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Coulomb Potential weakened by Self-Field of Electron

Shigeru SASABE

Tokyo Metropolitan Institute of Technology. Hino. Tokyo 191

Self-field method suggested by the present author in the

previous work is applied to the electron in the Coulomb

potential. Effectively weakened Coulomb potential are found due

to the self-field of the electron. The form of the weakened

Coulomb potential between two electrons is U(r)=(e 2 /41fr) [1

exp(-r/ZRc)cos(r/ZRc)] .

11. Introduction

In r ecen t year s, se 1f- fie 1d appr oach was deve loped by Baru t

and his ·coworkers. 1
) Most recently, another self~field method has

been suggested by the present author .2) As to the radiation

process, self-field approach is rather in favor of the Lorentz

Dirac 3
) theory than the standard form of the classical

electrodynamics. The Lorentz-Dirac theory strongly suggests

that the electron has a non-radiative self-field energy besides

the kinetic energy K. The form of which is -TodK/dT, where T is

the proper time, To is a constant given by eq. (6). This energy

is undoubtedly caused by the interaction of the electron with its

own self-field. It is well known that the classical Lorentz

Dirac theory contains the several unresolved difficulties.

Nevertheless, we put great confidence on the Lorentz-Dirac theory

because it is the only theory which is able to account for the

origin of the real electromagnetic wave and the radiative energy

loss represented by the Larmor power formula. 4
) The interesting

effects of the self-field which is produced by the charged

current are collected into the non-radiative self-field energy
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mentioned above. This is a kind of energy which always bound to

the electron and never emitted away as radiative energy.S.8)

Obviously, this bound self-field energy cannot be described by

the perturbative radiative emission which is always represented

by the free photons independent of the mot ion of the electron.

ask what isThus it

self-field

i s natural

energy in

to

Quantum theory.

the role of

The effect

the

of

bound

this

suggestive energy in Quantum theory was investigated by the

present author in the previous works. 2 • 7
) In this paper, we

shall show that our self-field method lead us to a Coulomb

potential which is possibly weakend by the effect of this bound

self-field of the electron.'

12. Form Factor in Energy Shift

The energy shift of the free electron by radiation fields to

second order was evaluated in the preceding work. 2 )

factor had appeared in the expression of the energy shift:

A form

( 1 )
p2 4 e

2
~ Jm4E(2) = ---(-)( ) (--) IF(k)1 2 dk

2mo 31l' 411'11 c moco'

It was compared to the famous Bethe's formulaS) calculated by the

perturbative method of QED.

4E(2) = _~(-±-) ( e
2

) (_-~-)Jmdk
2mo 311' 41r1lc moc 0 ,

(2)

wh i ch shows the linear divergence of the photon momentum

integral. The form factor F(k) in eQ. (1) in the preceding work

(3 )

is given by eQ. (13). All the notations refer to ref .2. The

energy shift ~E(2) is renormal ized into the mass of the electron

as E+~E(2)=p2/2(mo+am). Only difference of our result is that

the mass sift 8m is finite due to the form factor. We may

attribute the origin of the form factor to the bound self-field

of the electron.

On the other hand, if the electron has a true spread charge

in space, and take the form of interaction term as

V(x)= -( e )Jd3y f(x-y)p-A(y)
moc
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instead of V=-(e/moc)p-A. the perturbative method by Bethe

leads to the same expression as eQ. (1) (see Append ix) . The

function f(x) in eQ. (3) denotes the shape of the charge

distribution of the electron, and F (k) in this case is defined

as the Fourier transformation of f(x). Therefore, the appearance

of the form factor in eQ. (1) in our sel f-field method impl ies

that the electron behaves as if it has a spread charge in space.

Namely, electron may have some characteristic size virtually due

to its own self-field although the electron is in fact treated as

a point particle. Such property was suggested al so from the

nonlocal nature 14
).9) of the Lorentz-Dirac theory.

