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Abstract

In general relativity, Einstein’s measuring instruments are resting but in a free falling state, and measurements are per-
formed according 1o Einstein’s equivalence principle. On the other hand, if the measuring instruments are resting and are at-
tached to the frame of reference, since the measuring instruments and the coordinates being measured are under the same influ-
ence of gravity, a Euclidean space structure cmerges as if gravity did not exist. For example, the Schwarzschild solution has a
complementary Euclidean structure. In agreement with observations, this notion of Euclidean structure clarifies the meaning of
Einstein’s physical space, and explains the previous failures in obtaining a space-time metric for a uniformly accelerated frame.
Nevertheless, Pauli’s “equivalence principle” that ignores physical requirements beyond metric signature, leads to the incorrect
belief that space-time coordinates have no physical meanings. To demonstraic the inadequacy of Pauli’s version, it is shown
that the local distance formula derived by Landau & Lifshitz is invalid. This illustrates that theories based on merely the exis-
tence of local Minkowski space must be reviewed according to Einstein’s equivalence principle. Moreover, this analysis shows

that once the frame of reference is chosen, the gauge has been determined. Experimentat test and related issues are discussed.
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1. Introduction

Some theorists including Pauli [1} believed that “it is necessaty to abandon Euclidean geometry” because “Einstein showed
for example of a roiating reference system, the time intervals and spatial distances in non-Galilean systems cannot just be de-
termined by means of a clock and rigid standard measuring rod.” However, the fact is that Euclidean geometry is abandoned
only in the invariant line clement {2.3]. However, as shown in the Schwarzschild sofution {2], the Fuclidean structure is neces-
sarily preserved in Einstein’s physical Riemannian space. It will be shown that such a structure is related to measurements,
which are different from the measurement of a linc element that is related to Einstein’s equivalence principle.

For the four-dimensional continuum (x, y, z, t) of physics in special relativity, the invariant line element has the form
ds? = c2at2 - dx? - dy? - dz2, M

where the units are centimeter and second, and ¢ is the speed of light, 3x101% cm/sec. Thus, invariance of Euclidean geometry
has been abandoned already in special relativity, and there are Lorentz contraction and time dilation [3]. However, a Euclidean

structure is preserved since the distance d (P}, P,) of points P, (x;. y;, z;) and P, (x,, ¥,. 2,) in the frame of reference is still
d(PI, Pz) = [(xl —x2)2 + (yl __yz)z + (Zl _22)2}1/2‘ (2)

1t will be shown that, in a different way, a Euclidean structure is actually preserved even in gencral relativity (see Section 4).
Such a Euclidean structure would make a distinct class of Riecmannian spaces. A Ricmannian space-time together with its
Euclidean structure shall be called the Finstein Space named after its creator [3].

In general relativity, the invariant line element is

2

ds* =g axtax”, 3)
uv

where g, > 0 and £, is a general space-time metric in a Riemannian physical space!). Note that form (1) is a special case of
(3), and form (1) is used in the infinitesimal form of Einstein’s equivalence principle [2,3]. Thus, form (1) is not abandoned at
all, and what has been abandoned is that form (1) be considered as an invariant.

However, the transformation from (3) to (1) is generally not global. Thus, it seems that in general it would not be possible to

have a simple global distance formula as (2). In general relativity, a local distance formula wounld be generally
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di? = -g o dx* dxP where o, =123 @

even if g, = 0. Since metric elements g,g are not constants, a global distance formula derived from (4) is not possible. A dif-
ficulty related to (4) is that the meanings of spatial coordinates are not clear since d/ depends on gqp that would change accord-

ing to the distribution of matter. Nevertheless, in Einstein’s calculation, it is necessary to choose a frame of reference a priori. It
will be shown that this is justified in terms of the notion of Euclidean structure.

For example, consider a solution of metric with coordinates (x, y, z, t) in the isotropic form [4],
ds? = (1 - Mx/20)%/(1 + Mx/20)%di? - (1 + M20)X(dx? + dy? + dz?) 5

where M is the total mass of a spherical mass distribution with the center at the origin of the frame of reference, (x, y, z) are its
coordinates, r = [x2 +y2? + z2]"2, and « is a coupling constant. Note also that the metric is a function of r, which is defined in
terms of the Euclidean characteristics of subspace (%, v, z). Therefore, the Euclidean structure of the frame of reference (x, y, z)
is necessarily included in such a Riemannian space-time of Einstein (see also Section 4).

