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1. INTRODUCTION

This rather 1ong paper is a tale of non-relativistic quantum théory summarizing
research that has been conducted during the last one and a half years, and the main

- results of which have been sketched in two lectures presented at the Cargese summer

school of 1991, as well as in lectures at several other institutions. Coworkers in our en-
deavor have been, or are, Thomas Kerler, Pieralberto Marche_ttl and Tony Zee. Basic
help and guidance were generously provided by Rudolf Morf. We are deeply grate-
ful to these colleagues wit'hout*whom-ourf'enterprise-would'have suffered-premature
shipwreck. We also thank J. Avron and G. Felder for very helpful discussions.

After some basic ideas underlying our approach had been developed during a stu-

| dents seminar on the quantum Hall effect at ETH organized by Rudolf Morf and J.F.,

we became aware of independent, but slightly prior work of X.G. Wen [1,2] that bears
much resemblance with ours [3,4,5]. A 1982 paper of B.1. Halperin [6], supplemented
by more recent results on -'curreht‘-a.lgebra [7,8,9] and on Chern-Simons gauge-theory
[10,11,12], has been instrumental in triggering the work in [2,3]. J.F. should also like
to acknowledge some very stimulating discussions with Paul Wiegmann, in spring of
1989, whose remarks turned out to be much to the point.

Work vaguely or closely related to Wen’s and ours has been carried out by several
people and can be found in [13], and refs. indicated therein.

The task assigned to J.F. at the Cargése school was to lecture on low-dimensional
quantum theory with braid statistics and quantum symmetries. This task could
have been fulfilled by lecturing on the beautiful mathematics of braid statistics and
quantum symmetries that involves operator algebra theory, quantum groups and their

“=$ubtle representation theory, holomorphic vector bundles over Riemann surfaces, and,

perhaps most importantly, the theory of tensor categories. However, as physicists,




we may have a feeling of loosing ground in this world of mathematics. In any event,
other people essentially took over that task, and it appeared desirable to lecture about
physical systems with braid statistics and quantum symmetires. Fortunately, such sys-
~ tems exist in nature! ‘A-two-dimensional electron gas in a s’trdng transverse magnetic
field can exhibit quasi-particle excitations of fractional charge and fractional (abelian
braid) statistics, the famous Laughlin vortices. One can imagine two-dimensional sys-
~ tems of condensed ‘matter which will actually exhibit quasi-particle excitations with

- non-abelian braid statistics and quantum symmetries; see e.g. [14]. But it is likely

" that such systems have not been realized in the'labora.tory, yet. [Candidate systems
are 2D systems with broken reflection — and time reversal invariance made of particles
‘of spin > 1 '

The phenomena of braid statistics and quantum symmetries in a two-dimensional
quantum system appear to be intimately related to the property of local gauge in-
variance of the system. One of the key ideas underlying the work described in this
paper is.that one can acquire a surprisingly rich amount of information on a system
of non-relativistic matter by studying how it reacts when coupled to external gauge
fields. - In' Sect. 2, we therefore study how systems of non-relativistic quantum me-
chanical particles with spin interact with external electromagnetic fields, with “tidal
gauge fields” providing a quantum-mechanical description of Coriolis forces and spin
precession in moving coordinates, .and to a variable metric on space. Our.formalism
can be applied to systems in one, two, and three space dimensions. It reveals a basic
U(1)em % SU(2)spin-gauge-invariance of non-relativistic quantum theory which gives
rise to powerful Ward identities.

In Sect. 3, we review and “explain” a number of classic effects in non-relativistic
quantum theory from the point of view of its U(1)em X SU(2)spin gauge invariance,
(supplemented by certain assumptions concerning the structure of states that mini-
mize the energy — , or free energy density). Included are the Aharonov-Bohm effect
and its SU(2)spin-variant, the Aharonov-Casher effect, flux quantization in supercon-
ductors and vorticity quantization in superfluids, the London equation for the super-
current density in a superconductor-and the related Anderson-Higgs mechanism, and
different variants of the Einstein-de Haas (-Barnett) effect.

It turns out that the celebrated quantum Hall effect (and the related quantum
Hall effect for spin currents [5]) encountered in two-dimensional electron gases (real-
ized, for example, in heterojunctures) subject to a strong, transverse, external mag-
netic field is yet another phenomenon reflecting the U(1) x SU(2)-gauge-invariance

- +.of non-relativistic quantum theory. In Sect.-4,.we therefore study two-dimensional,

incompressible electron fluids in external electromagnetic fields. The notion of incom-
pressibility that we are using is the following: A system at zero temperature (but
positive density) is incompressible if the energy of all physical states describing ex-
tended (as opposed to localized) excitations of the groundstate is strictly above the




\

ground state energy. IncompressiBle systems are free of dissipation, and therefore the
- longitudinal resistance vanishes. Experimentally, this is found to be the case when
‘the Hall conductivity is on a plateau [15]. |

By using U(1) x SU(2)-Ward identities we show- that two-dimensional, incompress-
ible quantum fluids have: universal properties. For example, their effective action as a

‘functional of small perturbations in the external electromagnetic field has a universal -

form which we determine explicitly.- The notion of universality that emerges here
‘is very much the same as the one encountered in the theory of critical:phenomena

associated with continuous phase transitions. , ‘
| Our results on the effective action, summarized in Sect. 4, imply the general
equations describing the Hall effects for the electric charge - and current density
and for the spin — and spin-current density in systems with vanishing longitudinal
resistances. Moreover, they yield a proof of the Goldstone theorem for non-abelian
symmetries. ’

In Sect. 4, we also use our expression for the effective action to find the spectfum

of charge-, flux- a.nd’spin-carrying excitations of an incompressible quantum fluid, and

we discuss the possible values of their electric charge and spin, and-their statistics.
Our analysis provides-first insights into why the Hall conductivity and various other
quantities characterizing the system, e.g., its magnetic susceptibility, are quantlzed
But -our reasoning is somewhat heuristic, mathematically.

In order to bring more rigour into that analysis, we derive and discuss, in Sect. 5,
 algebras of chiral currents circulating in an incompressible quantum fluid along do-
‘main boundaries across which the value of the Hall conductivity jumps, in particular

along its edges. The electric edge currents form chiral U(1)-current algebras, the edge
- spin-currents form SU (2)-Kac-Moody algebras. These results can be derived from
U(1) x SU(2)-gauge-invariance by using well known results on the (1+1)-dimensional
chiral gauge anomalies and their relation to (2+ 1)-dimensional Chern-Simons theory
[16]. [An alternative derivation of the existence of algebras of chiral edge currents in
incompressible Hall fluids from quantized Chern-Simons theory, based on results in
[10,11,12], is given in (3].] \ '

The well known representation theory of chiral current algebras, combined with
some physically natural requirements, then leads us to find discrete sets of possible
values of the Hall conductivity, (certain rational multlples of & £), of the fractional
- charges of excitations, and of other interesting quantltxes, which are compa.tlble with
the incompressibility of the Hall fluid. Our results can be viewed as “gap-labelling
“‘theorems”: The energy spectrum of a two:dimensional-electron fluid in an external
magnetic field can have a positive gap above the groundstate energy (reflecting its
incompressibility) only if its Hall conductivity belongs to a certain discrete set."

We also find the statistics of fractionally charged excitations (Laughlin vortices)
from the representation theory of the algebras of chiral edge currents. '



A complete discussion of edge spin-currents and currents associated with internal
symmetries of the system would take too much space and is therefore deferred to
another paper [17]. However, a few basic ideas are provided in Sect. 5.

Most of this paper was written during a two-weeks’ stay of J.F. at I.H.E.S, Bures-
sur-Yvette. J.F. thanks the director of LH.E.S, M. Berger, his colleages and the staff
at the Institut for their very friendly hoépih_.lity during a period that was quite hectic
for him.

2. NON-RELATIVISTIC QUANTUM MECHANICS OF SPINNING
PARTICLES COUPLED TO EXTERNAL METRICS AND ELECTRO-
MAGNETIC FIELDS. |

In this section we recall the formulation of non-relativistic quantum mechanics in
general, including moving, coordinates on a Riemannian space. We consider systems
. of spinning- particles coupled to the space metric and to external electromagnetic
fields. [For mathematical background see, e.g. [18].] Since we are interested in time-
- sdependent: many-particle:systems, it .will be.convenient.to use a second-quantized
Lagrangian formalism [19].
Physical space is a two-,-or.three-dimensional manifold, M, with possibly time-
- dependent metric, space-time is given by N := R x ‘M. The system is confined to
the interior of a space-tinie cyclinder A C. N. The intersection of A with a fixed-time
 slice is denoted by £, where ¢ is time. In local coordinates, points in M are denoted
by x,y;---, points in N by z = (¢,x),y = (¢,y),-~. The Riemannian metric on
M is denoted by g;;(t,x); space-time N carries the metric 7,,(z), where nos(z) = 1,
- noi(2) = mio(z) = 0,m;;(z) = —gi;(t,%). In the tangent space at a point x € M we also
have the flat, Cartesian metric, §45. [Similarly, in the tangent space at a space-time
point z € N we have the usual Lorentz metric 73]

If the dimension of M is two we imagine that M is a surface in a three-dimensional
Riemannian manifold L with metric also denoted by g;;, and the metric on M is the
induced metric. In physical applications L will usually be three-dimensional Euclidean
space E3, and M will be some surface in E3. |

So far, time is merely a parameter, and we temporarily omit it from our nota-
tions. In the cotangent bundle to L we choose local sections of orthonormal frames
(e#(x))3=1- The components of eA(x) in the basis (dz’ )31 of Tx(L) are denoted by
e4i(x) and are called “dreibein (fields)”. If dimM = 2 we choose (e#(x))3-, such

.-that, for x € M C L, €%(x) is orthogonal to.T;(M) in the metric of Tg(L). The
_ metric on L can be expressed in terms of the dreibein as follows:

gi;(x) = dapeti(x)ef;(x) . (2.1)

If dim M = 2 we choose local coordinates on L in a..neighborhood of M such that the



metric on M at a point x is given by

g.,<x) 3 Supet M), hi=12, (2

A,B=1
i.e., the coordinate z* is transversal to M.
The inverse of the dreibein e4; is given by -
E4'(x) = 6459" (X)e ix), | (23)
where (g‘-’) is the inverse of (g;;). Clearly
EdieP; =65, ABE gy = g - (2.4)
The dreibein e4; is the matrix which transforms the coordinate baeis (dz*) of T2(L)
to an orthonormal basis, (e4(x)), of T:2(L), | :
e4(x) = eAy(x)dzt . \ ‘ (2.5)
Sumla.rly, €4’ transforms the basis (3%.-) of Tx(L) to an orthonormal basis, (£4(x)),
of Tx(L), S o
Ea(x) = ()2 5 @)
- On every cotangent space T¢(L), x € L, we have a three—dlmensxona.l (spm-l)

- representation, (R(x) € 50(3)) of the rotation group, acting on the dreibein e4; as

follows , ,
Reti(x) = R(X)ABCB i(x) . (@0

We require that parallel tra,nsport on L be given by the Lev1-va1ta connection
’ I i1y SO that the torsion, T, vanishes. Then we may deﬁne Cartan’s spin connection

Mp through Cartan’s ﬁrst structure equa.txon
© de* + MpAeE=T4=0. (2.8)

These equations enable us to express A\;*p in terms of the dreibeins e#;, their deriva-

tives, and their inverses £4°; (see [18]).
The curvature 2- form R4p of L is defined by Carta.n s second structure equatlon

RAg =d)p+Ac A X5 (2.9)

It is easy to deduce from (2.8) and (2.9) how A and R tra,nsform under the “gauge-
‘transformations” (2.7) of the dreibein: |

R\x) = R(x)Mx)RT(x)+ R(x)dRT(x) ,

BR(x) = R(X)R(x)RT(x). , | (2.10)

- 'We now assume that the manifold L admit a spin structure. Then we may intro-
duce spinor bundles over L. Let s = 0,1/2,1,--- denote the spin, i.e., 2s + 1is the



.dimension of an irreducible representation of SU(2)=S 5(3) with spin s. The fibre of
the spin-s spinor bundle, E®) over Lis i_somorphic to the (2s+1)-dimensional Hilbert
space, D), carrying the spin-s representation of SU(2). Sections of the spin-s spinor
bundle are denoted by %{*)(x). From now on, we choose the gauge trahsformations
(R(x)) to be SU(2)-valued. The action of these gauge transformations on the cotan-
gent bundle is given by their adjoint (spin-1) representation, usually also denoted by
R(x)'. Under a gauge transformation (R(x)), a sectipn v of EC) transforms as

follows:

P9 (x) - Ry(x) := UL R(x))$¥(x), - (2.11)

where U is the spin-s representation of SU(2). The transition functions of the spin-
s spinor bundle are inherited from the transition functions of the cotangent bundle,
T*(L), by lifting them to the spin-s representation of SU(2). [Since we have assumed
that L have a spin structure this is possible even if s is half-integer.]

Physically, whét is meant by “spin up” or “spin down” is now a local notion,
depending on the point x € L at which the spin is located and det’ermine‘d» by the
frame (¢4(x))31- | - | .

We intend to develop non-relativistic- quantum mechanics on-Hilbert: spaces of
sections of these spinor bundles. In non-relativistic quantum mechanics, wave func-
tions are complex-valued. We therefore tensor the fibre space D(®)-real .-when s is
integer — by C. The structure group of the resulting bundle, still denoted by E®) s
then U(1) x SU(2). The factor U(1) (phase transformations of (%)) is connected to
electromignetism, as recognized by Weyl more than sixty years ago.

