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1. INTRODUCTION

l·

'j

This rather long paper is ,& tale of non-relativistic quantum theory sUJIlIIlarizing

research ,that has been, conducted during the last'one and a half years, and the main

results of which have been sketched in two lectures presented at the Cargese summer

school of 1991, as well as in lectures at several other institut~ons. Coworkers in our en­

deavor have been, OJ,' are, Thomas Kerler, Pieralberto Marchetti and Tonyzee. Basic

help and guidance were generously provided by Rudolf Mon. We are deeply grate-'

ful to these colleagues without·whom our enterprise-would ,have suffered-'Prema~ure

shipwreck. We also thank J. Avronand' G. Felder for very helpful discussions.

After some basic ideas underlying our approach had been developed during a stu­

dents seminar on the quantum Hall effect at ETH organized by Rudolf Mod and J.F.,

we became aware of independent, but slightly prior work of X.G. Wen [1,2] that bears

much resemblance with ours [3,4,5]. A 1982 paper of B.I. Halperin [6], supplemented

by more recent results on :current"algebra [7,8,9] and on Chern-Simons ga.uge-theory

[10,11,12], has been instrumental in triggering the work in [2,3]. J.F. should also like

to acknowledge some very stimulating discussions with Paul Wiegmann, in spring of
1989, whose remarks turned out to be much to the point.

Work vaguely or closely related to Wen's and ours has been carried out by several

people and can be found in [13], and refs. indicated therein.

The task assigned to J.F. at the Cargese school was to lecture on low-dimensional

quantum theory with braid statistics and quantum symmetries. This task could

have been fulfilled by lecturing on the beautiful mathematics of braid statistics and

quantum symmetries that involves operator algebra theory, quantum groups and their

,, ""mbtle representation theory; holomorphic vector bundles "over Riemann surfaces,' and,

perhaps most importantly, the theory of tensor categories. However, asphysicists,
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we may have a feeling of loosing ground in this world of mathematics. In any event,

other people essentially took over that task, and it appeared desirable to lecture about'

physical systems with braid statistics and quantum symmetires. Fortunately, such.sys-

>. tems exist. in nature! .A·· two-dimensional electron gas in a str~ng transverse'magnetic

field can exhibitquasi-particle.excitationsofjmctional charge and fractional (abelian

braid) statistics, the famous Laughlin ·vortices. One can imagine two-dimensional sys­

. tems of condensed 'matter which will actually ·exhibit quasi-particle excitations' with

.. non-abelian. braid statistics and quantum symmetries; ~ e.g. [14]. But it isJikely

that such systems have not been realized in the laboratory, yet. [Candidate systems

are 2D systems with broken reflection - and time reversal invariance made of particles
.of spin > 1.]

The phenomena of braid statistics and quantum synunetries in a two-dimensional

quantum system appear to he intimately related to the property of local gauge in­

variance of the system. One of the key ideas underlying the work described in this

paper ~.thatone.can acquire a surprisingly rich amount of information on a system

of non-relativistic matter by studying how it reacts when coupled to external gauge

:-fields. In'Sect. 2, we -therefore study how systems of non-relativistic quantum 'me­

chanical particles with spin interact with external electromagnetic fields, with "tidal

gauge fields" providing a quantum-mechanical description of Coriolis forces and spin

precession in moving coordinates, ,and to a variable metric on space. Our.formalism

can be applied to systems in one, two; and three space dimensions. It reveals a basic.

U(I)em x SU(2)spin-gauge-invariance of non-relativistic quantum theory which gives

rise to powedul Ward identities.

In Sect. 3, we review and "explain" a number of classic effects in non-relativistic

quantum theory from the point of view of its U(I)em x SU(2)spin gauge invar~ance,

(supplemented by certain assumptions concerning the structure of states that mini­

mize the energy - , or free energy density). Included are the Aharonov-Bohm effect

and its SU(2)spin-variant, the Aharonov-Casher effect, flux quantization in supercon­

ductors and vorticity quantization in superfluids, the London equation for the super­

current density in a super.conductor·.and the. related Anderson-Higgs mechanism, and

different variants of the Einstein-de Haas (-Barnett) effect.

It turns out that the celebrated quantum Hall effect (and the related quantum

Hall effect for spin currents [5]) encountered in two-dimensional ele~tr~n gases (real­

ized, for example, in heterojunctures) subj~ct to a strong, transverse, external mag­

netic field is yet another phenomenon reflecting the U(l) x SU(2)-gauge-invariance
- .... ;-~·<of ,non-relativistic quantum theory.·.ln .Sect. ·4,.~we ,therefore study two-dimensional,

incompressible electron fluids in external electromagnetic fields. The notion of incom­

pressibility that we are using is the following: A system at zero temperature (but

positive density) is incompressible if the energy of all physical states descri~ing ex­

tended (as oppo~ed to localized) excitations of the groundstate is strictly above the



ground state energy. Incompressible systems arefree ofdissipation, and therefore the

longitudinal resistance vanishes. ,'Experimentally, this is found to be the'case when

,the Hall conductiVity is on a plateau (15).

By using U(I)xSU(2)-Ward identities we show·that two-dimensiqnal, incompress­

i.ble quantum fluidshaveunive-rsal properties. For example, their effective· action as .a
'functional of small perturbations in the external electromagnetic field has a univ~sal

form which we determine explici~ly.· The·-notionof. universality that 'emerges here

is very much t'he same as the one encountered'in the theory of criticahphenomena

asSociated with continuous phase transitions.

Our results 'on the effective action, summarized in Sect. 4, imply the general

equations describing the Hall effects for the electric charge - and current density
, "

and for the spin - and spin-current density in systems with vanishing longitudinal

resistances. Moreover, they yield a proof of the Goldstone theorem for non-abelian

symmetries.

In Sect.4,we also use our expression for the effective action to find the spectrum

of charge-, flux- and spin-carrying excitations of an incompressible quantum fluid, and

:we discuss·thepossible values of their electric charge and spin; and,their statistics.

Our a.nalysis provides-first insights into why the Hall conductivity and various other

quantities characterizing the system, e.g., its magnetic susceptibility, are quantized.

But our reasoning is somewhat heuristic, mathematically.

In order to bring more rigour into that analysis, we derive and discuss, in Sect. 5,

algebras of chiral currents circulating in an incompressible quantum fluid· along do-

.mainboundaries across which the value of the Hall {;()nductivity jumps, inparti.cular

along its edges. The electric edge currents form chiral U(1)-current algebras, the edge

spin-currents form SU(2)-Kac-Moody algebras. These results can be derived from

U(I) x SU(2)-gauge-invariance by using well known results on the (1 +1)-dimensional

Chiral gauge anomalies and their relation to (2 +1)-dimensional Chern-Simons theory

[16]. [An alternative derivation of the existence of algebras of chiral edge currents in

incompressible Hall fluids from quantized Chern-Simons theory, based on results in

[10,11,12J, is given in [3).] \

The well known representation theory of chiral current algebras, combined with

some physically natural requirements, then leads us to find discrete sets of possible

values of the Hall conductivity, (certain rationalmtiltiples of sr), of t.he fractional

charges of excitations, and of other interesting quantities, which, are compatible with

. the incompressibility of the Hall fluid. Our results can be viewed as "'gap-labelling

- ,-' - ., -. ·'·-theorems": The energy spectrum of ·artw<r.dimensionahelectron fluid in an external

magnetic field can have a. positive gap above the groundstate energy (reflecting its

incompressibility) only if its Hall conduc~ivity belongs to a certain discrete set.

We also find the statistics of fracti~nally charged excit~tions (Laughlin vortices)

from the representation theory of the algebras of chiral edge currents~
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A complete discussi~ of edge spin-currents and currents associated with internal

symmetries of the system would take too much space and is therefore deferred to

another paper (17]. However, a few basic ideas are provided in Sect. 5.

Most of this pa.perwas written during a two-weeks')stay of J.F. at I.H.E.S, Bures­

sur-Yvette. J.F. thanks the director of tH.t.S,. M. Berger, his colleages and the staff

at the Institut for their very friendlyhOlpit&llty during a period that was quite hectic
for him. i

2. NON-RELATIVISTIC QUANTUM MECHANICS OF SPINNING
PARTICLES COUPLED TO EXTERNAL METRICS AND ELECTRO­
MAGNETIC FIELDS.

In this section we recall the formulation of non-relativistic quantum mechanics in

general, including moving, coordinates on a Riemannian space. We cons~der systems

of spinning· particles coupled to the space metric and to external electromagnetic

fields. [For mathematical background see, e.g. [18].] Since we are'interested in time-

....' '.Klependent· many-particle;.,system8, it .willbeconvenienLto use. a second...quantized

Lagrangian formalism (19].

Physical space is atwo-,;or. three-dimensional manifold, M, with possibly time­

dependent metric,: space-time is given by N := R x ·M. The system is confined tc!
the interior ofa space-time cyclinder A eN. The intersection of A with a fixed-time

slice is denoted by Of where t is time. In local coordinates, points in M are denoted

by x,y;"".points in N by x = 'rt,x),y = (t,y),··~. The Riemannian metdcon

M is denoted by gij(t,X)i space-time Ncarries the metric '7$Av(x), Wher~'706(x) =1,

'7o;(x) = '7iO(x) =0, '7ij(X) = -gij(t, x). In the tangent space at a point x E M we also

have the flat, Cartesian metric, 6AS ' [Similarly, in the tangent space at a space-time

point x E N we have the usual Lorentz metric '7~p.]

If the dimension of M is two we imagine that M is a surface in a three-dimensional

Riemannian manifold L with metric also denoted by gii, and the metric on Mis the

.induced metric. In physical applications L will usually be three-dimensionaLEu<:lidean

space E3, and M will be some surface in E3.

So far, time is merely a, parameter, and we tempor~rily omit it from our nota­

tions. In the cotangent bundle to L we choose local sections of orthonormal frames

(eA(x))~=l' The compon~ntsof eA(x) in the basis (dxi )1=1 of T~(L) are denoted by
eA,(x) and are called "dreibein (fields)". If dimM = 2 we choose (eA(x))~=l s~ch

.. -that, for x E MeL, e3(x) -is orthogonal ,to,T~(M) -in the metric of T;(L). The

metric on L can be expressed in terms of the dreibein as follows:

(2.1)

If dim M = 2 we ch~ose local coordinates on L in a neighborhood of M such that the



metric on M at a point x is given by

2

g,;(x) ='E 6A8eA.(x)eBj(x) , i,j =1,2,
A,B=t

Le., the coordinate Z3, is transversal to M.

The inverse of the dreibein eA. is given by

EAi(X) = DABg'i(x)eB;(x) ,

where (g'i) is the inverse of (g,;). Clearly

(2.2) ,

(2.3)

(2.4)

The dreibein eAi is the matrix which transforms the coordinate basis (dx') of T;(L)
t~ an orthonormal basis, (eA (x)), 'of T;. (L),

(2.5)

SimilarlJj, EA' transforms the basis (p) of Tx(L) to an orthonormal baSis, (EA(x»,
ot Tx(L), '

. a
£A(X) = EA'(x)-a. . (2.6).

x'
.On every cotangent space T;'(L), x E L, we have a three-dimensional (spin-I)

representation, (R(x) e 80(3» of the, rotation group, acting on the dreibein eA. as
follows

(2.7) .

We require that parallel transport on the'given by the Levi-Civita connection

,r i
j " so that the torsion, T, vanishes. Then we may define Cartan's spin connection

,\AB th~ough Cartan's first structure equation'

(2.8)

These equations enable us to express ",A B in terms of the dreibeins eA" their deriva­

tives, and their inverses EA';(see [18]).
The curvature 2-form "RAB of L is defined by Cartan's second structure equation

"RAB = d).AB + ).AC 1\ ).0B • (2.9)

It is easy to deduce from (2.8), and (2.9) how ,\ and R transform under the "gauge­

transformations" (2.7) of the dreibein:

R,\(X) _ R(x)'\(x)RT (x) +R(x)dRT(x),

R'R(x) _ R(x)"R(x)RT(x). (2.10)

We now assume'thatthe 'manifold L admit a spin structure. Then We may intro­

duce spinor bundles over L. Let s = 0,1/2,1,'· . denote the spin, i.e., 28 + 1,is the
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'<iimension of an irreducible representation of SU(2) =S0(3) with spin s; The fibre of

the spin-s spinor bundle, E(') , over L is isomorphic to the (28+1)-dimensional Hilbert

space, V·), carryi~g thespin-s-representation of SU(2). Sections of the spin-s spinor

bundle are denoted by t/7(·)(x)..From nowon, we choose the gauge traflsformatic:>ns

(R(x» to be SU(2)-valued. The action of these gauge transformations on thecot&!l­

gent bundle is given by their adjo~t (spin-l) representation, usually also denoted by

R(x)1. Under a gauge transformation (R(x.», a section t/7(.) of E(') transforms as

follows:

•

.(2.11)

where U(·) is the spin-s representation of SU(2). The transition functions of the spin­

s spinor bundle are inherited from the transition functions of the cotangent bundle,

T*(L)"by lifting them to the spin-s representation of SU(2). [Since we have assumed

that L have a spinstrlJcture this is possible even if s is.half-integer.]

Physically, what is meant by "spin, up" or "spin down" is now a local notion,

depending on the .point x E Lat which the spin is located and determined by the

frame (eA(x»~=l'

We intend to develop ·non-rela.tivistic.-quantum.mechanics on:Hilbert: spaces of

sections of these spinor bundles. In non-rela.tivistic quantum mechanics, wave func­

tionsare complex-valued. We therefore tensor the fibre space V(·Lreal.when 8 is

integer - by C. The structure group of the. resulting bundle, still denoted by E('), is

then U(1) x 8U(2). The factor U(l) (phase transformations of ..p('}) is connected to

electromagnetism, as recognized by Weyl more than sixty. years ago.

In order to keep our notations simple, it is advantageous to formulate quantum

mechanics by using the.la.ngua.ge 'Of second:quantization. The sections t/7('}(x) of E('} .

are then interpreted as operator-valued distributions acting on Fock space and subject

to equal-time canonical (anti-) commutation relations

where [ , ]+ denotes the anti-commutator and [ " J- the usual commutator, t/7(.)# =
t/7(.) or t/7(')*j t/7(.)~, the creation pperatpr, is the adjoint (on Fock space) of t/7(,), the

annihilation operator, g(x) denotes the determinant Of(gij(X». The usual connection

between spin and statistics is to choose anti-commutators in (2.12), corresponding to

Fermi statistics, when s is half-integer, and commutators, corresponding to Bose

statistics, when oS is an integer.