Moreover, this example illustrates that the existence of a Euclidean structure does not necessarily mean the existence of a
Euclidean subspace in (5). To understand the physical meaning of the Euclidean structure in connection with the metric, we
must first clarify what “measure” means in relation to Einstein’s equivalence principle (see Sections 2 and 3).

A popular version of the equivalence principle expressed by Pauli {1} is the following:

“For every infinitely small world region (i.e. a world region which is so small that the space- and time-variation of gravity
can be neglected in it) there always exists a coordinate system Ky (X1, X3, X5, X44) in which gravitation has no influence
either in the motion of particles or any physical process.”
But, Einstein strongly objected this version and he argued that, for some cases, no matter how small the world region, special
relativity would not exactly hold? as reported in details by J. Norton [5]. Nevertheless, in current literature Pauli’s interpreta-
tion is incorrectly [5] considered as equivalent to Einstein’s equivalence principle (see also Section 7).

However, the fact is Pauli’s version cannot be considered as equivalent to Einstein’s. Einstein’s version requires addition-
ally: 1) “the special theory of relativity applics to the case of the absence of a gravitational field [3, p.115]” and ii) a local Min-
kowski space is obtained by choosing the acceleration. Einstein {3, p.118] wrote, “... we must choose the acceleration of the
infinitely small (“local™) system of coordinates so that no gravitational field occurs; this is possible for an infinitely small re-

gion.” Moreover, since physical conditions other than metric signature are ignored in Pauli’s version, such a coordinate system
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may be physically unrealizable. For instance, if a physical requirement such as the principle of causality®) is violated. Then, a
particle resting on its frame of reference would also mean that a physical principle is violated (see section 5).

The frame of reference, as pointed out by Fock [6], is crucial in Einstein’s general relativity. Einstein chooses the frame of
reference, and the time-coordinate is determined by orthogonality. However, some theorists {6,7] considered Einstein’s equiva-
lence principle is not well defined on the ground that the frame of reference is ill defined because the notion of distance is not
clear. Moreover, Einstein contributed to such misunderstand in 1916 by claiming the over extended physical general covariance
with the support of false arguments [3}, which he later dropped from his book [2]. This will be pointed out and discussed in
Section 3. Understandably, from the viewpoint of general covariance, they do not see the existence of a Fuclidean structure.

Nevertheless, the inadequacy of Pauli’s version for a world region of a physical space seemed not a scrious problem until it
15 moorrecily claimed {8] that the existence of Local Minkowski space had replaced Einstein’s equivalence principle such that
any Lorentz manifold could be justified as valid in physics. This replacement of Einstein’s equivalence principle distorted gen-
eral relativity. For instance, Einsiein’s notion of physical space {2,3,5] has been ignored to the point that professional relativists
often ask what is a physical space. In this paper, to illustrate the problem of such a distortion, it will be shown that Pauli’s ver-
sion was the source of an invalid formula of distance (see Section 3) derived by Landau & Lifshitz {9].

Based on the misconception that a frame of reference was necessarily associaied with a Euclidean subspace, Fock [6] blamed
his failure in obiaining a space-time metric for a uniformly accelerated sysiem as an intrinsic problem of Einstein’s equivalence
principle. Accordingly, Fock claimed also that the principle of general relativity were invalid. To be aware of the scriousness of
this problem, one should note that Fock’s followers include Wheeler and his students Ohanian and Ruffini {7]. The calculation
of the space-time metric corresponding o an accelerated frame will be presenied in a separaie paper [10].

In view of the fact that Pauli’s version was popularly in the Hieraiure, a problem such as the invalid formula of Landau &
Lifshitz would be just a drop of water in the bucket. Note that their invalid formula was still followed with great faith {11-13]
since its invalidity had not been found although their book is well known [14]. The purpose of this example is to demonstrate
that it is necessary to review many of the existing theories in terms of Einstein’s equivalence principle.