In order to keep our notations simple, it is advantageous to formulate quantum
mechanics by using the language of second quantization. The sections %(*)(x) of E®)

‘are then interpreted as operator-valued distributions acting on Fock space and subject

to equal-time canonical (anti-) commutation relations

[«b&"'A(X);v#fa"'(y)L =0, (2.12)

#9260, 95> )], = 7510c=)6aﬁ6(x -y), ef=1--,2+1,

where [ , ]+ denotes the anti-commutator and [ , ]- the usual commutator, 3(*)# =
() or o) ¥, the creation operator, is the adjoint (oh Fock space) of %{*), the
annihilation operator; g(x) denotes the determinant of (g;;(x)). The usual connection
between spin and statistics is to chqose\a'nti-commutators in (2.12), cofresponding to
Fermi statistics, when s is half-integer, and commutators, corresponding to Bose
statistics, when s is an integé,r. / _

Our purpose is now to specify some nonrelativistic dynamical laws for the opera-
tors ¥(*}¥ in the Heisenberg picture. Let ¢(:')#(I) = 1©)* (¢, x) denote the Heisenberg

~ IThere is little danger of confusion.
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- picture creation - and annihilation operators with initial conditions ¥(#(0,x) =
Pe#(x). In order-to‘form‘ulate local dynamical laws for ¥(*}#(z), we need to be
able'to differentiate these fields in ¢ and x. This necessitates introducing a notion of
parallel displacement in E). Parallel displacement in E®) is defined with the help
of a U(1)'x SU(2)-connection, (a vector potential with values i in R su(2), where
su(2) is the Lie algebra of SU(2)). Once such a connection is fixed, derivatives of
sections !/)(')# are defined as covanant derivatives. Setting z° := ct,(z*) := (2°,x),
the covariant derivative in the y-direction is given by

D,= '53_‘,
where a(z) := a;(z)dz? is the U(1)-connection (i.e., a;(z) is the j*® oomponkent' of a
 real-valued vector potential), and ao(z) is the scalar potential, w(®)(z) := w(')(:z:)d:z:J
is the SU (2)-oonnectlon and w{’)(z) is the “Zeeman potential” in the spm 8 Tepre-
sentation of su(2), i.e.,

+ia,(z) + w)(z) , (213)

“’(m) =i E wua(z)L o (214)

‘where (L(') Yii=1 are’ Hermitian - we are physicists - generators of su(2) in the spin-s

representation, normalized such that L“/ A= o4, where 01,03 and o3 are the usual
Pauli matrices. We shall see that we should identify a with the electromagnetic vector
pdtentia.l up to fnultiplication‘by a constant of nature. What about w(#)? Clearly
the spin connection Ap, introduced in (2. 8), must enter the definition of w(®), But
we can add to A a one-form, p, transformmg under the adjoint representation of the
SU(2)-gauge group. The sum is then still an SU(2)-connection. Hence

wi)(z) = M(z) + p{)(z) (215).
~where . L - B
A(a)(x) = .% Bz;_J EABCA A (:t)L(") ) (2.16)
€4BC = eABC s the sign of the permutation (ABC) of (1 2 3), and where.
puN(z) = S puala)L§) - (2.16)
A=1

, Under an’SU (2)-gauge-transformation'of the cotangent bundle, p}“) transforms as

follows:

pu)(z) - Rp I (2) = UNR()p I (@URE) . (217).

- The transforme\ttion law of X,() can be inferred from (2.10).

If the dreibein (e#;) is time-independent Ao vanishes, but after a time-dependent
SU(2)-gauge - transformation A may be different form zero. In general, po will be
different from zero. | ' '



We shall see that, physically, (po,p) describes Zeeman - and spin-orbit couplings
of the'magnetic moments ca.med by the particles to the electromagnetic field. Geo-
metrically, the part (po, p) of the SU(2)-connection w yields non-trivial torsion. ‘

Having introduced a U(1) x SU(2)-connection and defined covariant differentiation
of p*I#, we are now in a position to fbrmulat,e local dynamical laws. It is convenient to
use the Lagranjian formalism, but we could also work in the Hamiltonian formalism;
see [3]. Let us consider a system .of non-relativistic particles of fixed spin .s and, to
simplify our notations, drop the superscript (). OQur ansatz for the action of the
system is (dz = dt dx)

S, biaiw,0) = [ V(L delihe(d Doy)() |
gk'(tsx) . - R S " ’ '
-T(-‘i’ipk'ﬁ) (3)("51)1'/’)(3) -U(¥ ,1/’)(“)] ) (2.18)

where the covariant derivatives are given in (2.13), m is the effective mass of the
particles, and U(y*,v) is a U(1) x SU(2)-invariant functional of ¥* and ¥, e.g., -

U o)) = [5y/av)y : (5 x)p(x) — )V (x - )
-x (P, y)¥(t,y) — n) s +u(E, X)L x)p(t,x) . (2.19)

" The double ¢olons-indicate Wick ordering, V'is some repulsive pair potential, n is the
background density of the: system, and v(t,x) is a possibly time-dependent one-body
(background) potential.

We recall that A C R x M is a cylindrical region to which the system is confined.

- At fixed time t we impose Dirichlet boundary conditions at the boundary, 9§, of the
region §2; to which the system is confined. '

The field equations (or Euler-Lagrange equations) for 1(z) and ¢*(z) follow by
setting the variation of Sy with respect to 1*(z) and 1(z), respectively, to zero. '_I‘he
resulting equations are reminiscent of the Pauli equations\ for ¢ and ¢~.

In order to interpret these equations physically we start with a simple situation:
We choose space M to be given by E? (the z —y plane in L = E3) or by E3; g;;(t,x) =
6;j, for all times ¢ and all x € M , A = R x Q, where Q is some time-independent
open set in M. The-field-equation for ¥(z) obtained by varying the action :55-defined
in (2.18) with respect to 1*(z) then essentially reduces to the Pauli equation found
in standard text books of quantum mechanics [20], with a minor modification of
order 1/m(moc)? discussed in [5], provided we identify the U(1)-connection a with
the electromagnetic vector potehtial

aj(z) = 1= As(z), and a,(z) =~ (), (220

where —e is the charge of the particle, ¢ is the electrostatic potential, and the coeffi-

cients of the su(2)-valued components pu are expressed in terms of the electromagnetic
field (E, B) as follows: |

 poal@) = —£By(2) @)



where B,(z) is the A-component of the magnetic ﬁeld B(z) in the basis (e(z),e?(z),
3(1‘)), and ) '
pra(z) = -'—' E eracEc(z) - (2.22)
€c=1
with E¢ the C-component of- the electric. field £. In these equations y is.the magnetic -
moment of the partlcles, (up to a factor 2 ) For electrons, u =~ ~ =, Where m, is
“the electron mass in empty space. [In standard situations of solid state. physics, the
effective mass m can be considerably smaller than mq.] The symbol £ 4c is defined
by

‘ EkAC = EkAc(:l:) = ele(Jz)EDAC , (2.23)

where ep ¢ is the sign of the permutation (DAC) of (123). Of course, in the present
case ePy(z) = 6P, but formula (2. 23) is valid in general. Formulas (2.20)-(2.22) have
been derived i m [5] by comparing the Euler-Lagrange equations corresponding to the
action Sp with the usual Pauli equation, including the Zeeman term and spin-orbit
couplings. .
It is now straightforward to find the correct physical interpretations of the con-
“nections e -and w for'spaces.M-which: are arbitrary Riemannian spin.manifolds. The -

. -U(1)-connection a is still expressed in terms of the electromagnetic vector potential

A = (—¢, A) by formula (220) The SU(2)-connection w is given by
Wy = Ay + py s \ _ o (2.24)

where A, is the affine spin connection corresponding to the dreibein e#; (z), see (2.8),
and the coefficients of Pu are given by

poa(z) =—-2—CEA1(m)B;(z)_=_'—2£C-BA(x) (2.25)

where (£4!(z)) is the inverse of the dreibein (e*(z)) and B, is the l-component of B

in the basis (dz?,dz?, dz3); moreover

pia(z) = —;‘icebj(z)SDAcgc'(i)El(z) |
= —Lel(@)E), e

where E, is the I-component of E in local coordinates. Note that (2.25) and (2.26) are
consistent with the transformation law (2.17) of p, under SU(2)-gauge-transforma-
tions. : ,
We recall that the potential V in (2.19) is ‘a pair potential (e.g. Coulomb, for
--charged particles, or van der Waals, for neutral atoms or molecules), and v is a
potential created by the background in which the particles are moving; (v might
depend on the scalar curvature of M).
We now suppose that the background of the system is moving, according to some
classical flow ¢(t,-). Here ¢(t,y) is the posmon in M of a point particle at time ¢



starting at position y at tirné_ 0. Then, in the z-coordinates, the on&bd@y potential
v(z) and the magnetic and electric fields Ec(z) and E.(z), created by thg background
are time-dependent. This implies that, in the time-independent x-coordinates on M,
the Hamiltonian of the system is time-dependent which complicates the mathematical
an‘alysis of the system, in-particular-the-analysis of its thermal equilibrium properties.
It is quite clear; physically, that thermal equilibrium in such a system will be: reachgd
- locally in regions moving with the background, (according to the flow ¢(t,-)). Thus,
we ought to formulate quantum mechanics in “moving coordinates”, (y!, y?,y*), where

x=4¢(t,y), ie, y=¢T(t,x). (22

‘Time will not be transformed. In the new coordinates (y!,y?,y%), the one-body
potential v(t,y) and the background fields Bc(t,y) and E,(t,y) might now be time-
independent. In this case, the Hamiltonian for spinless particles (s = 0) will be
time-independent, and we can a;pply the rules of Gibbsian statistical mechanics to
study thermal equilibrium. ‘ | ’
Uhfortunately, for spinning particles (s = 1/2,1, .- ), the situation is not quite as
-neat,:because, in ‘rthe'yvcoordjnates, the dreibeins '&*(y)-are now time-dependent:

#40) = A ) 2L (228

In order to eliminate as much of this undesirable time-dependence as possible, we
may try to perform a suitable SU (2)-gauge transformation on the new dreibeins
é*(y). What is the optimal choice? The answer is, perhaps, somewhat ambiguous,
in general. But the following choice tends.to be quite optimal: Let (fi(t,x)) be the
vector (velocity) field generating the flow ¢(t,.), i.e., |

Z80Y) = S dty). (2:29)
Let
f“(t,x) = e"j(x)fj(t,x) .

Then the infinitesimal rotation of .an orthonormal frame carried along by:the flow ¢,
at the point x and at time t, is given by

W5(t,%) = 2{(08/4)(t,x)  (Ga )6, %)} (230)

where 04 = £4(x)zZ:; see (2.6). The vector (@, x) dual to the antisymmetric matrix
(Q45(t,x)) is called the vorticity of the vector field f and is the local angular velocity
of the rotation induced by ¢ of a frame at the point X, at time ¢.

We define a rotation matrix R(t, x)‘A B by setting

. . t - A ‘
R(t,x)Ag :=T[exp /o dm(t',x)] 5, | (2.31)



where T denotes txme ordermg [The r. h s. of (2.31) can be defined, for example, by :
a convergent Dyson series if Q(t x) is uniformly bounded in t.] We now define |

' é‘;(y) = ~A'(y) R(t ¢(t y))ABeB (y) ’ ' (232)

where é8,(y) is given by (2.28). ‘We also define the following transformed-quantities:

akls . ay 6y mn
M(ty) = Fem 5gn9 (L é(tY))

b(t.y) = Uyt d(t.y)
a(ty) = 3 {U("(t,y)w,"(t (LYt y)"

+UCt,y) (5;711-(’)); (t’Y)}, "

1 .
(t,y) = UOQy) -[wé”(t,¢(t,y))+g—;wz‘"(t,¢(i,Y))] Utht,y).

+ U, y) U"’(t ), (2.33)

where : '
- Ul y) = U(')(R(t,¢(t,y))) :
and, for [ =1,2,3,

( aa,UM) (t,y):=U® ( - R(t, x)) (2.34)
Ix=¢(t,y) :
Finally, we have
a(t = _33_’_ t,o(1
| ak( 7Y) " aykal( ’¢( $y)) ’
and | 52! | »
ao(t,y) := ao(t, 4(2,y)) + o “—ai(t, 4(1,y)) - : (2.35)

~ Our aim is now to rewrite the action S introduced in (2.18), (2.19) in the moving
y-coordinates, using the transformations (2.32)-(2.35). By (2.33), (2.34),

$(t,x) = U(R(,x))"$(t, 67 (t,%)) - o (2.36)
Hence | ,
DR ) g #(6%) = gb(E,y) = Fi, )5 (6)

— Y Bt y) LYY (1Y) » (2.37)
4A,B.C

where —fi(t,y) is the j®* component of the vector field generating ¢~'(t,-) in y-
coordinates, and Q4p(t,y) is the vorticity of f in y-coordinates with respect to the



dreibeiﬁ (éA(t,y))- By comparing (2.37) with the last equation in (2.33) and with
(2.34) and (2.35) we see that ' ‘

U@(R(t,x)) (19-+iao(x)+w§,‘)(¢)) ¥z) - (239)

R . a .. . i
= (L2 +isots) + 88°0)) 9000 - F) (5 + 500+ ) $0)

We now define the new cova.ria.nt'derivativm

Dy = 1 gt +ido(y) + B (y)

b; = ‘5‘3‘,’+'&5(v)“igfj(y) + W;(y) 1(2-39)
where f; = §;1f', and the new one-body potential |
8(t,y) = v(téty) - TFWHE)
~i5 X ([ Me, 4

-as well as the two-body potential

ity —¥) = VSt Y) - 4(8,Y) - (241)

After these preparaﬁons, one verifies easily that |

Sa(¥*,¥5a,w0,9)
= 5;(9", %5 8,9, f,9)
- ]A Vit y)dy [ike(d" Dod)(y)
~ ki o . A
_.Lz(t;xl(_iwk«p)'(y)(-iw,w)(y)
~U )W)+ (242}

where in the definition of I/ the potentials # and V of (2.40) and (2..41) are used, and
A= {®,y) : @;x=¢(t,y)) € A}.-To prove (2.42), one expands the r.h.s..of (2.42)
in powers of f, integrates by part, and compares the resulting expression to (2.38),
using (2.40), (2.39) and the fact that (U®)y)*(U)yp) = ¢*ep

" Let us pause to interpret the result (2.42). By (2.39), — f, enters the action S
as a contribution to the U (1) connection. By (2.20), —mf; and A, play analogous
roles, i.e., .