Our purpose is now to specify some nonrelativistic dynamical laws for the opera-. .

tors t/7(.)# in the Heisenberg pictur~. Let t/7(')#(x) =t/7(,)"(t~x) denote the Heisenberg
.' . .

. IThere is little danger of confusion.



• picture crea.tion- and .annihilation ~pera.tors with initial conditions tjJ(')#(O, x) =
1/1(')#(x). In order to formulate local dynamical laws for ¢(')#(x), we need to be

able/to differentiate these fields in t and x. This necessitates introducing a n~tion of

parallel displacement in· E(·). Parallel displac~ment in E('> is defined with the help

of a U(l)/x SU(2)-connection, (a vector potential with values in R t9 8u(2), where

.8u(2) is the Lie algebra of 80(2».' Once such a connection is fixed, derivatives of

sections 1/1(')# ·are defined as covaritlntderivatives~Setting XO := ct,(x,~) := (XO,x),
the covariant derivative in. the p-direction is given by

D f) . () (.)()'
p. = 8x~ + lap. x +w'" x , (2.13)

where a(x) := Qj(x)dxi is the U(l)-connection (i.e., aj(x) is the jth component of a

real-valued vector potential), and ao(x) is the scalar potential, W(I)(X) := w~')(x)dxi

is the SU(2)-co.nnection, and W~')(x) is the "Zeeman potential" in the spin~s repre­

sentation of $u(2), i.e.,
3

w1')(x) = iE Wp.A(x)L~) , (2.14)
A=l

-where (L~),)i=l 'are .Hermitian'·..',we 'are physicists - generators ofs-u(2) in· the spin-s

, representation,. normalized such that L~/2) = O'A, where ~1, 0'2 and 0'3 are the usual

Pauli matrices. We shall-see that we should identify a with the electromagnetic.vector

potenti~, up to :multiplication. by a constant of nature. What about we,)? Clearly

the spin connection AAB , introduced in (2.8), must enter the definition of w(-). But

we can add to A a on~form, p, transforming under the adjoint representation of the

SU(2)-gauge group. The sum is then still an SU(2)-connection. Hence

where
. 3

A~)(X) = ~ E eABCAp.AB(x)Lg> ,
A,B,C=1

eABC = eABC is the sign of the ,permutation (ABC) of (1 2 3), and where.

3

pp.(a)(x).= i E p~A(x)L~) .'
,A=l

(2.15) _

(2.16)

(2.16/)

i. Under an SU(2)-gauge-transformation' of the cotangent bundle, p~) transforms as

follows:
pp.(a)(x) 1-+ Rp~(a)(x) = U(·)(R(x))p~(·)(x)V(·)(R(xn*·. (2.17)_

The transform~tion law of All (I) can be, inferred from (2.10).
If the, dreibein (eA i) is time-independent AO vanishes, but after a time-dependent

SU(2)-gauge - transformation AO may be different form zero. In general, Po will be

different from zero.
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·,We shall see that, physically, (po, p) describes Zeeman - and spin-orbit couplings

of the magnetic moments ~ed by, the particles t6 the electromagnetic field. Geo-'
metrically, the part (Po, p) of the SU(2)-connection w yields non-trivial torsion.

Having i~troduced a U(1) xSU(2)-connection and defined covariant differentiation

of t/J(')# ,we are now in~ position tofonnulate local dynainicallaws. It.is .convenient to

use the Lagrangian formalism, but we could 'also work in the Hamiltonianfonnalismj

see [3].. Let us consider asyst.em.of non-r~lativisticparticles of fixed .spin .sand, to

simplify our notations, drop tbe superscript '(,). Our ansatz for the action of the

system is (dx =dt dx)

SA(t/J*, t/Jj a, w, 9):= 1vig(t, x)cb:rli.c(t/J* Dot/J)(x)

gk~~X)(-iADk.p)*(x)(-iADIt/J)(X) - U(t/J.,t/J)(x)] (2.18)

where the covariant derivatives are given in (2.13), m is the effective mass of the

particles, and U(t/J*,t/J) is a U(l) x SU(2)-invariant functional of t/J* and t/J, e.g.,

U(t/J*, t/J)(x) = f ~Vg(t,Y)dY: (t/J4(t,X)t/J(t,x) - n)V(x - y)

'. x (t/J~(t,y)t/J(t,y) .... n) :+v(t, x),p*Ct, x)t/J(t, x) . ',(2.19)

, The double oolons'indicateWickordering, Y. is SOme repulsive pairpotential;"n is the

background density ofthe'system, and v(t,x) is a possibly time-dependent on~body

(background) potential.

We recall that A C R x M is a cylindrical region to which the system is confined.

At fixed time t we impose Dirichlet. boundary conditions at the boundary, ant, of the

region -fit to which the system is confined.

The field equations (or Euler-Lagrange equations) for t/J(x) and t/J*(x) follow by

setting the variation of SA with respect to t/J* (x) and t/J(x), respectively, to zero. The

resulting equations are reminiscent of the 'Pauli equations for t/J and t/J*.
In order to interpret these equatiQns physically we start with a simple situation:

We choose space M to be given by E2 (the x - y plane in L = E3) or by E3 j9ij(t, x) =
Oij, for all 'times t and all x E M, A = R x 0, where 0 is sorrie'time-independent

open set in M. The-field:equation for t/J(x) obtained by varying the actionBA"defined
in (2.18) with respect tot/J*(x) then essentially reduces to the Pauli equation found

in standard text books' ~f qualltum med1anics [20], with a minor modification of

order I/m(moc}2 discussed in [5], provided we identify the U(I)-connection a with

the electromagnetic vector potential
e· e

aj(x) = 1i.cAj(x) , and ao(x) = - Ac <I>(x) , (2.20)

where -e is the charge of the pa~ticle, <I> is the electro'static potential, and the coeffi­

cients of the su(2)-valued components p~ are expressed in terms of the .electroma.gnetic

field(E, B) as follows: .

* ,

(2.21 )



where BA(x) is the A..component of the.magnetic 'field B(x) in the basis (e1(x),e2(x),
e3(x», and

P, 3
PkA(X) = --4 E EkACEC(X) , (2.22)

c o='1

with Eo theC-componentofthe:electric-field E. In these equations lJis~the.magnetic

moment of the particles, (up.to.a factor !2)' For electrons ,II. ~ __e_ wherem is
' ''- moe' 0

the electron mass in 'empty· space~. [In standard situations of solid state.physics, the

effective mass m can. be considerably smaller than mo.] The symbol EkAO. is defined
by

(2.23)

where EDAC is the sign of the permutation (DAC) of(l 23). Of course, in the present

case eDk(X) = Dr, but formula (2.23) is valid in general. Formulas (2.20)-(2.22) have

been derived in [51 by comparing the Euler..Lagrange equations corresponding to the

action SA with the usual Pauli equation, including the Zeeman term and spin-orbit
couplings.

It is now straightforward to find the correct physical interpretations of the con­

-nectionSCG:·aild w ·for'·spa.cesM~'which~.are .arbitrary: Riemanniant6pin~ifolds. The

U(l )-connection a is, still.expressed. in terms of the electromagnetic vector potential

A = (-¢>, A) .by formula (2.20). The SU(2)..connection w is given by

, (2.24)

where A~ is the affine spin connection corresponding to the dreibein eA,(x), see (2.8),

and the coefficients of p~ .,are given by ,

(2.25)

(2.26)

where (£A'(X)) is the inverse of the dreibein (eA,(x)) and Bl is the I..component ~f B
in the basis (dxt, dx2, dx3); moreover

- -g,.eDj(x)eDAc£c'(x)E,(X)
4c

_ -g,.ejA'(x)E1(x) ,
4c

where E, is the I-component of E in local coordinates. Note that (2.25) and (2.26) are

consistent with the transformation law (2.l7) of p~ under SU(2)..gauge..transforma-

tions.

We recall that the potential V in (2.19) is a pair potential (e.g. Coulomb, for

..charged particles, or van der ,Waals, for neutraL atoms or molecules), and v is a.

potential created by the background in which the particles are moving; (v might

depend on the scalar curvature of M).
We now suppose that the background of the system is moving, according to some

classical flow <p(t, .). Here ¢>(t,y) is the position in M of a point particle at time t



starting at position y at time O. Then, in the z-coordinates, the one.body potential

v(:r) and the- magnetic and el~tric fields Be( x) and Ec( x),-created by the'background

are time-dependent. This implies tha.t, in the time.independent x-coordinates on M,

the Hamiltonian' of the system is time.dependent which complicates the mathematical

analysis of thevsystem, in".particuiar·the·'analysis of its _thennal equilibrium.,p.roperties.

It is quite clear; physica.lly,that·thermalequilibrium in su~h a system will be: reached

locally in regions moving with·the-~ground, (according to the flow -,p(t,·)). Thus,

we ought to formulate quantum mechanics in ".movingcoordinates", (yl, y2,y3), where

•

x = ~(t,y), i.e., y = <p-1'(t, x) . (2.27)

Time will not be transformed. In the new \coordinates (yl, y2, y3), the one.body

potential v(t,y) and the background fields Bc(t,y) and Ec(t,y) might now be time­

independent. In this case, the Hamiltonia.n for spinless particles ($ = 0) will be

time~independent, and -we can apply the rules of Gibbsian statistical mechanics to
study thermal equilibrium.

Unfortunately, for spinning partides (8 = 1/2,1, ...), the sit.uation is not quite as

·neat;~because, -in-the"y-coordinates, the,dreibeins'e\(y) .:arenow: ,tim-e~dependud;

(2.28)

In order to eliminate as much of this undesirable time.dependence as possible, we­

may try to perform a suitable SU(2)-gauge transformation on the new dreibeins

eAj(Y). What is the optimal choice? The answer is, perhaps, somewhat ambiguous,

in general. But the following choice tends~ to be quite optimal: Let (fi(t,x») -be the
vector (velocity) field generating the flow ,p(t, .), i.e.,

Let

{)
8t 4>(t,y) =f (t, <p(t, y» . (2.29)

fACt, x) := eAj(x)fi(t, x) .

Then the infinitesimal-rotation;of·.an orthonormal frame carried along by~the flow fjJ,
at the point x and at time t, is given by

(2.30)

where {)A = £~(x)p; see (2.6). The vector nCt,x) dual to th~ antisymmetric matrix

(flAB(t,X)) is called the vorticity of the vector field I and is the local angular velocity
of the rotation induced' by if> of a frame at the point x, at time t.

We qefine a rotation matrix R(t, x),AB by setting

R(t,X)AB := T rexp fa' dtl!l(t',X)r B ,
-----------"--------

(2.31 )



r·...

where T denotes -time ordering. [The r.b.s.of (2.31) can be defined, for-example, by .

a convergent Dys~n series if net, x) is uniformly bounded in t.] \\'e now define, .

(2.32) .

glcl(t,y) .-.-
~(t,y) .-.-

,w1·)(t, y) .-.-

where eB
i(Y) is given by (2.28)~ ,We also define the following transformed.quantities:

lJylc fJyl
fJxm 8xngmn(t, ¢(t,y» ,

UC·)(t,y)tP(t,;(t,y» ,

~~{UC')(t,y)w[')(t, .p(t,y»UC·)(t,y)"

+UC')(t,y) C'J~I UC.)r(t, y)},
w~')(t,y) := U<')(t, y) [W~')(t, .p(t,y» + ;;~ w~')(t, .p(t,y»] UC.)(t,y) .

+ UC')(t,Y}~~U(')(t,y)*, (2.33)

where

and, for I = 1,2,3,

Finally, we have

and

( -2.,UCIJ») (t,y):= UC.) (-2.,R(t,X»)!' .
fJx. ax x=q,(t,Y)

(2.34)

ax' .
ao(t,y):= ao(t,qS(t,y» + 8yO a,(t,¢(t,y». (2.35)

Our aim is now to rewrite the action SA introduced in (2.18), (2.19) in the moving

y-coordinates, using the transformations (2.32)-(2.35). By (2.33), (2.34),

Hence

. a a A . A. a A

U(·>(R(t, x» at ,p(t, x) ='8i,p(t"y) - f'(t, y) ayi ,pet, y)

t ~ BC A A (.t) A

-- L.., eA n B(t,y)Lc .,p(t,y) ,
4 A,B,C

(2.36)

(2.37)

where - ji(t,y) is the jth component of the vector field generating ¢-l(t,.) in y­

coordinates, and nAB(t, y) is the vorticity of f iny-coordiqates with respect to the
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dreibein (eA(t,y)).By comparing (2.37) with the last equation in (2.33) and with

(2.34) and (2.35) we see'that

UI')(R(t, xl) U;+ illo(zl + w~')(zl) "'(zl . . (2.38)

= (!.£. + iao(y) +W~')(y») ¢(y) _!p(y) (!. + iaj(Y) + Wj(Y») ,p(y) .
cot C VII' '

We now define the new covariant derivatives

Do := ~'~ +ifio(y) + wo(')(y}

Dj := ~j +iaj(~} ~ i~ ij(y) +.Wj(Y)

where ij =gj,j', and the new one-body potential

(2.39)

v(t,y)
m A. A

:= v(t, ¢(t,y)) - 2" f'(y)f;(y)

Ii 1 0 (r;. A ,)

-i"2.;gOyj ygf' ,(y), (2.40)

as well·as the two-hody potential

V(t, Y - y') := V(¢(t, y) - 4>(t, y'» .

After these prepar<!-tions, one verifies easily that

SA(t/J*,,pja,w,g} ,

= SA(,p*,¢ja,w,i,g)

= kJg(t, y)dy [i1ic(,p*DotP)(y)

, gkl ( t, y) . A A * . A A

- 2m (-'LliDkt/J) (y)(-zliD,tP)(y)

-U(~*,~)(y)] ,

(2.41)

(2.42)

where in the definition off; thepotentials.v and V of (2.40) and (2.41) are used, and

A:= {(t,y) : (t,x=4>(t,Y.))E A}.·To prove (2.42), one expands the r.h.s..of (2.42)

in powers of i, integrates by part, and compares the resulting expression to (2.38), ,

using (2.40), (2.39) and the fact that (U(8),pt(U(·)t/J) = ,p*t/J.
Let us pause to interpret the result (2.42). By (2.39), -ii j enters the action S

as a contribution to the U(1 )-connection. By (2.20), -mjj and ~Aj play analogous
roles, i.e.,

.. e ..
~ mf +-+-A.

c
(2.43)

The vector potential A gives rise to the Lorentz force in the classical limit. The

Lorentz force has··the same form as the Coriolis force if one replaces ~jj by -2mn,
.' 'where nis the local angular velocity which is precisely half the curl ofthe vector field



(2.44)

f .. '.':

.j. Thus,i is the vedor· potential that~givesrise to.the Coriolis force in the claSsical
limit. By (2.37) and (2.38), the new a.ction S contains a. term . . " i

t$* {fi ·~[(O»)t$ ,
· .

where nis the curl of ! This has the form ofthe Zeeman term

- pt$* (g. ~l<O») t$ (2.45)

which, by (2.25), (2.24) and -(2.39),&1so appears inS. Of course, p Ais precisely the
angular :velocity of spin precession in a magnetic' field.

