclei at

-30-50 GeV per nucleon center-of-mass energy, the excitation energy in

the nuclear fragments can easily reach -3.5 GeV per nucleon, corres­

ponding to an energy density E - 2 GeV/fm3• Such a large energy

density appears sufficient to produce a quark-gluon plasma, in local

thermodynamic equilibrium. The region of the phase diagram reached in

the fragmentation regions is indicated in Fig. 2.

The central rapidity region in such collisions can, as Bjorken17 )

has recently estimated, also be excited to similar energy densities.

His argument, a simple extrapolation from p-p collisions, is the fol­

lowing: In p-p collisions in this energy range the density of charged

pions produced in the central rapidity region, per unit rapidity y, is

a factor 3/2 times the observed value - 3 for charged pions. The

energy density per, unit of rapidity, assuming a final pion energy

- 0.4 GeV is thus d€/dy - 1.8 GeV, and increased by a factor rough-

ly - A in A-A collisions. 18 ) Since near the central slice (z = 0,

where the collision axis is along z), the veloc~ty is v ~ zit, where t

is the time, the net energy density in a central A-A collision is

(8)
0.SA1/ 3 GeV

t fm3
E

A(d€/dy)pp dy

2 dz
lTR

A

with t measured in fm. Thus at a time of the order of a few fermi

after the formation of the central region, the energy density in a U-U

collision is also of the order of several GeV/fm3 , again adequate, by

this time, to produce a quark-gluon plasma in thermal equilibrium.

Since the baryon density is negligibly small, the matter in the cen­

tral region follows a trajectory very similar to that of the early

universe; in other words, ultra-relativistic central heavy ion col­

lisions provide the possibility of studying in the laboratory the

strong interaction physics that took place microseconds after the big

bang.

4. Quark-Gluon Matter

From asymptotic freedom considerations, one expects quark-gluon

matter to become less and less strongly interacting, logarithmically,

as either the temperature or baryon density is increased, with the qcd

"running coupling constant" approaching the asymptotic form



a (q) = 6n 1
s 33-2N

f
tn(q/A) •

(9)

Here q is the effective momentum scale in the matter, essentially the

temperature, for very hot matter, or the Fermi momentum, for very

degenerate matter; A, the scale parameter of qcd lies experimentally

in a range around 0.2 GeV, and Nf is the number of flavors of quarks

with (current) mass small compared with q.

For conditions expected in heavy ion collisions, Nf would range

from 2 for u and d quarks, to 3 for u, d and s. The total number of

internal quark degrees of freedom is then 12Nf , where 12 is 2 (spin) x

3 (color) x 2 (quarks and anti-quarks); in addition the gluons each

have 2 spin degrees of freedom, so that some 40 to 52 internal degrees

of freedom would be excited (compared with the 4 in low energy nuclear

physics). In a non-interacting quark-gluon plasma at temperature T,

the energy density of the quarks is

2
E = 7..:!!- T4 N

q 20 f
(10)

assuming equal numbers of quarks and anti-quarks, while the energy

density of the gluons has the Stefan-Boltzmann value,

2
E =~T4
g 15

(11)

which is ...., 40% of the total energy. The total energy is the sum of

(10), (11), and B, the difference in energy density of the

perturbative and normal vacuum:

8n
2

( 21 ) 4
E =IS 1 + 32 Nf T + B •

For Nf = 2, the temperature is given by

T = 158.5(E-B)1!4 MeV

(12)

(13)

where E and B are in GeV!fm3; for Nf = 3 the coefficient is increased

to 149 MeV. This result is useful a~ a first estimate of the tempera­

tures expected in heavy ion collisions, in terms of the energy densi­

ty; it implies, in particular, that because of the large number of
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degrees of freedom of a quark-g1uon plasma, the system remains rela­

tively cool even at large excitation energy densities.

The number of quarks thermally excited at given energy density in

hot quark matter in equilibrium is

9 l; ( 3) 3 ~ ( fm-3 )ni ~ 2 T ~ 0.14 1100
11'

(14)

where i runs over all flavors whose mass is negligible compared with

T, and in the latter form T is measured in units of 100 MeV; similarly

the gluon density is

With (12) for Nf ~ 3, the total density of quanta excited is

(15)

n ~ (16)

where E-B is in GeV/fm3• The large density of quanta (16) implies

that they have relatively short mean free paths

A ~ -l. ~ ~ (E_B)-3/4 (fm),
no 0mb

(17)

where 0mb is a mean scattering cross section in mb; and indicates that

at values of E of a few GeV/fm3 , mean free paths will be small compar­

ed with the interaction volume, ~A1/3 fm in the transverse direction,

and hence that one can use hydrodynamics to describe the initial phase

of the expansion after a collision.