- mf — ";A s (2.43)

The vector potential A gives rise to the Lorentz force in the classical limit. The
Lorentz force has the same form as the Coriolis force if one replacesfé by —2mS],
- -where {1 is the local angular velocity which is precisely half the curl of the vector field



f Thus, f is the vector- potential that gives rise to.the Conolls force in the class:caJ
limit. By (2 37) and (2.38), the new action $ contains a term

A. - ﬁ - )\ a :
¥ -(ﬂ -5 L ’) b, | (2.44)
where Q is the curl of f This has the form of the Zeeman term
% R ‘ :
- .=J) ‘
mﬁ( o )zz:, o (249)

which, by (2.25), (2.24) and (2.39), also appears in S Of course, p B is precisely the
angular velocity of spin precession in a magnetic field.

Next, we must analyze the one-body potential ¥ in moving coordinates. By (2.40),
v is complez-valued, unless

i.e., unless the vector field f is dweryence free A divergence-free vector ﬁeld generates
a volume-preserving flow ¢, hence

é(ta y) = det(@kl(t, y)) = g(t) ¢(tv Y)) ’ (247)

Thus, for volume-preserving (i.e., incompressible) flows, and only for such flows, &
- is again real-valued. [This is, because if volume is presérved by ¢ then, by (2.47),
‘the quantum mechanical time-evolution in the moving coordinate system preserves
probabilities with respect to the volume element +/g(t, 4(¢,y))dy, and hence is gen-
erated by a Hermitian (selfadjoint) Hamiltonian!] But & contains an additional term,
fJ (v) f,(y), that was not present in the original one—body potential. What does

it correspond to physically? It is the potential of the centrifugal force, (because
23 2:(fi(t,y)f;(t,y)) is precisely the i- tomponent of the centrifugal force at the point

Y, at time ¢; note, mcxdentally, that & f f is the classical kinetic energy of the particle
in the rest frame which must be subtracted in the y-frame).

In conclusion, we find that quanturp‘mechanics in moving coordinates is Hamil-
tonian, with a Hermitian (but-possibly still time-dependent) Hamiltonian operator,
iff the flow ¢ defining the moving coordinate system is volume-preserving, or incom-
pressible. Henceforth this prbperty is usually required. It is worthwhile recalling that
in two space dimensions, incompressible flows are automatically symplectic (Hamilto-
nian) flows, because the vector fields generating them are divergence-free and hence
are dual to the gradient of some (scalar) Hamiltonian function.

Let us consider, as an example, a system of particles of charge —e and magnetic
moment y = =, with mo = m, (e.g., electrons, neglecting their anomalous mag-
netic moment). For such a system, we can eliminate, to order max(5?,|9; B|) the

effect of an external magnetic field B by choosing moving coordinates with vortic-

ity field 20 = —uB and velocity field f=-pA= fn{, where the electromagnetic

7 (ff’) | e



--vector potential Ais chosen in the Coulomb gauge, div A = 0, in order for f to be
divergence-free, up to a modification of the one-body potential v by the potential
-2 - f of the centrifugal force and additional spin-orbit couplings, proportional to -
derivatives of B (if B is not homogeneous). This theorem follows directly from (2.43)
_ (2.45). It is‘the quantum-mechanical version of Larmor’s theorem. (This theorem .
can be generalized, in order to take anomalous magnetic moments into account, by
suitably changing the definition of R(t,X) in eq. (2.31).) '

Before we turn to some applications of the formalism presented in this section, we
wish to emphasize once more that it applies equally well to (one-), two- and three-
dimensional systems. It often h&ppens in solid state physics, e.g. in-two-dimensional

_heterojunctures used in measurements of the quantized Hall effect, that the system .
exhibits an approximate internal symmetry described by some compact group G. The
spinors %) then transform according to some non-trivial representation, 7, of G. A
breaking of G might be described as the effect of coupling #(*)# to an external gauge
field with values in the representation dr of the Lie algebra of G. Let us denote this
gauge field by Z. By modifying the covariant derivatives, ' |

D, D, :=D,+dx(Z,), (2.48)

we may easily extend the entire: forma]jsmﬁdeveloped in this section to systems with
gauged internal symmetries. This is important in applications, (e.g., to the quantum
Hall effect). . : ‘

Note that the action Sy introduced in eq. (2.18) is U(1)an X SU(2)spin X Ginternal
gauge-invariant: It does not change if, for an arbitrary real-valued function x, an

SU(2)-valued function R and a G-valued function g, the following substitutions are
 made: '

14
O - XUC(R) @ 7(g)p™

a, = a,—0d,x, ,

w, — Rw,R*+ RO,R", " (2.49)
and

Z,— 92,97 + 90,977 .

Thus, barring gauge anomalies, (which actually cannot appear in systems of finitely
' many non-relativistic particles), the non-relativistic quantum mechanics of such sys-
tems is U(1)em X SU(2)spin X Ginternal gauge-invariant. Ward identities expressing this

_.gauge-invariance turn out to play. an.importax‘it..role in establishing certain universal
properties of such systems; see [5] and Sect. 4.



3. SOME KEY EFFECTS RELATED TO THE U(1)e x SU(2), - GAUGE-
INVARIANCE OF NON- RELATIVISTIC QUANTUM MECHANICS

Before we turn to our main topic, the analysis of two-dimensionl, incompressible
‘quantum fluids and their relation to one-dimensional chiral current algebras, we wish,
in this section, to sketch some effects in quantum mechanics related to its U/(1)em X
SU(2)spin( X Ginternat)-gauge invariance. Most of the material reviewed here is well

known, but our perspective, emphaslzmg ga,uge-mvana.nce, may be somewhat novel
in a few instances. .

(1) The Aharonov-Bohm effect [21].

A key effect reflecting Weyl’s U(1).-gauge principle realized in quantum theory is
the Aharonov-Bohm effect: Consider the scattering of quantum mechanical particles
at a magnetic solenoid; (the wave functions of the particles are required to vanish
inside the solenoid). Then the diffraction pattern seen on a screen depends non-
trivially on the magnetic flux, ®, through the solenoid in a periodic fashion, with
~period ¢ A (or » in the units used in Sect. 2), where g is the.charge of the particles. This

isa consequence of the fact that the vector potential A outside the.solenoid cannot be
gauged away, globally, in spite of the fact that there is no electromagnetic field, thus

leading to non-integrable U(1)-phases of quantum-mechanical wave functions which

change the diffraction pattern.

The Aharonov-Bohm effect explains the possibility of fractional (or 6-, or abelian
braid-) statistics of anyons [22] in two-dimensional systems: Anyons are particles
carrying -electric-charge ¢ and ;nagnétic flux & (= og'g, where g .is a “Hall con- _
ductivity”) and hence give rise to Aharonov-Bohm phases which one can interpret as
statistical phases.

After what we have learned in Sect. 2 on the U(1)-vector potential of Coriolis
forces, it is clear that there should also exist a “tidal” Aharonov-Bohm effect: Consider

~ a mass-current conducting superfluid in a large container penerated by some straight
cylindrical tuBe that excludes the quantum fluid. Now set the fluid in circular motion
around the axis of the tube with velocity field f, where |f(r)| = -—— - at-a'distance
r from the axis of the tube, and V is a quantity of dimension cm’/sec, the total
vortxcxty [We note that V = %AL;, where M is the mass of the particles constituting
the quantum fluid, L, is the expectation value of the component of the total angular
“momentum operator parallel to the tube in the state of the system, and N is the
particle number.] Small mass- -currents excited in this system, scattered at the tube,
“will exhibit an Aharonov-Bohm -effect: depending periodically on V, with period ﬁ,
where m is the mass of the particles constituting the current; see (2.43).
While this effect may be somewhat difficult to test experimentally, it is unportant
- theoretically: Consider a superfluid film with manifestly (e.g., by rotat\xng it) or



;spontaneously‘ broken time:reversal and -reflection-in-lines invariance. Su.cl.x a two-
dimensional superfluid will, in general, exhibit vortez ezcitations of vort1c1ty. V.=
n—){‘; , n=0,%1,%2,--, where M is the mass of the opnstituent particles in Lgle
superfluid, and fractional mass (rather than fractional charge) 05'V, whereoy = 50
is the “tidal” Hall conductivity. Such excitations give rise to Aharonov-Bohm phases
and hence are anyons if o is not an’integer, i.e., if the superfluid shows.a fractional
utidal” Hall effect. The presence of such excitations may be tested experimentally by

' measuring fluctuations in the longitudinal resistance of superfluid current conduction;
(see [23] for an analogous experiment). _

"' In superfluids of particles with magnetic moments there are mixed “tidal” and
electromagnetic effects (e.g., binding electric charge or magnetization to vorticity).

See also [24] for a discussion of various effects encountered in superfluids.
(2) Flux quantization [25].

A superconductor exhibits the Meissner effect: A magnetic field cannot penetrate
into the bulk of a superconducting material. However, in a type II superconductor,
. thin magnetic field tubes can thread through the bulk. They have the property that
they carry a magnetic flux ® which is-an integer multiple of %, where ¢ is the charge
of the particles in the condensate, (e.g., ¢ = —2e, for BCS pairs of electrons). ‘These
tubes are called Abrikosov vortices. The quantization of ® is explained by requiring
that outside an Abrikosov vortex the quantum mechanical properties of the system,
in particular its superconducting nature, remain unchanged. From what we have said
about the Aharonov-Bohm effect it follws that this requirement is fulfilled precisely
if @ is an integer multiple of 2. 7
The formalism developed in Sect. 2 makes it clear that the Meissner effect and
- flux quantization for Abrikosov vortices have their partners in the theory of super-
fluidity: Consider a superfluid in some container. Now set the container in uniform
rotation. The superfluid inside the container abhors angular velocity which would de-
stroy the superfluidity and does, therefore, not follow the rotation of the container’s
walls. However,.just. like there can be Abrikosov vortices in a type II superconduc-
tor, the superfluid can eventually be set in motion, and the motion is generated by
a velocity field f, whose curl, 26}, is localized along thin tubes. The tidal variant
of the Aharonov-Bohm effect then predicts that the total vorticity in-such a-tube is
quantized to be an integer multiple of ﬁ, where M is the mass of the particles (e.g.
SH e-pajrs).vconstituting the superfluid. [This can also be understood by appealing
to the quantization of orbital angular momentum.] If, in such a superfluid, one can
- excite mass-currents of quantum mechanical particles of mass m < M one may be
able to test the tidal Aharonov-Bohm effect.
~ Our conclusions survive a more detailed theoretical anaysis (see e.g. [26]) and

are apparently tested experimentally. The phenomena described here may also be



~relevant in the astrophysics of neutron stars which are apparently superfluid.
(3) The Aharonov-Casher effect [27]. |

Consider a system of quantum mechanical particles with spin s, electric c..hatge 0, |
but with a magnetic moment # # 0, in a-plane or in three-dimensional fspaoe. [The
paritcles could be neutrons, or neutral atoms,....] Following Aharonov and Casher
we would like to study the influence of an external electric field on the dynamics oi”
such particles. As a consequence of relativistic effects rapidly moving particles will,
in their rest frame, feel a magnetic field that interacts with their magnetic moment.

In the formalism of Sect. 2, this effect should be described as follows: We choose
the dreibein (e4(x))3_, to be the obvious one, namely e4;(x) = 63, for all x, (with €3

‘perpendicular to the plane of the system, in the case of a two-dimensional system).
By equations (2.15), (2.21) and (2.22), the S U(2)-connection w on the spin-s spinor
bundle E®) is given by ’

3
w(x) = i3 wu(x)LY, with
A=1

woa(X) = —%BAX):O, and
w,-A(x) = "f;E:‘ADED(x)-

For general electic fields, the curvature, dw(x) + (w A w) (x), of the SU(2)-connection
w will not vanish on full-measure sets of space, and so we are not surprised to find
that the electric field E(x) gives rise to non-trivial spin-orbit interactions. However,
if we consider a system of particles confined to.the z — y plane in Einiovinguin the
electric field of a charged wire placed along the z-axis with constant charge @ per unit
of length we encounter an SU(2)-version of the Aharonov-Bohm effect: The electric
~ field E(x) is then given by E(x) = ;,%;(z,y,O), where r = 1/zZ + 2. The coefficients
of the SU(2)-connection w are given by

v

walx) = LBM=LELy, @1
‘UJgs(X) = —fEEj (X) = —Sl;chz:c y (3.2)

Cwy = wip =0, for i = 1,2, and wa;(x):—-which does not vanish.— does .not.enter the
dynamics of a system confined to the z — y plane. One then checks easily that, for
" the two-dimensional system in the z — y plane,

dw(x) + (w‘/\ w)(-x)-zw%?—cS(x) , , (3.3)

i.e., w is flat outside the wire.
- The quantum mechanic,s of this system is described by the action S, introduced
in (2.18), with A = R x (E2\{0}) , a, = 0, and w(? = iw, LY, with w3 = 0 and



w;s a8 given in (3.1) and (3.2). The point .i‘s‘.t'hat the scattering of the particles a:t
the charged wire depends on its charge per unit of length, Q, because, althoxfgh “" 1s
flat except at the origin, it cannot be gauged away globally! Therefore, v gives r.‘se
to “non-integrable SU(2)-phase factors” in the wave functions of the particles which
affect their interference patterns. These patterns are periodic in Q with-a period
given by 1'!?, as follows easily from (3.1), (3.2) and (3.3). .

The effect described here was first described by Aharonov and, Casher [27} in a
somewhat more classical language. "

Next, let us consider a two-dimensional system on a cone with tip at x = 0.
The system consists of particles with non-zero spin. Then the spin connection B,
although flat for x # 0, cannot be gauged away globally, although p, = 0 if there
are no electromagnetic fields. The SU(2)-connection w has the same form as in the
previous example, but Q is now given by the defect angle. Scattering of particles at the
tip of the cone now yields interference patterns depending on the defect angle Q. This
is the “geometricalvversion” of the Aharonov-Casher effect which is presumably better
known than its electromagnetic cousin, see e.g. [28]. What might be more surprising

.~ is-that we could consider spinning particles on.a two-dimensional crystal.lattice with
disclinations. The scattering at -a disclination ‘should also display a “geometrical
Aharonov-Casher effect”.