Next, we must analyze the one-body potential vin moving coordina.tes. By (2.40),
v is' complex-valued, unless . .

1 fJ ( r; .0)v9 By; vilf' = 0 , (2.46)

" °

i.e., unless th'e vector field j is divergence-free. A divergence-free vector field generates

a volume-preseroing flow <p, hence

g(t,y} =det(9Id(t,y» = g(t,<p(t,y» . (2.47)

Thus, for volume-preserving (i.e.,- incompressible) flows, and only for·such,'iiows, v
is again real-valued. [This is, because if volume is preserved by.4> then, by (2.47),

the quantum mechanical time-evolution in the moving coordinate system preserves

probabilities with respect to the volume element Ju(t, c/J(t,y))dy, and hence is gen­

erated by. a Hermitian (selfadjoint) Hamiltonian!] But vcontains an additional term,

- ~ j; (y )jj(Y), that was not present in the original one-body potential. What does

it correspond to physically? It .is the potential of the centrifugal lorce, (because

~ a~' (jj(t,y)jj(t,y» is precisely the i-tomponent of the centrifugal force at the point
" " '~ ~. .

y, at time t; note, incidentallr, that ~ I· f is the classical kinetic energy of the particle

in the rest frame which must be subtracted in the y-frame).

In conclusion, we ·find that quantuJ?l mechanics in moving coordinates is ,Hamil­

tonian, with a He 'M1J,itian (but-~p()ssibly still time-dependent) Hamiltonian operator,

iff the flow <p definingthe moving coordinate system is volume-preseMJing, Qr incom­

pressible.HeJ;lceforth this property is usually required. It is worthwhile recalling that

in two space dimensions" incompressible flows are automatically symplectic (Hamilto­

nian) flows, because the vector· fields generating them are divergence-free and hence

are dual to the gradient of some, (scalar) Hamiltonian function.

Let us consider, as an example, a· system 'ofparticles of charge -e and magnetic

moment p. = ..... m:c' with mo = m, (e.g., electrons, neglecting their anomalous mag­

netic moment). For s1.lch a system, we can eliminate, to order max(B2, IBjBI) the

effect of an external magnetic field B by choosing moving coordinates -with vortic­

ity field 20 = -p.B and velocity field f = -p.A = ~, where the electromagnetic
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. 'vector potential A is chosen.. in the .CouJombgauge,·div A=0, in order for f to be

divergence-free, up to a modification of the one-body potential v by the potential

_'; f. j of the centrifugal force and additional spill-orbit Couplings, proportional to

derivatives of B (if Bis not homogeneOus). This theorem follows directly from (2.43)

_ (2.45). It ·isthe quantum-mecha.nlca.l :version of Lo.rmor's theorem. (This theorem

can be generalized, in order to take anomalous magnetic. moments into account, by

suitably changing the definition ~f R(t,x) in eq. (2.31).)
Before we turn to some applications of the formalism presented in this section, we

wish to emphasize once more that it applies equally well to (one-), two- and three­

dimensional systems. It often happens in solid state physics, e.g. in_1wo-diInensional

.' heterojunctures used in measurements of the quantized Hall effect, that the system

exhibits an approximate internal symmetry described by some compact group G. The

spinors t/J(.) then transform according to some non-trivial representation, 1r, of G. A
breaking of G might be described as the effect of coupling t/J(.)# to an external gauge

field with values in the representation d1r of the Lie algebra of G. Let us denote this

gauge field by Z. By modifying the covariant derivatives,

.{2.48)

we may easily extend the entire; formalism developed in this section.to systems with

gauged internal symmetries. This is important in applications, (e.g., to the quantum

Hall effect).

Note that the action SA introduced in eq. (2.18) is U(l)em x SU(2).pin x GinterDal

gauge-invariant: It does not change if, Jor~n arbitrary real-valued function x, an

SU(2)-valued function.R and a G-valued function g, the following substitutions are
m~~ . .

ZI-I ..... gZl-Ig-t + g0l-lg-t .

Thus, barring gauge anomalies, (which ,actually cannot appear in systems of finitely

many non-relativistic particles), the non-relativistic quantum mechanics of such sys­

tems is U(l)em X SU(2).pin X Gintemal' gauge-invariant.' Ward identities expressing this

.gauge-invarianceturn out to play. animpo:tt~t,role in establishing certain universal

properties of such systems; see [5]' and Sect. 4.



3. SOME KEY ,EFFECTS RELATED TO THE U(1)em!X$U(2)spin-.GAUGE­

INVARIANCE OF NON- RELATIVISTIC QUANTUM MECHANICS

Belore we turn to our main topic, the analysis of two-dimensionl, incompressible

quantum fluids and their relation to one-dimensional chiral current algebras~ we wish,

in this section, to sketch some effects in quantum mechanics rel~ted to its U(l)em x

SU(2)lpin(xGiD~)-gauge invariance.Most of the material reviewed here is well

known, but our perspective, emphasizing gauge-invariance, may be somewhat,novel
in a few instances. .

(1) The Aharonov-Bohm effect [21].

A key effect reflecting Weyl's U(l )em-gauge principle reali~ in quantumtheory is

the Aharonov-Bohm effect: Consider the scattering of quantum~echanical particles

at a magnetic solenoid; (the wave functions of the pa.rticles are required to vanish

inside the solenoid). Then the diffraction pattern seen on a screen depends non­

trivially on the magnetic flux, 9, through the solenoid in a periodic fashion, with

. . ,'. period ; (or ~c, in the units used in Sect..2), where .q. is the.,charge of the particles.. This

is; a: consequence·oftheJact that the v~torpotentialAoutside the.solenoidamnot be'

gauged away, globally, in spite of the fact that there is no electromagnetic field, thus

leading to non-integrable U(l)-phases of quantum-mechanical wave functions which
change the diffraction pattern.

The Aharonov-Bohm effect explains the possibility of fractional (or 8-, or abeIian

braid-) statistics of anyons [22] in two-dimensional systems: Anyons are particles

carrying-electric-charge qand~agnetic ,flux 9 (= a;/q,. w~ere aH·is a. "1J~U ~n-.._

ductivity") and hence give rise to Aharonov-Bohm phases which one can interpret as

statistical: phases.

After what we ha~e learned in Sect. 2 on the U(l)-vector potential of Coriolis

forces, it is clear that there should also exist a "tidal" Aharonov-Bohm effect: Consider'

a mass-current conductingsuperfluid in a large container penerated by some straight

cylindrical tube that excludes the. quantum fluid. Now set the fluid in circular.motion

around' .the axis of the fube with '.velocity field j, where If(r )I' ::r .at', a::distance

r from the axis of the tube, and V is, a quantity of dimension em2/ sec, the total
v~rticity. [We'note that V =. ~f;, where M is the mass of the particles constituting
the quantum fluid, £1l is the expectation value of the component of the total angular

momentum operator parallel to the tube in the state of the system, and N 'is the

particle number.] Small mass-currents excited in this system, scattered at the tube,

.'will exhibit an Aharonov-Bohm ·effect·· depending' periodically on V, with period ~',

where m is the mass of the particles constituting the current; see (2.43)..

While this effect may be somewhat difficult to test experimentally, it is important
.' . theoretically: Consider.a superfluid film with manifestly (e.g., by rotating it) or

, I
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.spontaneously broken .time.reversal and ·.reflection.-in.,.lines invariance. Su~~ a two­

dimensional superfluid will, in general, exhibit vortex excitations of vortIcIty V. =
" ~ 0 ±1; ±2 ... 'where M is the m~s of the constituent particles in theniJ' n -, , , ,. .'. M!

superfluid, and fractional mass (rather than fractional charge) (jii V, where (jH = ,,(j
is the "tidal" Hall conductivity. Such crxcita.tions give rise to Aharonov-Bohmphases

and hence are anyons if q.is .not aarinteger, ie., if: the superfluid shows.afrac~ional

"tidal" Hall effect. The presence of such excitations may be tested experimentally by

measuring fluctuations in the longitudinal resistance of superfluid current conduction;

(see [23] for an analogous experiment)..
, ' In superfluids of particles with magnetic moments there are mixed "tidal" and

electromagnetic effects (e.g., binding electric charge or magnetization to vorticity).

'Seealso [24] for a discussion of various effects encountered in superfluids.

(2) Flux quantization [25].

A superconductor exhibits· the Meissner effect: A magnetic field cannot penetrate

into the bulk of a superconducting material. However, in, a type II superconductor,

thinmagnetic'fieldtubes can threa.d.through the··bulk.· They have'tbe':property that

they carry a magnetic flux ~which is an integer'm'ultiple of ~, where q. is -the charge

of the particles in the condensate, (e.g., q = -2e, for BCS pairs of electrons).The~e

tubes are called Abrikosovvortices. The quantization of ~ is explained by requiring

that outside an Abrikosov vortex the quantum mechanical properties of the system,

in particular its superconducting,nature, remain unchanged. From what we have said

about the Aharonov-BohII! effect it follws that this requirement is fulfilled precisely

if ~ is an integer multiple of '~.

The formalism developed in Sect. 2 makes it clear that the Meissner effect and·

flux quantization for Abrikosov vortices have their partners in the theory of super­

fluidity: Consider a superfluid in some container. Now set the container in uniform

rotation. The superfluid inside the container abhors angular velocity which would de­

stroy the superfluidity and does, therefore, not follow the rotation ·of the container's

walls. However,. just. like there can be Abrikosov vortices in a type ILsuperconduc­
tor, the superfluid can eventually ,be set in motion, and the motion is· generated by
a velocity field j, whose curl, 20, is localized along thin tubes. The tidal variant

of the Aharonov..Bohm effect then predicts that the total vorticity in·such·a.tube is

quantized to be an integer multiple of ;" where M is the mass of the particles (e.g.

3He-pairs) constituting the superfluid. [This can also be understood by appealing

to the quantization of or~ital angular momentum.] .I£,.in such a superfl.uid, one can

. excite mass-currents of quant~m mechanical particles of mass m < M one may be

able to test the tidal Aharonov-Bohm effect.

Our conclusion,S survive a more detailed theoretical anaysis (see e.g. [26]) and

are apparently tested experimentally. The phenomena described here may also be



'·relevantin the astrophysics of.neutron::stars which are apparently superfluid.

(3) The, Aharonov...C¥her effect [27].

Consider" a system of quantum mechanical particles with spin s, electric charge 0,

but with a magnetic 'moment IJ:f: O,in .a··plane or in three-dimensional'space. {The

paritcles could be neutrons, or neutral atoms,....J Following Aharonov and Casher,

we would like to study the infiuence of an external 'electric field on the dynamics of

such particles. As a' consequence of relativistic effects rapidly moving particles will,

in their'rest frame, feel a magnetic field that interacts with their magnetic moment.

In the formalism. of Sect. 2, this effect should -be described -as follows: We choose

the dreibein (eA(x»~=l to be the obvious one, namely e··\(x) = 6f, for all x, (with e3

perpendicular to the' plane of the system:, in the ease of a two-.dimensional system).

By equations (2.15), (2.21) and (2.22), the S¥(2)-connection W on the spin-s spinor
bundle E(-) is given by

WoA{X)

WiA(X)

3

- iL: wpA{x)L~), with
A=1

- - :cBA(x) = 0, and

- -.!!:..eiADED{X).
4c

For general electic fields, the 'curvature, dw{x) +(w 1\ w){x), of the SU(2)-connection

w will not vanish on full-measure sets of space, and so we are not surprised to find

that the electric field E{x) gives rise to non-trivial spin-orbit interactions. However,

if we consider a system ofparticl~s,confined to -the x - yplane in E~"moying..in the

electric field of a charged wire placed along the z-axis with constant charge Qper unit

'of length we encounter an SU(2)-version of the Aharonov-Bohm effect: The electric

field E(x) is then given by E{x) = 2E.2{X,y,0), where r = .Jx2 + y2• The coefficients

of the SU(2)-connection ware given by

- 4
Jl E2(x) = sJlQ 2 y ,
C 1rcr

P, p,Q
- - 4CE1 (x) = - 81rcr2X ,

(3.1)

(3.2)

Wi1 = Wi2 == 0, for i = 1,2, and W3i(x} -,which does not vanish·- does:Dot:enter the
dynamics ofa system confined to the x - y plane. O~e then checks easily that, for

the two-dimensional system in the x - y plane,

. IlQ
dw(x) +(w" w)(x)'=;--6(x) ,

- 4c
(3.3)

Le., w is flat outside the wire.

The quantum'mechanics of this system is described by the action SA introduc~d

in (2.18), with A = R x (E2\{O}) , a~ = 0, and w~-) = iWI43L~·), with W o3 = 0 arid
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, ., (3 1) .and (3 2) The point ,is, that the scattering of the particles at
W,3 as gIven In .' ". •

the charged wire depends on its charge per unit of length, Q, because, altho~gh w. IS

flat ex~pt at the origin~ it cannot be gauged away globally! Therefore, ~ gIVes ~se

to "non-integrable SU.(2)-phasefactors" in the wave functions of the partIcles wh~ch
, affect their interference :patterns.. These patterns are periodic in Q with .ape,nod

given by ~, as follows easily from (3.1), (3.2) and (3.3). .
The effect described here was first described' by Aharonov and, Casher {2.7} m a

somewhat more classical language. '
Next, let us consider a two-dimensional system on a cone with tip at.x = O.