In the Quantum theory of the electromagnetic field in standard

form, the existence of the vacuum fluctuations in empty space was

postulated. This causes the broading effect of the charge of the

electron over a region of the order of Compton wavelength. 10
) On

the other hand, the effect of the self-field of the electron was

considered in the absence of the vacuum field. 11
) Consequently,

the self-field approach was identified with the vacuum

fluctuation method because these two different points of view

lead to the same result in many things. 12
) It is for this reason

that the broading effect of the charge of the electron by its own

self-field is expected.

size mentioned before.

The electron may have then a virtual

It is easily anticipated that the virtual

size of the electron make the Coulomb potential effectively weak

at the neighborhood of the origin. In the next section, we

shall exhibit that this is indeed the case.

13. Weakend Coulomb Potential

Let us consider an electron in the Coulomb potential. The

non-relativistic spinless electron is supposed here. In order

to avoid the extra complication connected with the radiation

field. and to see directly the consequence of the bound

self-field energy. we neglect the radiation term and the coupl ing

term in the Hamiltonian as in ref 7 .. The schrOdinger equation

for the electron in this case is then expressed as
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11
2

l' of! a1l1 ( r . t)
---£\ + VCr) + HIR ]1I1(r.t)= n

2mo at
(4)

(5 )

with

where

CD I'T]nHIR = E 1 of! ° [K.[K.···.[K.V(r)]]···]
n=l n

K=p2/2mo=-1l 2£\/2mo. and mo is the bare electron mass. The

self-field energy which is bound to the electron is expressed in

terms of Hamiltonian HIR. 2 ) The square brackets mean the

commutator. Constant To is related to the micro-causal ity; the

Lorentz-Dirac theory gives 13
)

2(e 2 /41f)
To = (6)

In order to calculate HIR of eq. (5). the Coulomb potential VCr)

is expressed for convenience in the integral form

e 2

V(r)=

=
e 1Jcr

(€ >0) (7 )

Limit €~o is taken in the above integration. Each term,

( iTo /11 ) n [K, [K. • • • [K. e 1 kr] • • • ] ]

(8 )

appears in the series expansion for HIR. is summed up to get

VCr) + HIR e
2 J- d 3 k

(21f)3

_ U(r)

where F(k) is given by

e 1kr

(9 )

(10)
1

F (k)
1- (illTo/2mo) (k 2 +2p·k/il)

The Schrodinger equation (4) is therefore rewritten as

( 11 )
11 2

__ l' ~ aW ( r , t )
[ ---£\ + U(r)]W(r,t) n

2mo at
Namely. the electron is effectively in the potential U(r).

We are able to use the identity for UCr) because U(r) defined
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by eq. (9) i s Hermitian:

V(r)+ Vtr)
U (r)

2

e 2

Jd 3 k
e1.kr t

= [F(k)+ F (- k) ] ( 1 2)
2(21r)s k 2 +e 2

In order to see the explicit form of V (r) in the coordinate

space. we approximate F(k) like in ref. 2 as follows.

F (k) =
1

1-iRe2 k 2
•

(13)

Constant Re is defined by

Rc ~ Ir e Ae /2 • (14)

where re=Toc. and Ac=ll/moc is the Compton wave-length of the

bare electron. In the classical Lorentz-Dirac theory. re denotes

the electron radius 14
).9) associated with the micro-causal ity. The

factor IrcAe in Re coincides with &xo=/roAo wh i ch was fir s t

obtained by Caldirola from the finite-difference SchrOdinger

equation for an electron. 15 > which has physical meaning of the

minimal position spread of the wave packet associated to the

electron. Indeed. in the preceding work 2 > by the present author.

Re was interpreted as characteristic size of electron.

in eq. (15)

is rewritten as

integrand

V (r)

The

____e_1._k_r ........._J
( k 2 +S 2) (1 +Re 4 k 4 )

Substituting F(k) of eq. (13) into eQ. (12)

VCr) ~ [~ Jd 3 k
(21r)s

The Hermitticity of VCr) which was broken by the approximation of

eQ. (13) has been recoverd by eQ. (12).

has six poles in the complex k-plane. Closing the integration

contour in the upper half k-plane by a large semi-circle. we can

perform the calculation of eq. (15) by means of the Cauchy's

integration to obtain

U (r) =
-(r/I2Re) r 1

e cos
v'2Rc .