Do spinless particles “see” the tip'of the cone, or is spin important? The answer
depends on our choice of a quantum-mechanical state space: We must impose some
“boundary conditions” on the wave functions: W(r, ¢ + 27 — Q) = €*y(r, ), where
@ is the polar angle, and @ is some phase to be specified; besides some boundary
condition at r = 0. But no.matter how we choose 6, we can .make the tip of the
cone “nvisible” to spinlms particles by threading a magnetic flux through x = 0. If

“the particles have spin and a non-zero magnetic moment then, in addition, we would
have to put a charge at x = 0, in order to make the tip invisible.

Recall that the Aharonov-Bohm effect explains why two-dimensional quantum the-
ory can d&scribe anyons with fractional statistics, namely particles carrying charge
and flux (or mass and vorticity, ...). It is natural to ask whether the Aharonov-Casher
effect also has something to do with.exotic statistics in two-dimensional quantum the-
ory. The answer is yes! The Aharonov-Casher effect is closely related to the existence
of particles in-two-dimensional qﬁ'antum’x.heory with non-abelian braid.statistics [29)].
Such particles can have topological interactions that can be described by some SU(2)-
Knizhnik-Zamolodchikov connection [30]. Consider, for example, a two-dimensional
chiral spin quuid made of particlés with spin sb > 1 - if such systems exist. An
incompressible chiral spin liquid of this type will most likely exhibit excitations of
arbitrary spin s = 1/2,---, so. The claim is that an excitation of non-zero spin s < So

will exhibit non-abelian braid statistics, as pointed out in [14]. This will be discussed
--again inthe following section.



We would like to finally remark that there js also an analogﬁe of the Aharonov-
Casher effect where SU (2)spin is replaced by a gauged internal symmetry group G.
This effect can, perhaps, be tested in inhomogeneous heterojunctures. ft is ,rélated,
- physically and mathematically, to the existence of particles in two-dimensional quan-
tum theory with topological pair interactions described by a G-Knizhnik-Zamolodchi-
kov connection that, just as in the case of SU (2)spin, may give rise to non-abelian braid
statistics. ‘ |

(4) Einstein-de Haas (-Barnett) effect (31].

Consider a cylinder of iron or some other ferromagnetic material suspended at a
wire in'such a way that it can freely rotate around its axis. Let us suppose thét,
initially, it is demagnetized and at rest. Now, imagine that the cylinder is set into
rapid rotation around its axis. As explained in Sect. 2, the quantum mechanics of the
electrons in this material should now be described in a uniformly rotating coordinate
system fixed to the background. In this coordinate system, the electronic Hamiltonian
will be time-independent, but it now contains a Zeeman term

q. -;fa, (6
a tidal vector potential f = (AZ and a potential —-’g‘-](l‘/\:fz'l2 of centrifugal forces; see
(2.44), (2.39) and (2.30), and (2.40), respectively. These terms can be combined into
Q. J, where J is the total angular momentum operator [32]. The centrifugal forces
will be balanced by the chemical potential of the background. Thus the Hamiltonian
is essentially equivalent to the one for the cylinder at .rest in a magnetic field B =
—p‘.‘ﬁ. The result is, in both cases, that the cylinder is magnetized, because the spins
will be aligned with —ﬁ,:i:é,’ respectively. Conversely, if one turns on a magnetic
field, B, antiparallel to the spontaneous magnetizatiori of a magnetized piece of iron,
thereby increasing the free energy of the system, the system reacts by starting to
rotate around the axis of the external magnetic field so as to offset the effect of B
on the electrons by rotation. It thereby returns to a state corresponding to a local -
minimum of the free energy. A similar effect is observed when one tries to magnetize
a paramagnet. It would appear interesting to test a local version of this effect in a
“ferro-fluid”. If the magnetic field acting on a highly mobile ferro-fluid, locally in
thermal equilibrium, is- modified locally the fluid reacts by starting to flow with a
velocity field that optimally offsets the change in the magnetic field so as to restore
local equilibrium. The particle ~ and magnetic current densities induced are given by
n f and M ® f, respectively, where fis the velocity field, n the particle density and
M the magnetization density. A somewhat analogous effect for quantum Hall fluids

angular velocity) , | (3.4)

will be discussed in the next section.
- There is another variant [32] of the Einstein-de Haas effect: consider a beam of

non-relativistic particles, e.g. heavy ions, with spin, rotating in a storage ring with



-

some mean angular velocity (. Then they experience a tidal Zeeman energy, 'gn.ren -
in (2.44), in addition to the usual magnetic Zeeman energy (2.45). After rfalaxa:mn
to a steady state, the tidal Zeeman energy obviously affects the ratio of “spin-up” to
“spin-down” jons in the beam! _

Similar considerations-are important ‘e.g. in the study of electronic spectra of
rotating molecules in the Bom40ppenhéimer approximation; see [32].

(5) Supercurrents [25].

Consider a superconducting condensate of charged bosons, e.g. electron pairs, of
charge ¢-and mass M, in equilibrium.” Imagine that a magnetic field, ﬁ, is turned
on inside the bulk of this system. Since the superconducting state minimizes the free
energy of the system, the condensate reacts to turning on B by developing a flow with
velocity field f in such a way as to offset the effect of B. Neglecting the centrifugal
potential, — % f . f, and the magnetic field created by the resulting current, it follows
from egs. (2.42), (2.43) and (2.46) that the optimal velocity field f is given by

F_ 49 »7
=32 | |
where AT is the vector potential of B in the Coulomb gauge (i.e., div AT =0).
Thus the system exhibits a supercurrent density, 7., given in our approximation by
- > ¢'n o ~
Ja=gqnf= %&A T‘s (3.5)
where n is the density of the condensate. This is the London equation for type II
superconductors. Recalling that j(z) = 68.q.(A)/6A(z) - see also Sect. 4 — one may
proceed from eq. (3.5), fairly easily, to the Anderson-Higgs mechanism. ‘Note that,
by eq. (3.5), a supercurrent 7, is really a sign for the presence of a vector potential,
/—fT, and thus can be used for experimental tests of the Aharonov-Bohm effect!?

There is an SU(2)spin-analogue of these effects in condensates of neutral bosons
with magnetic moments. For example, in principle, one encounters an “SU(2)-
Anderson-Higgs mechanism” and, for spin-polarized condensates, spin supercurrents
induced by electric fields.

We have already alluded to-the Hall .effect earlier iﬁ this section. -Just as the
Aharonov-Bohm effect reflects the U(1)em-gauge-invariance of quantum theory, so
does the Hall effect for the electric current, as emphasized by Laughlin-[33].:: Actually
one might view the Hall effect as a time-dependent version of the Aharonov-Bohm
effect [21]. In the same vein, both the Aharonov-Casher effect and the Hall effect for
~ the spin current reflect the SU(2),pin-gauge-invariance of non-relativistic quantum
theory, as emphasized in [5]. In the next section, we attempt to unravel the universal
aspects of the quantum Hall effect in two-dimensional, incompressible electron fluids

with broken parity and time reversal invariance.

2N. Byers and C.N. Yang, Phys. Rev. Lett. 7, 46 (1961).



4. “SCALING LIMIT” OF THE EFFECTIVE ACTION OF A TWO-
DIMENSIONAL lNCOMPRESSIBLE QUANTUM FLUID.

In this section we study the generating (“partltxon”) functlon of two-dimensional
non-relativistic quantum systerns coupled to electromagnetxc fields:

Za(a,w) := / Dy DypelSsW wiawi/h - (4.1)

where the gauge potentlals @ and w have been introduced i in (2. 13)-(2. 16), and Sa
is the action of the system given in (2. 18); see also (2 39), (2.40) and (2.42). The
xntggratlon variables y* and 4 are Grassmann variables (anti-commuting c-numbers)
for Fermi statistics, and complex c-number fields for Bose. statistics. _

We have not displayed the metric, gij, of space explicitly, since it will be kept
fixed, and usually M = E2 with 9i; = 6;j, for simplicity. We realize that, for the
study of the stress tensor, pressure — and density fluctuations and curvature effects,
we would have to choose a variable external metric (or, at least, a variable conformal
factor in g;;). This would be important for an understanding of density waves, in
particular surface. density waves (which are interesting in two-dimensional quantum

--~+»fluids), and. of critical phenomena. But,-unfortunately, we.cannot-cover. everything

that is-interesting; ‘confer e.g. to [17]. We note, however, that curvature effects can
be studied by analyzing the. -dependence of Z,(a,w) on w which contains the spin
connection, A; see (2.15). | |

We define the electric charge — and current densities, j° and 7, by

=) = t/"(-":)1/)(50) |
i) = ‘——"y“(fr) (D) (2)¢(z) - ¥"(=)(Div)(=)] (4.2)
and the spin - and spin current dens;txes, #(z), by ' ' ‘

§%z) = ¢ (2)IWy(z),
itk

@) = —5—g"() (D) () [Wu(z) - V@D, (09
where (L(’) (’), Lg’)) are the generators of the spin-s representatlon of su(2). Sim-
ilarly, we can define the currents associated with internal symmetries; but,.for sim-
plicity, we shall not consider:them-here.- The electric current is conserved.{continuity
equation holds), but the spin current is, in ggneral, not conserved, because it. couples
to a non-abelian vector-potential. -It-is, however, covariantly conserved;.see-(4.11).

It is st"raightforward to infer from (4.1), (2.18), (4.2) and (4.3) that the time-
ordered current Green functions of the system are given, at non-coinciding arguments,

by

(r [ﬁj“-‘(z.-)ﬁs:'.(w)] )w

=1 =1
hid é

= ln+m I’I

f=1 6‘7'“;(3’1) =1 Swy,a,(y1)

In ZA(ay w) ’ . (4‘4)
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vwhere {(-))s, denotes the connected expectation functlona.l of the system in an ex-

ternal gauge ﬁcld oonﬁguratxon, (a,w), (with “ground state asymptotic conditions”,
as t — +o0, to be specxﬁc), and T indicates time-ordering. At coinciding arguments,
eq. (4.4) is modified by Schwinger terms, (but this will not be very 1mporta.nt)

We define the effective gauge field action by

S‘“(a,w) = !i- In Zp(a,w) . | ’ (4.5)

The idea is to try to calculate the “leadmg terms” in S§¥(a, w) which, via (4.4), will
provide us with information on the current Green functions. By “leachng terms”
we mean those terms which dominate at. large dlstanoe scales and. low frequencies.
The calculation of the leading terms in S§f may look like a fairly vast problem.
Actually, making a single assumption on the excitation spectrum of the system, “in-
compressibility”, and using the U(1)em X SU(2)spin-gauge-invariance of the system,
that calculation can be carried out, [5]. o

Let x be a real-valued function and R an SU(2)-valued function on space-time
N =R x M. Consider the gauge transformations in eq. (2.49), i.e.,

a—Xa, Xa,:=a,—0,x, _ (4.6)
and _
w~ fw, Pw,:=Rw,R"+ RO,R". (4.7)

Changing integration variables,

P - ¥Ry = XUCNR)p (4.8)

in the functionalintegral (4.1), and using the gauge-invariance of S, under the trans-
formations (4.6) — (4.8) and the fact that the Jacobian of (4.8) is unity, we find the
Ward tdentzty

.S'Xﬁ(a,w) = Sf\ﬁ(xa’Rw) - : (4.9)

for all x and R. [For a system of ﬁnitely many particles in a bounded region of space,
(4.9) can be proven rigorously. This identity is stable under passing to limits, for x’s
and dR’s of compact support.) . : :

By differentiating (4.9) in x or R and setting x = 0, R = 1, we find, using (4.4)
(for n + m = 1), that

| .Lﬁa“ (Vo("e) =0, (4.10)
and ' ,
%D“(ﬂ(s“)a,w)A =0, A=1,23,

9(=)
= 2wu(1’) A (y‘(z))aw ) o (4.11)

7= e (Vo@)@ (=)o)



for arbitrary a-and w. These “infinitesimal” ‘Ward identities play an important role
in determining the general form of S¢f A - They can be generalized, in an obvious way,
to systems with internal symmetries. | ’

We now proceed to determine the form of S in the scahng limit. We_ need to
consider ever larger systems and ever slower variations j n time. Let 1 < 6.<.00 be a
scale parameter. We set

%i(=) = oe)=%(3) . and
A = A':(") i=6Ao, (4.12)

where v;; is a fixed metric on M (e g %ij = 6;;), and Ay is a fixed space—tlme cylinder;

o= () =06 =0, Eeho. (413)
Then
| O _ 10 :
5 =0 5 (4.14)

We propose to study the reaction of the system to a small change in the external
-.gauge: potentials a-and w. - We choose fixed -background potentxa.ls, ‘e {(z).and.w(z),
 defined on all of space-time, and set

0,0@) = aca(2) + 675 (3) (a13)
and . ,
w,O(2) 1= we,u(z) + 07", (-:-) , (4.16)

where &,(£) and w,({) are fized functions defined on Ao. If m is the effective mass
of the particles and u their magnetic moment in physical (t,x)-coordinates then the
mass m(?) and magnetic moment () in rescaled coordinates, T = ig,f, are given by

m® =m-.4 , and p = po7t (4.17)

as follows from egs. (2.18), (2.25) and (2.26), (i.e., in the rescaled system the particles
-are heavy and have small magnetic moments. Moreover, the range of the two-body
potential, in the rescaled:system, becomes shorter and shorter, as § becomes.large).
One basic assumption underlying our analysis is that S5 (a®,w®) is four times
continuously differentiable in a¥)(z) = 6~'d, (%) and ®{¥)(z) = O‘Itbh-;(%).;atj&ff)_ =
W) = 0, for a suitable choice of background potentials, a. and w, and for &, and
1, constrained to belong to suitable spaces, A and W, of fluctuation potentials, to
be specified later. We may then expand Sﬂo to third order in &) and @), with a
fourth order remainder term. Among the terms thus generated we shall only retain
the leading terms in 8, namely those scaling with a non-negative power of § which
are commonly called relevant and marginal terms. The sum of these terms will be
denoted by Sj, (5, ), a functional that we call the scaling limit of the effective action.