The system consists' of particles with non-zero spin. Then the spin connection ~kAB,

although flat for x ::f: 0, cannot be gauged away globally, although p~ = 0 if there

are no electromagnetic fields. TheSU(2)-connection W has the same form as in the

previous example, but Q is now given by the defect angle. Scattering of particles at the

tip of the cone now yields interference patterns depending on the defect angle Q. This

is the "geometricalversion" of the Ahcu:onov-Cashereffect which is presumably better

known than its electromagnetic cousin,see e.g. [28]. What might be more surprising

,i~ is that we !COuld consider spinning particles on. a two-dlmensional,crystalJatticewith

"disclinations~The 'scattering'at "s; disclination 'should also display -a,·"geometrical

Aharonov-Casher effect".

Do spinless particles "see" the tip of the cone, or is spin important? The answer

depenc;ls on our choice of a quantum-mechanical state space: We must impose some

"boundary conditions" on the wave functions: 1/;{r, 'P + 211' - Q) = ei8t/J(r, 'P), where

'P is the polar angle, and 8 is some phase to be specified; bes~des some boundary

condition at r = O. But nO,.matterhow we choose 8, we, can ,make the tip.of the

cone "invisible" to spinlessparticles by threading a magnetic flux through x = O. IT

'the particles have spin and a non-zero magnetic moment then, in addition, we would

have to put a charge at x = 0, in order to make. the tip invisible.

Recall that the Aharonov-Bohm effect explains why two-dimensional quantum the­

ory can describe anyons with fractional statistics, name~y particl~ carrying charge

and flux (or mass and vorticity, ... ). It is natural to ask whether the Aharonov-Casher

effect also has something to do with~exotic.statisticsin two-dimensional 'quantum the­

ory. The answer is yes! The Aharonov-Ca~hereffect is closely related to the existence

of particles .in ,two-dimensional qua.ntum,theory with non-abelian braid,:statistics [29].

Such particles can have topological interactions that can be described l;>ysome SU(2)­
Knizhnik-Zamolodchikov connection [30]. Consider, for example, a two-dimensional,

chiral spin liquid made of particles with spin So ~ 1 - if such systems exist. An

incompressible chiral spin liquid of this type will most likely exhibit excitations of

arbitrary spin s = 1/2, ... ,so. The ciaim is that an excitation of non-zero spin s < So

will exhibit non-abelian braid statisti~s, as pointed out in [14]. This will be discussed

again in the -following section.



We would like to finally remark that there is also an analogue of the Aharonov­

Casher effect where SU(2).pin is replaced by Ii. gauged internal symmetry group G.

This effect can, perhaps, be tested in inhomogeneo~s heterojunctures. It is related,

. physically andmathematica.lly, to the existence of particles in two-dimensional quan­

tum theory with .topologicalpairinter.a.ctions described by a G-Knizhnik-Zamolodchi­

kov connection that, just as in the case of SU(2).phu may give rise to non-abelian'braid
statistics. '

(4) Einstein-de Haas (-Barnett) effect [31].

Consider a cylinder of iron or some other ferromagnetic material suspended at a

wire in' such a way that It can fr~ly rotate iaround its axis. Let us suppose that,

initially, it is dem~gnetized and at rest. Now, imagine that the cylinder is set into '

'rapid rotation around its axis. As explained in Sect. 2, the quantum .mechanics of the

electrons in this material should now be described in a uniformly rotating coordinate

system fixed to the background. In this coordinate system, the electronic Hamiltonian

will be time-independent, but it now contains a Zeeman term

... Ii.. ...n . 2 (f , (0 = angular velocity) , .(3.4)

a tidal vector potential j =nA i, and a potenti~l - '; In1\ il2 of centrifugal forces; see

(2.44), (2.39) and (2.30), and (2.40), respectively. These terms can be combined into...... ...
n· J, whereJ is the total angular momentum operator [32]. The centrifugal forces

will be balanced by the chemical potential of the background. 'J;hus the Hamiltonian

is essentially equivalent to the one; for the cylinder at .rest in a ,magnetic field jj =
-p-~n. The result is, in both cases,that the cylinder is magnetized, because the spins... ...
will be aligned with -0, ±B~ respectively. Conversely, if one turns on a magnetic

field, jj, antiparallel to the spontaneous magnetizatio~ of a magnetized piece of iron,

thereby increasing the free energy of the system, the system reacts by starting to

rotate around the axis of the external magnetic field so as to, offset the effect of jj
on the electrons by rotation. It thereby returns to a state corresponding to a local ­

minimum of the free energy. A similar effect is observed when one tries to magnetize'

a paramagnet. It would appear interesting to test a local version of this effect in a

"ferro-fluid". If the magnetic field acting on a highly mobile ferro-fluid, locally in

thermal equilibriuffi;-'is'modified'locally the fluid reacts by starting to'fiow with a

velocity field that o~timally offsets the change in the magnetic field so as to restore

local equilibr<ium. The particle - and magnetic current densities induced are given by

njand Ai @ j, resp~tively, wherejisthe.velocity field, n the particle density and

M the magnetization density. A somewhat analogous effect for quantum Hall fluids
will be discussed in the next section.

There is another variant [32] of the Einstein-de Haas effect: cOnsider a beam of

non-relativistic particles, e.g. heavy ions, with spin, rotating in a storage ring with
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some mean angula.r, velocityO. Then. they 'experience a tidal Zeeman energy,gi~en

. (244') in addition to tbe ulual magnetic Zeeman energy (2.45). After relaxatIon
In ., ' . . "
to a steady state, the tidal ZeerOan energy obviously affects the ratio of "spIn-up to

"spin-down" ions in the beam! .
Similar considerations" are:imporla.nt 'e.g. in the study of electronic spectra of

rotating molecules in the Bom-Oppenh~merapproximation; see [32].

(5) Supercurrents [25].

Consider a. superconducting condensate of charged hosons, e.g. electron pairs, of

charge q:and'm~ ·M,· in equilibrium. 'Imagine that amagneticfield,B, is turned

on inside the bulk of this system. Since the superconducting state minimizes the free

energy of the system, the condensate rea.ctsto turning on Bby developing a flow with

velocity field j in such a. way as to offset the effect of B. Neglecting the centrifugal

potential, - ';f· i, a.nd the magnetic field created by the resulting current, it follows

_from eqs. (2.42),(2.43) a.nd (2.46) that the optimal velocity field f is given by
.. q....
f =-A T

'Me '

where AT is the vector potential of·jj in the Coulomb gauge (Le., div AT = 0).

Thus the system exhibits-a supercurrent density, J., given in our approximation by
2

"'t ... q n "'T ( )J. = qnf = -A " 3.5
Me

where n is the density of the condensate. This is the London equation for type II... ... ...
superconductors. Recalling that j(z) =6SefF.(A)/c5A(x) - see also Sect. 4 - one may

proceed from eq. (3.5), fairly easily, to the Anderson-Higgs mechanism. -Note"that,

by eq. (3.5),·a supercurrent J. is really a sign for the presence of a vector potential,

AT, and thus can be used for experimental tests of the Aharonov-Bohm effectP

There is an SU(2)spin-analogue of these effects in condensates' of neutral bosons

with magnet.ic moments. For example, in principle, one encounters an "8U(2)­

Anderson-Higgs mechanism" and, for spin-polarized condensates, spin supercurrents

induced by electric fields.
I

We have already alluded .to' :the Hall ,effect earlier in this section. -Just as the

Aharonov-Bohm effect reflects the U(l )em-gauge-invariance of quantum theory, so

does the Hall-effect-for theelectric~urrent, as emphasized by Laughlin·:(33).,~.Act'ually

one might view the Hall effect as a time-dependent version of the Aharonov-Bohm

effect [21]. In the same vein, both the Aharonov-Casher effect and the Hall effect for

the spin cUfTenf reflect theSU(2).pin~gauge-invarianceof non~relativistic quantum

theory, as emphasized in [5]. In the next section, we attempt to unravel the universal

aspects of the quantum Hall effect in two-dimensional, incompressible electron fluids

with broken parity and time reversal invariance.
2 ' " "N. Byers and C.N. Yang,Phys. Rev. Lett. 7,46 (1961).



4. "SCALING LIMIT" OF THE EFFECTIVE :ACTION OF A TWO­
DIMENSIONAL, INCOMPRESSIBLE QUANTUM FLUID.

In this section we study the generating ("partition") function of two-dimensional

non-relativjs~ic quantum systems coupled t~ electromagnetic fields:

ZA(a,w) := f Vt/J*Vt/JeiSA(t/I·,t/I;o,w)/A , (4.1)

where the gauge potentials a and wihavebeen intro~uced in (2.13)-(2.'16), and SA

is' the action of the system given in (2.18); see also (2.39), (2.40) and (2.42). The

int~ationvariables t/J* 'and t/J. are Grassmann variables (anti~commuting c-numbers)

for Fermi statistics, and complex':c-number fields, for Bose:statistics.

We have not displayed the metric, gij, of space explicitly, since it will be kept

fixed, and usually M = E2 with 9ij = Dij, for simplicity. We realize that, for the

study of the stress tensor, pressure - and density fluctuations and curvature effects,

we would hav~ to choose a variable external metric (or, at least, a variable conformal

factor i~ 9ij). This would be' important for an understanding of density waves, in

particular surface· density waves. (which are interesting in two-dimensional quantum

. ;-/,~:Buids),land,o[critical.phenomena.· But,·;linfortunately,.we.a.nnot,.cover ..~very.thing

that~is :interesting; 'confer e.g. to .[17). We note, however, that 'curvature ·effects can

be studied by analyzingthe.dependence of ZA(a, w) on w which contains. the spin

connection, '\; see (2.15).
' ..

We define the electric charge - and current densities, jO and j, by

jO(x) - t/J*(x )1/J(x) ,

j"(x) = _2
i1t'

g"'(X) [(D,t/J)*(x)¢(x) - t/J*(x)(D,t/J)(x)] , .(4.2)
me

and the spin -and spin current densities, ~(x), by

,;O(x) - ¢*(x)l(')"p(x) ,

;"(x) - _..!!!:...g"'(x) [(D,t/J)*(x)L(')t/J(x) - t/J*(x)I<·)(D,t/J)(x)] , (4.3)
2me

where (L1'), L~'), L~'») are the generators of the spin-s representation of su(2). Sim­

ilarly, we can define the currents associated with internal symmetries; but.,..forsim­

plicity, we shall not· consider, them'·here;· The electric current i,s conserved,:(continuity

equation holds), but the spin current is, in general, not conserved, because it. CQuples

to a non-abelian vector."potential. ,It-..is, however, covariantly consenJed;...see.'.(4.11).

It is straightforward to infer from (4.1), (2.18), (4.2) and .(4.3) that the time- .

ordered CUfTent Green functions of the system are given, at non...coinciding arguments,

by
.. '

(4.4)
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r \

where «.)}: til denotes the ~nnected expectation functional of the system in an ex­

ternal gaug;field configura.tion, (a, w), (with "ground state asymptotic conditions" ,

as t -+ ±oo, to be specific), and T indica.tes time.ordering. At coinciding arguments,

eq. (4.4) is modified by SchwingerJtenns, (but this will not be very important).

We define the effective .gauge field action by
. Ii

se!(a, w) := -;-In ZA(a, w). (4.5)
. I

The idea is to try to ca.lcula.te the "leading terms" in St'(a, w) whic~, via (4.4), will

provide us with information ~n ,the current ;Green functions. By ·"leading ten'ns"
-~ . . .

we mean those terms which. dominate ,at.largedistance.,sca.les and. low frequencies.

The calculation of the leading terms in ~ may look like a fairly vast problem.

Actually, making a. single assumption on the excitation spectrum of the system, "in~

compressibility", and using the U(l )ax SU(2)'pin-gauge-invariance of the system,

that calculation can be carried out, {5].
Let X be a real-valued function and· R an SU(2)-valued function on space-time

N =R x M.Consi(,ier the gauge transformations in eq. (2.49), i.e.,

(4.6)

and
(4.7)

(4.8)

in the functional integral (4.1), and using thegauge-invariance of SA under the trans­

formations (4.6) - (4.8) and the fact that the Jacobian of (4.8) is unity, we find the

Ward identity

st(a,w) = SAff(Xa,Rw), (4.9)

for all X and R. {For a system of finitely many particles in a bounded region of space,

(4.9) can be proven rigorously. This identity is stable under passing to limits, for X's

and dR's of compa.et support.]

. By differentiating (4.9) in X or Rand setting X = 0; R = 1, we find, using (4.4)
(for n + m = 1), that .

(4.10)

and

or

J:(Z) {J. (JU(Z)(i"(Z))4'W)

=2wJ£(x) 1\ {.?(X»)Il,W·' (4.11)



~or arbit~~ tJ'andw. 'these ~infinitesimal",Ward identities play an important role

In detemunl~g t~e general form of Sf. They can be'generalized, in an obvious way,
to systems wIth Internal symmetries. ,

We now proceed to determine the form of Sf in the scaling limit. We. need to
consider ever larger systems ,and ever slower ''variations in time. Let 1 S 9 <.00, be a
scale parameter. We set

- gfJl(z):= 7ij (;)

A,(I) .- 6A
-.11 .- 0 ,

and

(4.12)

where'1ij is a fixe.d metric on M (e.g. '1ij =6ij ), and Ao is a fixed space-time cylinder;

(4.13)

Then
.!.- _O-l.!.-
OXI£ - O~I£ . (4.14)

We ,propose to study the reaction 'of the system to a small change in the external

, :' ~ ·;.gauge: potentials a"and ·w. ·:,We choose '1ixed,'background 'potentials,.:ac(z).:andl~wc( x),
defined on all of space-time, and set

and

(1)(' ,) () 0-1- (X)al£ x:= aCtl£ X + al£ 0, (4.15)

WI' (9l(x) := Wc,,.(x) +O-lW" (i) , (4.16)

where al£(~) and wl£(e) ~re fixed functions defined on Ao• H mis the effective-mass

of the particles and Jl their magnetic moment in physical (t, x )-coordinates then the

mass m(B) and magnetic moment pCB) in rescaled coordinates, T =~,~, are given by
• C ,

mCI) =m .6, and p,(6) = p,O~~ , (4.17)

as follows from eqs. (2.18), (2.25) and (2.26), (i.e., in the rescaled system the particles

,are heavy and !;lave small 'magnetic moments. Moreover, the range of the two-body

potential, in the rescaled: ,system",becomes 'shorter and shorter, as S .becomesJarge).

