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ERRATA to the paper CRYSTAL BASE AND ¢-VERTEX OPERATORS

page 2, £.15-16: Delete the following sentence.
‘In the derivation of the second inversion relation we need to assume further that the dual module V*¢
(see Sect. 3.4) also has a global crystal base.’
page 4, eq.(2.3.2): Replace
3(z) : V() — V(w)@ V(527" 1® Qg)((2).

by the following two lines:

B(z) : V(&) — V(@)dVIz,z7'].
The right hand side means @, [, V(u)e ® V[z, 27 ], _¢.
page 7, €q.(2.5.2): wtv # X should read wtv # p.

page 11: Replace £.7-21 (‘Following [6] define - - - representation V| of U,'(glz).') by the following.
Fallowing [6] define the pairing (, ), of V™ and V by
(v°, 0} = (= 1)PHCRo=)g(a (Ro)iaf oD =(af (ALt W) (y* ).

Here A = wtv, {, ) is the canonical pairing, and we set ht(§) = 3, o ni for £ = 3, o mii. If (L, B)is a
crystal base of V' then (L™, B™*) is a crystal base of V** where

L ={»"eV"| (L) C 4}

and B*' is the dual base of B via the pairing (, ).. Moreover, from Lemma 2.2.3 in (9] it follows that if V'
has a global base then so does V*¢.

Remark. Finite dimensional representations having crystal pseudo-base (L, B) with perfect B were studied
in detail in [7]. We do not know a general criterion to find modules satisfying the more stringent condition
{2.2.3). 1t holds true for ‘simple’ representations such as the vector representation of Uj(sl,) and the spin

{/2 representation of U;(;lg).
page 11, £.14 from the bottom: (b,5"), = 1 should read (5,6*), = L.
page 11, £.6 from the bottom: Delete ‘(—1)("""“'".

page 12, £.12: Delete ‘up to signs’.
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ABSTRACT
The ¢-deformed vertex operators of Frenkel and Reshetikhin is studied in the limit
¢ — 0. The calculation of the one point functions for the associated elliptic RSOS
models is incorporated in the framework of crystal base theory.

1. Introduction

The integrable RSOS models of Andrews-Baxter-Forrester (ABF) [1] and their gen-
eralizations [2][3][4] are built upon elliptic solutions of the Yang-Baxter equation
(YBE) in the interaction-round-a-face (IRF) formulation [5]. The one point func-
tions in these models are known to be given in terms of branching functions for
some coset pair of affine Lie algebras. (To be precise, this is so in one region of the
parameter space of the model, called ‘regime III’.) Similar results hold also for the
vertex models corresponding to trigonometric solutions of YBE. As shown by Kang
et al.[6][7], the theory of crystal base [8][9] affords in the latter case a powerful and
systematic method for computing one point functions on the combinatorial level
(i-e. assuming the validity of the corner transfer matrix method [5]).

In a recent work [10] Frenkel and Reshetikhin studied the g-deformation of
the vertex operators & la Tsuchiya-Kanie [11] in conformal field theory. They
showed that the correlation functions satisfy a g-difference analog of the Knizhnik-
Zamolodchikov equation, and that the resulting connection matrices give rise to
elliptic solutions of YBE of IRF type. It seems quite likely that the previously
known models mentioned above are special cases of their construction. This has
been confirmed in [10] in the simplest case including the ABF model.

The purpose of the present note is to study the g-vertex operators of [10] in
the framework of the crystal base theory [6][8]. We show in particular that the
computation of the one point functions in the elliptic RSOS models can be treated
in much the same way as is done in [6]. Apart from technical details, the results
of the present paper are basically simple consequences of the constructions of [6][8]
and [10]. We are reporting them hereby in the hope that they might help as a step
toward better understanding of integrable models with quantum group symmetry.

Throughout this note we follow the formulation and notations in [6]. The ver-
tex operators we consider are of the form ® : V(A) — V(u) ® V, where V(}) is
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an integrable highest weight module, V(u) is a completion of V(u), and V is a
finite dimensional module of the quantized enveloping algebra U,(g). (This is one
equivalent form of the vertex operator ®(z) in the formulation of [10]). Our basic
observation is that, provided V has a crystal base, the vertex operators preserve
the crystal lattice (section 2, Proposition 2.3). Assuming that V has a global crys-
tal base [6] we are led to a natural basis of the space of vertex operators labeled
by ‘admissible triples’ (Proposition 2.4). We prove also that the composition of
vertex operators ®(z;) o ¥(z;) is well defined at 23 = z;. As shown in [10] the
Boltzmann weights of the elliptic RSOS models arise as connection (or braiding)
matrices for the composition of vertex operators. From the observation above it
follows immediately that these Boltzmann weights share the same energy function
with the associated vertex model (section 3, eq.(3.2.1)). We shall prove the initial
condition (Proposition 3.1) and the second inversion relation (Proposition 3.7) for
the connection matrices, which are necessary in order to apply the corner transfer
matrix method. In the derivation of the second inversion relation we need to assume
further that the dual module V** (see Sect.3.4)-also has a global crystal base. In
section 4 we show that the highest weight vectors in the tensor product V(£)® V(%)
are labeled by ‘restricted paths’ (cf. [12]). Finally we relate these facts to the one
point functions of the lattice model defined by the connection matrices.

