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Abstract 

For weak gravity, the gauge notion that is independent of physical requirements is questionable in both physics 

and mathematics. In 1917, Hilbert claimed that he had proved the general applicability of the linearized harmonic 

gauge for weak gravity. However, Eddington rejected this notion. Einstein accepted his claim with an explicit reserva­

tion that questions the resulting metric necessarily being also bounded and weak. Moreover, the freedom in choosing 

a frame of reference need not imply that the gauge is arbitrary. This analysis shows that Hilbert's proof is actually 

incomplete in mathematics. In addition, an example is provided to illustrate that Hilbert's claim of general validity 

has not been proven, and is invalid as the principle of causality implies. Moreover, in terms of physics, it is pointed 

out that the metric for Einstein's rotating disk is unique and does not satisfy the harmonic gauge condition. 
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I. Introduction 

In this analysis, attention is called to a questionable, though more than 80 years old, belief that the linearized Har­

monic gauge (see eq. [7]) is always applicable to weak gravity. In 1917 Hilbert [1,2] provided a "proof' for this belief 

after he pointed out that, for Einstein's equation, a solution is not unique due to the freedom of choosing a coordinate 

system. However, a freedom of choosing a frame of reference needs not imply the gauge is arbitrary. In this paper, it 

will be shown that Hilbert's proof is actually incomplete. In addition, an example is provided to illustrate that his 

claim needs further deliberation and is certainly invalid if physical requirements are considered (in section 5). Thus, 

the choice of a gauge is actually restricted by physical requirements. 

In 1921 Einstein [3] already recognized the need of caution in the usage of such a gauge (see also section 4). Wald 

[4] pointed out that the linearized harmonic gauge and the linear field equation (eq. [8]) for weak gravity implies no 

radiation for a massive source. This inconsistency suggested that this gauge might not be generally applicable. Also, 

Eddington [5] may have discovered this already in 1923. In justifying the linear equation for weak gravity, he rejected 

the notion of gauge. Instead, he pointed out that the linear field equation would imply its differences from the Einstein 

equation is of second order terms. Thus, one may argue that the linearized harmonic gauge may still be approximately 

valid. It seems that the linear equation would provide a first order approximation for the Einstein equation. 

However, Hilbert's claim of unconditional applicability of the linearized harmonic gauge should still be ques­

tioned. The compatibility between Einstein's equation and the harmonic gauge has not been really resolved since 

Fock [6] has discovered that, for massive sources in a dynamic situation, to obtain a solution for Einstein equation by 

extending the solution of the linear equation would inevitably lead to logarithmic divergence. On the other hand, it is 

known that the linear equation (eq. [8]) for weak gravity is the basis of Einstein's radiation formula [7], which is sup­

ported by observations on the PSR 1913+16 binary pulsars [8]. Also, it has been shown that the linear field equation 

with a massive source term is derivable in terms of extending Newtonian gravity with the physical principles that led 

to general relativity [9]. Then, based on the principle of causality that causes are identifiable, it is proven that there is 

no bounded dynamic solution for an Einstein equation with the source term of massive energy-stress tensor [8,10]. In 

other words, applicability of the gauge to a dynamic solution for massive matter cannot be tested directly. 

However, since the linear field equation with a non-massive source term has not been justified, it may still be pos­

sible that an Einstein equation with a source of non-massive matter has a bounded dynamic solution for gravity. This 

would allow us to show that, in terms of mathematics, Hilbert's claim is not generally valid. Although he has shown 

2� 



3� 

that there is an equation for the gauge vector, it remains to show that this equation has a bounded solution for this 

vector as required by Einstein's notion of weak gravity (section 4). In other word, the general applicability of the lin­

earized gauge has not been established in mathematics. 

From the viewpoint of physics, Hilbert's preposition on the linearized harmonic gauge should also be questionable 

since there is no physical condition other than the smallness of the metric. Thus, it is not surprising that Einstein [3] 

cautioned its usage. Wald [4] even discovered that this gauge could lead to inconsistency in physics (section 3). Thus, 

the "current" belief of the arbitrariness of a gauge is questionable in terms of both mathematics and physics [11]. A 

counter example will be provided in this paper to illustrate that Hilbert's claim has not been proven. Moreover, from 

this example, there is no evidence that Hilbert's claim could be valid even if the principle of causality is ignored. 