One basic assumption underlying our analysis is that SB~o(a CI), w{I» is lour times

continuously differentiable iniii:~(~)'= 8-10.1£ (f) and w~)(x) = 8-1wp·{t).;.at-ii~) =
w~) = 0, for a suitable choice 01 background potentials, ac and We, and for iil£ and

WI£ constrained to belong to suitable spaces, A and W, 01 fluctuation potentials, to

be specified later. We may then expand S~o 'to third order in a(B) and w(B), with a

fourth order remainder term. Among the terms thus generated we-shall only retain

the leading terms in (J, namely those scaling with a non-negative power of (J which

are commonly called relevant and marginal terms. The sum of these terms will be

denoted by SAo (a, w), a functional that we call the scaling limit 01 the effective action.



, Using identity (4.4) to find the Taylor coefficients of S;L(a(8),w(8), pluggin~

(4.15) and (4.16) into the resulting expressions, and,finally passing to (eO,~)-coordl­
tb d . ..

tes we find tha.t the coefficient of the term of nth order in aand of m or er In wna, ' "
inS~o is given by a distribution'

1'1···111'·· (e t n )'P, Al·~·A", 'al,···, ~n, '11, ... , '1m

•

which, at non-coinciding arguments, is given by

. (-i)"+'" (T [y(8
2
j"i(8(,))g(82S~I(8'11))1) :<0"'<. l

. (4.18)

in accordance with the circutristance that, in three space-time dimensions, the scaling

dimension of currents is 2!
We may now formulate our bas!c assumption of incompressibility: We ima~ine

that, for certain choices of the background potentials ac and We, the excitation spec­

trum of the system above its groundstate (energy) is such that connected Green

,.functionsofits CU1Tents have 'lgood" cluster properties (better than in a system with

G ld b ) . ch " h' h 10
• f h' d· °b' 0 1'1 '·'111··',/: 0 stone osons, In su a way t at.t e, lnutS.O .t e. IstIl utlOIlS,lp, :'" ,.At,.·.Am ,

,as (J -+ 00, are local .distributions, te." sums ,()f products of derivatives of ·h'..:functions.

This incompressiblity assumption is by no means a mild or minor assumption. It

tends to be a really hard analytical problem of many-body theory to show' that, for

a concrete system, ~t is satisfied. [For some recent ideas about how to establish ~t for

quantum Hall fluids at certain filling factors see [34,35,14].] What we propose to do

here is to use it to calculate the general form of the action SA in the scaling limit.
o·

We only sketch some ideas; for the deta.ils see [5]0
Our calculation is based on the following four principles:

(A) Incompressibility: c.p~l·'·"'nll1.·.JlmAl ...Am converge to local distributions, as 0 --+ 00,

for all nand m.

(B) U(1)em x SU(2).pin-gauge-invariance: Ward identities (4.9) -.(4.11).

(C) Only relevant and marginal terms are kept in SAo,

(D) Extra symmetries of the system, e.g".for ac:O = 0, Wc#,A = bA3Wep3, globalro­
tations 'around ,the.,;3-axis;in)ispin'space are a continuous, globaLsyuunetry of

the system with an associated conserved Noether current s,,3(x); or translation

invariance in the scaling limit (0 --+ 00)· '., are exploited to reduce the number

o/tenns.

From (A) and eqs. (4.15) and (4.16) it immediately follows that all terms con­

tributing to S8~ of order 4 or higher in a and tV are irrelevant, (scaling like O:'-D, D >



O!' ,In ,particular, a. fourth-order remainder term does not contribute to SAo, (~rin­
clple (C)). We now present the final result, in the special case of systems which are
incompressible for a choice of wcpsatisfying

(4.19)

or, in view of eqs. (2.25) and (2.26), for a background electromagnetic -field (Be, B
c

)

with

Bc(x) =(0,0, Bc(x» , Bc(x) =(E1(x), E2{x), 0) ,

and a spin connection

(4.20)

(4.21)(
0 Ap 0)(A p AS) = -A,.. 0 0 ,
o 0 1

in the ~ordinate system (el(x), e2(x), e3(x». In this situation, the scaling limit of
the effective act~on is given by

, where i: is an electric - and m~ a magnetic supercurrent circulating in the system

when a =.(Ic; W = Wc; rill is a"function symmetric in p. and II, while rfll is antisymmet­

ric in p. and II; the function '1A1c is symmetric under interchanges of (p.A), (liB) and

(pC) and vanishes if two or more of the indices A, B, C are equal to 3; dv - ..ji(e)tIe
is the volume element on space-time; (7, X, (7, and k are real constants, whose possible

values will be studied in Sect. 5; wee) = w~8)(e) +wee) is the total SU(2) connection,

with w~8)(e).= 9wc(Oe), by (4.16); and "B.T." are boundary terms only.depending on

a18Ao, Wl 8Ao which will be studied in Sect. 5. In the last four terms on th~ r.h.s. of
(4.22) we are using a new notation:

2

a = Eapdep,
,..=0

2

W3 - E Wp3tIe" ,
,..=0

2

da = L: G"all de" 1\ dell
",11=0

2 3

w= E L: W"AO'A de" •.
,,=0 A=l

(4.23)

See [5] for more details.

In Sect. 5, we shall use results on U(l) - and 'SU(2) chiral current algebra to

determine the possible values of (7, X, (7. and k and find some relations between them.
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Here we wish to point out that the {unctions j:,m~, Tiv,T:
v

and '1~'ifc are not all in­

dependent, but are constrained by'the infinitesimal Ward identities (4.10) and (4.11):

By (4.4)

(4.26)

(4.25)

(4.24)

(d)

(c)

\ .c5SAo<a, to) +.. '.
(j"(e»o(')'~') - c5a,,(e) ,

" ») c5SAo (a, w) +....
(SA(e o('),~') = c5W"A(e)

The dots stand {or contributions from irrelevant terms in the effective action. We

calculate the r.h.s. of these equations by using (4.22) and plug the result into eqs.

(4.10) and (4.11). As a result we obtain the following constraints (see [5]).

(a)~a" (-I9j:) = 0 .

(b) ~a" (-I9m;)= 0 .
y9 .

2 .

~ eAB {m~ -2T~"W~}tOlIB
B=1

2

. +2W~~T~jWjA = 0, A = 1,2.
j=1

1 a {. r;; "V - r;;~ IIV
- }~" y9T1 WvA +y9 LJeABT2 WvB

y9 B=1

2 {~ IIV
- "V - }-= - LJeABT1 WvB - T2 WvA WII3

B=1
2 3

-3~ eAB L '1~6DW~~tVvCtVpD' A = 1,2.
B=1 C,D:1'

Constraints (a) and (b) just express the conservation of the supercurrents j: and m;
when a= tV = O.

If we impose (4.26)-(c) and (d), for arbitrary smooth fluctuation potentials W,

then it follows that

.mil - r llv - .IIV
- 0. 3 - 1 -'2 - , for all Jl and II , . (4.27)

in particular, the system cannot be ma9netized (mg = 0) and cannot support persis­

tent spin currents. This may seem rather strange, because we would expect that if

We03 = -f;.Bc, forsome1arge magnetic field Bc = (0,0, Bc ), then the sya-tern.would be

magnetized in the 3-direction. What has gone wrong? The point is that the assumed

properties that SXff is four times continuously differentiable in a and tV and that the

system remains incompressible.in an,arbitmryJunction-space neighb.orhood of (ac, Wc)

of sufficiently small diameter must fail for magnetized systems! The reason is that ali

arbitrarily small fluctuation field ow. which oscillates rapidly in time can destroy the

incompressibility of the system, and hence our estimate on the fourth order remainder

in the Taylor expansion of Sf breaks down,



- ,

We thus assume,_ for ,:exa.mple, that,. for a -time-independent background,field We:,

the system remains incompres~ibl~ and Sf is four times continuously difierentiable
in (a, w) on. the -function·space sets

A - {a~e S} ,

W - {tO~A e S : tO~A is time--independent} , (4.28)

where S is some Schw~tz space neighbourhood of O. Then constraints (c) and (d) of
(4.26) imply that

TfO(e)
mg(e) Oi •.

(4.29)- To - T" - 0
2wdl3(e) " 1 - 1 - ,

T:v o, '7~3(e) = Tr>(e)
for A = 1,2;- -3wdl3(e) ,

11 th o~v • h (4.30)a 0 er TJAB3 vanlS .

,Hence (m~) =(mg, 0). Under.somewhat more restrictive assumptions on W, impos•
. ing e~g. relations (2.25) and (2.26) on to which couple wto a, a non·zero spin current

m3 = (ml, m~) is possible, too. For a more detailed, discussion see [5].

A corollary of our derivation of SAo' in particular of (4.29), using gauge invariance

and incompressibility, is the Goldstone theorem, [36J: H the magnetization, M =

Jl~mg, does not, tend to 0, as Be =(0,0, Be) tends to °(with Wc03 =-~Bc) then the
system cannot be incompressible at Be = 0, i.e., there are gapless extended modes,

the Goldstone bosons, coupled to the groundstate by the spin current; see [5]. Our

proof also works for systems with continuous non-abelian internal symmetries.

Next, let us briefly discuss the linear response equations (4.24) and (4.25) that

follow from our expression (4.22) for the effective action SAo in the scaling limit, for

systems characterized by conditions (4.28) - (4.30). It is a simple exercise to verify

that

and -

vg(e) (jlJ(e))a,w = Vg(e)j:(el+:X C;IJIlP (ovap) (e)

+2: c;~VP(OvtVp3)(e) ~ .'..

vg(e) (S~(e)}C1,W - Jg(e)6A38~mg(e) + 6A32:eIJVP(olllzp)(e)

+ 6A3 ;; c;~IIP{8vwp3)(e)

~C;IJIIP {(OvWpA)(e) - eABCwvB(e)wpc (e) }-
~ ,-

+ vg(e)2(1 -6A3)6~T~(e.)tVOA(e)+ ... ,

(4.31)

,(4.32)

where the dots stand for terms coming from irrelevant terms in the effective action,

or from terms of order two in tV (e.g. a term prQportional to '7~c) which are of little

interest in linear response theory. Furthermore, W~A = W~~A + W~A.



In order to understand' the ,physical eontentsof .these equations, we must remind

ourselves of the physical meaning of the connections Q and w elucidated in Sect. 2:

From eqs. (2.20), (2.39) and (2.43) we know that

Q;(x) = ;cA;(x) - ~ /j(x) , (4.33)

where Ais the electromagnetic vector potential, -e is the charge and m the effective

'mass of the particles in the quantum fluid, and! is a divergence-free velocity field

generating some incompressible superfluid' flow. Furthermore, by (2.20),

.. i

e
ao(x) = ~ lie 4>(x) , , (4.34)

..(4.35)

where q,' is the electrostatic potential.
Since weare studying two-dimensional incompressible quantum fluids on a surface

M imbedded in E3, it is natural to choose an SU(2)spin-gauge with the property that

e3(t, x) is .orthogonal to the tangent space of M at x, for all times t, as discussed at

the ·;beginning·of Sect. 2. Then theSU(2)-spin connection .\(1/2) has the form

\ (1/2) _ . \ . " . _ 1 2' . d \ A_I fc'1 ~ Bel ~ A]
"; '-~;'\J0'3 ,J._" an "OB- 2 ~AuOe, -~BuOe, '

It then follows from (2.24), (2.25) and (2.39), (2.44) that

WOA(X) =- :cBA(x) +8A30(X) + AOA (4.36)

where n(x) = (0,0, O(x» is the curl of j in the dreibein basis (eA(x»~=I' and Jl is

the magnetic ·moment of the particles., Finally, .~y (2.15), (4.35), (2.26)..and (2.33),

, 3

WjA(X) = 8.43(A;(x) + ...) - ~ E CjAc(x)Ec(x) , (4.37)
. 4c C=1

where the dots correspond to terms proportional to derivatives of O(t',x),t' ~ t, (and

are generated by the SU(2)spin-gauge-transformation defined in (2.31».

Finally,we define the charge density operator, in physical units

(4.38)

the electric current density by

the'spin density by

§ace) =~Jg(OsOCO ,
, and the spin current density by

(4.39)

(4.40)

(4.41)



Then equation (4.31) for the o-component reads

(p(e»)o,w

(4.42)

where O'H = t-O' is the. Hall conductivity, V . ( ) denotes the divergence .,~(e) =
curl .\(e) is the scalar curvature of M at e, and the dots stand for contributions from
irrelevant terms. It will turn out that

ep
X.l := 4'7rcX (4.43)

is the magnetic susceptibility of the system in the 3-direction normal to the surface.

In (4.42) and the following formulas the tildes - indicate contrib~tions from ~ and

tV; (we have absorbed the spin connection ~. into to, but without decorating it with
a -). Next, one verifies that

+ (4.44)

where T = eo/C is the rescaled time variable.

From (4.32) We find, for example, that

= M(e) +O'jfin(.!!:..V . E(e) - 21(.(e») +k P
S

21i
V. Ee(e)

2c. 1rC

+ ' X.I. (B3({) - ~n({)) +.. ~ , (4.45)

where M is the magnetization at (ac' wc), X.l is the magnetic suscel?tibility at (ac' we)
given in (4.43), and

spin I:.: k 1:.:0'• (4 46)
O'H = p'"41r - pn81r . •

is the Hall cQnductivity for the spin CUrTent. As eq. (4.45) shows; O'r -is a pseu­

doscalar. Next



aep & s· _.x § $ #.4{Q. .. .... ,.
•

, where the dots stand for terms proportional to Ao and fu~ther irrelevant and higher­

order terms. A similar story could be told for (S~(e))Cl.UI' but we refrain from telling

it and refer the reader to his drawing board, or to (5]. {We do not guarantee all signs

and factors of 21r in' our formulaS!}
We enco~age the ,reader to ~otice,how neatly our formulas summarize the laws

of the Hall, effect, including' effects ,due to' tidal forces coming from superfluid flow

and due to the cu",ature of the sample. {We believe that the tidal terms might be

rel~vant in the study of the transition fr0tn one plateau of (jH to the next otie in very

pure samples.]
Our next topic concerns the analysis of some quasi~pa.rticle excitations above the

groundstate in a two-dimensional, incompressible quantum fluid, whose effective ac- .

tion in the scaling limit is given by the action SAo computed above; see (4.22). For

simplicity,we start by considering a fla,t, two-dimensional system of charged fermions

with vanishing magnetic moment,so that the SU(2)spin-connection w vanishes iden­

tically in an appropriate SU(2)-gauge, (e1(x), e2(x), e3 (x) are chosen to be

·time~independent,so that there is no tidal Zeeman term; see Sect. 2). We suppose

.. that, in.a small neighborhood ofa suitably chosen background potential ae - typically

acO = '0, be =dae 'constant and of suitable magnitude - the system is'incompressible.