Moreover, it was believed that a gange condition wounld be arbitrary although gauge is related 1o a choice of coordinates.
This analysis shows that once the frame of reference is chosen, the space-time coordinates are determined (section3), and there-
fore the gauge has also been determined (Section 6) To show these problems clearly, it would be necessary to understand first

Einstein’s equivalence principle starting from the beginning,
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2. Einstein’s Equivalence Principle, the Principle of General Relativity, and Einstein’s Riemannian Space
In general relativity, virtual measurements are performed by utilizing Einstein’s equivalence principle, as shown in Ein-
stein’s calculation of the time dilation and spatial contraction [2,3]. Thus, we should clarify what Einstein’s equivalence prin-
ciple actually is. In 1911, the initial form of this principle is the assumption [3] that the mechanical equivalence of an inertial
system K under a uniform gravitational field, which generates a gravitational acceleration v (but, system K is free from accel-
eration), and a system K' accelerated by v in the opposite direction, can be extended to other physical processes. This initial
form was further claborated for a curved space due to additionally the principle of general relativity.
However, Einstein’s equivalence principle was often questioned because of inadequate understanding. A noted theorist
Synge [15] professed his misunderstandings on Einstein’s equivalence principle as follows:
“...I have never been able to understand this principle... Does it mean that the effects of a gravitational field are indis-
tinguishable from the effects of an observer’s acceleration? If so, it is false. In Einstein’s theory, either there is a gravi-
tational field or there is none, according as the Riemann tensor does or does not vanish. This is an absolute property; it
has nothing to do with any observer’s world line... The Principle of Equivalence performed the essential office of mid-
wife at the birth of general relativity...I suggest that the midwife be now buried with appropriate honours and the facts
of absolute spacetime be faced.”
Currently, such misunderstandings persist after all these years. For instance, Thorne [14] criticized Einstein,
“In deducing his principle of equivalence, Einstein ignored tidal gravitation forces; he pretended they do not exist. Ein-
stein justified ignoring tidal forces by imagining that you are (and your reference frame) are very small.”
Apparently, Thorne paid little attention to Einstein’s correspondence on this problem. For instance, the question of tidal forces
has been clearly answered by Einstein. For instance, in his July 12, 1953 letter to A. Rehtz [16] Einstein wrote,
“The equivalence principle does not assert that every gravitational field (e.g., the one associated with the Earth) can be
produced by acceleration of the coordinate system. It only asserts that the qualities of physical space, as they present
themselves from an accelerated coordinate system, represent a special case of the gravitational field.”
Einstein [5] explained to Lauve, “What characterizes the existence of a gravitationa! field, from the empirical standpoint, is the
non-vanishing of the 'y (field strength), not the non-vanishing of the Ryy,.” and no gravity is a special case of gravity?). The
viewpoint that gravity must be associated with the non-vanishing of the Ry, instead of just the non-vanishing of the Ty, can
be traced back at least to Newton’s theory of gravity. This difference in philosophy has important consequence in physics. For

instance, it is Einstein’s viewpoint that leads to the geodesic equation being identified as ithe equation of motion of gravity, and
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subsequently the notion of a curved space-time. It will be shown, their criticisms are due to inadequate understanding of Ein-
stein’s equivalence principle, which plays a crucial role in many aspects of general relativity (see also Sections 4-7).

It should be noted that Einstein insisted, throughout his life, on the fundamental importance of the principle to his general
theory of relativity [5]. Norton pointed out that Einstein’s insistence on this point has created a puzzle for philosophers and
historians of science [5]. This shows how much was Einstein’s principle being understood in terms of physics.

Moreover, some [6,7] considered Einstein’s failure in obtaining a valid formula for light bending in 1911 as a deficiency of
Einstein’s principle, in spite of his success in 1915. Fock [6] even supported their belief with explicit calculations. However,
his calculation must be invalid since Maxwell-Newton Approximation, the linear equation for weak gravity>) due to massive
sources can be derived directly from Einstein’s equivalence principle [17]. A main problem in Fock’s calculation is his implicit
assumaption that the relaied Riemannian space should have a Euclidean subspace. Apparently, he fails to see that the frame of
reference needs to be related to only a Euclidean struciure (Section 3).