This paper is organized as follows: In section 2, the harmonic gauge is described in connection with the Einstein 

equation. The inadequacy of the current notion of gauge in general relativity is pointed out as due to ignoring physical 

requirements such as the equivalence principle l ). This problem is illustrated with a simple example. In section 3, the 

notion of weak gravity, as a physical requirement, is discussed in connection with field equations. In particular, com­

patibility with the linear field equation for weak gravity is considered such that related theoretical problems for a valid 

solution can be addressed. In section 4, the mathematical "proof' of Hilbert for the general applicability of the lin­

earized harmonic gauge for weak gravity is analyzed and its incompleteness is pointed out as failing to show the satis­

faction of the weak gravity notion. His claim is also analyzed in terms of physics, as any problem in physics should. 

Then, a counter example to Hilbert's claim is given in section 5. In section 6, the importance of physical considera­

tions in theoretical consistency and even in mathematical analysis is remarked. 

2. The Einstein Equation of 1915 and the Notion of Gauge 

The non-linear Einstein's field equation of 1915 [7] is 

1 
Gab == Rab - "2 gatJR = - KT(m)ab ' (la) 

where Rab is the Ricci curvature tensor, gab is the space-time metric, K is the coupling constant, and T(m)ab is an 

energy-stress tensor of massive matter, which generally depends on gab. 

The Einstein tensor Gab has the identity [7], 
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(2) 

Owing to eq. (1), identity (2) implies the conservation law, 

(3) 

Due to identity (2), four more conditions are needed to solve eq. (1) uniquely. These additional conditions are called 

gauge conditions and represent a choice of space-time coordinates [2]. However, such a choice is actually not entirely 

arbitrary due to the fact that a space-time metric must satisfy physical requirements (for example, Einstein's equiva­

lence principle [3,12]) that may not be compatible with a given gauge. However, the current notion of gauge, which is 

based on mathematical diffeomorphism [4], requires only the proper metric signature. Note that Eddington [5] who 

understood the equivalence principle does not accept this gauge notion. 

An often-used gauge condition2) is the harmonic gauge [2,7] 

a 1 
Vax 

fJ 
(lgl2" gfJ = 0, (4)) 

where g is the determinant of the metric. Recently, it has been found, in confirmation with Eddington's caution, that 

this gauge can be incompatible with Einstein's equivalence principle [3] and the principle of causality (that causes are 

identifiable, see also Appendix). For example, a solution for gravity of an electromagnetic plane wave would satisfy 

this gauge condition, but violate the physical principles [11,13]. Moreover, there are unphysical solutions with the 

proper metric signature, but none of them can be diffeomorphic to a physically realizable space-time [10,11]. 

A major problem in current theory of general relativity is its inability to distinguish a physical space from merely a 

mathematical manifold, which has the proper metric signature [14]. Consider the simple metric, 

(5a) 

where a(~ 2c) is a constant, and the time unit is in second, and the length unit is in centimeter. (This example shows 

also that it is important to specify the chosen units.) Metric (Sa) is a solution of the Einstein equation Gab = O. Then, 

ds2 =0 implies that the velocity of light is a. One might argue that metric (Sa) can be transformed to 
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(5b) 

by the following diffeomorphism, 

dx'::;: dx, dy'::;: dy, dz' = dz, and dt'::;: dtlc. (5c) 

Eq. (5c) implies, however, that the units oft and t' are distinct and the light speed remains a but not c. Thus, eq. (5c) 

is a rescaling, and only the physical units, but not the physics, are changed. For example, the light speed can be ex­

pressed as 186,000 miles per second. If a = 2c, metric (5a) implies that the light speed would be 2c, i.e., 372,000 

miles/sec~ and metric (5b) implies that the light speed is 186,000 miles/half-sec. This illustrates that a rescaling of 

units cannot change any meaning in physics. 

On the other hand, if metric (5b) were considered as a local Minkowski space, then the corresponding local coor­

dinate transfonnation (5c) would mean the ratio of two clock rates. This is invalid in physics since Einstein's equiva­

lence principle implies that (5c) must be obtained through a suitable acceleration [12]. Since (5a) implies all the 

Christoffel symbols are zero, there is no gravitational acceleration. Thus, Einstein's equivalence principle is not satis­

fied. Also, in such a non-rotating free falling, the velocity of an observer is a constant. According to special relativity, 

this observer carries with himself a new coordinate system, which must be obtained by a Lorentz transfonnation. But, 

a Lorentz transfonnation cannot transfonn metric (5a) to a local Minkowski space. In conclusion, the cause of an in­

correct light speed is due to the failure of satisfying Einstein's equivalence principle. And metric (5a), just like the 

Galilean transformation, has the problem of being not physically realizable. Thus, is has been shown that the problem 

is originated from the fact that current theories follow, instead of Einstein's equivalence principles, Pauli's version l ). 