2. Vertex operators

2.1. Notations We fix an affine Lie algebra g. Let A;, by = o), o, § = Z:'=0 a;qa;
and d have the same meaning as in [13], except that for the type Ag) we reverse
the ordering of vertices from [13]. Thus we have a¢ = 1 in all cases. The canonical
central element will be denoted by ¢ = Zi:o aYh;. Set I ={0,1,---,1},ip=0€ 1,
P=ZAc® - - -®ZADZLS, P* = Zhy&--- D Zh; ®Zd. We normalize the invariant
form on P so that (a;,a;) = 1 for a short simple root o;. It is related with the
normalized form ( | ) in [13] via (X, ) = r(A|p)/2, where the number r is such that
the dual algebra g¥ (the one obtained by reversing arrows of the Dynkin diagram
of g) is of type X,(r). Setting p = Y"i_, A; we have 2(p,8) = rhY, BY = ELO ay
being the dual Coxeter number.

Throughout this paper we shall follow the notations of [6] unless otherwise
stated. Set P,y = P/Zé, (Py)* = ©@Zh; C P* and let ¢l : P — P denote the canon-
ical map. We fix af : Py — P by af(cl(a;)) = oi (i # 0) and af(cl(Ag)) = Ao so
that cloaf = id and af(cl(ap)) = ao—6. With the data g, P, I above is associated
the quantized affine algebra U = U,(g; P,I) defined over Q(¢) (¢ an indetermi-
nate). Its presentation, the comultiplication A and the antipode a are those given
in (2.1.7)~(2.1.12) in [6]. The subalgebra of U generated by e;, f; (i € I) and ¢*
(h € (Pa)*) is denoted by U’ = U;(g; P, I). By crystal base we will mean the lower
ctystal base. Hence if V; denotes the {4 1 dimensional irreducible module of U,(sl5)
with highest weight vector v}, then its crystal lattice is given by L; = &) _,Avl,
vl = ffk)v{). Here

A={f€Q(g) ! f hasno poleat ¢ =0}
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For a positive integer k we set (Py)y = {A€ P | (hi,A) € Zyo Vi€ I, (c,A) =
kY, (PD)e = {X € (Py)e | (A, d) = 0}, and likewise for (P.4)i. Asin [6] V(A) =
®ver-qQ, V(XA), denotes the irreducible highest weight module with highest weight
A and its weight decomposition. We fix a nonzero highest weight vector uy of V()
throughout.

Let V be a U-module. We shall regard its linear dual V* = Homgq(,)(V, Q(q))
as equipped with a U-module structure via the antipode a:

(zv*,v) = (v*,a(z)v) v €V, veV, zeU (2.1.1)

where (, ) denotes the canonical pairing of V* and V. When confusion may arise,
the dual module structure via the antipode a is denoted by V*¢, but normally we
omit writing a.- Similar convention is used also for U’-modules.

2.2 Finite dimensional modules and R-matrices Let V € Mod/ (g, P.;) be a finite
dimensional U’-module. We equip V|[z,2z~!] = Q(q)[z,2~!] ® V with a U-module
structure as follows.

ei(z" @) = 2ot @en,  fi(2" @v) = 2700t @ fiu,
wt (2" ® v) = nd + af(wtv),

where n € Z and v € V' is a weight vector. We shall often write z” @ v as vz".

Analogously, for an invertible element z € Q(g) we let V, denote the U’-module
whose underlying space is V, equipped with the structure map =, : U’ — End(V)

mo(es) = z'0m(es),  mo(fi) =z700n(fi), ma(q") = 7(g"),

where 7 signifies the original structure map. (In the notation of [6], V, = ®,(V);
it is not to be confused with the weight space of V)
In the following sections we shall assume that

V has a crystal base (L, B), (2.2.1)
B is perfect of level N, (2.2.2)
V has a global base. (2.2.3)

The conditions (2.2.1), (2.2.2) imply in particular that

wtV C Ap — Z Zyoa;, dimV,, =1 for some Ag € Py. (2.2.4)
i#0

Let V, W € Mod/ (g, P.;) satisfy (2.2.1),(2.2.2). Then there exists an intertwiner
of U-modules

Ryw(z1/22) : V[zl,zfl] ® W[zz,zz"l] —_— W[zg,zz'l] ® V[zl,zl'l],
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which commutes with the multiplication by z;, 2, and depends rationally on z =
21/23. Set Ryw(z) = PRyw(z), Pw® v = v ® w. Take a nonzero vector vy € V),
where Aq is as in (2.2.4), and let wg € W, uo be the counterpart for W. We
normalize Ryw(2) by

va(z)vo ® wo = vg @ wo. (2.2.5)

We have then (cf. [10])
va(z)va(z‘l) =1, (2‘2.6)
(Ryw(2)™)" = Buw (2)Rv-w(2), (2.2.7)

with some rational function Bvw(z) € Q(q)(2).

2.3. Vertex operators Let A € (P{)r. We define a completion of V() by V) =
[Ler—q, V(A Its dual

V() = (‘7(1\)) C = @uer—qr (VO

is the irreducible lowest weight module with lowest weight —A.