:Using‘ identity (4.4) to find the Taylor coefficients of Sef (a9, w'), plugging
(4.15) and (4.16) into the resulting expressions, and finally passing to (£°,§)-coordi-
nates, we find that the coefficient of the term of n'® order in & and of m*® order in W

in S5 is given by a distribution
‘P:lmwm»h -¥-Am(£l? e ’ fﬂ) L/} CR qm)

which, at non-coinciding a.rgumehts, is given by

e (r [T o) fesen)) . @

=1 =1 Qe We

in accordance with the circumstance that, in three space-time dimensions, the scaling
~ dimension of currents is 2! B '

We may now formulate our basic assumption of incompressibility: We imagine
that, for certain choices of the backéround potentials a. and w,, the excitation spec-
trum of the system above its groundstate (emergy) is such that connected Green

_functions of its currents have “good” cluster properties (better than in a system with
. .Goldstone bosons), in such a way that the limits of the distributions .5 """ Ay dpm;s
~.as § — oo, are local distributions, i.e., sums.of products of derivatives of 4-functions.

This incompressiblity aésumption is by no means a mild or minor assumption. It
tends to be a really hard analytical problem of many-body theory to showthat, for
a concrete system, it is satisfied. [For some recent ideas about how to establish it for
quantum Hall fluids at certain filling factors see [34,35,14].] What we propose to do-
here is to use it to calculate the geﬁeral form of the action S}, in the scaling limit.
We only sketch some ideas; for the details see [5].

Our calculation is based on the following four principles:

(A) Incompressibility. @p* """ 4 .4, converge to local distributions, as § — oo,
for all n and m.

(B) U(1)em X SU(2)spin-gauge-invariance: Ward identities (4.9) - (4.11).
(C) Only relevant and mafyinal terms are kept in S} . |

(D) Eztra symmetries of the system, e.g., for ap = 0, w4 = 643w,,3, global ro-

tations ‘around the..3-axis. in-spin 'space are a continuous, global:symmetry of

the system with an associated conserved Noether current s,3(z); or translation

invariance in the scaling limit (§ — o00)---, are ezploited to reduce the number
of terms. o

From (A) and egs. (4.15) and (416) it immediateiy follows that all terms con-
~ tributing to S5}, of order 4 or higher in @ and & are irrelevant, (scaling like 82, D >



- 0). In particular, a fourth-order remainder. term does not contribute to Sy , (;;rin-
ciple (C)). We now present the final result, in the special case of systems which are
incompressible for a choice of w,, satisfying

wqu(z) = 6A3wc“3(.’t) ) ; : ‘ (4-19)

or, in vigw of eqs. (2.25) and (2.26), for a backgrouhd electromagnetic field (£., ﬁc)
with 4

B(z) = (0,0,B.(z)), Ec(z) = (Ei(z), Ex(2),0) , - (420)
and a spin connection
0 A, 0 -
(M4s) = ( =), 0 o) . (4.21)
. 0 0 1

in the coordinate system (e!(z), €?(z), e3(z)). In this situation, the scaling limit of
the effective action is given by '

| "
_ESAo(a,w = Aojga“dv+A m50,3dv
0
2 2 '
By~ -~ -~ -~
+ AZ:I/AoTl Wy AW, adv + Z /Aorz“"sABwa.,de .
= A,B=1
s ,
pvp ~ ~ -~
+ Z /Ao NaBcWuaW, BW,cdv
A,B,C=1

O [ andit X [ andie s [ oA da
+ 4WA°aAdaﬂ- /oa/\dw3+47r/j;°w3/\dw3

27 JA
k L2 |
+ G/Mtr (w/\dw+§w/\w./\w)+B.T. | (4.22)

~where ;2 is an electric ~ and mj a magnetic supercurrent circulating in the system
when a = a., w = w,; 7{* is a function symmetric in x and v, while 74" is antisymmet-
ric in g and v; the function n)g¢ is symmetric under interchanges of (zA), (vB) and
(pC) and vanishes if two or more of the indices A, B, C are equal to 3; dv = \/:/(—f)df
is the volume element on space-time; o, x, 0, and k are real constants, whose possible
values will be studied in Sect. 5; w(¢) = w{(£) + w(¢) is the total SU(2) connection,
with w®(€). = 6w(6¢), by (4.16); and “B.T.” are boundary terms only depending on
alaag, w|sn, Which will be studied in Sect. 5. In the last four terms on the r.h.s. of

(4.22) we are using a new notation:

2 ) 2
@ = Y a,de*, da= ) 8,a,dEe* AdE

#=0 ur=0
2 2 3 :
Wy = zmpadéﬁ‘ , w= Z 2 W04 df# .. (4.23)

u=0 p=0 A=1

See [5] for more details. | 7
In Sect. 5, we shall use results on U(1) - and SU(2) chiral current algebra to
determine the possible values of g, x, 0, and k and find some relations between them.



Here we wish to point out that the functions j#,m4, 7,75 and nlygc are not all in-
dependent, but are constrained by the infinitesimal Ward identities (4.10) and (4.11):

By (4.4)

¢ 6Sc ~’ - .
(7)) a0y = '——;gf%p—%-- ; (4.24)
553 (3,0
(O = (425)

The dots stand for contributions from irrelevant terms in the effective action. We
" calculate the r.h.s. of these equations by using (4.22) and plug the. result into egs.
(4.10) and (4.11). As a result we obtain the following constraints (see [5]).

o .
(a) ’ﬁa# (V9i¢) =0.
- _
(5) 7—;% (v/gm5) =0.
2 "
(c) _ Y €an {m‘3‘ - ZTf“wg,?,} W,
B=1 )
2 .
120y T, =0, A=1,2.
J=1 ,
1 2
(d) —=0; {\/g‘ff “W,4 + /9 ) _EABTS uﬁ’uﬂ}
‘\,/5 B=1
2
= -2 { EEABT{WII’UB - TZ‘W'JJVA} 'pr3
B=1 )
2 3 ;
-3 ean Y 1plpwiiibch,p, A=1,2. (4.26)

B=1 C,D=1" .

Constraints (a) and (b) just express the conservation of the supercurrents j* and mj
when @ = w = 0.

 If we impose (4.26)-(c) and (d), for arbitrary smooth fluctuation potentials w,
then it follows that |

my=71"=1"=0, forallpandv, (4.27)

in particular, the system-cannot be magnetized (m3 = 0) and cannot support persis;
tent spin currents. This may seem rather strange, because we would expect that if
W3 = —% By, for some-large magnetic field B. = (0,0, B,), then the system would be
magnetized in the 3-direction. What has gone wrong? The point is that the assumed
properties that S§¥ is four times continuously differentiable in @ and % and that the
system remains incompressible in an.arbitrary function-space neighborhood of (a., w.)
of sufficiently small diameter must fail for magnetized systems! The reason is that an
arbitrarily small fluctuation field @ which oscillates rapidly in time can destroy the
incompressibility of the system, and hence our estimate on the fourth order remainder
in the Taylor expansion of S¢ff breaks down. .



- We thus assume, for ‘example, that, for a time-independent background field w,,
the system remains incompressible and S§ is four times continuously differentiable

in (&,1D) on.the function-space sets
A = {i, €S}, ‘
W = {,4€8:d,,is time-independent} , (4.28)

where § is some Schwartz space neighbourhood of 0. Then constraints (c) and (d) of
(4.26) imply that '

0
00 _ _m3(§) i _ i ‘
() = P0as(E) " r=n =0, (4.29)
00
| - 0 000 —_ 73 (6) = .
7 » Naas(§) Bwwa(f) ’ for A =1,2;
all other r,f{g’; vanish. : (4.30)

Hence (m$) = (m3,0). Under .somewhat more restrictive assumptions on W, impos-
-~ ing e.g. relations (2.25) and (2.26) on w which couple @ to @, a non-zero spin current
m; = (m}, m}) is possible, too. For a more detailed discussion see [5].

A corollary of our derivation of Sh,» in particular of (4.29), using gauge invariance
and incompressibility, is the Goldstone theorem, [36]: If the magnetization, M =
y-z’img, does not tend to 0, as B.c-‘= (0,0, B.) tends to 0 (with wees = —£B,) then the
system cannot be incompressible at B. = 0, i.e., there are gapless extended modes,
the Goldstone bosons, coupled to the grouhdstate by the spin current; see [5]. Our
proof also works for systems with continuous non-abelian internal symmetries.

Next, let us briefly discuss the linear response equations (4.24) and (4.25) that
follow from our expression (4.22) for the effective action S}, in the scaliné limit, for
systems characterized by conditions (4.28) - (4.30). It is a simple exercise to verify
that

VIO GO = VIO + 5=e" (8,,) €)

+Eee P (Bb)(€) + (431)

and -

o© (4O en = Va@b1a8mEE) + 8102 c#(8,5,)(6)

+ 543'26—;5"Vp(ay’7’p3)(§ )

_ ;]%EM {(0.10,4)(€) — ancwn(©)wsc ()}

+ VI(6)2(1 = 84a)E T (§)Doa(é) + -+ (4.32)

where the dots stand for terms coming from irrelevant terms in the effective action,
or from terms of order two in % (e.g. a term proportional to 75%3¢) which are of little
interest in linear response theory. Furthermore, w,4 = wﬁ?A + Wya.



In order to understand the phys:cal contents of these equations, we must remind
ourselves of the physical meaning of the connections a and w elucidated in Sect. 2:
From egs. (2.20), (2.39) and (2.43) we know that

a(a) = = Ai(=) ~ T 1i(@). (4.33)

where A is the electromagnetic vector potential, —e is the charge and m the effective
‘mass of the particles in the quantum fluid, and f is a divergence-free velocity field
generating some incompressible superfluid flow. Furthermore, by (2.20),

aof2) = —-9(2) | S (439)

where ¢ is the electrostatic potential.
Since we are studying two-dimensional mcompr&smble quantum fluids on a surface
M imbedded in E3, it is natural to choose an SU(2)spin-gauge with the property that
e3(t,x) is orthogonal to the ta,ngent space of M at x, for all times ¢, as discussed at
’the beginning-of Sect. 2. Then the SU(2)-spin connection A(/2) has the form

M = ixos, §=1,2% and Ak = = kAaoe, ~ELduef | . (4 35)
It then follows from (2.24), (2.25) and (2.39), (2.44) that
woa(2) = —3-Ba(z) + 6402(a) + dos (4.36)

where ﬁ(z) = (0,0,9(z)) is the eurl of f in the dreibein basis (e4(z))3-,, and p is
the magnetic moment of the particles. Finally, by (2.15), (4.35), (2.26).and (2.33),

| "‘.’.iA(-"") = bas(Aj(z) +--°) - -4E-c 23: €iac(z)Ec(z) , (4.37)
C=1

where the dots correspond to terms proportional to derivatives of Q(t',x),t' < t, (and
are generated by the SU(2)spin-gauge-transformation deﬁhed in (2.31)).
Finally, we define tyhe charge density operator, in physical units

| p(6) = e /a(O)°(E) , (438)
the electric current density by |
3(e) = ec/a@)6), (4.39)
the spin density by :
- h -
56) = 5Va(©)5°) (4.40)

- and the spin current density by

5() = Ss©7(6) (a.41)



- Then equation (4.31) for t'heVO-component reads
(oo = p:(6) + =2 Ba(e) - 205(¢)
X (v k) - ev;(f)) +oey (4.42)

where oy = -fhia is the Hall conductivity, V - () denotes the divergence , R(¢) =
ccurl A(£) is the scalar curvature of M at ¢, and the dots stand for contributions from
irrelevant terms. It will turn out that

Xy ™= f;,lic (4.43)
is the magnetic susceptibility of the system in the 3-direction normal to the surface.
In (4.42) and the following formulas the tildes ~ indicate contributions from & and
w; (we have absorbed the spin connection ) into %, but without decorating it with
a 7). Next, one verifies that

(J{©),, = JiO) +oneE(¢)
gem

9 -
+ e o fi(6)

= X (LeaBite) - eciioyio))

b & (2Lp0 - 2r0)

n

27 \ 4c Ot
+ e, \ , : (4.44)

where 7 = £°/c is the rescaled time variable.
From (4.32) we find, for example, that

MO = M(E)+07" (L7 - B(E) -~ 2R(0)) + Koow - Ef)
o (BO-Za) 4, )

where M is the magnetization at (ac, wc), X, is the magnetic susceptibility at (e, we)
given in (4.43), and '

spin

is the Hall conductivity for the spin current. As eq. (4.45) shows, a}}’h‘ -is a pseu-

- doscalar. Next

. . o 2 . 10 .,
(SO ow = o (ev.a,-Ba(c) - 20,000 - 1B
20 R g,
+ = (g)) + kh2eii0,8,(6)

.mc 0

+ X1 (C#'l€‘jéj(€) +]71;-6-7f‘(5)) +--- (4.47)



_ where the dots stand for terms proportiohal to Ao and further irrelevant and higher-
order terms. A similar story could be told for (54(€)Ya,w» but we refrain from telling
it and refer the reader to his drawmg board, or to [5]. [We do not guarantee all signs -
and factors of 2 i in our formula.s‘]

We encourage the reader to notxce ‘how neatly our formulas summarize the laws
of the Hall effect, including effects due to tidal forces coming from superfluid flow
and due to the curvature of the sa.mple. [We believe that the tidal terms might be
relevant in the study of the transition from one plateau of oy to the next one in very
pure samples.]

Our next topic concerns the analysis of some quasi-particle excitations above the
groundstate in a two-dimensional, incompressible quantum fluid, whose effective ac- .
tion in the scaling limit is given by the action S, computed above; see (4. 22). For
simplicity, we start by oonsxdermg a flat, two-dimensional system of charged fermions
with vanishing magnetic moment, so that the SU(2)spin-connection w vanishes iden-
tically in an appropriate SU (2)-gauge, (e!(z), €*(z), €3(z) are chosen to be

‘time-independent, so that there is no tidal Zeeman term; see Sect. 2). We suppose
. that, in a small neighborhood of a suitably chosen background potential a. - typically
4. =0,b, = da. constant and of suitable magnitude — the system is incompressible.
Then the action in the scaling limit is given by

L - .o . | . .
- ESAO((I) = -/Ao Jjta,dv+ e -/Ao éAnda, (4.48)
up to boundary terms. The first term on the r.h.s. is unimportant in the following-

discussion, and we set j¥ = 0.