Einstein was not entirely happy with special relativity. Einstein believes, “The law of physics must be of such a nature that
they apply to systems of reference in any kind of motion (principle of general relativity).” From the viewpoint of the principle
of general relativity, since the effects of a uniformly rotating cannot be equivalent to the effects of a linear acceleration, Ein-
stein’s principle of equivalence, if exact, is really the equivalence of the effects of an accelerated frame fo a related kind of
uniform gravity whereas others incorrectly perceived that any gravity is equivalent to a uniformly accelerated frame. In other
words, Einstein’s initial equivalence principle must be an example to illustrate an idealized case.

These two principles also lead 1o [2,3] regarding the geodesic equation,

a2ty i af
N T dx”
) af as  ds

=0, (6a)

where

2 _ V73PRY% 7 _ y744

ds” =g pvdr ", Plop =08, 9580 ~ 9, 80p78 /2, (6b)

and 2.y is the space-time metric, as the equation of motion for a particle under the influence of only gravity since the accelera-
tion to a particle under gravity is independent of the mass (or equivalently m; = mg). Thus, gravity is duc to ten metric ele-
ments, and this can be used to derive the lincar field equation for weak gravity of massive matter {17]. For a resting particle,

the acceleration is due to I'",, (p # t), and this is a physical restriction on £, 3 non-constant space-time metric.
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On the other hand, if gravity must be associated with the non-vanishing of the Ry, as some argued [6,7,11-15), the justifi-
cation for the geodesic equation as the equation of motion wonld be broken, and so far there is no alternative valid justification.
One might argue that the geodesic equation would be derived from the ficld equation. To do this, one nust first derive the field
equation independent of the geodesic equation. Ohanian and Ruffini {7] tried to derive the 1915 Einstein equation from their
linear field equation. Unfortunately, both their derivation and their linear equation, which is based on their notion of gauge, are
found to be invalid {17]. In practice, the geodesic also plays an important role because it is used to decide whether the metric is
valid in physics. For instance, Einstein used it to obtain the peribelion of Mercury [2,3].

In deriving his formula for the bending of light rays, Einstein [2,3] used the infinitesimal form of his principle®), which is a
generalization of the initial form that has a frame of reference [3]. An important but often omitted point is that Einstein’s
equivalence principle is applicable only to a physical space!) in which all physical requirements are sufficiently satisfied since
his Riemannian space models the reality. This will be illustrated in analyzing the case of Einstein’s rotating disk.

Einstein considered a Galilean (inertial) system of reference K (X, y, z, t) and a system K’ (x°, y°, 2’, t°) in uniform rotation
Q relatively to K. The origins of both systems and their axes of z and z” permanently coincide. For reason of symmetry, a circle
around the origin in the x-y plane of K may at the same time be regarded as a circle in the x -y’ plane of K. Then, according

to special relativity, in the x-y plane and the x’-y” plane, the metrics of K and K [2, 11} are respectively the following:

ds? = 2 dt? — dr? - 12 d¢? - dz2 where x=rcosd, y=rsing, (7a)
and

ds2 =(c2- Q2 A2 - dr?2 - (1 - Q2 %c2ylr2 dp'2 — dz’2, (75)
where

x’=r cos¢’, and Yy =r sing’. (7c)
Then,

$ds=(1 - UV 7 dp' = 2nr(1 - QPrYcy 12 ®

would be the circumstance of a circle of radius r’ (= r) for an observer in K’. Thus, Einstein concluded that with a measuring
rod at rest relatively to K’, the quotient of circumstances over diameter would be greater than n, and Euclidean geometry there-
fore breaks down (in the metric [7b} but preserves in [7c]) in relation to the system K’ (see also Sections 3 & 4).

Moreover, as Einstein pointed out, “an observer at the common origin of co-ordinates, capable of observing the clock at the
circumferences by means of light, would therefore see it lagging behind the clock beside him”. Einstein {3] continued, “So, he

will be obliged to define time in such a way that the rate of a clock depends upon where the clock may be.” Thus, Einstein

-
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concluded, “In general theory of relativity, space and time cannot be defined in such a way that differences of the spatial coor-
dinates can be directly measured (in the way Einstein defined) by the unit measuring-rod, or differences in the time co-ordinate
by a stand clock.” Concurrently Einstein, in effect, defined a physical space-time coordinate system together with its metric
that is refated to local clock rates and local spatial measurements (see also Section 3). In other words, Einstein has established
the notion of a physical space!) where all physical requirements are sufficiently satisfied.