Now fix A, u € (P?); and V € Mod’ (g, P.;) satisfying (2.2.1)-(2.2.3). We take
a weight basis {v;} C V such that v; mod ¢L € B. In [10] Frenkel and Reshetikhin
studied the vertex operators

_ (M2 +2p)

B(z) = 27N 8(2), Ay = T(k+hY)’

(2.3.1)

where by definition 5(2) is an intertwiner of U-modules
&(z) : V() — V(w) @ V[z, 2711 Qa)((2)). (2:3.2)

Define its weight components ®;, by

(z)v = Z Z QinvQ@uiz™",
J n€eZ
Qin 2 V(A — V(l)y—ag(wiv,)4ns-

Then @ = 3. (3",.cz ®in) ® vj gives rise to an intertwiner of U’-modules
®: V() — VeV (2.3.3)

It is easy to see that the correspondence ®(z) « @ is bijective. We shall use both
pictures (2.3.1)-(2.3.2) and (2.3.3).
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PRrROPOSITION 2.1. For eachi € I and v € V() there exists an M € Z+q such that
ef"d)j,,v =0, f,-M<I>j,,v =0 forall jn.
In particular the dimensions of {U;(8;)®jnv};n are bounded.

Proof. First note the following fact which can be verified easily. Let W be a
Uy(slz)-module and V; = @osng(q)vL the ! + 1 dimensional irreducible module
(vi = l(k)v{,, vy =0). fu= E;c:[) wr @ vl € W ® V; satisfies A(eT*)u = 0, then
ey, =0 for all k.

Since V() is integrable, we have e[*v = 0 for some m. From the remark above
it follows that e[**M:®;,v = 0 where M; = maxdimU](g;)v; — 1. On the other
hand, if v € V(A), then (h;, wt ®;,v) = (h;,v — wtv;) is independent of n. Hence
the assertion on f; is also true. [J

2.4. Stability of crystal lattice We shall show that the vertex operators preserve
the crystal lattice. Recall that V(A) carries a unique nondegenerate symmetric
bilinear form ( , ) with the properties [8] (ux,u)) = 1, (zu,v) = (u, YP(z)v) (u,v €
V(X), z € U), where ¢ is the anti-involution of U: ¥(e;) = ¢; fit7!, ¥(£i) = ¢ 'ties,
¥(g*) = ¢". Let ®* be the element corresponding to ® under the isomorphism

Homy(V(A), V(1) ® V) ~ Homy:(V* (1) ® V(}), V),

namely we set ®(u @ v) = 35, 3, (4, ®jnv)v;. Identifing V(u) =~ V*(u) via (, ),
we regard @ as a linear map V{(u) ® V(A) — V such that

' (u®e;v) = ;P (u®v) + qi-l_(h"t"t")@t(f,-u ® v), (2.4.1)
o' (u® fiv) = ¢V M @ (u @) + ¢ TP BN eu o), (24.2)
wt & (u ® v) = cl(wtv — wtu). (2.4.3)

LEMMA 2.2. Let V be an integrable U,(sl,)-module with crystal lattice L, and let
¢! : Vip ® Vi — V be a linear map satisfying (2.4.1)~(2.4.3). If ¢*(vF* ® v}) € L,
then ¢*(L,, ® L;) C L.

Proof. Without loss of generality we may assume that V is irreducible. Let ¢ :
Vi = Vin ® V be the intertwiner corresponding to ¢'. It can be shown directly
or by using (2.4.1)-(2.4.3) that ¢'(v] ® v}) € L implies ¢(v}) € Lm ® L. Since ¢
commutes with e;, f; it also commutes with & and fi, hence (L) CLL,®L.O

PRroPOSITION 2.3. The following are equivalent.
(i) ®5n (L(N) C L(n) for all jyn,

(ii) @ (L(w) ® L(Y)) C L,

(1ii) ®* (uy @ur) € L.

Proof. 'The equivalence of (i) and (ii) follows from the fact that {u € V(u) |
(L(p),u) C A} = L(p) ([8] Proposition 5.1.1).
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Clearly (ii) implies (iii). Assuming (iii), let us show that u € L(u),_¢ and
v € L(A)a-y (£,7 € Q4) imply ®*(u ® v) € L by induction on [£] + |n|. The
case [£| + |[n| = O is valid by the assumption. Suppose || > 0. Then there exists
an i such that u = f;u’ with some u’ € L(tt) —¢4q,- Consider the decomposition
U = Yo f‘-(j)uj, v = Y o<k fi(k)vk, ejuj = ejvp = 0. Then u € L(u) (resp.
v € L())) implies u; € L(p) (resp. vi € L(A)) ([8], Proposition 2.3.2). Moreover
we have ug = 0. Therefore the induction hypothesis applies, and by Lemma 2.2 we
get o (f,-(j)u_,- ®f,~(k)vk) € L for all j, k. The case |n| > 0 is similar. O

2.5 Admissible triples

DEFINITION. Let A\,p € (P?); and b € B. We say that the triple (p,b,)) is
admissible if u, @ b € B(u) ® B is a highest weight vector of weight cl(A); or
equivalently if .

wtb=cl(A—p), &*M ¥ =0 foranyiel

The following result has been communicated by Kashiwara. The assumption
(2.2.3) is used only at this place.

PROPOSITION 2.4. The following are equivalent.
(1) (u,b,A) is admissible,
(ii) There exists av € L such that wtv = cl(A—pu), vmodqL € B and é,(h"“)+lv =0
for anyi € 1,
(iii) There exists a ® : V(u) ® V(A) — V satisfying (2.4.1)-(2.4.3) such that
®* (uy ® uy) € L and ¥ (u, ® up) mod gL € B.