3. The Notion of Weak Gravity and the Linear Field Equation 

From observation, Einstein [3] required that a weak source would produce a weak gravity. Theoretically, his no­

tion of weak gravity is based on the principle of correspondence and the principle of causality and as such is a physi­

cal requirement. Thus, whether this requirement can be satisfied by a field equation, must be proven. Based on weak 

gravity, Einstein "derived" the Newtonian approximation with the linearized harmonic gauge [3]. It turns out that the 

weak gravity requirement is satisfied by eq. (1) for static problems, but not dynamic problems [8] (see also § 4). 
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The notion of weak gravity requires that the deviations Y ab = (g ab - 11 ab) from the flat metric 11ab is small ( IYab I 

<< 1 ) . If all the terms of explicit second order of deviations are neglected, then eq. (1) and eq. (4) are reduced to 

(6a) 

where 

(6b) 

_ 1 

r ab = Yab - "211abY' and Y == llcd Ycd (6c) 

and 

(7) 

Eq. (7) is the linearized harmonic gauge (or the Hilbert condition). 

Gauge (7), "provided these conditions do not conflict with IYab I «1 [3] " reduces eq. (6) to 

(8a) 

However, eqs. (7) and (8) imply the linearized conservation law, 

rr T(m)cb =0 . (9) 

which, as pointed out by Wald [4] and Yu [15], implies no radiation for a massive source although, for a non-massive 

source tensor Tab, radiation may still be possible. 

To see whether eq. (8a) is compatible with the notion of weak gravity, consider the solution of eq. (8a) [4,7], 

3 

rab(Xi, t) = - ~ f ~ T(m)ab[yi, (t - R)] d3y, where R2 =L (xi _yi)2 . (8b) 
j=l 

Solution (8b) would represent a wave if T(m)ab has a dynamical dependency on time t' (= t - R) [2,7]. An implicit 

gauge condition is that the flat metric llab is the asymptotic limit at infinity. Note that the integral in (8b) is finite and 
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bounded since T(m)ab is non-zero only in a finite region. Moreover, eq. (8a) can be directly justified by the physical 

principles [9]. Thus, independent of eq. (1), the requirement of the existence ofgravitational waves is assured. 

Some characteristics of an exact solution for the weak gravity due to massive matter can be obtained. They are: 

i) Solution (8b) manifests that the first order approximation of the space-time metric includes a propagating wave, 

and is an almost periodic function of time for a source in an almost periodic motion. This is consistent with the 

principle of causality, which requires that the exact solution is also an almost periodic function. 

ii) Moreover, as shown be Eddington [5], from eq. (8) one obtains 

. K 1 . 3 
aa r ab(x1

, t) = - 21r f R aaT(m)ab[yl, (t - R)] d y, (8c) 

If eq. (8a) gives a first order approximation, aa rab should be of second order [5,8] due to the conservation law, 

VaT(m)ab =0 (which is independent of the notion of gauge). 

iii) By definition, an exact space-time metric element (in a Cartesian coordinate system) for weak gravity is a small 

deviation from the flat metric [3] and therefore must be bounded (i.e. Igab I < constant). On the other hand, ac­

cording solution (8b), the first order approximation of'Yab is also bounded and is small for a small source (with a 

finite extend). Thus, eq. (8) is consistent with the notion of weak gravity. Moreover, for the case of including sin­

gular mass distributions, in the region too close to the singular source, eq. (8a) is not valid for this problem. 

Thus, one must remodel T(m)ab such that weak gravity can be applied. 

Note that i) and iii) are also satisfied by the electromagnetic wave and condition ii) is similar to the Lorentz gauge. 

Thus, a gravitational wave should have a fruitful analogy with electromagnetism [7]. 

Also, there is a crucial difference between the argument based on the arbitrary applicability of gauge (7) for weak 

gravity and Eddington's argument. From linear field eq. (8), if the source is non-zero in a finite region, the first order 

approximation of a space-time metric is bounded. It follows the conservation law, VaT(m)ab = 0 that aa r ab is of the 

second order, and this is independent of the gauge freedom. 