Then the action in the scaling limit is given by

1S· (-) 1 'P - d ,(j 1- d-- t: Ao a = Je ap v + -4 a 1\ a,
n Ao . ~ Ao

(4.48)

up to boundary terms. The first term on the r.h.s. is unimportant in the following,

discussion, and we set j: = O.

Let us produce a "Laughlin vortex" [37] in this system by turning on a magnetic

field b(e) = 8ta2(e) - ~iil(e) ina small disc. [Actually, b(e) could be a vorticity field

of a superfiuid flow if, instead of a quantum Hall fluid, we consider a superfiuid film.

We shall nevertheless lise "magnet,ic language" in the following discussion.] From our

discussion of the Aharonov-Bohm effect in Sect. 3-(1) we know that this excitation

only disturbs the system locally, and thus may have a finite energy difference to the

groundstate energy, if

1 J-2~ b(t,~)d2~==n,

By eq. (4.31) for p. = 0, we have that

n E Z. (4.49)

and hence the charge of the excitation (background charge normalized to 0) is given .

by

q =J(j°(t, e))Cl.UI~~ = em . (4.50)

If (j is not an integer then q will be fractional, i,n general. Now,consider two such

excitations 'localized in two disjoint small disks and interchange them along some



'.

'paths orientedanti-clock..wise.Arrording to Sect 3-(1) the' Ah B h h
. " ' r- " aronov- 0 m p ase

plcked up In thIs process is given by , , ' '

(4.51)

where ,we have' normalizedihe 'statisticaI phase fJ such that 8 == 1/2 "corresponds to

Fermi statistics; fJ == 0 corresponds to bosons, and f) ::A 0,112 (mod 1) to anllons [22].
Thus, Laughlin vortices are anyons, unless o-n2 is an integer. '

Among the excitations that one can produce in this ~fashion there should, be the

particles constituting the system. Let us suppose that the state of the system is fully

spin-polarized, (as is the case for filling faCtors II e.g. ~,t in quantum Hall fluids).

Suppose a magnetic flux of no produces a state of N electrons. From (4.50) we then
infer that

(4.52)
N

q --- .
no

If N is odd this state is composed of N fermions and hence describes a fermion so
J ,

, that, by (4.51),
ei1rNno = -1 . (4.53)

Thus no must be odd, too. In fact,' one may show that if N and no have no' common

divisor then -no is odd. In particular, for N == 1 we conclude that

q = Ilno , with no odd. (4.54) ,

.., , q ei
aiCe) = -;eiiieji , (4.55)

as follows from (4.49) and (4.50) for (jO(e»)a,w = qc5o(e). This is the "U(l)-Knizhnik­

Zamolodchikov connection" .

Next, we consider another "in vitro". system, namely a "chiral spin liquid".• [It is

not entirely.clear thatsuch,systemsexist in nature.] A-chiralspin liquidjs.'a'system of

neutral particles of spin 8' >. 0 and with non-zero magnetic moment (p. = 1, in present

units) having a spi~-singlet .groundstate for some non-zero, constant magnetic field,

Be. It is assumed, here, to be incompressible and to exhibit breaking of parity and

time reversal, ,but no spontaneous magnetization. In our formalism, the effective

action of such a system in the scaling limit is given by

This is the famous odd-denominat<:>r rule; see e.g. [38]. An excitation with vorticity

1 then has fractional charge q = Ilno and is an anyon,·for no > 1.

Note that the vector potential, Q, created by a pointlike excitation of charge q

located at e=·0 is given by

(4.56)- .!.SA (w) = ~. ( tr(w 1\ dw + ~3w 1\ w 1\ w) ,
Ii, 0 411" lAo

up to boundary terms. Under reflections in lines, Wi transforms as a vector, Wo as

a pseudoscalar and k as a pseudoscalar. Let us consider an excitation created by
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turning on an SU(2)-gauge iield w wit~ .field strength,g, given by

g«() = dw(e) +w(e) 1\ w«() .

For example,' we may chooseg. to be'given by

where lis some unit vector in R3 and 90 is time-independent,90i«() = O. Byeq. (4.32),

the spin density of this excitation is given by

•

(iO«())w = /~ 9o«() ,
1r' .

so that the expectation value of it~ total spin operator, 8, is given by

(s}w = e~ f go«()<P( .

(4.57)

Such an excitation is commonly called a "spinon" . .Quantum mechanica.lly, spin is

quantized: 8· S = 4/(1 +1), 1 E iZ. Consider a spinon of spin 1located at the point

'. :(= (1' Then.eq. (4.57) says that 912«()is thesolution ..of the equation

(4.58)

(4.59)

where D') is the spin operator, 5, in the spin-I representation; (see Sect. 2). A

connection tii for the field strength 9 satisfying (4.58), with 90i(e) = 0, is given by
. , . j

.. ( ) _ ".(~) _ ~(L"(I)} .. eJ
- (1

wo e - 0 , w, Cit - k we'J, I( - (112 •

Suppose, we now create a second spinonof spin, I' moving in the background gauge

field wexcited by the first spinon. Its dynamics is coupled to wthrough the covariant

derivatives (see Sect. 2, eqs. (2.13), (2.14»:

D - 8 + itii . L"(I')
~ - ~ ~ , (4.60)

with w~ as in (4.59). Let us imagine that it makes sense to do "two-spinonquantum
mechanics" on a Hilbert space 'H(l) (8J1i(I'), with

?-l(I) =V(l) (8J L2(M,dv) ,

where V(l) carries the spin-I reptesentation of SU(2). By (4.59) and (4.60), the

covariant derivatives on ?-l(I) (8J ~(I') are then given .by

.a 2~ tn tn 3 .
. 1 _ ---. ~. ~1 -~2 '" (I) (I')
D j - 8 t ' + k e,n I~ _ ~ 12 L...J LA ~ LA ,

~1 "'1 ~2 A=1

and
2 a

Do = 8e~ , (4.61)



·;·These are the. covariant derivatives associated with the celebrated Knizhnik-Zamo­

. lodchikov connection, [30J. For the "two-spinon quantum mechan.ics" with parallel

transport given by (4.61) to be consistent with unitarity, it is necessary that

k == ±(K +2), K=1,2, .... (4.62)

This fo~lows from results in [30,39]. RecaJling what .we have said in Sect. 3.;..(3) about .

. the Aharonov-Casher effect, :we observe that the "phase-factor" 'arisinginthe parallel

transport of a quantum mechanical spinon in the field excited by a classical spinon

with spin orthogonal to the plane of the system is an Aharonov~Casher phase factor.

Let· us .now exchange the positions of two quantummechanical,pointlike spinons

along anti-clockwise oriented paths. Then the "Aharonov-Casher phase factor" mul­

tiplying the wave function is given by a matrix

R£~) : Vel) ® V(l') -+ v{l') ® vel)
,

-,which is the braid matrix for exchanging a chiral v'ertex of spill 1with a chiral vertex

of spin I' in the chiral Wess-Zumino..Novikov- Witten model [30] at level K. It is given
by

(4.63)

where 'R,(I'O) is the universal R-matrix of the quantum group Uq(sI2)' with q =

expi1r/(K +2), and T is the flip (transposition of factors). All this can be extended

to "n-spinon quantum mechanics". The matrices R[;) determine an exotit~quantum

statistics related to non-abelian (for K > 1, 1, I' < ~) representations of the braid

groups (more ·precisely,- the' groupoidsof- coloured braids) which ·is .commonly ,called

non-abelian braid statistics [40,29]. We wish to Dote that 1 and 1', are forced to be

~ j, i.e., there are no spinons of spin > ~. One might call this phenomenon "spin

screening". H the particles of spin s constituting the chiral spin liquid appear as

spinon excitations above the groundstate then

K ~. 28 , (4.64)

since these particles 'carry"'spin' 8.~One-can·argue that the statistics of these particles
I

must be abelian braid statistics, i.e., they are anyons. In fact, it then follows that
they are semions(O= 1/4).- "Now,-for a given levelK, the matrices ·~;).definean

abelian representation of the braid groups if and only if 21 = K. It follows that, for a

chiral spin liquid made of particles of spin 8

K = 28. (4.65)

Any spinon-excitation of spin 1< 8 then has non-abelian braid statistics!

The reader may feel that our "derivation" of "s.pinon quantum mechanics" from

the effective action SAo(w) given in (4.56) is based 'on idealizations - see (4.58)·~ and
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jumps in the logics - reasoning-betw~ (4.60) and (4;61) - tha.t might make it a.ppear

to be quite problema.tic. Actually, it turns out tha.t our conclusions concerning spinon

statistics, in particular eqs. (4.63) and (4.65), are perfectly correct. This follows from

an analysis of the mysterious~b~undary.terms,·"B.T." , in the effective action;'see [17],

and Sect. 5 for the example.of a.nyons.
In order to understand spin-singlet quantum,Hall fluids, one must glue the La.ugh-

. lin'vortices described in (4.49) - (4.53) ·to·the."Spinons discussed a.bove. ·One checks
hI· f· ·t mlthat for (I = 2/no, no odd, and " = 2s = 1, a Laug In vortex 0 vortlcl y n = - 2

(!) glued to a spinon of spin $ = 1/2 is an excitation of charge q ~ -1, spin 1/2
and Fermi statistics, [3,17]. These are the properties of an electron. In an electronic

quantum Hall fluid (without any very exotic internal symmetries) one does not find

any excitations with non-abeli~ braid statistics. However, if one could manufacture

a ,quantum Hallijuid made of charge carriers of spin s = ~, ~, ... , with a spin-singlet

ground state it would display excitation~ with non~abelian braid statistics [14]. It

may appear difficult to build such a system, in practice. But, perhaps, one can think

of incompressible superftuid films of particles of higher spin, with broken parity and

, .4'time' reversal, .which .would also. exhibit··excitations with· non-abelian .braid statistics.

The analysis sketched above extends, in a straightforward way, to systems with

continuous internal symmetries. and corresponding gauge fields; see [17].

It may be worthwhile emphasizing that in quantum Hall fluids with non-vanishing

magnetic susceptibility (spin-polarized Hall fluids) the fractional statistics of Laugh­

lin vortices always appears as a consequence of a combination of the Aharonov-Bohm

- and the Aharonov-CasherefTect; (but notice that, for spin-polarized quantum Hall

fluids, the Aharonov-Casher phase factors are automatically abelian). This is a conse­

quence of the fact that electrons have a non-vanishing magnetic moment and follows

from eq. (4.42).

Finally, we come to a brief comment concerning the relation of our definition of

the Hall conductivity O'H =e: 0' as the coefficient of a Chern-Simons term, ~ f ii 1\ dii,

in the effective gauge field action SAo' see (4.22), of an incompressible quantum Hall

fluid to the'more conventional definition via the Ku~ formula [41]. It follows easily

f~om eqs. (4.4), (4.5) and'(4 ..22) that"u'appears in the following current'sum rules:

For every choice of a permutation (plIp) of (012), .

(4.66)

These are three equations foroD:e and the same quantity (I. The equation .lor (p,vp) =

(012) is

i!:. = J(t - $) (T[jl(t,X)j2(S,y)])C ds d2y (4.67)
~ ~~

which is just the Kubo formula (in "mathematical units", with no guarantee for signs

'·'~'i'", .• andfactors of 1r); compare e.g. to -[41]. The other two.equations are an automatic con­

sequence of U(l )em-gauge-invariance.- See [5J for a more systematic study of current



(4.68)

,It

sum' rules and "proofs".

Thouless and coworkers [42], and followers [43J, have derived from the Kubo for-
mula that' .

1
(T = -Cl

no '
where no is thegroundstate degeneracy and Cl is the first Chern number of a. vector

bundle over a two-dirnensional torus of magnetic fluxes (¢Jl' ¢J2). So, c1isan:integer

which, in formula (4.52), wu called N =#: of 'electrons created when one turns on .

a local magnetic field of total flux no. Does our formulation "know" that no is, the

desenetacy of the groundstate1 Yes, it does! This follows' e~g. from' the material in

Sect. 5 and has been noted in [1J; (see .alsO [17] for a more precisederivation).

Bellissard [44] and Avron, Seiler and Simon [45] have also given a defin'ition of (T

as an index. Their definition is equivalent to ours, too, and the proof follows from
the material in Sect. 5; see Sect. 6 of ref. [3].

We finally note that (Thin, (for k = 0, Le., spin-polarized quantum Hall fluids)

:can:be'shown·-to be given by a Kubo formula involving spin currents and can then

be shown to be proportional to a first Chern number of a vector bundle over a two­

·dimensional torus of electric charges per unit length (Ql' Q2).

In a fairly precise sense one finds that the Hall effect for the electric current is a

time-dependent form of the Aharanov-Bohm effect, while the Hall effect for the spin

,current corresponds to the time-dependent Aharonov-Casher effect.

5. ANOMALY CANCELLATION AND ALGEBRAS OF CHIRALEDGE
CURRENTS IN TWO-DIMENSIONAL, INCOMPRESSffiLE ..
QUANTUM FLUIDS.

In this last section we optline some ideas on the origin of the quantization of the
i

values of the constants (1, X, (1, and k which appear as the coefficients of the Chern-

Simons terms in the effective action SA of incompressible quantum fluids in theo .
scaling limit; see (4.22). This topic is intimately connected with the so far mysterious

boundary terms, "B.T"., .on the r.h.s of.eq. (4.22). Since this isa somewhat,technical

topic, we have to limit our review to a·few basic aspects and refer the reader-to [4,17]
for more details.

Briefly, our analysis of the boundary terms in SAo and of the quantization 'of the

coefficients (1, X, (1, and k relies upon the following two key ideas:

(i). The "important" - more precisely the anomalous - part of the boundary terms

in the action SAo is completely determined by the Chern-Simons terms in SAo
by invoking U(l )em x SU(2).pin( X Gintemal)·gauge-invariance of the total effective
action of non·relativistic qu~ntum theory. '

(ii) This anomalous p,a~t of the boundary terms of SAo turns out to be the gen-



erating functiona.l oftbe connected-G-reen functions of chiral current operators

which generate U(l)-, 8U(2)- (and G-) current (Kae-Moody) algebras [9]. Some

physical and mathema.tical principles concerning the representation theory of

these current ~algebT8S then',constrain' the values of the coefficients ,(I, X,,'(1. and

k to belong to certa.in discrete sets.