Proof. Implication (iii)=(ii)=>(1) is obvious. Conversely (i)=(ii) holds because
the upper global base v = G¥?(b) corresponding to b has the desired property ([8],
Lemma 5.1.1).

To prove (ii)=>(iii) let U’ (b;) be the subalgebra of U’ generated by e; (i € I)
and ¢* (h € (Py4)*), and let C, = Cl be the one dimensional U’ (b, )-module
e;lx =0, ¢"1, = ¢'"M1,. We note first that

Homy: (V(A), V(p) @ V) = Homy, (g, y(Ca, V(p)® V). (2.5.1)

Clearly the canonical map (2.5.1) is well defined and injective. To see that it is
surjective, pick a v € V(u) ® V such that wtv = cl()) and e;v = 0 for all i € I.
Then from the proof of Proposition 2.1 there exists an N € Z ¢ such that fNv =10
for ¢ € I, hence v generates an integrable U’-module isomorphic to V().

The right hand side of (2.5.1) equals

HomU,(b_'_)(V‘(,u) Q@Cr,Vix{veV |wtv=cl(A-p), egh"")ﬂv =0Viel}.

In the last equality we used the fact that as U’ (b, )-module V*(u) is presented as
U (b4) / (S U7 (bg) el 4 07 (by) (8 - q;(h"“>)). This shows that (ii)
implies (ii1). O
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Proposition 2.4 shows that given A, u € (PJ); the space of vertex operators has
a basis indexed by admissible triples

{®4%(2) | (4,b,)) : admissible }
The basis elements are uniquely fixed by requiring

aﬁb(z)v,\ = v, ® G¥P(b) + (terms of the form v ® w,wtv # ).
(2.5.2)

2.6. Composition of vertex operators In the subsequent sections we need to ex-
tend the base field from Q(g) to K = Q((g)). We set VX(1) = V(1) ® K and so
forth. From Theorem 4.12 b) in [14] it follows that the integrable highest weight
U-module V() is absolutely irreducible, hence in particular VX (1) is an irreducible
UK = U ® K module. The extension of vertex operator will be denoted by the same
letter @ : VE()\) = VE(u)@ VK,

Suppose V, W satisfy (2.2.1), (2.2.2), and let ®:V(u) —» V(») @ V, ¥:V(A) —
?(p) ® W be vertex operators satisfying the conditions of Proposition 2.3. For an
invertible element z € Q(g) we set ° = (7,®id)~!o®or, where 7, € Endq(q)(V(A))
is defined by

v =2z"v forv € V(A)u4ns, {u,d)=0. (2.6.1)

It is easy to check that &7 is a U’-linear map V(i) — V(v)® Vi.. In the component
form (®%)jn = £="®;n; in the form (2.3.2) we have simply ®%(z) = 3(zz).

The composition of the vertex operators in the sense of (2.3.2) is defined as a
formal series in zy, z3:

(B(21) @ id)¥(22) = Y Bjm © Wien @ vj 27 ™ @ wi23 ™.

In general the substitution z; = zz; (z € Q(g)*) is meaningless.

PROPOSITION 2.5. Ifx = ¢~° with s a positive integer, then the composition
(@ @id)o¥ : VEQN) - VEW)o VE @ WK (2.6.2)

is well defined over K.

Proof. The statement means that if u € L()A) then for each | € Z the sum
Yoman=1 4" ®jm o ¥enu is convergent in the g-adic topology. From Proposition
2.3 it follows that each term ®;, o ¥i,u belongs to L{v). Since ¥i,u = 0 for
n > 0, the assertion is clear. O

We give below a slightly stronger statement which says that for each v € V(X)
we have limp o0 ®jnv = 0.
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PROPOSITION 2.6. Suppose the conditions in Proposition 2.3 are valid. Then for
any v € V(X) and p € Zyq there exists an ng such that ®;,v € ¢°L(u) for all
n > ng. In particular (2.6.2) is well defined also for s = 0.

Proof. We show first that for weight vectors u € L(u), v € L()) we have
eiu=ev=0, &uev)e L= uev)e¢L. (2.6.3)

Let | = (hi,wtu), m = (h;,wtv), and write w = ®*(u @ v) = Eos” f‘-(")w,,,
e;iw, = 0. From (2.4.1) and e;v = 0 we have

(_l)th(fi(k)u ® ’l)) = q'k(m-}-l) Z egk)f"(")wn
k<n
€ Z qf(1+m-n—(h.’,wtw))Afi(n—k)wn.
k<n

Because f{*'u = 0 the n in the sum can be at most {. Hence wtw = cl(wt v — wt u)
implies m — n — (h;,wtw) = ! —n > 0, and we find (2.6.3).

Now let v € L(A)a_¢ (£ € Q+), v € P and p € Z5o. By induction on [¢| we
shall prove the following statement:

For each v, v, p there exists an ng such that
u€ L(W)y—ns,n>ng = ' (u®v) € ¢’ L.
(2.6.4)

Suppose [£| = 0, v = u). Using (2.6.3) and arguing similarly as in the proof of
Proposition 2.3, it can be shown that « € L(p)u—y, 7 = 3_; nia; implies ®*(uQu,) €
[Lies i L.

Next consider the general case. Let v = f,-(k)vo, eivg = 0, £ > 0. Assuming
(2.6.4) for v we prove it for f;v using (2.4.2).