On the other hand, Einstein equation (1) allows the term aa r ab to be of the first order, and thus additional condi­

tions are required to restrict them to be the second order. Also, since eq. (1) includes four constraint equations [7], it 

may not have a bounded solution for a dynamic problem. In fact, eq. (1) and eq. (8) are not compatible for a dynamic 
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problem [8,9]. The argument of Eddington assumes directly that eq. (8) and eq. (1) to be compatible; and thus the 

possibility of being incompatible is still open; besides aa rab being of the second order is different from of aa rab = 

o (see section 4). Apparently, Einstein's notion of weak gravity also implies that the freedom of space-time coordi­

nates is restricted [9]. 

Moreover, that Einstein equation (1) does not have dynamic solutions (which include gravitational waves) for 

weak gravity [8] is supported by the fact that nobody has been able to show the existence of a dynamic solution. Al­

though Damour and Schmidt [16] claimed the existence of dynamic solutions for eq. (1), they have not shown that 

such solutions are compatible with Einstein's notion of weak gravity as physics requires [9]. Also, although Christo­

doulou and Klainerman [17] claimed the existence of source free global solutions describing weak gravitational 

waves, they have not been able to justify these waves with dynamic sources. Moreover, the assumed dynamic nature of 

their initial condition has not been proven as valid. Thus, their claim is actually groundless. On the other hand, their 

initial conditions are incompatible with Einstein's radiation formula [18]. Thus, their claim is also invalid. 

In fact, as early as 1936, Einstein [19] himself discovered that his eq. (1) does not admit a propagating wave solu­

tion. The subsequent "plane-waves" proposed by Bondi, Pirani and Robinson [20] have no weak limit. Hogarth [21] 

conjectured in 1953 that there is no physical dynamic solution unless the gravitational energy tensor is added to eq. 

(1), and Lo [8] proved that eq. (8) is actually an approximation of the modified Einstein equation, 

1 
Gab == Rab - "2 gab R = - K[T(m)ab - t(g)ab] , (10) 

where t(g)ab is the gravitational energy-stress tensor. 

It has been proven that there is no bounded dynamic solution for eq. (1) with a massive source [8,18,23]. Thus, it 

is impossible to illustrate the incompatibility between eq. (1) and gauge (7) through a dynamic solution. Perhaps, this 

is a main reason that the conditional validity of the gauge was not discovered. Nevertheless, we may analyze the static 

solutions that can be made satisfying the linearized gauge, and find out the difficult in extending such a feature to a 

dynamic situation. If an exact solution is insisted, a non-massive source tenn must be used in eq. (1). Note also for a 

non-massive source tensor Tab, eq. (8) could be invalid since the physical principles can justify eq. (8) only the case 

of a massive source [9]. In other words, eq. (8) may not be generally applicable (see metric [23] in section 5). 
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4. The Questionable Claim of Hilbert and His Incomplete Proof 

Since a gauge must be compatible with physical requirements such as Einstein's equivalence principle, and etc., in 

contrast to the belief of Fock [22], the validity of a gauge can only be conditional. Since Einstein's notion of weak 

gravity is a physical requirement, the application of gauge (7) may lead to a violation of weak gravity for some situa­

tions as Einstein worried. Here, it will be shown directly that Hilbert's claim is invalid in mathematics. 

Surprisingly, in Hilbert's proof [1] for the freedom of gauge (7), there is no requirement for Yab' except their small­

ness. Hilbert considered an infinitesimal coordinate transformation [1,4,7] 

(11) 

It follows eq. (11) one has 

(12) 

Then, for gab = 11ab + Yaband g'ab = 11ab + y'ab' one has 

(13) 

Eq. (13) is called a gauge transformation, and <';a is a gauge vector. 

It is well known that Gab(1) is invariant under transformation (13). Thus, for weak gravity, the order of Gab is in­

variant under a gauge (13) if it maintains Yab being smallness of the first order~ and therefore Gab is either of the first 

order or the second order of deviations. 

Then, to satisfy the linearized harmonic gauge BC f' cb ~ 0, one should obtain a gauge vector <';a such that 

(14a)-B
C f cb ' 

and 

where R2 = L
3 

(xi - yi)2 . (14b) 
i=l 
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is a possible solution. Then, cSb would be at least of the same order as oe f cb . Moreover, if eq. (8) is valid, cOaSb 

would have a higher order, and the first order of Yab is essentially the same since 

(15) 

An implicit assumption) is that the integrals are finite and bounded. 