Let us produce a “Laughlin vortez” [37) in this system by turninglon a magnetic
field B(¢) = 8185(€) — 82 (€) in a small disc. [Actually, b(¢) could be a vorticity field
of a superfluid flow if, instead of a quantum Hall fluid, we consider a superfluid film.
We shall nevertheless use “magnetic language” in the following discussion.] From our
discussion of the Aharonov-Bohm effect in Sect. 3-(1) we know that this excitation
only disturbs the system locally, and thus may have a finite energy difference to the
groundstate energy, if

= / B(t,€)d%€ = n , nel. (4.49)
By eq. (4.31) for u = 0, we have that | '

(jb(f))u,w = '20—7;‘5(6) ’

and hence the charge of the excitation (background charge normalized to 0) is given
by '

0= [(°t,endE=0n. (450)
If o is not an integer then ¢ will be fractional, in general. Now, consider two such
excitations localized in.two disjoint small disks and interchange them along some



‘paths oriented anti-clock-wise. According to Sect. 3—(1), the Aharonov-Bohm phase
picked up in this process is given by o |

2756

=€

izon?

=", ‘ ‘ (4.51)

e ixgn
where we have normalized the statistical phase 8 such that § = 1 /2 corresponds to
Fermi statistics; 6 = 0 corresponds to bosons, and 6 # 0,1/2 (mod 1) to anyons [22].
Thus, Laughlin vortices are anyons, unless on? is an integer.

’Among the excitations that one can produce in this fashion there shouidv be the
particles constituting the system. Let us suppose that the state of the system is fully
spin-polarized, (as is the case for filling factors » <& 1,1 in quantum Hall fluids).
Suppose a mggnetic flux of ny produces a state of N electrons. From (4.50) we then
infer that ' ' '

o= y (452)
o
If N is odd this state is composed of N fermions and hence describes a fermion, so
 that, by (4.51), ‘ .
einno =-1. (453)

Thus no must be odd, too. In fact, one may show that if N and ng, have no:commOn
divisor then ng is odd. In particular, for N = 1 we conclude that |

o =1/ny, withngodd . (4.54)

This is the famous odd-denomiﬁatqr rule; see e.g. [38]. An excitation with vorticity
1 then has fractional charge ¢ = 1/n¢ and is an anyon, for ng > 1. =
Note that the vector potential, @, created by a pointlike excitation of charge ¢
located at £ =0 is giveh by / ; ‘
| ai(€) = —g-e’.---él—,- , (4.55)
as follows from (4.49) and (4.50) for (j°(€))e = g6o(€). This is the “U(1)-Knizhnik-
Zamolodchikov connection”. o : '
Next, we consider another “in vitro” system, namely a “chiral spin liquid™. [It is
‘not entirely clear that such systems exist in nature.] A-chiral spin liquid.is-a system of
neutrallparticles of spin s > 0 and with non-zero magnetic moment (x4 = 1, in present
units) having a spih—singlet groundstate for some non-zero, constant magnetic field,
B.. 1t is assumed, here, to be incompressible and to exhibit breaking of parity and
time reversal, but no spontaneous magnetization. In our formalism, the effective

action of such a system in the scaling limit is given by
1 .k 2 |
-=s = — = 4.56
hSAo(w) 47"./1\0tr(w/\dw+3w/\w/\w), R (4.56)

up to boundary terms. Under reflections in lines, w; transforms as a vector, wg as
a pseudoscalar and k as a pseudoscalar. Let us consider an excitation created by



‘turning on an SU (2)-gauge field w with field strength, g, given by
g(€) = dw(€) + w(§) Aw(f) -
For example, we may choose g to be given by

Fual€) = —E00() »

where &is some unit vector in R® and go is time-independent; Goi(€) = 0. By eq. (4.32),
the spin density of this excitation is given by

. k '
(O = E=90(8) » (4.57)
so that the expectation value of itg total spin operator, S , is given by /

(8o =% [ ao(e)€

Such an excitation is commonly called a “sz'non”. 'Quantum mechanically, spin is
quantized: §-§=4l(1+1),1 € 17. Consider a spinon of spin ! located at the point
&= §&,. Then eq. (4.57) says that §12(€) is the solution.of the equation

(EO)ub(6 — ) = —=dn6), )

where L® is the spin operator, S, in the spin-I representation; (see Sect. 2). A
connection @ for the field strength § satisfying (4.58), with go;(¢) = 0, is given by

Bo(€) =0, E(8) = IOy é “f‘lz (4.59)

Suppose, we now create a second spinon of spin ' moving in the background gauge

field w excited by the first spinon. Its dynamics is coupled to @ through the covariant
derivatives (see Sect. 2, eqs. (2.13), (2.14)):

D, =8, +iw,- L™, | (4.60)
with @, as in (4.59). Let us imagine that it makes sense to do “two-spinon quantum
mechanics” on a Hilbert space H() @ H), with

HO =D @ LM, dv) ,

where D) carries the spin-l representation of SU(2). By (4.59) and (4.60), the
covariant derivatives on H(") ® H(") are then given by

0 9 2:' - S )
Dl = == 3 ‘l)1 = — o 1 2 L(I) LU
D= D=t e ernt®

and

, 0 %

3 .
Dl=or, D'=-— 0 gLl - .
o=z i agg*k"‘lex &PZL ’ (4.61)



“These are the covariant derivatives. associated with the celebrated Knizhnik-Zamo-
’ lodchikov connection, [30). For the “two-spinon quantum mechanics” with parallel
transport given by (4.61) to be consistent with unitarity, it is necessary that

k=+(k+2), x=1,2, (4.62)

~ This follows from results in [30 39]. Recalling what we have said in Sect. 3-(3) about
 the Aharonov-Casher effect, we observe that the “phase factor” ‘arising inthe parallel
transport of a quantum mechanical spinon in the field excited by a classical spinon
‘with spin orthogonal to the pl§ne of the system is an Aharonov-Casher phase factor.
Let us now exchange the positions of two quantum mechanical, pointlike spinons
along anti-clockwise oriented paths. Then the “Aharonov-Casher phase factor” mul-
. tiplying the wave function is given by a matrix

RI(;:) : DO @ D) _, D) @ DO

“which is the braid matriz for exchanging a chiral vertex of spin ! with a chiral vertex
of spin ! in the chiral Wess-Zumino-Novikov- Witten model [30] at level «. It is given
by ‘

R =Tm@m(RW), (4.63)

where R(*) is the universal R-matrix of the quantum group U,(slz), with ¢ =
expin/(k + 2), and T is the flip (transposition of factors).r All this can be extended
to “n-spinon quantum mechanics”. The matrices R,,, determine an exoti¢c_quantum
statistics related to non-abelian (for & > 1, I,I' < £) representations of the braid
groups (more -precisely, the groupoids of coloured braids) which is-commonly-called
non-abelian braid statistics [40,29]. We wish to note that ! and I are forced to be
< %, i.e,, there are no spinons of spin > 4. One might call this phenomenon “spin
screening”. If the particles of spin s constituting the chiral spin liquid appear as

 spinon excitations above the groundstate then
£>2s, o (4.64)

since these particles carry-spin-s.-One can argue that the statistics of these:parficl&s
must be abelian braid statistics, i.e., they are anyons. In fact, it then follows that
‘they are semions (0 = 1/4). Now, for a given level x, the matrices Rf," ) define an
abelian representation of the braid groups if and only if 2! = «. It follows that, for a

chiral spin liquid made of particles of spin s
K=2s. (4.65)

Any spmon-exc:tatlon of spin I < s then has non-abelian braid statistics!
The reader may feel that our “derivation” of ¢ spinon quantum mechanics” from
the effective action S} (w) given in (4.56) is based on idealizations — see (4.58) - and



jumps in the logics - réasoningbetweén (4.60) and (4.61) - that might ma,kef it ap?eu
to be quite problematic. Actually, it turns out that our conclusions concerning spinon
statistics, in particular egs. (4.63) and (4.65), are perfectly correct. This follows from
an analysis of the mysterious'-boundary terms, “B.T.”, in the effective action;see [17),
and Sect. 5 for the example of anyons.

In order to understand spin-singlet quantum Hall fluids, one must glue the Laugh-

. lin vortices described in (4.49) ~ (4.53) to- the spinons discussed above. One checks

that for ¢ = 2/ng, npodd, and k =2s =1, a Laughlin vortex of vorticity n = —%
(!) glued to a spinon of spin s = 1/2 is an excitation of charge ¢ = —1, spin 1/2
and Fermi statistics, [3,17). These are the properties of an electron. In an electronic
quantum Hall fluid (without any very ezotic internal symmetries) one does not find
any excitations with non-abelian braid statistics. However, if one could manufacture

~ a quantum Hall fluid made of charge carriers of spin s = 3,3, ..., with a spin-singlet

ground state it would display excitations with non-abelian braid statistics [14]. It
may appear difficult to build such a system, in practice. But, perhaps, one can think
of incompressible superfluid films of particles of higher spin, with broken parity and

- -«time reversal, which would also exhibit excitations with non-abelian braid statistics.

The analysis sketched above extends, in a straightfoi‘ward way, to systems with
continuous internal symmetries and corresponding gauge fields; see [17].
It may be worthwhile emphasizing that in quantum Hall fluids with non-vanishing
maghetic susceptibility (spin-polarized Hall fluids) the fractional statistics of Laugh-
lin vortices always appears as a consequence of a combination of the Aharonov-Bohm
- and the Aharonov-Casher effect; (but notice that, for spin-polarized quantum Hall

~ fluids, the Aharonov-Casher phase factors are automatically abelian). This is a conse-

quence of the fact that electrons have a non-vanishing magnetic moment and follows
from eq. (4.42). '

Finally, we come to a brief comment concerning the relation of our definition of
the Hall conductivity oy = ‘—:-a as the coefficient of a Chern-Simons term, Z [ @A da,
in the effective gauge field action S} , see (4.22), of an incompressible quantum Hall
fluid to the more conventional definition via the Kubo formula [41]. It follows easily

from eqs. (4.4), (4.5) and {4.22) that.o appears in the following current-sum rules:
For every choice of a permutation (uvp) of (012),

32 = sign (wp) [(z - )" (T @7 W), 0, - (4.66)

These are three equations for one and the same quantity 0. The equation for (uvp) =
(012) is

iZ = [t~ (T 07y, ds dy (467)

s

which is just the Kubo formula (in “mathematical units”, with no guarantee for signs

+~1... and factors of x); compare e.g. to [41]). The other two.equations are an automatic con-

sequence of U(1)em-gauge-invariance. See [5] for a more systematic study of current



sum rules and proofs

Thouless and coworkers [42], and followers [43] have derived from the Kubo for-

mula that' :

o= gl (4. 68)
where ng is the groundstate degeneracy and c; is the first Chern number of a vector
bundle over a two-dimensional torus of magnetic fluxes (¢,4,). So, ¢, is an integer
whlch in formula (4.52), was called N = # of electrons created when one turns on
a local magnetic field of total flux no. Does our formulation “know” that ng is the |
degeneracy of the groundstate? Yes, it does! This follows e.g. from the material in
Sect. 5 and has been noted in [1]; (see also [17] for a more precise derivation).

Bellissard [44] and Avron, Seiler and Simon [45] have also given a definition of o
as an indez. Their definition is equivalent to ours, too, and the proof follows from
the material in Sect. 5; see Sect. 6 of ref. [3].

We finally note that o™ (for k = 0, i.e., spin- -polarized quantum Hall fluids)
“can'be shown to be given by a Kubo formula involving spin currents and can then
be shown to be proportional to a first Chern number of a vector bundle over a two-
-dimensional torus of electric charges per unit length (Qy, Q,).

In a fairly precise sense one finds that the Hall effect for the electric current is a
time-dependent form of the Aharanov-Bohm effect, while the Hall effect for the spin

“current corrosponds to the time-dependent Aharonov-Casher effect.

5. ANOMALY CANCELLATION AND ALGEBRAS OF CHIRAL EDGE
CURRENTS IN TWO-DIMENSIONAL, INCOMPRESSIBLE ... .
QUANTUM FLUIDS.

In this last section we optline some ideas on the origin of the quantization of the
values of the constants o, x‘, o, and k which appear as the coefficients of the Chern-
Simons terms in the effective action S}, of incompressible quantum fluids in the
scaling limit; see (4.22). This topic is intimately connected with the so far mysterious
boundary terms, “B.T”, on the r.h.s of eq. (4.22). Since this is a somewhat.technical
topic, we have to limit our review to a few basic aspects and refer the reader to [4,17]

for more details. : o
Briefly, our analysis of the boundary terms in S}, and of the quantization of the

- coefficients o, x, 0, and k relies upon the following two key ideas:

(i) The “important” - more precisely the anomalous - part of the boundary terms
in the action S}  is completely determined by the Chern-Sirhons terms in S},
by invoking U(1)em X SU(2)spin(X Gintenat)- gauge—mvanance of the total effective
action of non-relativistic quantum theory.

(i) This anomalous part of the bou_ndary terms of S}, turns out to be the gen-



erating functional of the connected Green functions of chiral current operators
which generate U(1)-, SU (2)- (and G-) current (Kac-Moody) algebras [9]. Some
physical and mathematical principles concerning the representation theory of
these current -algebras then constrain the values of the coefficients o, Xy7, and

k to belong to certain discrete sets.