The total entropy density, s ~ (4/3)(E-B)/T, of matter in thermal

equilibrium, with Nf ~ 3, is

s ~ (18)

where E-B is in GeV/fm3• Taking E-B ~ 3 GeV/fm3 we see that this

entropy corresponds to one binary choi~e per 0.03 fm3; the clarifi­

cation of the detailed mechanism by which such entropy would be

produced in the early stages of a heavy ion collision is an important

question.
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It is interesting to compa.%'e the above numbers with those for cold

non-interacting quark matter at finite baryon density. There one has

6Nf Fermi seas of quarks (2 for spin, times 3 for color), with a total

energy density, for Nf = 2, neglecting the quark masses,

(19)

For comparison ordinary symmetric nuclear matter has an energy density

Eo = 0.15 GeV/fm3 • To reach energy densities of several GeV/fm3 in

cold matter would require compressing it to nb ~ 10 no.

Let us turn to describe the equation of state of quark matter.

The general outline of the equation of state for zero baryon number is

determined by the fact that at high temperature the pressure P = Ts-E

of the quark-gluon plasma approaches the aSYmptotic value

1P + - (E-4B)qg 3
8n

2
( 21 ) 4

= 45 1 + 32 Nf T - B , (20)

while at very low temperatures, in the confined phase, consisting

essentially of pions, P is of the form (neglecting n-n interactions)

(21)

where b increases monotonically from 0 at T = 0, to unity for T »
mn • At a given T, the phase with the higher pressure is the favorable

one, and so the deconfinement phase transition is signaled by the

crossing of the two pressure curves; P/T4 rises continuously from the

value given by (21) to that given by (20). [However, since

s = ap/aT, the equation of stateP(T) has a discontinuous slope at the

deconfinement transition if it is first order.]

So far in this section qcd interaction effects have been neglec­

ted; these produce deviations of the equation of state from its high

temperature limiting form (20), which can be calculated by perturba­

tive qcd. Quite generally one can show from renormalization group

arguments 19 ) that the pressure has the form

P(T) (22)
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where as(T) is the qcd running coupling constant at temperature scale

T, whose asymptotic form is given by (9). The function f can then be

computed by a perturbation expansion in as (reviewed in Ref. 2).

Unfortunately this approach is of limited validity since non­

perturbative effects appear to play a large role. A hint of trouble

can be seen from the first order result for the entropy density (Nf =3)

19n2 54 4
s = -9-- (1- 19n as(T) + •.. ) T (23)

which turns negative for as > 1.1.

The presently most promising approach to calculating the free

energy of quark-g1uon plasmas (and the properties of qcd more

generally) is by means of Monte-Carlo studies of qcd on a lattice.

Calculations by McLerran and Svetitsky,20) Kuti et a1.,21) and Engels

~~.,22) for SU(2) lattice gauge theory at finite temperature,

without quarks, real or virtual, indicate a deconfinement transition

at a critical temperature Tdec - 160-200 MeV; similar calculations in

SU(3) by Kajantie ~ a1.,23) and Montvay and Pletarinen24 ) yield Tdec
also on the order of 200 MeV. In lattice gauge calculations without

fermions the transition is characterized by the interaction energy

between two test quarks changing from linear at large separation in

the confining phase below Tdec ' to Coulomb-like above Tdec in the

deconfined phases. For SU(2) the transition is expected to be similar

to the second order transition of the simple Ising model. However

once quarks are included, one no longer can have a linear force law

due to the possibility of creating qq pairs in the vacuum, "breaking

the string," and the sharp transition should be either washed out as

in an Ising model in non-zero magnetic field, or become first order.

Notable has been the work of the Bielefeld group8,22) in calcu­

lating the finite temperature equation of state of a quark-g1uon

plasma, at zero baryon density. Figure 4 shows their results for the

ratio of the energy density of the SU(3) system, with Nf = 2, to the

Stefan-Boltzmann value [E-B in Eq. (12)]; we see clearly how the

calculated values approach this t4 limit. The temperatures in this

figure are measured in units of AL, the lattice scale parameter, which

is - 2 MeV for SU(3), and - 4 MeV for SU(2). As they also show, at

the low temperature end, below Tc (not shown in Fig. 4), the thermo-
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4
the energy density of an SU(3) quark-gluon plasma

(Nf = 2) to the T Stefan-Boltzmann limit, as a function of
temperature, from the Monte Carlo calculations of Engels ~ al. 8 )

dynamics of the pure Yang-Mills SU(2) system (no fermions) is similar

to that of a gas of "glueballs" of mass mg f"'J 3-4 Tc '. with an exponen­

tially increasing density of resonance states. These calculations

demonstrate the potential utility of lattice gauge theory for deriving

a complete equation of state over the entire span from the low temper­

ature hadronic limit to the high temperature asymptotically free

quark-gluon limit.