(16)

The second term in the parenthesis is the form known as the

exponential cosine-screened Coulomb potential 18 > which appears in

various fields of physics such as plasma physics. nuclear

-5-



physics, and solid-state physics. As anticipated previously, the

singularity of the Coulomb potential at origin has been weakened.

Thus our se I f-f i e I d method based on the Lorentz-D i rac theory

leads to a finite value for V(a>. It should be noted that we

energy contribution whereastreated fully the bound

the method by Barut 1 )

self-field

is still perturbative because the

self-field was expressed by series expansion in powers of the

.charge of the electron, and only terms of finite order are

adopted in his works. Therefore, the property of weakened

are not able immediately

theory suggests

electron. Z
) We

effects

to

by

The

the

be caused

electron.

may

of the

potential

self-field

Coulomb

of the

thesingularity of

unperturbative

Lorentz-Dirac

non-relativistic

apply this results to the high energy physics because our result

obtained here comes from nonrelativistic treatment. Even though

the low energy electron can hardly arrive at the origin of the

Coulomb potential in most cases, effectively weakenedrepulsive

potential such as eq. (16) is consistent with the nonlocal

the conceptnature 14
).9) of the Lorentz-Dirac theory, and w.ith

of broading charge of the electron by Weisskopf. 10 )

Finally, we give the effectively weakened Coulomb potential

between nonrelativistic two spinless electrons:

H I R = ~ [ i:0
] n [K 1 +KZ , [K 1 +K2 , • • • , [K 1 +K2 , V (-I r 1 ~ ~ ; '( ) ] ] • • • ] , (1 7)

n= 1 n

where K1 =P1
2 /2mo, Kz=pz 2 /2mo, their coordinates are r1 and r2

respectively, and we obtain

V(lr1-rzl>;: V(lr1-rzl> + HIR

e Z [1- (-lr1-r21/ZRc) Ir1-r21
(18 >= e x cos

41flr1-rzl 2Rc

The author thanks Professor T.Adachi and Professor T.Inagaki

for helpful discussion.

Appendix
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The electromagnetic field is usually quantized and expanded

in terms of the creation and annihilation operators. c and c T

respectively:

A(r)=
l1c t

(-) ~

2V

1

(20)

t
+ C (A • k) e - J. kr }. ( 1 9 )

where V is the normalization volume. and the orthogonality

k-£(A.k)=O (A=1.2) is provided. The energy shift of the electron

for the interaction term (3) to second order is given by

l<mIV(r) In;A.k>12
&E (2) = ~----------

(n:m) Em - En.k

e 2 ~e 1 IJd3y(plfeX-Y)PEeikYlp'>12
=(--) (-) ~~~ -

m0 c 2V ;l" kP- Ca) k P 2 / 2m0 - (p -11 k) 2 / 2m0 -11 c k

where n means the intermediate state of the electron plus one

photon with momentums p-l1k and 11k. respectively. If the Fourier

component of fer) is defined by

f(x) = 1
3

Jd 3 U F(u)e
ixu

( 21l')
(21 )

we obtain an energy shift as follows:
&E(2)=

e 2 lie 1 IJd3uFeU)1l3eU-k)(pleiU~Ee)..k)lp'>12
( --) (--) ~~~-- ------------------

moc 2V ;l"kP- Ca) k p 2 / 2mo- (p-l1 k) 2/ 2mo -11 ck

e 2 l1c IF(k)1 2 Ip£(A.k)1 2

( --) (-) ~~ ( 22)
moc 2V Ca)k p2/2mo-(p-l1k)2/2mo-l1ck.

This is exactly equal to Eq. (3.20) in ref.2. The spherical

symmetry assumption of the charge distribution of the electron

allows to replace F(k) in eq. (22) by F(k).

calculation is carried out to get eq. (1).
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