According to the principle of equivalence, K’ may also be considered as a system at rest, with respect to which there is a
gravitational field (field of centrifugal force, and force of Coriolis) [3]. Thus the eguivalence principle enables an extension of
the principle of relativity to accelerated motion. This example illustrates also that Einstein’s notion of gravity needs not be
related to a source, but can be just related to acceleration (as its cause). For metric (7b), the static acceleration is from Opga - a
spatial derivative to the time-time metric component. This suggests that g corresponds the gravitational potential in Newtonian
theory, and this is confirmed by subsequent calculations [2,3]. In short, the rotating disk case shows not only that the space-
time continyum is a Riemannian Space with a Lorentz metric, but also that the equation of motion for gravity is the geodesic

equation. Moreover, in Einstein’s theory, the principle of general relativity is the physical basis of covariance.

3. Covariance and Physical Space-Time Coordinate Systems

In Einstein’s theory, as shown by K (X, v, z, ) and K’ (X’, y’, z’, 1'), it is clear that the coordinates of a space-time coordi-
nate system have definite physical meanings. Here, it will be shown that the notion that coordinates have no physical meaning
comes from confusing an arbitrary coordinate system (which needs not have a physical meaning) for a mathematical calcula-
tion with a space-time coordinate system (which does have a physical meaning) in physics.

In a Riemannian space, since the metric g,,, is not restricted as in special relativity, tensor equations are covariant with re-
spect to any substitutions whatever (generally covariant). Moreover if the space-time continuum in physics is a Riemannian
space, there are two advantages: i) Physical laws (tensor equation) would satisfy the principle of general relativity. ii) Calcula-
tions can be carried out in an arbitrary coordinate system. In the 1916 paper, Einstein was somewhat carried away by this new-
found freedom. Instead of recognizing an arbitrary coordinate system as a mathematical tool, he songht to iustify this freedom in
terms of physics. To argue for unrestricted covariance, he wrote [31:

"That this requirement of general covariance, which takes away from space and time the last remnant of physical ob-
jectivity, is a natural one, will be secen from the following reflexion. All our space-time verifications invariably

amount to a determination of space-time coincidences. If, for example, events consisted merely in the motion of ma-
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terial points, then ultimately nothing would be observable but the meetings of two or more of these points. Moreover,
the results of our measuring are nothing but verifications of such meetings of the material points of our measuring
instruments with other material points, coincidences between the hands of a clock and points on the clock dial, and
observed point-events happening at the same place at the same time. The introduction of a system of reference serves
no other purpose than to facilitate the description of the totality of such coincidences."
However, this seems to be incompatible with his earlier statement [3]. “So, he will be obliged to define time in such a way that
the rate of a clock depends upon where the clock may be.”

Moreover, while all verifications amount to a determination of space-time coincidences, to predict such coincidences, one
must be able to relate events of different locations in a definite manner. (Examples are the gravitational red shifts and the light
bending ) If a space-time coordinate system is related 1o objective physical measurements, it must have physical meanings. In
fact, as early as 1918, unrestricted general covariance was questioned by Lenard [18). As Eddington [19] pointed out, "space is
not a lot of points close together; it is a lot of distances interlocked.” For physical considerations, one must have not only fust a
mathematical coordinate system, but also a physical space-time coordinate systeni.

Understandably, Einstein [2] dropped the above invalid justification later, and remarked, “As in special theory of relativity,
we have to discriminate between time-like and space-like line elements in the four-dimensional continuum; owing to the
change of sign introduced, time-like line elements have a real, space-like line elements an imaginary ds. The time-like ds can
be measured directly by a suitably chosen clock.” Thus, a space-coordinate and the time-coordinates in physics are not ex-
changeable as Hawking [20] claimed since they have distinct characteristics and physical meanings. Einstein also praised Ed-
dington’s book to be the finest presentation of the subject ever written |21}