-' 'Remark on (ii). We-a.lrea.dyha.vefoundconstraintson.the .valuesof.o:, (x; 0'.) -and k

in Sect. 4 by analyzingthe sta.tistics of La.ughlin vortices and "spinons" and imposing

the constraint that, among excitations composed of Laughlin vortices 'glued to spinons,

one should find excited states of the particles constituting the incompressible quantum

fluid - in the case of a qua.ntum Hall fluid, the electrons or holes. In Sect. 4, it

. turned out that if one imposes the pgnciple of unitarity on the quantum mecha.nics

of spinons then Ie must be an integer. Our analysis of Laughlin vortices predicted (I

to be a rational number (with an odd denominator for quantum Hall fluids composed

of spinless, charged fermions);
'Let us'start our ana-lysis by recalling a well known lemma that shows how SU(2)­

;', gauge-invariance forces k to be an integer: Let 9 be-an SU(2)-gauge-transformation

with the property that

g(T,~) -+ I, continuously as (T,~) -+ oAo , (5.1)

or T -+ ±oo. For Ao a cylinder, the family of all such SU(2)-gauge transformations

splits into disjoint homotopy classes labelled by an integer winding number, n(g);
(recall that 1t"3(SU(2)) = Z!). Let 9 be a gauge transformation with winding number

n(g) =lO. The gauge..transformed SU(2)-connection, gw, is given by

Let us study how the SU(2)-Chern-Simons term

k 1 2Scs(w) := -4· tr(w 1\ dw + -w 1\ w 1\ w)
1r Ao 3

(5.2)

(5.3)

in SAo transformsunderthe't'ransformation (5..2). The well known answer-.is that

SCS(9W ) = Scs(w) + 21rkn(g) . (5.4)

Now, non-relativistic quantum theory is fully gauge-invariant under local SU(2).pin­
gauge-transformations, including time-dependant ones. Therefore,' the generating
(partition) function

ZA(a(81, w(8) =expi st(a(8) , w(8) '" exp i SiA/8) (ii, Iii)(5.5)

must be.invariant under. the transformation (5.2). Asymptotically. as 9 --+ 00 the
, "

only gauge-variance of ZOAo(a(iJ), w(O» comes from the Chern-Simons term (5.3) in
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SAo(a, w). Hence we must require that -

exp iSAo('w) - exp ~ [S-4(W) - 2dlin(g)]

! exp ~SAo(w) ,

for arbitrary integers n(g). Thus

(5.6)

(5.8)

k E I. (5.7)

The same result could have been'deduced by considering the transformation properties

of the Ghem..Simons tenn Sos(w) under gauge transformations, g".not vanishing at

the boundary 8Ao• The non..invarlance of Sesew) under such gauge transformations

actually determines one of the boundary terms in SAo' [2,17].
'What about the values of0', 0'. and X? Co~sider, for ~xample, the abelian Chern..

Simons term
, 0'1.Scs(ii) := -4 ii A dO.

1r Ao

in the effective action 8Ao ' As explained in [5], 8Ao (0.,10) must be invariant under

U(1 )em.-gauge-transformations

ii H "a = ii + dx, (5.9)

(in'spite of the fact that ii is only a fluctuation potential, Le., ii = a - act) Since

1r3(U(1» =0, the local U(l )-gauge-transformations on Ao do not split into different

homotopy classes, and hence there is no a-priori quantization of 0'. However" by

considering the transformation properties of Scs(ii) under gauge transform~tions, X,

which do not vanish at the boundary 8Ao, we shall be able'to infer some constraints

on the possible values of 0'.
In order not to get lost in many technicalities, we 'refrain from studying a. gen­

eral quantum Hall ,fluid here; but see [3,17]. Rather, we shall confine our analysis,

of boundary terms and edge currents to idealized qllantum Hall fluids of spinless

jermions, so that w = 0, from now on. This is an important special case for coJDing

to grips with the general case (which also involves SU(2).pin and, possibly, Gintemal).
But the genera,lcase would -lead ',us into a little orgy of "branching nJ.les"'·~for repre­

sentationsof subalgebras of Kac-Moodyalgebras which is deferred to another paper,
although, physically, the general case is important for understanding'quantum Hall

fluids with spin-sin~let groundstates (e.g., for a filling factor 11 = t [46]), or with

internal symmetries, (e.g. certain hierarchy states of the electron fluid,or,'perhaps,

the',fluid corresponding to 11 = i; [3,47]).

If the p~rticles in a two-:-dimensional, incompressible quantum fluid are spinless ,

fermions then w =0, and its effective action in the scaling limit is given by

(5.10)



where S' (a) is aiven in (5.8), ,and B.T.-stands for the celebrated boundary terms,
os o· , ~ .

and, for the rest of this section,1i == 1. Let us now perform a gauge trans ormatIon

(5.9) on a, with X not vanishing a.t 8Ao• Then

. Sl,(ii +dX) - S"Ao(ii) - kAo ie...xdo

+ ~.!!.. ( dx" ii - B.T.(a +dx)+ B.T.(a) , (5.11)
411' }8~ I

where je,,, is the component of ill .normal to the -boundary 8Ao of Ao, and do is the

surface element. Note that Slo(a+ dxl would be equal to SAo (a.), and we could set

B.T.= 0, if
je,n ex: dual of dO. 18Ao •

However, ic is the current supported by the quantum fluid when a = ac,a = 0,

and a is an arbitrary fluctuation' potential. Therefore such a relation between jc

and dO.· does not make sense ~or arbitrary a. Experimentally, for the electron fluid

in a heterojuncture, for example, a. can' be tuned in a fairly arbitrary way, and the

boundary 8Aais such that there is no leakage of electric charge through 8Ao, i.e.,

(5.12)

In this case, the second term on the r.h.s. of (5.11) vanishes, but the third term is

different from 0, for suitable choices of X and a. Imposing gauge invariance of the

effective action SAo thus yields the following equation for the boundary terms:

B.T.(a +dX) ~ B.T.(a) =.!!- I .dX A a ,
41r 18Ao

(5.13)

(5.14)
1

u: = In(VT ± 8)
. v2

where T is a time-like and 8 a space-like coordinate on 8Ao, and v is some velocity.

Since the term. I a'Adx is topological, eq. (5.13) does not impose any specific choice
laAo

of T,9 and v. Mathematically, ,it is convenient to set v = 1 and choose 9 to be an

angle ranging·:.o:ver .the. interval.{O,.21r]; .However, if T and 8 are measured in physical

units then v would be the propagation speed of surface charge density waves. The

value of this physically interesting quantity will not be determined 'by SAo' [It would

only be computable from a more microscopic analysis of the system.] We now set

for arbitrary a, and x. This equation is well kno:wn from the study of the (1+1)­

dimensional chiral anomaly (16]. To solve it, it is convenient to use light-cone coor­

dinates on 8Ao• We set

at8A~ = A+du+ +A_du_ ,
\

(5.15)

where

(5.16)



(5.23)

.. '

~the boundary vectorpotentiaI. An analysis due to Halperin [6] and elaborated upon

in [3J shows that this describes precisely the physics of boundary degrees of freedom,of

an integer (non-interacting) qua.ntum Hall fluid with /0'/ filled Landau levels. ,Actually,

the logics can' be turned around: If_we consider a non-interacting quantum Hall fluid

with N filled Landau ,bands coupled to a small fluctuation v~torpotential a then

those quantum mechanical degrees of freedom which are localized near the boundary

, -of the system produce.a U(l )~gauge-a.nomalycorresponding.tothe action ~~LIR(A),

(where the choice of L or R depends on the sign of the external magnetic field).

For this anomaly to be canceled - as required, by the U(l )-gauge invariance of non­

relativistic quantum theory -- it' is necessary th~t. the effective gauge field action of

the bulk degrees ojfreedom contain a Chern-Simons term ±if!J
Ao

a1\ da. As shown in

eqs. (4.42) and (4.44), this term reproduces the basic equations of the quantum Hall

effect, with a quantized Hall conductivity O'H = f N, N =0, 1,2· . '.

So we understand the int~gral quantum Hall effect for non-:interacting electrons

pretty well - although there are actually still plenty of interesting an~lytical (spectraQ

problems for systems with a large amount of disorder and for systems of spinning

. electrons with spin-orbit interactions which should be studied more carefully!

But what if 0' is not an integer? Then the U(l)-anomalyof the Chern-Simons

term in the effective action is cancelled by the term ±:~~LIR(A),as shown above. Of

'course J...~LIR(A) remains the generating functional of a chiral U(l)-current algebra41r .

.of left- or right-moving cur~ents. What kind of a system does the corresponding

chiral U(l)- current, J± = jti~, describe physically? Of course, it still describes

chiral electric charge density waves circulating around the boundary ~dges of the

system. But what are the basic charge carriers like? Here a little general culture on

current algebra (see e.g. [9]) helps: Let us start by considering free, massless Dirac

fermions in 1 + 1 dimensions. By (5.22)

~P ,_ 1( 'P 'P)
JLIR - '2 J T J5 .

Let us first suppose that the external gauge field A is set to O. Then jP and j: are

conserved currents, i.e.,

o 'p ~.p 0
pJ = UpJs = .

The general solution of eqs. (5.24) is'

jP =ePvav'fJ, i: =ePvOv'fJ5 ,

(5.24)

(5~25)

. where 'fJ and 'fJ~ are scalar fields of scaling dimension O. However, in two space-time

dimensions, j: = _ePViv, withe01 = _e10 = 1. Therefore j: = oPr.p, and (5.24)

implies that

8p 8IJ r.p == D'fJ = 0 ,

Le., 'fJ is a free, massless scalar field. Any solution of (5.26) has the form

'fJ =V2('PL(U+) +'PR(U-)) .

(5.26)

(5.27)



In light cone coordi:nates, ther.b.s. ofeq. (5.13) is -given by

.!!.. I dX" 0. =.!..., f (A+o_X - A_o+X)d2
u ,

47r JaAo 47r JaAo '
(5.17)

•

where a
o:X == Ou: x·

, • '82 L· .
We note that, in light-cone coordinates, the ;d'AlembertIan, 0 = a;2-'al" IS gIven

by
(5.18)

After these preparations, it is ~ -simple exercise to verify that the solution of the

functional equation (5.13) is given by

B.T.(a) - - ::~R(A) + W(A)
q

- 47r~L(A) +W(A) , (5.19)

where

aLIR(A) = faA. {A":A:l: - 2A'f~A'f} d
2
u , (5.20)

and W(A) is Ci.n arbitrary gauge-invariant functional of the boundary vector potential

given by A+ and A_. Note that replacing (1 by -(1 corresponds to replacing L (left)

by R (right)! Readers, who still remember the basic formulas arising in the study

of the (1 +l)-dimensional, chiral U(l)-anomaly will recognize ~L(A) as the effective

gauge field actionofa chiral (left-moving) relativistic fermion minimally coupled to

a U(l )-gauge field A, in two space-time dimensions. One checks that

4~aL(A) - Indet [,+i ~C~ ')'5)]
- In det(' +- i ~) !A+=O + 4~JA+A_Jlu (5.21)

Let"t/J be a (1 + 1)-dimensiona1'two~component Dirac spinor, and tj; = 't/;*'Yo its conju­

'gate. The expression for the left-moving current, i'L,.is given by

(5.22)

where N indicates normal ordering. This current generates a chira! U(l)-current

algebra. Comparing (5.22) to (5.21) and recalling the baslcs of Berezin integration,

we observe that 4~~L(A) IA+=O is the generating functional for the connected Green
functions of the left, moving current if..

We conclude that if q w~~an integer we could cancel the anomaly, :1f' f8Ao dX A 0.,

of the Chern-Simons term, 1; fAoa" da, in the effective action of the quantum fluid

under a gauge transformation, a ...... a+ dx, by Iql·bands of left- or right-moving

(depending on the sign of (1) free, relativistic complex fermions minimally coupled to



(5.29)

By (5.23),

J+ = -a-CPR, J- = a+CPL , (5.~8)

with a-J:J-J: =O. These formulas hold at the level of quantized fi~lds and are at the

origin of. abelian bosonization in two space-time dimensions. Now, any ·sum of free
fields is again a free field. Thus, Jet us write, for fun,

1
cP = 211" (<PI +... + <PN) ,

where <PI, . ~ " <PH are distinct, free,massless sca.lar fields. We set

,. (<AI)~- .'I' - •

<PN

For A =0, the action of ~ is given by

Swz~'(~) = 4
1

I a+~. Ka_~tflu ,
. 1l" 18Ao

(5.30)

(5.31)

N .
where K is a positive N xN matrix, and a·b:= Eaib•. H one wishes to describe

. i=1
chiral left- (or right-) moving free fields one supplements the action (5.31) by the

constraints

a_~ = 0 (a+~ = 0, resp.) . (5.32)

(5.33)

The matrix K describes linear couplings between the fields <PI,"', <PN and fixes their

normalization when one uses a standard path~integralquantization.

Let us now study what happens when one attempts to couple the fields <PI, ••.• tPN
to the vector potential A. The first problem one encounters is that expressions like

a-J:~' for example the chiral constraint a_~ =0, are not invariant under U(l)-gauge­

transformations. We must find out how'~ transforms under gauge transformations.

For N = 1 and K =1, it is well known and easy to check that the fermion operators

tPL and tPR are. given by vertex operators, tPL/R =: eilPL
/ R :, where the double colons

indicate Wick ordering. Hence cP and <PI"" 1 tPN transform like angular variables

under VeIl-gauge transformations. An adequate ansatz is

N

tPj hot X tPj = tPj + L(K-1 )jiX •
i=1

A gauge-invariant form of the chiral constraint is then given by

N

8_ <Pj - L(K-1)jiA- = 0 .
i=1

We set

(5.34)

(5.35)



Ii

with N components each. An <!'Ction reducing to (5.31) for A = 0 is given by

,.

Swzw(~,A)

(5.36)

where
, (5.37)

i,j

Note that expression (5.36) is symmetric in "+" and "-". H we want to describe chiral

fields we supplement the dynamics determined by the action (5.36) by the gauge­

invariant chiral <70nstraint (5.34). Let us now check how Swzw(~,.A) transforms

under theU(l)-gauge-transformations (5.33) and A± 1-+ xA± = A± + {hx. After a

fairly brief calculation we find, that

(5.38)

The last term on the r.h.s. of (5.38) vanishes when the chiral constraint (5.34) is

imposed. We observe that the second term on the r.h.s. of (5.38) is precisely the

a.nomaly (5.17) of the Chern-Simons action if k =CT.