However, since Yab can be non-zero almost everywhere, there is no guarantee that the integration in (14b) or (15) 

to be finite. Even if they are finite, they may not be bounded. This situation, being different from electromagnetism3), 

would be the reason that Einstein worried about. For an unbounded cOaSb' it is meaningless to consider its order in 

terms of any parameter. (In classical electrodynamics, an unbounded gauge function is, nevertheless, acceptable since 

such a gauge function has no physical meaning.) Thus, Hilbert's proof is at least incomplete. 

Thus, the above analysis supports Einstein's [3] worry of inconsistency that an arbitrary gauge condition may not 

be compatible with the requirement of weak gravity. Nevertheless, (7) is applicable to the static case. To see this, let 

us consider a static vacuum isotropic solution of eq. (1) [2], 

(16) 

where r2 =x2 + y2 + z2, C =KM/4 for a spherically distributed mass M. The first order approximation of metric (16) 

gives exactly the same result as eq. (8) [3]. From metric (16), we have, at large r, 

r tt ~ O(KIr), but Oa rat = O~ (17a) 

and 

(Jay = 
ax 

-
c 2 

Ca [-(1 + _)2], and 
x 4r 2 2r 

.-L­ 24OyO- r ex ~ O(C Ir ). (17b) 

Hence, integral (15) converges and gOaSb is also bounded. A solution satisfying the harmonic coordinates [7] is 

ds2 = ( 1- c I r )2dt2 _(1 +.:. )2(dx2 + dy2 + dz2) ds2 _ ( 1- c I r ) ~ (xdx + ydy + zdz) (18) 
l+clr r l+clr r 4 
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There is a difference from merely satisfying the harmonic gauge eq. (4) approximately. 

Now, consider the well-known Schwarzschild solution 

ds2 = (l - 2c )dt2 _(l _ 2c y1dr2 _r2d.Q2 (19)
r r 

From metric (19), we have 

2c 2cx2 2c 2cX}' _ 2c ) -1.Ytt = --, Yxx = - -3- (1 - - ) -1, and Yxy = --3- (1 (20)
r r r r r 

The first order of eq. (20) was obtained by Einstein in 1916 [12]. 

It follows eq. (20) that we have 

_ 2c c 2c r tt =-{- (1- -) (1- - ) -1}, but aa r-
at 

= O'
' (21a) 

r r r 

and 

a - 2c C x 2 2c _ 2cX}' 2c _ 2cxz 2c_a r ax = -ax{- )(- - -) (1--) 1} + a{- (1- -) 1} + a{- (1- -) 1} 
r r r 2 r Y r3 r z r3 r 

(21b) 

The terms of O(C/r2), do not make integral (14) to have a logarithmic divergence because there are cancellations in 

the integration. Since aa rax is of the first order, eq. (8) does not provide an approximation for metric (19). 

However, for a dynamic problem, Hilbert's proof would not be applicable because eq. (l) may not have a bounded 

solution. For example, the unbounded "plane-wave" solution of Bondi et al' [20] illustrates that it may not always be 

possible to have a bounded time-dependent solution for eq. (1) [9]. In other words, for a dynamic situation, it may not 

be possible to reduce aa r ab to second orders no matter how weak the source could be [11]. 

One may argue that for weak gravity, we may expect that the solution at large r, is essentially similar to (16) ex­

cept that C becomes time-dependent. This would mean 

r tt ~ O(e/r), but aa r at "* O. (22a) 

Thus, 
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if ax rxt + ayryt + az rzt = o. (22b)� 

Then, it is not clear that aa r at remains of the second order and the integrals (14) and (15) are finite. 

5. A Counter Example for the Harmonic Gauge 

For simplicity, let us consider a weak gravitational wave satisfying acacrab ::::: 0 everywhere in a region. (This is 

also what the harmonic gauge implies except where the source term is non-zero.) If gauge (7) is valid, G (1 ) ab must 

be of second order. Since the order of Gab is gauge invariant, gauge (7) can be applicable only if Gab is of second 

order. Therefore, a metric as a counter example would have its Gab to be of the first order, but acacrab ::::: 0 every­

where. Thus, such a counter example would not satisfy the vacuum equation Gab = 0 and has a dynamic tensor of the 

first order in the source. To illustrate this, let us consider a plane-wave as follows: 

(23a) 

Y =-y =[1-2y ]-1/2_1 (23b)tt zz xx ' 

and otherwise Yab = O. Obviously, metric (23) has the proper signature. The source term of the Einstein equation is 

where Pt = -Pz = eo , and Px = Py = 0 (23c) 

and 

~ KP (t - z) = -G cos2eo (t - z), where G = gxxgyy - (gxy)2 = 1 - 2 Ao2[1- cos 2eo (t - z)]. 

