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ABSTRACT

We show that stable bound states of black holes, called holeums, having asymptotic freedom, an
exclusion property and a nearly parameter-free gravitational analogue of the hydrogen atom spectrum would be
formed in the early universe and in accelerator experiments. They are massive components of dark matter, a new
source of gravitational waves and would form haloes around galaxies.

In this letter we consider the problem of the missing mass of the umverse. In the early history of
the universe large quantities of primordial black holes, henceforth called black holes, of various masses would be
created. If the temperature T of the bigbang universe is much higher than Ty, = mc?/ks, where m, ¢ and k;, are the
mass of a black hole, the speed of light in vacuum and the Boltzmann constant, respectively, the number density

of such black holes would be proportional to (kT) and they would be in intense fields. These conditions are

conducive to the formation of their bound states, henceforth called holeums . Once a part of a stable holeum a
black hole is immune to the Hawking radiation just as a neutron in a stable nucleus is immune to decay. Since
the holeums give off only gravitational radiation they remain undetected at present. Thus, they would form an
important component of the dark matter in the universe. Since no consistent theory of quantum gravity with
predictive power exists, we will use the Newtonian gravity and the Schrodinger equation for the purpose. The
former is a weak field limit of general relativity and possesses unsurpassed simplicity and transpmency(z) and the
latter possesses exact solution to the problem at hand. We will deal with submicroscopic black holes of mass
less than 100 keV/c? having a radius 10 m or less. They would form holeums of size 10'° m or less. Now
using the uncertainty principle it can be shown that if a particle is confined in a cube of side d then its de Broglie
wavelength would be 3*d which is comparable to d. Thus, the use of the quantum theory is mandatory. In this
simple treatment we take the 1 type gravitational potential as the effective potential between tow black holes for
all r. This is done in view of the relative sizes of the black holes and their bound states mentioned above. It is
further supported by the observation that the behaviour of a potential within a bound state does not seem to
have a decisive influence on the parametes of the latter. For example, in quarkonia a Coulomb plus a linear, a
logarithmic and a small positive power potential having radically different singularity structures at r = o give
acceptable description of the charmonium and the bottonium spectra. The relative sizes of the nucleons and their
bound state, the deuteron, and the dispensability of the hard core potential in the latter® all support but do not

prove the observation.
Consider two black holes of masses m, and m, interacting through the gravitational potential

Vo = -‘ﬁcoz.g /t )
o = m,m, / my’ @
mp = the/G)* G

where my is the Planck mass and h and G are the Planck’s constant h reduced by 2n and the universal constant
of gravity, respectively. The Schrodinger equation is exactly solvable for this potential and the energy eigen
values are given by

E, = -pac’ 0,/ (20, %) @



where the reduced mass p, is given by

1/“.2 = l/ml + l/mz (5)
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Formally these are the eigen values of the hydrogen atom. n, is the principal quantum number of the
holeum. The size 1, and the mass M, of the holeum are given by

I = R, +RYn,/ 2o, 3 Y
M, = (m; + my)(1 - m; my 0, %)/ (20,2 (m, + m,)%) ®

where
R, = 2m G/ ¢%, i =12 ()

are the radii of the black holes. Since the area 4nR? of a black hole of a radius R never decreases and since the
black holes must not overlap, therefore we must have
I 2 R1 + Rz (1 0)
for all n, and at all times. From Egs. (7) and (10) we can prove the following theorem.
Theorem : A holeum wﬂl have a stable ground state, n, = 1, only if

o’ <% = a’ an
otherwise it can only be in excited states given by
n, > 20,° > 1 12

The latter case will eventually result in coalescence of the black holes and destruction of the holeum . Using
Egs. (2) and (6) we can rewrite Eq. (11) as

(mymy)* <me=2%m, 13)
Here o, and m, are called the cosmic limits for the formation of stable holeums. In reference’” we considered
unstable holeums satisfying Eq. (12). In this paper we consider only the stable holeums satisfying Egrs. (11) and
(13). Now a holeum of mass M,, Eq. (8), picks up a black hole of mass m; to form a holeum of mass M, and so
on. After a holeum has gobbled up k black holes the following situation obtains :

E, = - e S 0 2/ (20,7 (14
where the reduced mass p is given by

1/ = 1/my, + /My, (15)
and

o =my My, / m,? (16)