-~ Remark on (ii). We already have found constraints on the values of o, (x;0,) and k
in Sect. 4 by analyzing the statistics of Laughlin vortices and “spinons” and imposing
the constraint that, among excitations composed of Laughlin vortices glued to spinons,
one should find excited states of the particles constituting the incompressible'quantum

* fluid — in the case of a quantum Hall fluid, the electrons or holes. In Sect. 4, it
‘turned out that if one imposes the principle of unitarity on the quantum mechanics
of spinons then k must be an integer. Our analysis of Laughlin vortices predicted o

" to be a rational number (with an odd denominator for quantum Hall fluids composed
of spinless, charged fermions). \

Lt us start our analysis by recalling a well known lemma that shows how SU (2)-

.. gauge-invariance forces k to be an integer: Let g be an SU(2)-gauge-transformation

with the property that |

g(j', &) — |, continuously as (7,&) — J0Ao , | (5.1)

orT — Foo. For Ao a cylinder, the family of all such SU(2)-gauge transformations
splits into disjoint homotopy classes labelled by an integer winding number, n(g);
(recall that x3(SU(2)) = Z!). Let g be a gauge transformation with winding number

n(g) # 0. The gauge-transformed SU(2)-connection, 9w, is given by
weiw= gwg~! + gdg™!. (5.2)

Let us study how the SU(2)-Chern-Simons term

. ,
Scs(w) = -/Ao tr(w Adw+ %w AwAw) (5.3)

in S}, transforms under the-transformation (5.2). The well known answer:is that
Ses(Pw) = Scs(w) + 27kn(g) . ' (5.4)

Now, non-relativistic quantum theory is fully gauge-invariant under local SU(2)spin-

gauge-transformations, including time-dependant ones. Therefore, the generating
(partition) function

; )
Zp(a®,w®) = exp ESf(a(e),w(")) ~ €xp %S(A/B)(&’ﬁ)) - (5.5)

. must be invariant under the trangfbrmation (5.2). Asymptotically, as § — oo, the

only gauge-variance of Zy,,(a!9),w®)) comes from the Chern-Simons term (5.3) in



- 53,(@,1). Hence we must require that

R g
XpSi('w) = exp [S3,(w) - 2rkhn(g)]

] ! ‘

= exp -h-SAo (w) o (5.6)
for arbitrary integers n(g). Thus

keZ. | G

The same result could have been deduced by considering the transformation properties
of the Chern-Simons term Scs(w) under gauge transformations, g, not vanishing at
the boundary 9A¢. The non-invariance of Scs(w) under such gauge transformations
actually determines one of the boundary terms in S% Aos (2 17]

‘What about the values of 0,0, and x? Cons:der, for example, the abelian Chern-
Simons term

. . a ” " ‘

_ﬂw@ﬁ:—i/aAda (5.8)
in the effective action S . As explamed in [5], SA (& %) must be invariant under
U(1)em-gauge-transformations '

dXa=a+dy, ,M - (5.9)

(in'spite of the fact that @ is only a fluctuation _pbtential, i.e, @ = a —a.!) Since

~ 73(U(1)) = 0, the local U(1)-gauge-transformations on Ay do not split into different

homotopy classes, and hence there is no a-priori quantxzatlon of o. However, by
considering the transformation properties of S¢¢(a) under gauge transformations, x,
which do not vanish at the boundary dA,, we shall be able to infer some constraints -
on the possible values of o. _

In order not to get lost in many technicalities, we refrain from studying a gen-
eral quantum Hall fluid here; but see [3,17). Rather, we shall confine our ailalysis‘
of boundary terms and edge currents to idealized quantum Hall fluids of spinless

- fermions, so that w = 0, from now on. This is an important special case for coming

to grips with the general case (which also involves SU(2)spin and, possibly, Ginteral)-
But the general case would lead ‘us into a little orgy of “branching rules™for repre-
sentations of subalgebras of Kac-Moody algebras which is deferred to another paper,
although, physicilly’, the general case is important for understanding quantum Hall

fluids with spin-singlet groundstates (e.g., for a filling factor v = £ [46]), or with

internal symfnetries, (e.g. certa.in hierarchy states of the electron fluid, or, perhaps,

the fluid correspondmg to v = 2; [3,47)).
If the partlcles in a two-dimensional, mcompressxble quantum ﬁuld are spinless
fermions then w = 0, and its effective action in the scaling limit is given by

~ $3,(8) = [ 3£(€)au(€)dv + Sbs(@) + BLE) (5.10)



‘where Sgg(@) is given in '(5.8), .and B .T. sta.nds for the celebrated boundary terms,
and, for the rest of this section, K =1. Let us now perform a gauge transformation

(5.9) on &, with x not vanishing at 9Ao. Then
S@+dx) = S@ = [ jexdo
= j dxA&-BT.G+ d) + B.T.(a) , (5:1)

where j.» is the component of j# normal to the boundary 9Ao of Ao, and do is the
surface element. Note that S} I (a + dx) would be equal to S} (), and we could set
B.T.=0,if :

jc.n o dual of da IaAo .

However, j. is the current supported by the quantum fluid when a = a.,é = 0,
and @ is an arbitrary fluctuation potential. Therefore such a relation between j,.
and da does not make sense for arbitrary . Experlmentally, for the electron fluid
in a heterojuncture, for example, @ can be tuned in a fairly arbitrary way, and the
boundary 9A, is such that there is no leakage of electric charge through dA,, i.e.,

Jemn=0. : (5.12)

In this case, the second term on the r.h.s. of (5.11) vanishes, but the third term is
different from 0, for suitable choices of x and @ Imposing gauge invariance of the
effective action S3  thus yields the following équation' for the boundary terms:

B.T.(4 +dx) — B.T.(3) = % /a XA, (5.13)

for arbitrary @ and x. This equation is well known from the study of the (141)-

dimensional chiral anomaly [16]. To solve it, it is convenient to use hght-cone coor-
dinates on dAo. We set

= E(w +6) (5.14)

where 7 is a time-like and 6 a space-like coordinate on dA,, and v is some velocity.
Since the term / -~ aAdy is topological, eq. (5.13) does not impose any specific choice
of 7,6 and v. Mathematxcally, it is convenient to set v = 1 and choose @ to be an
angle ranging-over the. interval [0,2x]: -However, if 7 and @ are measured in physica.i
units then v would be the propagation speed of surface charge density waves. The
value of this physically interesting quantity will not be determined by S3,. (It would
only be computable from a more microscopic analysis of the system.] We now set

dlon, = Apduy + A_du_ | | (5.15)

‘where .y ’ _
Ay = 7 (@ lare £ @olsp,) - - (5.16)



the boundary vector potential. An analysis due to Halperin [6] and elaborated upon

| in [3] shows that this desc;ibes precisely the physics of boundary degrees of freedom of
an integer (non-interacting) quantum Hall fluid with |o| filled Landay levels. .Acfually,

the logics can be turned around: 'If-we consider a non-interacting quantum Hall fluid

‘with N filled Landau bands coupled to a small fluctuation vector potential & then
those quantum mechanical degrees of freedom which are localized near the boundary

- of the system produce a U(1)-gauge-anomaly corresponding to the action HALr(A),

(where the choice of L or R depends on the sign of the external magnetic field).

For this anomaly to be canceled - as required by the U(1)-gauge invariance of non-

relativistic quantum theory - it is necessary that the effective gauge field action of
the bulk degrees of freedom contain a Chern-Simons term 3 [, @Ada. As shown in
eqgs. (4.42) and (4.44), this term reproduces the basic equations of the quantum Hall
effect, with a quantized Hall conductivity oy = -‘,;’-N yN=0,1,2-..

- So we understand the integral quantum Hall effect for non-interacting electrons
pretty well - although there are actually still plenty of interesting analytical (spectral)
problems for systems with a large amount of disorder and for systems of spinning
- electrons with spin-orbit interactions which should be studied more carefully!

But what if o is not an integer? Then the U (1)-a,nomaly of the Chern-Simons
term in the effective action is cancelled by the term ii'%AL /R(‘A), as shown above. Of
course ;‘;;AL/R(A) remains the generating functional of a chiral U (1)-éunent algebra
‘of left- or right-moving currents. What kind of a system does the corresponding
chirél U(1)- current, J* = jzfg, describe physically? Of course, it still describes
chiral electric charge density waves circulating around the boundary edges of the
system. But what are the basic charge carriers like? Here a little general culture on
current algebra (see e.g. [9]) helps: Let us start by considering free, massless Dirac

fermions in 1 + 1 dimensions. By (5.22)
: 1. .
Jyr= 350" FJs) - (5.23)

Let us first suppose that the external gaﬁge field A is set to 0. Then j* and j¢ are

conserved currents, i.e.,

Bt =B, =0. | (5.24)
The general solution of egs. (5.24) is '
=B, E=e"dps, | (5.25)

where ¢ and 5 are scalar fields of scaling dimension 0. However, in two space-time
dimensions, j& = —€**j,, with €® = —1® = 1. Therefore j£ = 0%y, and (5.24)
implies that :
0,0'p=0p =0, ~ (5.26)

i.e., @ is a free, massless scalar field. Any solution of (5.26) has the form

@ = V2(or(us) + or(u.)) . (5.27)



i

In light cone coordinates, the r.h.s. of eq. (5.13) is given by

o : . o ' 2,
—_ = — AL0_x — A_0;x)d*u, (5.17)
ym ja_A.,fdan roe /3Ao( +0-x — A-0;X)
where oy = -?—
X = an: .

‘ . ‘52 2 .
We note that, in light-cone coordinates, the d’Alembertian, O = :f;-,---,.%;, is given

by )
0= 23+3_ . . (5.18)
After these preparations, it is a simple exercise to verify that the solution of the
functional equation (5.13) is given by ‘ ‘

BT.(3) = —%AR(A) +W(4)
= %AL(A) +W(4), (5.19)
where 9 |

and W(A) is an arbitrary gauge-invariant functional of the boundary vector potential
given by A, and A_. Note that replacing o by —o corresponds to replacing L (left)
by R (right)! Readers, who still remember the basic formulas arising in the study
of the (1 + 1)-dimensional, chiral U(1)-anomaly will recognize AL (A) as the effective
gauge field action of a chiral (left-moving) relativistic fermion minimally coupled to
a U(1)-gauge field A, in two space-time dimensions. One checks that

Z’;;AL(A) = Indet [a+54(%)]

i ,
Ay=0+ 4—7;/A+A_d2u . (5.21)

= Indet(@+i A)

Let 1 be a (1 + 1)-dimensional two-component Dirac spinor, and ¢ = Y*, its conju-
- - gate. The expression for the left-moving current, jf, is given by

jt=N (Jv“ (—1—_2£) ¢) . | (5.22)

where N indicates normal ordering. = This current generates a chiral U(1)-current
algebra. Comparing (5.22) to (5.21) and recalling the basics of Berezin integration,
we observe that = A (A) | A, =0 is the generating functional for the connected Green
functions of the left moving current jf. v

We conclude that if o we;ean integer we could cancel the anomaly, Z [o4, dx A @,
of the Chern-Simons term, £ [, a A da, in the effective action of the quantum fluid
under a gauge transformation, @ — & + dx, by |o| bands of left- or right-moving

(depending on the sign of a) free, relativistic complez fermions minimally coupled to



By (5.23),
J'=—-0.pr, J =0, (5.28)

- with 3;J%* = 0. These formulas hold at the level of quantxzed ﬁelds and are at the
origin of abelian bosonization in two space-time dimensions. Now, any sum of free
fields is again a free field. Thus, let us write, for fun,

P = —(¢1 ++dn), (5.29)

where ¢y, -, ¢n are distinct, free, massless scalar fields. We set

e
¢N
For A=0, the action of d;‘is given by
Sw;w(¢) =i /am, 0+¢ - Ko_¢d’u , (5.31)

N
where K is a posmve N x N matrix, and a - b = Ea,b If one wxsh&s to describe
chiral left- (or right-) moving free fields one supplements the action (5.31) by the

constraints

3..& =0 (8;6=0,resp). (5.32)

The matrix K describes linear couplings between the fields ¢,,- - -, #n and fixes their
normalization when one uses a standard path-integral quantization.

Let us now study what happens when one attempts to couple the fields ¢y,--- én
to the vector potential A. The first problem one encounters is that expressions like
81, for example the chiral constraint 6_65 = 0, are not invariant under U(1)-gauge-
transformations. We must find out how ¢ transforms under gauge transformations.
"ForN=1land K = 1, it is well known and easy to check that the fermion operators
Y1 and g are given by vertex operators, Yr/p =: €'°+/R :, where ‘th‘e double colons
indicate Wick ordering. Hence ¢ and ¢y,---,¢n transform like angular variables

under U(1)-gauge transformations. An adequate ansatz is

. N
¢ > X$; =i+ D (K )jix - ' (5.33)

=1

- A gauge-invariant form of the chiral constraint is then given by

0-; — E(K‘ A-=0. (5.34)

z=1

We set
. X A

x=|:1, A= : [, (5.35)



~ with N components each. An action reducing to (5.31) for A = 0 is given by

- 1 . X
Swzw($, A) = —LMBM'K_&W:;

4r

1 A . "~ —1 -~ a 2
.. . —(f_¢d— KAL) - A d°u

o /8[\0 {A- a+¢ ( ¢ ) +}

k 2 ' 5.36)
+ 41’./8A0A-A+du’ | (

where
k= Z(K_l);j . . (5.37)
N

Note that expression (5.36) is symmetric in “+” and “~". If we want to describe chiral
fields we supplement the dynamics determined by the action (5.36) by the gauge-
invariant chiral constraint (5.34). Let us now check how Swzw(¢, A) transforms
under the U(1)-gauge-transformations (5.33) and Ay — XAy = Ay + 0:x. After a
fairly brief calculation we find that
Swaw(*$,A) = Swzw(4,A)
k
+ P _LAO(A+6.X — A_0,x)d*u |
b= (0-¢— K'A_)- 0y 3d%u . (5.38)

27 Jaro

The last term on the r.h.s. of (5.38) vanishes when the chiral constraint (5.34) is
imposed. We observe that the second term on the r.h.s. of (5.38) is precisely the
anomaly (5.17) of the Chern-Simons action if k = o.

Let us also note that

C1(A) := / Dée=iSwiw@ A5 ¢ - K-1A_) (5.39)

is, for A4 = 0, the generating function for the current - N 04 ¢; = 0, which, by
eq. (5.28), is precisely the left-handed current J-. Since the integration measure is
gauge-invariant, i.e., D¢ = DX¢, it follows from (5.38) and (5.17), (5.20) that

CL(A) = €Xp (—%AL(A)) . (5.40)

Thus, we conclude that if the. coefficient o of the Chern-Simons term, & [, a A da,
in the effective action S}, of an incompressible quantum fluid satisfies

. ,
c=k= E(K-l),'j (541)
. iy=1
then ' 4
| exp(—1S5¢5(@))(L(A = @laa,) - (5.42)
is U(1)-gauge-invariant, i.e., anomaly-free. For 0 = —k, the same holds if “+” and -

“—” and “left (L)” and “right (R)” are interchanged.