It is clear that metric (23) satisfies the weak gravity requirement and Gab is of the first order in K. But eq. (8) is not 

valid because ;- [pac r ab =O. Thus, metric (23) is a counter example for the harmonic gauge. Since this is a demon­

stration of mathematics, here we shall not consider the details of this wave (which is discussed in reference [13]). 

Also, wave (23) satisfied oaTab = 0, but this is not a guarantee for gauge (7) since 

(24) 

is of the first order, and is non-zero almost everywhere. Now, although the equation 
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-atac-r ct (t-z) , (25) 

has 

3 

where R2 =L (xi _yi)2 . (26) 
i=1 

as a formal solution. But, integral (26) is not a bounded solution. If eq. (25) had a bounded solution, then the ap­

proximate linear equation would be 

(27) 

But, eq. (27) also does not have a bounded solution [13]. Thus, it is not possible to transform weak wave (23) such 

that gauge (7) is satisfied while the transformed gravitational wave remains bounded and weak. 

In terms of physics, eq. (27) means gravity has a first order source almost everywhere, whereas acac rab= 0 

represents only a propagation in the vacuum and there is no source of the first order. Thus, that eq. (27) has no 

bounded mathematical solution reflects that these two equations are incompatible. Nevertheless, some might still 

speculate that eq. (27) could have a bounded solution if physics were ignored. However, the mathematical evidences 

are against such an existence (see Appendix). Thus, the burdens of proving such a groundless speculation necessarily 

rests on those who believe that Hilbert's proof were valid. 

6. Remarks 

In conclusion, the linearized harmonic "gauge condition" (7) is not always applicable. Mathematics is a valuable 

tool for physics because what is right in physics can be proven in mathematics and conversely one cannot prove a 

preposition, which is not correct in physics. It has been proven in terms of physics that the current notion of gauge 

based on diffeomorphism alone is inadequate [9,11]. Perhaps, this is why seasoned physicists such as Einstein [3] 

gave the warning of caution and Eddington [5] rejected such a notion all together. However, Hilbert's claim suggested 

the contrary that independent of the physics related to a frame of reference, a gauge can be arbitrarily chosen. 

Hilbert is not the only one who has mistaken on the question of choosing a gauge. Fock [22] had made a similar 

mistake of ignoring physical requirements and thus believed that, independent of the physical situation, only the har­

monic gauge is valid. When he failed to show the effects of a uniform acceleration with a space-time metric, he 
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claimed that Einstein's equivalence principle is invalid. Fock [22] and his followers [23] are of course wrong. In fact, 

one does not have to go far to see such a mistake. For instance, Einstein's rotating disk has the metric [24], 

(28) 

where n is the angular velocity of the disk. The rotating disk has a frame of reference (r', <1>', z), and (28) is the only 

valid metric in physics. Metric (28) could have served as a counter example of Hilbert's approach, but the metric is 

not bounded and thus do not satisfy the condition of weak gravity. 

There are other mathematical coordinate systems, but (28) is the one valid in physics because he is ··obliged to 

define time in such a way that the rate of a clock depends upon where the clock may be [12]." Obviously, metric (28) 

does not satisfy the harmonic gauge. Nevertheless, (28) is diffeomorphic to the flat metric, ds2 = c2dt2 - dx2 - dy2 ­

dz2, which satisfies the harmonic gauge. In other words, when a frame of reference is chosen, the gauge may have 

been determined. This example also serves to show how the theoretical bias can affect a theorist. 

Experimental tests may not be considered as capable of verifying directly all aspects of a theory because it takes a 

theorist to identify implicit assumptions and theoretical inconsistency may not appear in a readily testable form. For 

instance, when covariance is tested, it is tested in a physical space. Since an unphysical space does not exist in nature, 

it is in principle futile to test unrestricted general covariance experimentally although its nonexistence can be proven. 

Some theorists believed that a physical justification for a solution should be obtained only from comparison with 

experiment [14]. Such an attitude and the above difficulty probably result in a tendency of not examining the physical 

validity of a solution. In other words, the physics is often treated as if only a problem in pure mathematics. Conse­

quently, as pointed out by Kinnersley [14], most of the exact solutions describe situations, which are not physical. 