Here a bound state of k-1 black holes of mass M, _, has picked up a black hole of mass m, to form a bound state
of mass M, . Eq. (14) gives a "global view" of a k-holeum. It shows what is formally a hydrogen atom spectrum
except that the fine structure constant & = ¢%/hc is replaced by the gravitational coupling constant o . Ina "
local view " the following equations reveal all the k black holes it has gobbled up :

E = - mc® &g 1 0N &-1)° T K) ey * / an

Ber = 1-0y* Ze, / 1) (18)

f1 = -0’ Zey / (2K) (19)
k-1

Z, = T G0 /in?gia (20)
j=2

T = (kRn, / 20, *&-1)*) iy / g 2 Q1)

Mk = kmg, 22

= kDo ge 23)

For sxmphcxty here we have specialized to the case of k identical black holes each of mass m and radius R.To
produce the most compact and nonoverlapping bound state in Eq. (21) we must have

2k-D)e’ = 1 (249
Then it can be shown that
£ 2 81 2 (25)

From Egs. (21) and (25) we have
Ty > kRny 26)



for all k and ny. Eq. (26) is a condition for the stability of a k-holeum. It is an exclusion condition similar to the
Pauli exclusion principle.No two black holes can overlap each other at any time. It is amusing to note that Eq.
(24) may be rewritten as

(mym)* = 2k-1)2=2,8,18,32 ....coovrrinienannns @n
Egs. (24) and (27) signify the quantization of the coupling constant and the mass of the black holes, respectively
and at the same time Eq. (27) gives the magic number sequence of atomic physics. The latter arises from spin
14 of the electrons and it gives the total number of electrons in a closed shell. Our black holes have no spin. Their
nonoverlap and the maximum compactness of their bound states give Egs. (24) and (26). Now if the size
of a compact bound state is at all times greater than kR, for arbitrary n, then it can only be a straight linear
chain or a straight string. In an endless, ring-like, structure all the black holes in an identical quantum state are
equivalent. By reductio ad absurdum it can be proved that a holeum is not an endless, ring-like, structure. Now
we make Taylor series expansion of f, ; and g, treating o, 2 as a small parameter. Keeping only the first two
terms we get

E, = -Ry/mD)(1 - 1/6n' 2+ 0k™)) (28)

My = M(1-1/12n'% - V/(4&K* n*) + 0k ™)) (29)

Oy = o (1- 17120 2+ 0k ™)) (30)

Loy = nr(1+ 1/12n' > + ok") (3D

R, = m.e® (k-1)* /4k (32)

M, = mck* (33

1, - Rck” (34)

R, = 2mG/c? (3%

W = k1) G- - 1120 % + 0G)) (36)

Heren,=n3= .......cccevvvnnene Ny, =n'and n, = n. The R, in Eq. (32) is the gravitational Rydberg

constant. Here we have assumed k > > 2 but exact equations can be written down for k = 2,3,4 after which they
become cumbersome. Every hydrogen atom-like energy level characterized by ny, = n is spread out into a band
whose lower and upper bounds correspond ton' =« and n' = 1, respectively. Here n' =1 corresponds to
all the inner subholeums being in their ground states and n' =0 comresponds to their complete
dissociation leaving only the two outermost black holes to define the holeum. For k = 2 there is no spreading of
energy levels into bands and the spectrum is formally identical with the line spectrum of the hydrogen atom.
Spreading begins with k = 3 where it is about 3.5 % and reaches an upper limit of 16.7 % for k>>2. Normally all
the inner subholeums will be in their ground states n'=1, and the system will be described by only one quantum
number n. Greater excitation may lead to the raising of n, ,; to values greater than unity. And the system will be
described by ny and n, and all the other n's set equal to unity and so on. From Eq. (36) it is clear that the
gravitational coupling oy, of the jth subholeum from the centre goes like k ! for small values of j < < k and that it
tends to the cosmic limit o, as j kfork> > 2. This means that the black holes near the centre of the holeum
display asymptotic freedom while those near the edge, j k, show a saturation of their coupling strengths to the
upper bound o... In this theory there are no free parameters except k which is related to an appropriate

temperature of the bigbang universe. The temperature at which the rate of reaction of holeum with black holes
falls below the rate of expansion of the bigbang universe the holeum stops picking up more black holes and its k
value freezes. In a treatment similar to that of nucleosynthesis we assume that the k-holeums are in thermal

equilibrium at a temperature T < < Myc %/k, and their number density N, is given by

N = MksT/2xB)" exp (1 Myo))VisT) @7
where g, is the degeneracy factor and p, = kp where is p the chemical potential of a black hole interacting with
another one. Eliminating p  between Eq. (37) and a similar one for N, the number density of black holes of

mass m, we get

Ne = (N/2)g, K £ exp(B, / ksT) (38
where

g = /4) 2nb?)/(nks T) 2 (39)