Note that (h;, wt u) = (h;,v) is independent of n. Since V is finite dimensional,
there exists an My € Zsq such that f;L C ¢;™*L. Therefore if ®*(u ® v) € ¢} L
then the first term of the right hand side of (2.4.2) belongs to qf+(h"")—M‘L. As for
the second term, we can take M, such that efw’anv = 0 for all j, n by Proposition
2.1. Write u= 3,5, F9u;, e;u; = 0. Then (f3u;, ®;,v) = 0 for j > M,, and

gt eugye Y, AR (ST, @),

1</ <M,

Hence if ng is large enough, the right hand side belongs to ¢ L for n > no. This
completes the proof. O
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3. Connection matrices

3.1.  Connection matrix Fix A, v € (P})s. Take finite dimensional U’ modules
V, W € Mod’ (g, P.;) satisfying (2.2.1)-(2.2.3) with the crystal lattice (Lv, By) and
(Lw , Bw) respectively. Suppose that triples (v, b, u), (4, b2, A) are admissible for
some p € P.g(k)+, b1 € By and b € Bw. Then by Proposition 2.4 there exist
vertex operators @Z'{,‘ (z1) and ®4E2(22).

The connection matrix is defined as follows. By the assumption V[z;,27}] ®
W/zq, 25 '] has an R matrix Ry w(21/22) normalized as in (2.2.5). A result of [10]
says that there exists a matrix Cyw(2) such that

(id ® RVW(ZI/ZZ)) (‘I’Zl{/‘ (z21)® id) Qﬁa’,(zz)

y i A by ou
= Y (b o) e @)cvw| b b (/)
T Wb v

(3.1.1)

holds. Here the matrix elements

A by op
va bl2 bl (z)
T A

are understood to be zero unless (v, by, ), (1, b2, A), (v, b}, #') and (¢, by, A) are all
admissible triples. Since the composition of vertex operators (in the sense of matrix
elements)

(22 (21) ®1d) @432 (22)
has meaning a priori only when |z;| > |22|, the RHS of (3.1.1) should be understood

as a result of analytic continuation to the region |z3| > |2z;|. Furthermore the matrix
C satisfies the Yang-Baxter equation ([10] Theorem 6.3.)

/\6 bg v /\1 b1 /\2 Ag bz /\3
Z Cv,v,| bs bs |(z) Cv,vy| b b7 |(zy) Cv,v,| b7 bs |(v)

b-;,ILa,bg /\5 b4 /\4 /\6 bg v v bs A4
/\1 b7 14 v bs /\3 /\1 b1 Az
= Z CV2V3 be by (y) CV1V3 by b3 ((Cy) CV1V2 b7 b2 (:l:) .
brbe,bs Ae bs As As by Mg v bs A3
(3.1.2)

As a direct consequence of (2.2.6), the matrix C satisfies the first inversion
relation:

A b ;\ bﬂ T4
> cvwl| ¥ b2 |(2) Cwv| b1 b, |(z7Y) =6,5,8, 5,05
by.bo.m uwoby v B by v

(3.1.3)




10 Date et al

ProrosITION 3.1.

’ /

A by op
Cvv| b by |(1) = 810,605,880, -
L B4

Proof. Thanks to Proposition 2.6, the composition (@;‘{; (2) ®id) 84%3(2) gives
rise to a well defined intertwiner V(1) — V(v) @ V ® V over Q((g)). Moreover
they are linearly independent since

(/% ®id) Bhur = u, @ b1 ® by mod ¢Z(») ® L® L@ Q[lg]]
where L(A) = {v € V(A) | v = T v,,v, € L(A),}. Setting z; = 23 in (3.1.1) and
noting that Ry v (1) = id we get the Proposition. O

3.2.  Energy function Now let us consider the limit ¢ — 0. By the construction
we have
4% (z)ux mod ¢L(p) ® L = 25+ 22 u, ®b.

By the assumption (2.2.2) and Proposition 4.3.2 of [6], we have

Rvv(2) lg=0 (b ® b3) = 2~ H®®), @ by,

Here H denotes the energy function of Ry (see [6], Sect.4).
Therefore at ¢ = 0 the equation (3.1.1) gives

A by
Cyv | b b1 |(2)
T Y7

In this sense we find that the energy function for the connection matrix C
coincides with that of vertex model in the sense of [6].

= 61;1,1,/l 03,0, 6w zAATAL =28, —H(5:18b3)jq (3.2.1)

q=0

3.3 Dual modules Let ¢ denote the anti-automorphism of U given by

We)=—ei, Uf)=—fi, u)=q¢"

In Sect.3.3-3.4 we shall consider another U-module structure V** using ¢ in place of
a (2.1.1). We recall below from Sect. 5.1 [6] some facts concerning the dual modules.