Note that Einstein’s theory is based on his notion of a physical space!), which has a frame of reference and local time coor-
dinates that are orthogonal to the frame. To illustrate the difference between the physical space and a manifold in mathematics,

consider the coordinate transformation to the uniformly rotating disk, in terms of the time t of K as follows {11]:

x=xcosQU-y sinQt, y=x"sinOQt+y cos O, and z=27", (9a)
or
r=r, z=z. ¢=¢ +Q, (9b)
in cylindrical coordinate systems of K and K’, where O is the angular velocity. Note that both (x, v, z) and (X, ¥°, 2’) are

Euclidean subspaces. Then substituting the new coordinates (x°, y°, z°) or (", ¢’, z°) to metric (7a), we obtain a metric
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ds? = (¢2- Q2 di? - 2Qr2 dp’dt — dr'? - r°2 dg? - dz*? (76)

for the coordinate system K* (x°, y’, z’, t). However, the mathematical system K* (x’, y’, z’, t) is not a physical space-time co-
ordinate system for the uniformly rotating disk K’ because what measured in a resting local clock is time ¢’ but not time # that
remains associating with the inertial frame of reference K. In other words, (7b) failed “to define time in such a way that the
rate of a clock depends upon where the clock may be {3]”, and thus metric (7b’) together with its coordinates K* is not a space-
time coordinate system, as Einstein defined, that can be used for physical measurement and therefore physical interpretation.

Moreover, since a physical principle is not satisfied in K*, the equivalence principle is not applicable. It will be shown that
this principle is, in fact, not satisfied in K*. Nevertheless, as shown by Zel’dovich & Novikov [11], it is possible to recover met-
ric {7b) that represents local measurements of time and distance from the mathematical metric (7b’) alone (see also Section 5).
This illustrates that one can start with an arbitrary mathematical coordinate system.

To obtain a physical transformation for the time t’ of the rotating disk, a comparison of (7b} and (7b’) leads to,

d¢’ =dp - Qadt ; (102)
and

cdt” = [edt - (rQ/c)rddlf1 — (rQ/c)?] ) . (10b)
or

cdt = cdt’ + (rCYc)rdd’[1 — (X))} . (10¢)

Note that (10¢), which modifies the time coordinate from t to t’, transforms (7b’) to (7b). Now, (7b) is clearly related to (7a).
The factor [1 — (@€¥c)?]! in (10) is due to time dilation and spatial contraction manifested in metric (7b). Let us verify that
the time dilation and the spatial contraction are results due to comparisons with a clock and a measuring rod in relatively rest at
the beginning of a frec fall. According to Einstein’s equivalence principle such a coordinate system is locally Minkowski. To
verify this, consider a particle P resting at (r’, ¢’, z°). Then, P has the velocity of Qr in the ¢’ -direction, which is denoted by

dx”. It foliows that the Loreniz coordinaic transformation is,

1d¢ = [1 - (rQU/)?]V2 [dx"+ rQdt’] ; (11a)
and

cdt = [1 — V) V2 fedt” + (1QVc)dx’] . (11b)
Then,

rdd’ = [1 - (U2 ax™ and  cdt’ = [1- Q) 2 cdt”, (123)

and
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dsz = c2 dt”z — dx”2 - dr’2 —_ dZ’2 . (IZb)

These are exactly the time dilation and spatial contraction as measured. This illustrates that a particle resting at K’, can at-
tached to a local Minkowski space.

Thus, this is an example that Einstein’s version of infinitesimal equivalence principle is satisfied. In addition, a light speed
at 1’ (+ 0) observed in system K’ would be smaller than ¢ due to the time dilation effect of gravity. The light speed is even
smaller in the p-direction. In other words, a light speed can decrease more after a velocity Qr’ is “added to”.

However, for the coordinate system K* (x’, y’, z’, 1), the question of time dilation is complicated because Einstein’s equiva-
lence principle is not applicable. Nevertheless, let us assume that the Einstein’s equivalence principle could be applied to K*.
Mathematically, for a particle P resting at K*, the state vector of P is (0, 0, 0, dt). According to (10c), P is also resting at K’

with a state vector (0,0,0.dt"). Then the local Minkowski space for P is identical to (12b). It thus follows that

ax” = [1 - (1)) V2 rdyy (13a)
and

dt” = [1 - (/P2 dt - [1 - (eI 0/e?) rdyy. (130)
Thaus,

dt = [1 - (rQ/c)? V2 dt” (14)