In conclusion, Hilbert's proof is at least incomplete. Apparently, some supplementary conditions should have been 

considered as Einstein suspected [3]. More importantly, mathematical judgment can sometimes be impaired by preju­

dices due to insufficient physical considerations. If Hilbert [1] is not immune to such shortcomings, who is? . 
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Appendix: The Principle of Causality and Validity of a Field Equation 

Although the linear equation (27) does not have any bounded (in magnitude) solution, as will be analyzed here, it 

is known that this equation has solutions. However, as shown in electrodynamics, a mathematical solution may not be 

valid in physics. A physical condition, as pointed out by Einstein [3], is that the resulting metric solution must re­

mains bounded and weak. Hilbert [1] also claimed that such a condition of weak gravity was satisfied. However, he 

neglected to prove it, probably due to overlooking the difference from electromagnetism in terms of the sources. 

Physicists often assume a physical requirement must be compatible with the field equation. However, this may not 

always be true because such a solution may be beyond the valid range of application of a field equation [10,18]. Thus, 

satisfYing a physical requirement is a criterion for the validity of an equation in physics. Wheeler believed a simple 

idea is missing in general relativity. He [25] declared, "To my mind there must be at the bottom of it all, not an equa­

tion, but an utterly simple idea. And to me that idea, when we finally discover it, will be so compelling, so inevitable, 

that we will say to one another, 'Oh, how beautiful. How could it have been otherwise?' ". It seems, the principle of 

causality would be a simple idea that Wheeler was looking for. 

The principle of causality is a time-tested assumption that phenomena can be explained in terms of identifiable 

causes [13,26]. This principle must be considered in physics, and provides the relevance for science. This principle 

requires any parameter of a solution in physics must be identifiable with physical causes [9,10,13,18]. This physical 

principle is commonly, but often implicitly, used in symmetry considerations, which was often misunderstood as a 

consequence of the field equation, which actually plays only the role of compatibility. For instance, in electrodynam­

ics, this principle has been used in deriving the inverse -square law from Gauss's law. In this case, the mathematical 

source term of the Maxwell equation is also the physical cause. However, this is not always true. For gravity, the 

cause would be due to distribution of matter or acceleration, but the source term is the energy-stress tensor. 

Moreover, it is in gravity that the principle of causality would playa major role on the validity of the field equation 

and its solutions [9]. In Weyl's theory, the Schwarzschild solution is also a solution since the equation R = constant, 

which can be zero if charge is not present [2, p.20l]. However, the principle of causality would reject a claim of pre­

diction since the involvement of mass is unclear. It is known that the earlier form of Einstein's equation is 

1 
Rab = - - KT(m)ab . (AI)

2 
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This equation accepts the exterior Schwarzschild solution, which Einstein's three predictions are based. However, this 

equation is not valid since the source accepts the conservation law, but veReb =I:- O. Thus, Einstein has to modify his 

field equation because the source term has been determined to be an energy-stress tensor. 

Moreover, there are other examples. Let us examine the physics of some solutions of the linear equation, 

(A2) 

where 17 mn are the flat metric (+,-,-,-), u == (t - z), and v == (t + z). IfF is a function of only t and z, then the inhomoge­

neous solution depends not only on u but also v, and is 

F(t, z) = ~ ff(t)dt (A3) 

IfF is also a function ofx and y, then the inhomogeneous solution of eq. (A2) would have another form as follows: 

F(x, y, z, t) = --1 
(x2 + y2) feu) (A4)

4 

Both solutions (A3) and (A4) [27] are not bounded. These manifest that eq. (A2) is not an equation for physics. 

The principle of causality implies that a physical solution of equation (A2) must have the form of F(u) since this 

wave and its source should propagate in the same direction. Thus, (A3) shows that there is no bounded physical solu­

tion for eq. (A2). Moreover, if the cause for field F is independent of coordinates x and y, the principle of causality is 

violated by solution (A4), which depends on the parameters, the origins of the x-axis and y-axis. 

The left-hand side of eq. (A2) can be considered as a Maxwell's equation or an equation of linearized gravity. 

Then, one may examine a field equation after the related physical cause has been identified. 