It is easy to see that (V*)* =V, (V;)*¢ = (V*?), for ¢ = a,t. One has an
isomorphism of U’-modules

F V;L adN V*a, v* — qp()\;)-p(wtv'),v*,

(z2=q"™", p(A) = (af(N),af(A) +2p) ),
(3.3.1)
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where v* is a weight vector and Aj is a fixed weight of V* (e.g. as in (2.2.4)). Note
that the power of ¢ is integral. Composing the maps V = (V)% — (V4)* —
(V*)*® and adjusting the power of ¢ appropriately one obtains also an isomorphism
F . V; -~ (th)ta, y= (1-21-}1v
v — q_4(p:af(Wtu))u(v)
(3.3.2)
Here v : V 5 V** signifies the canonical isomorphism of vector spaces.
Following [6] define the pairing ( , ), of V** and V by
(v*,v), = ¢(a/(A0)af ()= (a1 ()8 (M) (% o)

with (, ) being the canonical pairing. If (L, B) is a crystal base of V then
. L,u - {U* € V* I (v',L); C A}

is a crystal lattice. Moreover the dual base B** C L**/qL** of B with respect to
(, ). gives rise to a crystal pseudo-base B** LI (—B**). If B is perfect of level N
then B*“ Li{—B**)/{+£1} is also a perfect crystal of level N. Hereafter we shall also
assume that

V* has a crystal base (L**, B*), (2.2.2)*
V** has a global base. (2.2.3)*

Remark. Finite dimensional modules having crystal pseudo-base (L, B) with per-
fect B were studied in detail in [7]. We do not know a general criterion to find
modules satisfying more stringent conditions (2.2.3), (2.2.2)* and (2.2.3)*. They
are true for ‘simple’ representations such as the vector representation of U;(g [,)

and the spin /2 representation V; of Ué(glz).’
LEMMA 3.2. Let A\, p € (PQ)i, b € B, b* € B* so that (b,b*), = +1. Then
(u,6,) is admissible <= (A,b*, u) is admissible .

Proof. In view of the definition in Sect. 2.5 it suffices to check that the following
are equivalent for each i € I:
(i) ghou¥ty = o,
(ii) &iFA+lpe — g,
The condition (ii) is equivalent to

(@M by, =0 for any b’ € B. (3.3.3)

Since the left hand side is (—1)(F6A)+1(p* E,(h"'\)+1b’)‘, (3.3.3) is equivalent to the
condition that there is no & € B such that b = E‘(-h")\)"'lb’. Let €;(b) and ¢;(b)
have the same meaning as in [6] (2.2.5). We have ¢;(b) < (hi,A). Recalling that
0i(b) — €;(b) = (hi, A — p) one gets €;(b) < (hi, u), which is equivalent to (i). O
3.4. Preparation This subsection is devoted to some preliminary considerations
necessary for deriving the second inversion relation in Sect. 3.5.
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LEMMA 3.3. Let A\, X' € (P?). Then

Homy: (VE),VEW) =K ifx= X,

=0 otherwise.

Proof. Let ¥ : VK(X) — VE()) be a U’-linear map, and let ¥, be its weight
components, so that ¥, maps VX (1), to VK()),1ns. Each ¥, is a U'-linear map
from VE()) to VE()X’) sending u, to a highest weight vector of weight A + né in
VE(X’). Since the latter is irreducible we find that ¥,, = 0 (n # 0) and that ¥, is
a scalar which can be nonzero only for A = ). 0

For X, u € (P))x we set

BY = {b€ B| (p,b,)) : admissible},
B"z ={b" € B* | (A,b", ) : admissible}.
Lemma 3.2 says that up to signs B§ and B*;\, are dual bases to each other with

respect to {, ),. In this subsection we assume that they are non-empty.

Let b € BY, b* € B*}, and consider the corresponding intertwiners &%, ..

normalized as in (2.5.2). Using (3.3.1) we define ®3%.. € Homy:/(V (1), V(A)@V*?)
by

Ab* - . _nV
Dy ea :(rx1®F)o<I>zl{,.‘o7’z, c=q""

where 7, is defined in (2.6.1).
Define a linear map Ty (») € Endq(q)(V(X)) by

Ty = g2~y forve V(A)y.
Similarly, for V € Mod‘f(g, P) we define Ty € Endq(g)(V) by
Tyv = q?p20=ef)y  forv eV,

where again A is the fixed weight of V' (¢f.(2.2.4)). From the definition one verifies
the relations

B0 = (Tyly) ® FTyl) 0 @1 0 Ty x g302H2-H), (3.4.1)
(Fv*,v) = (Tv-v*,v),. (3.4.2)

Now take a weight basis {v;} of V in such a way that v; mod ¢L € B, and let
{vj} C V* be the dual basis with respect to the canonical pairing. In the notation
(2.3.1) we set

- Fub
By (2) = 2" (2) = 3V (2); @ vy,
J
Ohb.(2) = 22 B (2) = Db (2); ® v (3.4.3)
J
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PRrRoPOSITION 3.4. Forb € B“ b € B";} there exist scalars

- v L] - >
gf\;bb =g (A,—A;)gﬁbb , g.zb b _ qrhV(A,_A“)gz,\b b
b5 ~a AB®D
a8t €Ql(e),
such that
ye b bb* .
D ®L0(2); 0 Y (2); = 6an gt idvay, (3.4.4)
j
—dp; b, kY .
2‘1 ey (e rh z)j 0 yV‘(Z)J —6#;4'9 ,. IdV(u)- (3.4.5)

J
Here p; = (p,af(wt(v;))), and the components are given in (3.4.3).
Proof. We take the base field to be K = Q((g)) and omit writing K. Let z =
q""v, and consider the composition of U’-linear maps

9L DA, (3.4.6)

Here the first arrow is given by the composition of <I>"V with (77! ® 1d)<I>“V..r,,,
which is well defined thanks to Proposition 2.5. By Lemma 3.3 (3.4.6) must be a
scalar g“” It is easy to see that up to a power (3.4.4) coincides with (3.4.6). The
formula (3.4.5) can be derived in a similar manner by taking V** in place of V and
using the isomorphism (3.3.2). O

V) —TW) e VeV %Y gy e VeV

Remark. Strictly speaking we must extend the base field further to include the
fractional powers of ¢ appearing in (3.4.4) and (3.4.5). These are the artifact of the
overall power z2# =4 in the normalization of the vertex operator (2.3.1), and are
inessential for the subsequent discussions.