would be considered as the time dilation since a clock rest at K* has d¢’ = 0. The problem of this derivation is that the parame-
ter “t” is not the local time for the frame K’ (x°, vy’ 2°). Thus, a time coordinate alone has no independent physical meaning.
This calculation confirms that Einstein’s equivalence principle is applicable only to a physical space where all physical re-
quirements are sufficiently satisfied. This illustrates also that Pauli 's version being satisfied, is only a statement of mathemati-
cal propertics (see also Appendix). A related problem is how do we know whether a manifold is a physical space. Then, we
must do what Einstein {2,3] did, that is, examining consequences of the metric with physical requirements (see also Section 6).
Einstein [3} had remarked, “So there is nothing for it but to regards all imaginable systems of coordinates, in principle, as
equally suitable for the description of nature. This comes to requiring that:- The general laws of nature are io be expressed by
equations which hold good for all systems of co-ordinates, that is, are co-variant with respect to any substitutions whatever
(generally co-variant).” However, while general covariance is mathematically valid for all tensor equations in a Riemannian
space, this description of nature by the coordinate system K* (x°, ¥, z°, 1) includes certain calculations but not physical inter-
prciations. Thus, in spife of general covariance, the freedom ioward the physical space-time coordinaie sysiems that can be

used for physical interpretation is severely limited by his equivalence principle. Special relativity has already taught us [3] ihat
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some mathematical coordinate systems are not physically realizable and therefore cannot be used to describe nature. The same
has been illustrated for general relativity. In short, nature can be described clearly and accurately only in terms of a valid space-

time coordinate system with an appropriate space-time metric.

4. Riemannian Space-time, the Euclidean Structure, and the Einstein Spaces

The fact that Einstein’s equivalence principle plays a crucial role in choosing a space-time coordinate system makes a four-
dimension space-time continnum in physics a special kind of Riemannian space in addition to having a Lorenz metric. A fea-
ture in Einstein’s theory of general relativity is that the Riemannian space-time has a Euclidean structure that serves as a frame
of reference. Such a geometry structure shall be called a Euclid-Riemann space (or an Einstein space).

An Einstein space is a physical space if it sufficiently satisfies all physical requirements, including a time coordinate that is
related to local time. It should be noted that if a change of the coordinate system were not considered, the frame K’ (x°, y°, z°)
could be considered as a Euclidean space as if gravity did not exist. Thus, a Euclidean structure in a physical space is inde-
pendent of gravity. Because of such independence, it becomes possible to make the meanings of coordinates very clear.

If a spatial measurement is performed with a measuring rod which is attached to the frame K’ (x’, v°, 2°), it would appear as
Euclidean. (Note that the directional spatial contraction in metric (7b) is measured with a resting measuring rod in the siate of
free fall as shown by equation {11].) The physical reason is that sincc a measuring rod attached to the system K’, would be un-
der the same influence of gravity as what is being measured. In fact, it is based on this implicit assumption that the cylindrical
coordinate system (7', ¢’, 2”) is well defined in K. One may recall that aithough K* also has the Euclidean subspace (', §°, 2"),
the resulting K’ (x°, ¥v°, 2°, ") no longer has a BEuclidean subspace. But, the metric (7b) siill retains a Euclidean structure, lis
existence would merge as a Euclidean subspace if one reduces the cause of gravity to zero, in case of metric (7b), i.e,, Q=0.

One of the difficulties in understanding Einstein’s theory is that the notion of Euclidean structure has not been explicitly
explained. For instance, Fock {6] failed in understanding Finsicin’s equivalence principle because he believed thai an acceler-
ated frame must be related to a Lorentz manifold that has a Euclidean subspace. Perhaps, the popularity of Pauli’s [1) version,
in spitc of Einstein’s objection {5], is duc to that Pauli omitted the frame of refercnce and related acceleration.

A valid space-time coordinate system is crucial for a physical space. The system K* (x’, ¥°, 2°, ) also has the same spatial
ceordinates, but the time 1 is not associated with the frame K’ (x°, ¥, 2°). Consequently, K* is not a physical space-time since it
fails some physical requirements. Thus, an Einstein space is a Riemanaian space with a Euclidean structure, and it is a physical

space if it sufficiently satisfies all physical requirements, including Einstein’s equivalence principle.
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Moreover, the Euclidean structure is meaningful in physics only in a physical space. However, mathematically the existence
of a Euclidean structure has to be assumed a priori. Then, validity of the existence of a Euclidean structure must be verified
because such a structure may be incompatible with the Riemannian space.