For linearized gravity, the function F would relate to the deviations from a flat metric. If the physical cause is an 

electromagnetic plane-wave propagating in the z-direction, then the related source energy-stress tensor would be a 

function of u [13,14], and thus the source term in linearized gravity would have the form feu). Then, according to 

solution (A3), the metric would have a factor v and is unbounded. On the other hand, the principle of causality im­

plies ·that the metric is a function of u only [9,13]. This contradiction manifests that eq. (A2) is not an appropriate 

16 
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form for gravity since the electromagnetic plane-waves are supported as an idealizations [13]. Thus, there are weak 

gravity exact solutions (e.g., of an electromagnetic wave), which cannot be approximated with linearized gravity. 

For the case of the Maxwell's equation, since the left-hand side of equation (A2) is well tested, the principle of 

causality requires that, as observed, the source term may not be in the form of a plane-wave f(u). Thus, a charged par­

ticle must be invariably massive, and therefore there is no charged source moving with the velocity of light. 

Some might argue that since Maxwell equation in the Lorentz gauge has weak and bounded physical solutions for 

a weak source term, gauge equation (27) should have a bounded weak solution. However, a source term in a Maxwell 

equation is non-zero only in a finite region3). Clearly, an argument based on partial validity is irrelevant. Although 

the question of causality is not clear for equation (27), the gauge terms would be added to the initial solution and 

forms a new solution, which is subjected to causality. 

However, partial similarity was and may remain a favorite argument among some theorists, who are not used to 

the rigor in mathematics. They rely on their feelings and believe, without the support of an appropriate example, that 

a physical requirement must be compatible with a field equation [17,28]. Such an approach, though fruitful in some 

cases, is unreliable. For instance, it is known that Einstein equation of 1915 has bounded solutions for only a static 

case, but it took a long time, i.e., generations, to recognize that it actually does not have a dynamic solution [8,10]. 

Based on partial similarity, the warnings starting from Gullstrand [29] in 1921, Rosen & Einstein himself [30] in 

1937 as well as Hogarth [21] in 1953 and Yilmaz [31] in 1954, are simply ignored by most researchers. 

ENDNOTES 

1)� In many textbooks, the equivalence principle is actually Pauli's version [2] which "is now commonly but mistak­

enly regarded as Einstein's version of the principle [32]" in spite of Einstein strongly objected Pauli's version as 

a misinterpretation [32]. Pauli [2] regards the equivalence principle essentially as the mathematical existence of 

local Minkowski spaces. Different from Pauli, Einstein requires additionally: i) "the special theory of relativity 

applies to the case of the absence of a gravitational field [12]" and ii) a local Minkowski space is obtained by 

choosing the acceleration. Einstein [12] wrote, "... we must choose the acceleration of the infinitely small ("lo­

cal") system of coordinates so that no gravitational field occurs; this is possible for an infinitely small region." iii) 

"He will be obliged to define time in such a way that the rate of a clock depends upon where the clock may be 

[12]." Einstein's principle is proposed for a physical space [12,32], which has a frame of reference and time co­

ordinate that relates to local clocks. The notion of acceleration with respect to a three-dimensional frame of refer­

ence is essential in Einstein's theory [3,22]. Fock [22] believed in Pauli, but regarded Einstein's equivalence 

principle as invalid, in part, because of his misconceptions on the frame of reference [33]. However, the differ­
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ence between the two versions is correctly regarded by Fock [22], Synge [34] Ohanian, Ruffini and Wheeler [23] 

as fundamental in physics, but is not just in philosophy as others implicitly believed. For instance, Einstein's the­

ory requires that space-time coordinate have physical meaning, but Pauli's version implies the opposite. 

2)� Fock [22] believed that the harmonic gauge is the only valid one and that a metric must be asymptotically flat. 

However, the metric (28) of Einstein's rotating disk [3] does not satisfy the harmonic gauge and is also not as­

ymptotically flat. Moreover, mathematically, the notion of asymptotically flat does not really guarantee the con­

vergence of integral (15). For example, if the metric is - O(r-U ), integral (15) may not converge for 0 < U < 1. 

3)� One may note that the gauge equation (14a) has the form of the Maxwell equation. However, the sources of elec­

tromagnetism are non-zero only in a finite region. Although there are theoretical sources in restricted regions of 

infinite extend, but they are only idealizations of sources in some finite regions. For instance, a very long wire is 

modeled as infinite in calculating the magnetic field. Thus, in practice, the Maxwell equation does not have the 

problem of producing unbounded electromagnetism. (Nevertheless, some theorists were unable to see such a dif­

ference between (14) and the Maxwell equation [35].) Perhaps, this is why Hilbert, being a mathematician, over 

looked this problem in the case of (14a), whereas Einstein worried about the question ofboundedness. 
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