Let us also note that

(5.39)

is, for A+ = 0, the generating function for the current 2~ ~l 8+¢i = 8+'P which, by

eq. (5.28), is precisely the left-h~ded current J-. Since the integration measure is

gauge-invariant, i.e., 'D~= 'Dx~, .it follows from (5.38) and (5.17), (5.20) that

(
ik )Cc,(A) =exp - 411" ~L(A) . (5.40)

(5.41)

Thus, we conclude that if the. coefficient CT of the Chern-Simons term, :fr lAO·a Ada,

in the effective action SAo of an incompressible quantum fluid satisfies

N

CT = k = L:(K-1)ij
ij=l

then

(5.42)

is U(l}-gauge-invariant, i.e., anomaly-free. For CT =·-k, the same holds if "+"and

"-" and "left (L)" and "'right (R)" are interchanged.



Next t we must investigate the physics of the ~system on the boundary of an

incompressible q~antum fluid. In particular t we must find physical constraints on the

matrix K. When the gauge field A is zero, the electric charge operator Q isgiven by

Q =/ jOdO =!<O,,,,)dO ,

by (5.25). By (5.14), (5.29) and (5.34), this yields

N

Q - EQj, with
j=1

Qj = 2~ !<O+t!>i)dO.

(5.43)

(5.44)

Unfortunately, these expressions are not U(I )-gauge-invariant. 'But it is clear how to

render them gauge-invariant. The correct definition of the charge operator associated
with cPj is

,(5.45)

which is manifestly gauge invariant. Let us replace

(5.46)

where under.a VeIl-gauge transformation X

(5.47)

for j =1,·· ., N. We call Qj the "vector potential of the jth band", in accordance with

the structure of the couplings =f 2~ faAo Q=F • 0:~ in the action Swzw (~, Q) given in

(5.36). Imagine that we now increasethe magnetic flux inside the system by n. units

.in the i th band,e.g. by creating ~ni Laughlin vortices in the i th band, i = 1,···, N.

Then

..!..f Qi,dfJ =n. ,
211"

and the charge in the jt;h .band, Qj, changes by an amount

as follows from (5.45), with A replaced by Q. In vector notation,

AQA __ K-1nA , A K AQA
U. or n = u. .

(5.48)

(5.49)

(5.50)

We now imagine that every band admits excitations with the quantum numbers of

an electron or hole, Le., for every j = 1,···, N, there are excitations changing the
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I ch b AQV) = ±6·· and having Fennistatistics. By formula (5.36) for thetota arges 1 ~ , 'J. .

t · S such excitations are created b1 the vertex operatorsac Ion wzw,

with

and n is given by

- ..j2 fa.:.d8 =..!.. fa'd8 =n,
21r 2",

N .
n - ~K· AQ(J) - K·· i = 1,···,N "i - L..J .,~ , - 'J'

1=1

(5.51) .

(5.52)

(5.53)

see (5.50). The statistics of the vertex operator (5.51) is described by the phase

exp 21rih(a) , (5.54)

(5.55)

, h(a) =~Kjj .
2

By (5.54), this excitation has Fermi statistics iff

where h(a) is its conformal dimension., By (5.36), h(a) turns out to be given by

h(';") 1" K-1 "
<A - '2n. n

1" A

- '2l1Q.Kl1Q,

and the second equation follows from (5.50). Thus, for an electron or hole in the ph
band,

l(i) - 0 1 2 ...- , " , (5.56)

for j = 1"" , N. Clearly, electrons and holes are excitations which are relatively local

to each other, (meaning ~hat microscopic electronic wave functions are single-valueJ).

Hence a vertex operator creating an electron or hole in the i th band must commute

or anti-commute with a vertex operator creating an electron or hole in the jtl1 band,

for all i and j. One readily checks that this will be' the case iff

hence

K ij E Z, for all i and, j . . (5.57)
~.,

Actually, if one assumes that two vertex operators creating electrons in different bands

must commute - as one normally would - then it follows that

Kij E 2Z, for i =F j. (5.57')



Plugging results (5.56) and (5.57) into formula (5.~1) one observes that'

N
(7 = ± E (K-1)ij

i,j=l
(5.58)

is a rational number, and .hence the Hall conductivity (fH = e
2

(7 is a rational multiple
2 . h

of eh , for every' inCompressible quantum:fluid 'of scalar (spin-polarized)el"ctt'ons! A

similar conclusion holds if spin and -internal symmetries are included, but ·-one ob­

tains different sets of ,rational numbers as the possible values of (f compatible with

incompressibility; see [17].

We note that, for Q = A (see (5.46» and~Q =E~l ~Qj, eq. (5.49) iniplie~ that

(5.59)

by Stokes' theorem~This is ,an integrated form of eq.' (4.31), see also (4.42) and

.. (4.50), !oraquantum :fluid with vanishing magnetic susceptibility, as is the case for

spinless electrons.

Clearly,for a given rational value of (7, formula (5.S8), along with the Constraints

(S.S6) and(S.57), does not determine the "band coupling ~atrix" K uniquely. This is

an intrinsic weak~ess of our very general approach. A given rational value of (f corre-

·sponding to a plateau of the Hall conductivity can, in general, be reproduced by many

different systems of chiral boundary currents corresponding to distinct K -matrices.

In order to find out .which K-matrix is the most likely candidate <:orresponding to

~ given plateau of (7, one must invoke additional information on the quantum Hall

fluid, in particular stability properties against small perturbations,. whose elucidation

, requirescanalytical or numerical work, or symmetries.

As a first step, towards reducing the plethora of possible K -matrices we propose

to study what kind of invariant information is coded into a matrix K. For this

purpose one should try to find the full.spectrum of charged excitations of a system

corresponding to .& given matrix K satisfying (5.56) and (5.57).. For an .excitation

of a quantum Hall·fluid to.. have a finite .energy difference to the groundstate ·energy

(called a finite-energy excitation}, it should perturb the groundstate only·locally. As

a corollary of our discussion of the AharoDov-Bohm effect it follows that the magnetic

flux n of a finite-energy excitation must be quantized, i.e.,

n j E Z, for j = 1,· .. ,N .

[IT an electron in the jth band is,transported around such an excitation it picks up

a statistical phaseexp 21rinj which is unity if nj E Z.] We conclude that finite­

energy excitations of an incompressible quantum Hall fluid can be labelled, in pa.rt,

.by their magnetic flux· quantum numbers nwhich are the sites of the latti~ • := zn.
Eq. (5.50) then says that the electric charges corresponding to an excitation with
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•

magnetic flux n are given by l::t.Q = X-In and form the sites of a lattice r := K-l~.

The lattice r contains the sublattice znof excitations with integer charge, i.e., of

multi-electron, multi-hole excitations. The quotient space, r Izn, is an abelian group'

with n generators. -It tells' us everything about· the possible fractionalcl1arges of

finite-energy excitations.
We now observe that what we are calling th~ "ph band", j = 1"" N, is based

on a somewhat arbitrary convention of how the fields 4>j are coupled to the external

electromagnetic vector potential A,(Le., on the electric charges assigned to these

fields). If S is some integral N x N matrix of determinant 1, i.e., S:E SL(N, Z), then

S leaves ·~invariant. Two systems corresponding to matrices K and K', with

K' =STKS (5.60)

describe the same lattices (~ and f) of excitations and correspond to equivalent

quantum Hall fluids which only' diffedn the assignment of electric charges to the fields

4>1, .. '0' 4>N. This observation poses the problem of defining and then finding normal

forms for the integral, positive quadratic forms K on the lattice t, (with respect

to conjugation'by SL(N, Z»; see [4]. This is known to be a subtle mathematical

problem which is not solved in general; (see [48]).
But let us return to the problem of symmetries of quantum Hall fluids. A natural

symmetry of such a fluid at small values of the filling factor II is likely to be invariance

under arbitrary permutations of the bands. This symmetry would imply that

iJ'=1 · .. N, , , (5.61)

for arbitrary permutations, 1r, of{t,"', N}. Together with co~ditions (5.56) and

(5.57) eqs. (5.61) imply that

i= I ... N, , , (5.62)

for some 1= 0,1,2" .. independent of i, and

Xij = n E Z " for i "I j .

Thus

K = (21 + 1 - n)1N +nNPN ,

(5.63)

(5.64)

where PN is the orthogonal projection on the unit vector in RN all of whose compo­

nents are given by 1/.JN. Hence

K-1 = (21 + 1 - n)-l (IN ...;. nN PN)
_ 21+1+n(N-1)' ,

and this equation and (5.58) yield

N
U =UK = ±21+ 1 +n(N -1) . (5.65)



Imposing constraint (S.57') we must· assume that n is an even integer. This reproduces

the odd-denominator.. rule. [In general, the odd-denominator rule only· holds for an
odd number of bands! Seea.I80 (4).] ,

A '''second generation hierarchy state" of a quantum Hall fluid might ,be defined

as a system with a coupling matrix Kia given by

(5.66)

(5.67)

where K is an N x N matrix of the form (5.64), the first matrix on the r.h.s. of (5.66)

is a. (pN) x (pN) matrix build from p matrices K, and m is an (even) integer. For

the Hall conductivity of this system one finds [4]

(1K =± 1 . =± pl(1kl •
h . m + (1/pldkl) mplO'KI + 1

One' can now. ,go on and define "third generation hierarchy states" , etc.

Next, one might ask what form the matrix 'K must have if the system exhibits a

full unitary group, U(N), of symmetries permuting its N bands ofedge current; (an

obyious example of such a system is an integer quantum Hall fluid. of ~on-interacting

electrons with (1. = ±N). The algebra of edge.currents must then contain' aKac­

Moody subalgebra su(N) (at level 1). This is a much larger symmetry than the

permutation symmetry discussed above. Correspondingly, the K -matrices compatible

with this larger symmetry are more constrained: They ha~e the form

Kii = 21 + 1 , i =1, ... , N, Kij =21 , for i =F j ,

for some 1= 0, 1, 2~ .. '. The corresponding Hall conductivity is found to be

'N
(1K =± 21N + 1 .

(5.68)

(5.69)

The proof of (5.68) (see [4]) involves showing that there is a matrix S E SL(N, Z)

such that

STKS =: R, 'with

RNN = 21 +1 , RNN-l = RN-IN = -1 , (5.70)

and (~j)f:;::ll is the Cartan matrix of su(N). In connection with quantum Hall fluids

the matrix R first appeared in [49].
We note that quantum Hall fluids 'with K-matrices as in (5.68) correspond to'

Jain's states [50].

It may be good to consider the simplest example of a fractional quantum Hall

fluid covered by our theory: We set N = 1 and K·= 21 + 1. For 1 = 0, this is an

integer quantum Hall fluid with q = ±l.For I 1, correspondinsr to a - +1 13
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we find Laughlin's fluid [34]. There aTe also quantum Hall fluids corresponding to

1= 2 and 3, (0' =±1!5,±1!7, respectivel,y). There are no known quantum Hall fluids

corresponding to 1=4,5, ... , since they would correspond to electron gases of so low

a density that they iorm 'aWigner crystal and thereby loose their incompressibility.

The charged ~xcitations in afluid with K . 21 +1 have vorticity n = 1, ... ,21+1

and charge n/(21 + 1). For n <21 + 1, their charge is thus fractional, and by (5.54),

(5.55), they are anyons.

A~ the end of Sect. 4 (see (4.68» we mentioned that, in the conventional approach

to the quantum Hall effect, the denominator no = 21 +1 of the Hall conductivity 0'

is interpreted as the degeneracy of the ground state of the quantum Hall fluid. In
our approach this has a stra.ightforw~d explanation: The algebra of a chiral edge

current of a quantum Hall fluid with 0' = 21~1 (K = 21+1, N = 1) has 21 +1 inequiv­

alent representations labelled. by fluxes 1,2"",21 + 1 which correspond to charges

2ih, 2ih, ... ,1. Everyone of. these representations corresponds to a groundstate of

the quantum Hall fluid with a one-component boundary, in the thermodynamic limit

which is approached when the scale parameter 0 tends to 00. In this limit, the 21+ 1

distinct groundstates have the ·same energy per electron.

It is shown in [1,3,4] that, in the scaling limit, the groundstates of such a quantum

Hall fluid are described by the conformal blocks of the free, massless field at level 21+1.

On a Riemann surface of genus 9 with n punctures there are thus (21+1)9+n degenerate

groundstates. These results are best understood by studying the topological Chern­

Simons gauge 'theory associated to the chiral edge currents [10,12]. The quantized

gauge potential of this theory turns out to be the vector potential of the conserved

electric current density U");=o; see [3].

It is worthwhile to .observe that the conformal blocks of the massles~ .free field

at level 21 + 1 on the plane with n punctures are the Laughlin wave functions for n

quasi-particles (characterized by their magnetic flux) of a quantum Hall fluid with

0' = ± 21~1 • [This "coincidence" may partially justify some ansatze for hierarchy
constructions based on Laughlin-type wave functions for quasi-particles. By and

large, it may however have played rather a misleading role.]

We wish to note,· furthermore, that if a vortex of strength n = 21 + 1 is created

in the bulk of a quantum Hall fluid with 0' = ±irr and a one-component boundary

then, in the thermodynamic limit (8 ...l.+oo), the total charge of the fluid changes by

±K-l(21+ 1) = d(21 + 1) = ±1, as shown in eq. (5.59). More precisely, a charge of

±1 is transferred from the place where the vortex is created to the boundary of the
system; see also Sect. 6 of [3] for more details. This result relates our definition of

the Hall conductivity 0' to one where 0' is defined as an index, [44,45].
The results reviewed here for the simple example of a quantum Hall fluid with

N = 1 and K = 21 + 1 have straightforward extensions to fluids corresponding to

arbitrary N and general K -matrices as discussed above.

. ;



Finally, the material in this section can be generalized to incompressible quan­

tum fluids of particles with ,spin and internal· symmetries. These generalizations are

important in understanding quantum Hall fluids with u ~ f (spin singlet state) qr

u =t, for example. But this is another story.

Now that 'we have reached the end of this paper life would just start to become

interesting. We could now continue our tale by studying the domain .structure of

"incompressible quantum fluids, in 'particular of-quantum' Hall fluids, some aspects

of the transiti()n of a quantum Hall fluid from one plateau of' u to a neighbouring

plateau, .presuma.bly closely related to the problem qf domain structure and domain

wandering, the stability of plateaux and the role of disorder in the stability problem,

• • • 00. But, most importantly, we should now fi~allyaddress the analytical problem

of proving that certain quantum fluids are indeed incompressib,le.

But all this must await another occasion - quite apart from the fact that much

further more analytical work ~s· needed!
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