Next, we must investigate the physics of the ¢-system on the boundary of an
incompressible quantum fluid. In particular, we must find physical constraints on the
matnx K. When the gauge ﬁeld A is zero, the electrlc charge operator Q is given by

Q= §i°%b = fanp)as, | (5.43)
by (5.25). By (5.14), (5.29) and (5.34), this yields

N
Q = ZQ,’, with

j=1
Q = 5oy,  (549)

Unfortunately, these expressions are not U(1)-gauge-invariant. But it is clear how to
render them gauge-invariant. The correct definition of the charge operator associated
with ¢; is

Qi = 5 0405 = (K sidr)ds (5.45)
which is manifestly gauge invariant. Let us replace | |
: A Qg
A . ayN

where under a U(1)-gauge transformation x
aj - Xaj =aj+dx, - (5.47)

forj =1,---,N. We call o; the “vector potential of the j** band”, in accordance with
the structure of the couplings Fo= Jon, @5 0+ in the action Swzw($, &) given in
(5.36). Imagine that we now increase the magnetic flux inside the system by n; units
in the i*® band, e.g. by creating n; Laughlin vortices in the i band, { = 1,---, N.
Then

. '2-1; fa,'gda =n;, (548)
and the charge in the j** band, Q;, changes by an amount
= D (K )jns | (5.49)

as follows from (5.45), with A replaced by &. In vector notation,
AQ=K ", or ai=KAQ. (5.50)

We now imagine that every band admits excitations with the quantum numbers of
an electron or hole, i.e., for every j = 1,:--, N, there are excitations changlng the



total charges by AQY) = 46;; and having Fermi statistics. By formula (5.36) for the

action Swzw, such excitations are created by the vertex operators

I | - ‘ ,
et ‘_ * d9 ) (5-51)
P 2% /a 04 .
with N
V2 ¢, 1 . ) |
— oo av = ~— df =n, 5.52
‘ 2x fa-dﬂ 2x fa. " (5.52)
and # is given by 7
N .
Rg = ZK"AQSJ) = K‘J ] 1= 11 R N ’ (5.53)
‘ =1

see (5.50). The statistics of the vertex operator (5.51) is described by the phase
exp 2nih(&) , (5.54)

where h(&) is its conformal dimension. By (5.36), h(&) turns out to be given by

Ma)=;%*_xﬂﬁ
5 %AQ-KAQ, (5.55)

and the second equation follows from (5.50). Thus, for an electron or hole in the j*®
band,

N 1
A h(a) = §Kj,' .
By (5.54), this excitation has Fermi statistics iff

Kj;=20 41, 1W=0,1,2,---, , (5.56)

for j = 1,---,N. Clearly, electrons and holes are excitations which are relatively local
to each other, (meaning that microscopic electronic wave functions are single-valued).
Hence a vertex operator creating an electron or hole in the i** band must commute
or anti-commute with a vertex operator creating an electron or hole in the 7' band,
for all ¢ and j. One readily checks that this will be the case iff

_exp 2riAQY) . KAQY) = exp2miKi;; =1,

hence
K;€lZ, foralliandj. ' (5.57)
Actually, if one assumes that two vertex operators creating electrons in different bands

must commute - as one normally would - then it follows that

K,'j €22, for i#j. i (5.57")



Plugging rsults (5.56) and (5.57) into formula (5.41) one observes that

o=1% }: (K1) (5.58)
ig=1 . ’

is a rational number, and hence the Hall conductmty oy = -h-a is a rational multiple
of ’,‘, for every incompressible quantum fluid of scalar (spm-polanzed) electrons! A
~ similar conclusion holds if spin and internal symmetries are included, but -one ob-
tains different sets of rational numbers as the possxb]e values of o compat:ble with
incompressibility; see [17].

We note that, for & = A (see (5.46)) and AQ = I, AQ;, eq (5.49) implies that

AQ = --J{;I(K-I),, f Agdf = -2% / bt,e)de,  (5.59)
by Stokes’ theorem. This is an integrated form of eq. (4. 31) see also (4.42) and
. (4.50), for a quantum fluid with vanishing magnetxc susceptibility, as is the case for
spinless electrons. S
~ Clearly, for a given rational value of o, formula (5.58), along with the constraints

(5.56) and(5.57), does not determine the “band coupling matrix” K uniquely. This is
an intrinsic weakness of our very general approach. A given rational value of o corre-
- .sponding to a plateau of the Hall conductivity can, in general, be reproduced by many
~ different systems of chiral boundary currents corresponding to distinct K-matrices.
In order to find out which K-matrix is the most likely candidate corresponding to
a giveh plateau of o, one must invoke additional information on the quantum Hall
fluid, in particular stability properties against small perturbations, whose elucidation
- requires.analytical or numerical work, or symmetries.

~ As a first step towards reducing the plethora of possible K-matrices we propose
to study what kind of inveriant information is coded into a matrix K. For this
purpose one should try to find the full spectrum of charged excitations of a system
corresponding to a given matrix K satisfying (5.56) and (5.57); ‘For an excitation
of a quantum Hall fluid to have a finite energy difference to the groundstate energy
(called a finite-energy excitation), it should perturb the groundstate only locally. As
a corollary of our discussion of the Aharonov-Bohm effect it follows that the magnetic

flux 7 of a finite-energy excitation must be quantized, i.e.,
n;€l, for j=1,---,N.

[If an electron in the j** band is transported around such an excitation it picks up
a statistical phase exp 2min; which is unity if n; € Z. ] We conclude that finite-
energy excitations of an incompressible quantum Hall fluid can be labelled, in part,
by their magnetlc flux quantum numbers 7 which are the sites of the lattice & = Z".
Eq. (5.50) then says that the electric charges corresponding to an excitation with



magnetic flux # are given by AQ = K~'#: and form the sites of a lattice I' := K -19,
The lattice T contains the sublattice Z* of excitations with integer charge, i.e., of
multi-electron, multx-hole excitations. The quotient space, I'/Z", is an abelian group
with n generators Tt tells' us everything about the possible fractional charges of
finite-energy excitations.

We now observe that what we are calling the “;** band”, j = 1,--- N, is based
on a somewhat arbitrary convention of how the fields ¢; are coupled to the external
electromagnetic vector potential A, (i.e., on the electric charges assigned to these
fields). If S is some integral N x N matrix of determinant 1, i.e., $:€ SL(N,Z), then
S leaves ® invariant. Two systems corresponding to matrices K and K', with

K'=STKS (5.60)

describe the same lattices (® and I') of excitations and correspond to equivalent
quantum Hall fluids which only differ in the assignment of electric charges to the fields
¢1, - -, dn. This observation poses the problem of defining and then finding normal
forms for the integral, positive quadratic forms K on the lattice ®, (with respect
to conjugation by SL(N,Z)); see [4]. This is known to be a subtle mathematical
problem which is not solved in general; (see [48]).

But let us return to the problem of symmetries of quantum Hall fluids. A natural
- symmetry of such a fluid at small values of the filling factor v is likely to be invariance
under arbitrary permutations of the bands. This symmetry would imply that

Kij = Ka@n) s 55 =1,---N, x (5.61)
for arbitrary permutations, 7, of {1,--~,N }. Together with conditions (5.56) and
(5.57) egs. (5.61) imply that

Ki;=24+1, i1=1,---,N, (5.62)

for some 1 =0,1,2,- independent of 1, and

_ Kij=nel, fori#y. (5.63)
Thus .
=(214+1—-n)ly+nNPy, (5.64)

where Py is the orthogon.a;l projection on the unit vector in RV all of whose compo-
nents are given by 1/v/N. Hence

N
1= (@ +1-n)? |1y = L
ierl=a) (1" 2l+1+n(N-1)PN> ’

and this equation and (5.58) yield

N \
"=“’"=i21+1+n(1v—1)‘ 5:0)




Imposing constraint (5.57°) we must assume that n is an even integer. This reproduces
the odd-denominator rule. [In general, the odd-denominator rule only holds for an
odd number of bands! See also [4].]

A “second generation hierarchy state” of a quantum Hall fluid might be defined -
as a system with a coupling matrix K}, given by

K 0 |
K= +m(pN)P,n , (5.66)
0 K

where K is an N x N matrix of the form (5.64), the first matrix on the r.h.s. of (5.66)
is a (pN) x (pN) matrix build from p matrices K, and m is an (even) integer. For
the Hall conductivity of this system one finds [4]

" 1 o  plow
" m+(1/ploi]) T mplog|+1

ok, = (5.67)

‘One can now.go on and define “third generation hierarchy states” , etc.

Next, one might ask what form the matrix K must have if the system exhibits a
full unitary group, U(V), of symmetries permuting its N bands of edge current; (an
obvious example of such a system is an integer quantum Hall fluid of non-interacting
~ electrons with o.= £N). The algebra of edge currents must then contain a Kac-
Moody subalgebra u(N) (at level 1). This is a much larger symmetry than the
permutation symmetry discussed above. Corr&spondingly, the K-matrices compatible
with this larger symmetry are more constrained: They have the form

K.'.'=2l+1,i='1,'-',N, Kij=2,fori#j, " (5.68)

for some | = 0,1, 2,---. The corresponding Hall conductivity is found to be
. N ’
2IN+1°

The proof of (5.68) (see [4]) mvolves showing that there is a matrix S € ‘SL(N,Z)
such that

(5.69)

ok =%

STKS=:R, with
Rny = 2l+1, Ryn-1=Ryan =-1, - (5.70)

- and (R;;)NZ3 =1 is the Cartan matrix of su(N). In connection with quantum Hall fluids
the matrix R first appeared in [49)].
We note that quantum Hall fluids ‘with K-matrices as in (5 68) correspond to
Jain’s states [50]. 7
It may be good to consider the simplest example of a fractional quantum Hall
fluid covered by our theory: We set N =1 and K.= 21+ 1. For ] = 0, this is an-
~ integer quantum Hall fluid with o = il.Mo&pmtloLg&Lm; -



we find Laughlin’s fluid [34]. There are also quantum Hall fluids corresponding to
| = 2and 3, (0 = £1/5,%1/7, respectively). There are no known quantum Hall fluids
corresponding to ! = 4,5, -, since they would correspond to electron gases of so low
a density that they form a Wigner crystal and thereby loose their incompressibility.

The charged excitations in a fluid with K = 2/ +1 have vorticity n = 1,--- ;2041 |
and charge n/(2l +1). For n < 21 + 1, their charge is thus fractional, and by (5.54),
(5.55), they are anyons.

At the end of Sect. 4 (see (4.68)) we mentioned that, in the oonventlonal approach
to the quantum Hall effect, the denominator ng = 2{ + 1 of the Hall conductivity ¢
is interpreted as the degeneracy of the ground state of the quantum Hall fluid. In
our approach this has a straightforward explanation: The algebra of a chiral edge
current of a quantum Hall fluid with o = 3¢ (K = 2+1,N = 1) has 2/ +1 inequiv-
alent representations labelled by fluxes 1,2,---,2l + 1 which correspond to charges
7573570 *» 1 Every one of these representations corresponds to a groundstate of
the quantum Hall fluid with a one-component boundary, in the thermodynamic limit
which is approached when the scale parameter § tends to co. In this limit, the 2/ +1
distinct groundstates have the same energy per electron. _

It is shown in [1,3,4] that, in the scaling limit, the groundstates of such a quantum
Hall fluid are described by the conformal blocks of the free, massless field at level 21+1.
On a Riemann surface of genus g with n punctures there are thus (2/+1)9*" degenerate
groundstates. These results are best understood by studying the topological Chern-
Simons gauge theory associated to the chiral edge currents [10,12]. The quantized
gauge potential of this theory turns out to be the vector potential of the conserved
electric current density (j*)2_; see [3].

It is worthwhile to observe that the conformal blocks of the massless free field
at level 2/ + 1 on the plane with n punctures are the Laughlin wave functions for n
quasi-particles (characterized by their magnetic flux) of a quantum Hall fluid with
0 = :1:2,_1‘_1 [This “coincidence” may partially justify some ansatze for hierarchy
constructions based on Laughlin-type wave functions for quasi-particles. By and
large, it may however have played rather a misleading role.] |

 We wish to note, furthermore, that if a vortex of strength n = 21 + 1 is created
in the bulk of a quantum Hall fluid with o = i#ﬁ and a one-component boundary
then, in the thermodynamic limit (§ - o0), the total charge of the fluid changes by
+K-1(21+ 1) = 06(21 + 1) = %1, as shown in eq. (5.59). More precisely, a charge of
+1 is transferred from the place where the vortex is created to the boundary of the
system; see also Sect. 6 of [3] for more details. This result relates our definition of
the Hall conductivity o to one where ¢ is defined as an index, [44,45].

The results reviewed here for the simple example of a quantum Hall fluid with
N =1 and K = 2] + 1 have straightforward extensions to fluids corresponding to
arbitrary N and general K-matrices as discussed above. :



Finally, the material in this section can be generalized to mcompr&ss:ble quan-
tum fluids of particles with spin ‘and internal syrnmetnes These generalizations are
‘important in understanding quantum Ha,ll ﬂuxds with ¢ = s (spin singlet state) or
0 =, for example. But this is another story.

Now that ‘we have reached the end of this paper life would just start to become
interesting. We could now continue our tale by studying the domain structure of
“incompressible quantum fluids, in ‘particular of ‘quantum-Hall fluids, some aspects
of the transition of a quantum Hall fluid from ore plateau of o to a neighbouring
- plateau, presumably closely related to the problem of domain structure and domain
~ wandering, the stability of plateaux and the role of disorder in the stability problem,
-+ 00. But, most importantly, we should now finally address the analytical problem
~ of proving that certain quantum fluids are indeed incompressible.

But all this must await another occasion — quite apart from the fact that much
further more analytical work is needed!
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