LEMMA 3.5. Notations being as above, we have
B € " ((b,6"). +qQllal)), &= (20, A+ X5 — n). (34.7)
In particular the matrices g% = (g“bb. obe g*u (g“‘b %)4p are invertible.

Proof. The latter assertions are clear from (3.4.7) and the definition of g*)‘ To
see (3.4.7) note that (3.4.6) can be written as

¢~ (T, (,\) ®(, ))o¥, where ¥ = (<I>:\"{,‘.‘ 0Ty, ®id) o Pkl
Here we have used (3.4.1), (3.4.2).

On the other hand, since (2p, @) € Z5¢ for € Q, Ty (,) preserves the crystal
lattice L(p) and Ty (,)u, = u,. Using the normalization of the vertex operators we
have then

Yuy = uy ®b*®b mod ¢L(A)® L™ @ L ® Q[[q]]-
Noting that (L**, L), C A we find (3.4.7). O
Now set
G\ = qzrth‘XA, XA = tl‘V()\)T\zz(,\) € Q((9)- (3.4.8)
Note that x, is the principally specialized character of the irreducible g¥-module
with highest weight A, where g¥ is the dual Kac-Moody Lie algebra.
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LEMMA 3.6.
b5 *Ab*D
Gag} b =Gug", .

Proof. We are to show that
" v Irel b
q2 h A‘trv(,\) (T‘%(«\) o ZQ,’}‘?.(z)J- o QQV(Z)J’)
j
= 2™ Bty (T 0 T a 504242 )5 0 3. (2); ).
j

On the other hand we have
—dp;—2rhY(Ay— b, —2rhY b
T‘z,(“)oq to5=2rh7(As A“)‘I";V(Q i) ZQ‘;V(Z)J'OT‘%(,\)'

By the cyclic property of the trace and the fact that each hand side is convergent
in g-adic topology, the assertion is clear. 0
3.5. Second inversion relation  The second inversion relation for the R matrix can
be obtained by applying (2.2.7) twice together with (3.3.2):
avw (2)(((Rvw(2)"1)1) )" = (F @ id) Rvw (2¢~ 7" ) (F~! ®id), (3.5.1)
avw(z) = Bvw(2)/Bv-w(z).
We shall give its counterpart for the connection matrices.
ProPOSITION 3.7.
A bl 11 A b [l'
G 1 g
ng., Cvv| b by |z Cyy| b B |(a772)
e uob, v p by Vv

=avy (2)66252(5%5126,,”1 ,

by,bY, A

where G and avv are given in (3.4.8) and (3.5.1), respectively.
Proof. Let va(z):-‘j’ be the matrix elements of Ryy, that is,
va(z)v; Qu; = Z va(z)fj'vk Q v;.
k
Similar convention is used for Ryy-(z) and Ry«y(z) by taking the dual base {v;}

of {v;}. From (3.1.1) we have
DB (1)o@ (22); Ry v (2)l
.
bl Ibl A bl u
= Y ®L3(z2)ko Bhy (z1)iCvy| b by |(2)
1

b, b4, T Y
(3.5.2)
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Here we put z/z2 = 2. Operate <I>,,V. (22)k from the left to the both hand sides of
(3.5.2) and sum over k. Setting W = V* in (3.1.1) and using (2.2.6) we have

O )2 (22)1 0 D432 (21);

,b, A‘b. u b2 v ,k
> @5 (e 0 Buyi(22);:Cvev| b b |(z~) Rvv-(2)ik
TR Aoy oW

J'I,'I
From the relation
Ryv(2) = (Rvv(2)) = B (Ruv-(2)7)5

together with Proposition 3.4, we get

u by v
Buv(c) Y el @cvev| b b |z
bl b3 A A b
vbib3 A bl K
= D o P (z1)iCvv b1 by |(2)
by, bY, uoby, v

From Lemma 3.5 there exist inverse matrices (7/\ )b-b and (7", *Abb* Yos+ of g5 and ’

g""\‘. Consequently we get

bobov bIb! b b2 A bll H
Byv(z=)Cy-v| b b‘ (27 =D e Cvy| b by |(2) .
by b5, b, v

Similarly we can derive

u b A
ﬂv.v(z)'Iva(Eg b (z™)
vVoby
I A by
= ngzb:bl’yﬁﬁlb,bgcvv 51 ) 512 (q_zrhvz).
Ba,BL p by V

Using the first inversion relation (3.1.3) with W = V* and Lemma 3.6, we obtain
the desired result. O
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4. Restricted paths and one point functions

4.1 Restricted paths Recall that we assume B is perfect of level N (2.2.2). Hence
for any 7 € (P4 )N there exist sequences of weights g = 7,71,72,--- € (P4)~ and a
path pgr = (pgr(n))n>1, Pgr(n) € B, such that for any n the following isomorphism
of crystals holds:

B(n)—P(n; B) ® B®"
Here u, is sent to u,, ® pgr(n) @ --- ® pyr(1), and P(n; B) denotes the set of n

paths (see [6] section 4). It is known that if b € B(n) corresponds to an n path
p = (p(n))n>1 then

web =0+ 3 (af(wtp(k)) — af(wt per (k)
k=1

- (Z k(H (p(k + 1) ® p(k)) = H(pgr(k +1) ® pgr(k)))) 6,

k=1 .

where H is the energy function of the corresponding Ryy. We shall identify B(7)
with P(n; B).