By = kmc? - Me® = mc* k %/ 12n? (40)

The smallnes of & ¥ is compensated for by the largeness of exp (B, / ksT) at a temperature T, given by



Te =  BJ/Gs®kD |l &) @n

Since no empirical data exists on the reaction rates or the number densities of holeums and the black holes we
conmdertwowndelydlﬁ'erentvalues N=10""percm®and N= 10'° per cm® at 3°k. This is to be compared
with 10 *6 per cm® which is the number density of photons at 3° k. For n'=n=1 and kgT = 10 ev, say, we calculate
from Eq. (41) k to be 5.4449 x 10*’ and 1.5178 x 10*® for the two values of N referred to above, respectively.
This is like a galaxy of black holes in a holeum. The former value of k corresponds to My = 1.2391 x 10" kg, 1, =
0.22 A and m = 14.00 keV/c®. Thus, we have an atom-sized holeum having a mass that is a hundred-millionth
that of the earth and containing a galaxy of black holes of mass 14.00 keV/c? each. These holeums have only the
gravitational interactions and will, therefore, constitute an important component of dark matter in the universe.
As opposed to this the parficles of ordinary matter have all the four fundamental interactions. Hence clouds of
holeums will separate from those of the ordinary matter and will form invisible haloes around the galaxies. The
enormous masses of the holeums and their submicroscopic sizes would form impregnable walls around the
galaxies. The lower and the upper bounds for the frequencies of gravitational radiation emitted by a holeum in
the Lyman seriesn 1 are 7vy, /12 and v, respectively, where

Vo = Ry/h  =622x10°%k-1)* k™ 42)

For the atom-sized holeum mentioned above this is about 10'*> Hz. It can be shown that the maximum
population density of holeums with k > > 2 and kyT =10 eV, say, occurs atn=5forn'=w andatn'=4.56=5
for n' = 1. Thus the quantum numbers of subholeums make little difference here. For smaller holeums having
k=2,3,4 etc. the maximum population density occurs at about n = 10'° and, again the values of n' make little
difference. Thus, the smaller holeums are in states of much greater excitation and are more prone to radiate than
the larger ones. In the transitions of the type n+1 n with n > > 1 the maximum frequency emitted is given by

Vo = R/’ =1244x 10" k-1)*k'n” Cx))

For large values of k and n this could well be in the low frequency domainv = 1500 to 1600 Hz where
detectors are being built”. Once the gravitational radiation is detected k can be determined, for example, by
experimentally finding the lower or the upper limit of the Lyman series. This, in turn, completely determines all
the attributes of the holeumns emitting this radiation.

In the High energy accelerator experiments involving the collisions of particles and antiparticles highly
excited states of vacuum, mini bigbangs, are produced. At sufficiently high energies this may lead to production
of micro black holes and their stable holeums which may be manifested in the form of missing mass,
momentum, etc.

We have shown that in the early universe large quantities of black holes would have formed stable
gravitational bound states called holeums. The latter would be in the form of straight strings. The black holes in
these strings obey asymptotic freedom and have an exclusion property. The energy spectrum of a holeum is a
gravitational analogue of the hydrogen atom spectrum with lines replaced by bands. The holems would form
haloes around the normal galaxies. Their gravitational radiation can be detected when detectors are built.

1 would like to thank Abhijit Chavda for useful discussions.

REFERENCES

1. L.K. Chavda, " Bohr Model of Quantized Bound States of Compact Astronomical Objects ", Bulletin of
Indian Association of Physics Teachers, 17, 102(2000).

2. V.Kourganoff, " Introduction to Advanced Astrophysics ", D. Reidel Publishing Company, Dordrecht,
Holland, 1980, p.315.

3. In the treatment of the deuteron the hard core potential is included in : H.A.Enge, "Introduction to Nuclear
Physics", Addison- Wesley Publishing Company, Reading, Massachusetts, U.S.A.. 1970, 37. But it is
excluded in: Roy, R.R. and Nigam, B.P., "Nuclear Physics; Theory and Experiment"”. Wiley Eastern
Limited, New Delhi, 1997. Yet both give acceptable Values of the bound state Parameters.

4. C.W.Misner, K. S. Thome and J. A. Wheeler, " Gravitation ". W. H. Freeman and Company, San
Fransisco, 1973, p.1042.