In addition to Monte Carlo calculations of the deconfinement

temperature, the deconfinement curve (Fig. 2) has been studied by

several other methods, which we briefly survey. [For a more detailed

review see Ref. 2.] As a first estimate of the limits of the region

where it makes sense to describe matter in terms of distinct hadrons,

we note that the density of cold nuclear matter at which the nucleons

( 3 )-1begin to overlap substantially is f"'J 4nrn/3 =~, where r n is the

nucleon radius; for r n between 1 and 0.4 fm., nh is between 1.4 no and

23 no. Similarly the temperature (for nb = 0) at which thermally cre­

ated pions begin to fill space is determined by n (T) f"'J (4nr3/3)-1,
3 2' n n

where n (T) ~ 3~(3)T In (for T » m ) is the density of thermallyn n
created pions; for a nominal pion radius r f"'J 0.6 fm, this temperature

n
is f"'J 2mn• [A sophisticated version of these estimates using a self-

consistent statistical bootstrap spectrum of hadronic excitations is

given in Ref. 25.] Beyond these ranges the basic degrees of freedom

of the system are quark-like rather than hadronic.
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Starting from the quark-gluon phase, one may expect, with Kajantie

and Miettinen,26) a transition when the density of quarks plus anti­

quarks present falls to a value on the order of that in hadrons,

~ 3nh ; neglecting interactions and the baryon chemical potential in

evaluating the density of anti-quarks present, one finds that this

criterion yields a deconfinement curve

(24)

where Nf is the number of quark flavors whose anti-particles are

excited at temperature Tdec(nb)' and the densities are measured in

f -3m • This result at nb = 0 is in qualitative agreement with the

other estimates above. Its disadvantage is that it does not take into

account effects of thermal gluons, which can contain up to nearly half

the energy of the system. A possibly better phenomenological

criterion for the transition is to say that in quark matter at finite

T, confinement takes place when the energy den~ity falls to a certain

critical value Ec • If we neglect interaction effects, Eq. (13) then

relates Tdec(nb = 0) to Ec ' while Eq. (19) implies
-3 3/4 3ndec ~ (0.94 fm )Eo ,where Eo is Ec-B in units of GeV/fm. The

value of Ec can be estimated from the point where the ground state

energies densities, as a function of nb , of nuclear and quark matter

cross; one finds 2) Ec ~ 1.3-1.8 GeV/fm3 • [Such comparison of ground

state energies, or free energies more generally at finite T, itself

provides another way of estimating the deconfinement transition.] The

corresponding Tdec then agrees well with previous estimates. The

general conclusion is that for small nb' deconfinement should set in

at temperatures < 200 MeV, with corresponding energy densities
3 ~

~ 2 GeV/fm , values seemingly attainable in ultra-relativistic heavy

ion collisions.

5. The Chiral Transition

One of the more intriguing results to emerge from recent lattice

gauge theory calculations has been the demonstration by the Illinois

group that as the temperature of the vacuum is raised, the deconfine­

ment transition, at Tdec ' somewhat precedes the transition, at Tch ' in

which chiral symmetry is restored,7) a result which also appeared in
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the calculations of the Bieleteld group.8) Such a possibility was

suggested earlier by pisarski,27) who gave arguments that Tch is at
28)least Tdec ' but not too much greater; and independently by Shuryak,

starting from the observation that the qcd interaction scale parameter

A, and constituent quark masses provide two separate hadronic length

scales, the first related to confinement and the second to chiral

symmetry breaking.

The Illinois calculation is done by imposing a small quark mass

term mqq in the Lagrangian to break chiral symmetry explicitly, and

studying the limit of <qq) as m, the imposed quark mass, goes to

zero. This method is analogous to that used to study spontaneous

I I
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Fig. 5. Chiral order parame­
ter <qq> as a function of the
bare quark mass m, for various
coupling strengths. The
highest curve corresponds to
the lowest temperature. [From
Ref. 7.]

magnetization by applying a weak external field to define a direction

for the magnetization, and taking the limit of vanishing external

field. Internal quark loops are neglected. As we see in Fig. 5 from

Ref. 7, <qq) becomes non-

vanishing in this limit provided

the coupling g2 is sufficiently

large, or equivalently, that the

temperature is sufficiently

small, thus indicating spontan-

eous breaking of chiral symmetry

below a critical Tch ' with the

quarks becoming massive. For

SU(2) lattice gauge theory, the

calculations show that Tch is on

the order of 10-20% higher than

Tdec ' and definitely distinct.