Let k be a positive integer with £ > N. Fix £ € (P4)r-n and n € (P3)ny. We
set

High(§,n) = {u¢ ®b € B(§) ® B(n) | ei(ug ®b) =0 Vi € I}.
DEFINITION. We say that p = (a,p) is a restricted (£, n)-path in B if the following
hold.

(1) a=(a(n))p>0, a(n) € (P,

(2) p=(p(n)),», € P(n; B),
(3) the triple (a(n),p(n),a(n — 1)) is admissible for all n > 1,

(4) a(0) =&+ af(wtp).

Note that the a(n) are uniquely fixed from £ and p by (3), (4). Welet P,.,(€,n; B)
denote the set of restricted (£, n)-path in B.

ProprosITION 4.1. The following is a bijection.

pres(fyn; B)——*High(&’i) (a,p)»—»u5®p

Proof. For n > 0 we define v(n) € B(£) ® B(n,) by the following map induced
from B(n) — B(n,) ® B®":

B(§) ® B(n) — (B(¢) ® B(mm)) ® B®"
ue @p — v(n)®p(r)®---p(1).

First let (a,p) € Pres(&,7; B). Then we have wtv(n) = wtv(0)—3_7_, wt p(j) =
a(n) € P. Let us show v(n) € High(€,n,) for all n > 0 by the induction on n.
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For n > 0, we have v(n) = u; ® u,,, so we get v(n) € High(&,n,). Assume
that v(n) € High(£,n,). From the admissibility of the triple (a(n), p(r),a(n — 1)),
v(n) ® p(n) = v(n — 1) is a highest weight vector of B(a(r)) ® B. Setting n = 0,
we find v(0) = u¢ @ p € High(§,n).

Conversely if u¢ ® p € High(€,n) then setting a(n) = wt v(n) we have (a,p) €
Pres(f; m B) ]

4.2 IRF models and their one point functions

Here we define IRF models whose Boltzmann weights are given by the connection
matrices, and state results on their one point functions.

As before we fix g,V € Mod” (g, P.;) and k > N. Take a two dimensional square
lattice £. Place variables A, u, ... (resp. b, b’, ...) on vertices (resp. bonds ) with
values in (P?)x (resp. B). For a configuration of variables around a face

A b op
1 b2
uooby

we associate the Boltzmann weight

A bop
Cvv| b b |(2) .
uoby v

Recall that it is zero unless the triples (i, b1, A), (v, bo, p), (1,01, A), (v, b5, 4') are
admissble.

Although in our consideration we treated ¢ to be an indeterminate, the matrix
elements of Cyy have meaning as functions of ¢ and 2. Under such identification
werestrict gto0 < ¢g<landztol<z< ™.

Next we explain the ground states of our IRF model. Fix a particular site i.
Consider the horizontal half infinite line ! having i as the left end. The ground
states are labeled by the pair (§,7) (6 € (P)k-~,n € (P{)~n). The ground
state corresponding to (£,7) is described as follows. Define the (&,71) -path a,,
such that cl(ag(n — 1) — agr(n)) = wt(pgr(n)). Place a4 (0),a4-(1),--- (resp.
pgr(1),pgr(2),---) on every site (resp. edge) on ! starting from i. The ground
state is uniquely determined by the condition that it is constant along the NE-SW
direction.

Take a dominant integral weight A € (P)r. We consider the probability of
finding the variable on ¢ being the value A, and denote it by P(A|€,n). Here (€,7)
signifies the choice of a boundary condition. Thanks to the Yang-Baxter equa-
tion (3.1.2), the initial condition (Proposition 3.1) and the second inversion relatin
(Proposition 3.7), Baxter’s corner transfer matrix method [5] applies. We have the
following expression for the one point function.

F(\ . g2rhY
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where

FQlEma) = Y, ¢®@,
PEP(E,n;B)(N)
P&, m; B)(A) = {p = (a,p) € P({,n; B)la(0) = A},

w(p)= 3 E(H(p(k +1) @ p(K) — H(pye(k +1) @ pyr (B),

k=1

Z= Y, xnF(X|En).

NE(PY )

Here the energy function H is given in (3.2.1). From Proposition 4.1 we have the
following.

PROPOSITION 4.2.

FQg,mq) =Y dim(V(€) ® V(n)), ;4™

Moreover if the generalized Cartan matrix of g is symmetric,

XaFOE, m;¢2)

P(Al¢,n) = exn

Remark 1. The quantity ¢*¢t*7—*> F(A|¢,7;¢) is called the branching coefficient
A+p, A+ )

( r(k”+ hv)”) - (fh’v’) for A € (PY)x.

Remark 2. This type of results have been established by direct methods for
higher spin representations of U, (; [2) [16] and the vector representation of U,(g)
of classical types A, B, D [17]. (There are problems for the type C since the vector
representation is not perfect.) Proposition 4.2 covers and generalizes these results,
on the assumption (yet to be verified) that the connection matrices coincide with
the Boltzmann weights constructed in [3][4].

[15], where s) =
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