To test the independence of the

deconflnement and chiral trans­

itions, the chiral properties of

quarks in the adjoint represen­

tation of the gauge group were

also studied; on the one hand,

quarks in this representation can

be perfectly screened by gluons,

so they are not confined in pairs

[in SU(2)], while on the other
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Fig. 6. The three phases of strongly interacting matter: confined,
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with restored chiral symmetry.

hand Tch is substantially raised. Generally, the chiral transition

appears to ~epend more strongly on the gauge group than the
\

deconfinement transition.

These calculations indicate that the vacuum, and indeed matter at

finite baryon density, should exhibit three distinct phase~: at low T

and nb' the vacuum is confining, and matter is in the form of hadrons,

including, as the Goldstone bosons of the broken chiral symmetry,

(nearly) massless pions. As before, at very high T or nb' matter is

composed of deconfined massless (for u and d) quarks, and chiral

symmetry is restored. However, there should now be an intermediate

region just beyond the deconfinement curve, yet another state of

matter, consisting of deconfined quark-gluon plasma; with chiral

symmetry is still spontaneously broken. The quarks in this region are

therefore all massive; perhaps surprisingly, the system still has

massless pionic excitations. [One should note that were the situation

reversed, with chiral symmetry restoration preceding deconfinement,



-19-

the intermediate phase would correspond to Lee-Wick abnormal

matter,29) in which one has massless nucleons.] The three phases are

illustrated in the new phase diagram, Fig. 6, a more accurate version,

one hopes, of the old phase diagram, Fig. 2. [As we have discussed

earlier, the deconfinement transition may not be perfectly sharp;

since chiral symmetry is not exact, the chiral transition should also

be slightly washed out.] The actual locations of the two transition

curves cannot be given as yet with any precision; in particular the

possibility is open that one may only reach the intermediate decon­

fined region in heavy ion collisions, and not the fully chirally

symmetric phase.

More generally, there is a present need for reliable predictions

of the properties of the intermediate phase, such as the equation of

state, the variation of quark masses with T and nb , and the order of

the chiral transition. Where the transition is second order, the u

and d quark masses should tend smoothly to zero at the transition. As

a first approach, we have recently studied a model description of this

phase,30) based on the Friedberg-Lee soliton model of hadrons,31,32)

and find, for example, that the transition at high baryon density and

low temperature can be either first or second order, dependent on the

choice of parameters, but always second order at low nb and high T.

A natural question to ask about the massive quark phase, since it

has pionic excitations, is whether it might be pion condensed in

certain regions of T and nb , i.e., have a macroscopic condensed pion

field in its state of lowest free energy. The pion condensation

problem is particularly simple in this phase; the pseudovector nqq

coupling constant, g 12m is equal, by the Goldberger-Treiman rela-nqq q
tion, to gAlfn' where mq is the quark mass, gA is the quark axial

current renormalization, and f is the pion decay constant. Since for
n

point quarks, gA = 1, the nqq coupling constant is just I/fn • Also

the system does not have the complications of coupling to nucleon

resonances, ~, as in the nuclear matter pion condensation problem.

However, as one finds in the analogous nucleon problem without 6's,19)

condensation, at least at T = 0, depends essentially on gA being> 1,

which suggests that the massive quark phase should not undergo pion

condensation.
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A second question is whether this phase in neutron star matter

should exhibit the enhanced cooling, via the reactions (4), expected

for the massless quark phase. For degenerate matter in beta equili­

brium under the reactions (4), with m
u

~ m
d

, one finds readily that

the down quark Fermi momentum exceeds that of the electron plus up

quark. Consequently the decay d + e + u + v cannot conserve momen-
e

tum if it conserves energy (E T), and hence the cooling would pro-v
ceed with the same T dependence and smaller magnitude as the nucleon

reactions (5). In other words, the massive quark phase would not be

readily detectable in neutron stars through its cooling properties.

6. Conclusion

While considerable theoretical work still needs to be done to

understand the properties and parameters of the deconfined phases of

matter, and the transition from hadronic to quark-gluon matter, the

broad outlines of this new phase of matter are already clear. The

prospects for producing quark-gluon plasmas in ultra-relativistic

heavy ion collisions are very promising. Not only would production

and detection of such a basic new state, to be discussed in detail

later in these proceedings, be a remarkable achievement in itself, but

by enabling one to study qcd in extended deconfined matter over large

distance scales it should reveal fundamental aspects of qcd and

confinement unattainable from single hadron physics.
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