For example, consider a manifold L (x, y, z, ©) and its metric,

ds? = 4c?di? - dx? - dy? - 9dz2 , (15)

with time unit in sccond and length unit centimeter, and ¢ = 3x10'0 cav/sec. Metric (15) implies that the “light speed” in the x-
direction is 2c. Since L is clearly not a physical space, it does not make sense 10 assume the existence of a Euclidean structure.

Mathematically, one can obtain a local Minkowski space (dX, dY, dZ, dT) with the local coordinate transformation,
dX = dx, dY =dy, dZ =3dz, but dT=2dt. (16)

Thus, Pauli’s version is satisfied. However, Einstein’s equivalence principle is not satisfied since there is no acceleration (since
all the Christoffel symbols are zero) to choose from such that a local Minkowski space can be obtained. Moreover, although the
gravitational field is absent, special relativity is not applicable in L since L is not a Minkowski space.

Nevertheless, one might argue that a rescaling, 2t = t° and 3z = z° would transform (15) to ds? = c2d? - ax? - dy2 -dz22
However, this new metric form does not make L a Minkowski space since the unit of t” is 2 second. Note that a rescaling has
no physical content, but the local coordinate transformation (16) means the ratio of two local clocks (see Section 3). For a parti-
cle P resting at a point (X, ¥, Zg) in L at time t;, the coordinates of P are (X, ¥y, Zg, t) at time t. The local coordinate trans-
formation {16) is, of course, not a rescaling of units. However, since there is no gravity or relative velocity, there is no physical
cause that makes a clock rate changes. Thus, the principle of causality is violated, and (15) is not valid in physics.

This example illustrates that it is necessary to verify that the existence of a Euclidean structure is valid in physics. A physi-

cal Euclidean structure can exist only in a physical space where Einstein’s eguivalence principle is satisfied.

5. An Invalid Formula for Local Distance and Pauli’s Version of Equivalence Principle.
The derivation of Zel’dovich & Novikov [11], though has the same result, is based on Landau and Lifshitz [9]. They stated

that the final formula for the square of the spatial distance di? is.
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di? = -[g,5 - 8yoBop/Eoo) dx * dxP where o, $=1,2,3 (17a)
ds? = gyo(dxO + 2, dx0x® + g5 dx @ dxP, (17b)

This formula was derived also by Liu and Yu [12,13]. For the uniformly rotating disk, from (7b’) one obtains metric (7b) and
di2 =dr?+ (1-Q2r2/c?ylr2 dp2 + dz’2 ., 18)

which agrees with metric (7b). However, formula (15), based on Pauli’s version, is actually not generally valid.

The logic for the derivation of (15) is as follows: For an arbitrary metric g,y > one has

ds? = g0 [dx + g0 dx¥/g0]? + [8ep - Boaop/Bool dx * dxP (192)
Then

ds? = goo(dx’)? + g qp dx® dxP (19b)
where

dx0 = dx0 + g, dx¥gy, (86 > 0), and 8.5 = Byg - Boaop/So0

are a new time coordinate and new metric elements. Thus, onc can start with an arbitrary coordinate system®), and derive an
orthogonal coordinate system. However, this may not always lead to a physical space with the same frame of reference.

The mistake comes form Pauli {1] who considered any Lorentz manifold with a proper metric signature as valid in physics.
Without realizing that some coordinate systems may not be physically realizable, to examine the passage of time: at a given
point, it becomes obvious to him that dx! = dx? = dx3.= 0 {11-13]. Then, ds will be the time separation between two nearby

events; iL.e., it will be the interval of time multiplied by the speed of light, ds = ¢ dr. Consequently,

du = [(gy,)2/c] dx© . (20)

since in any reference frame formed by real bodies, it is always true that g,, > 0. Then, following from (19) and (20), (15a)
would be obtained. For metric (7b"), dr’ = d¢’ = dz’ = 0 implies the particle is resting at the rotating disk, and from special
relativity, we have dt = [1 — (1Q/c)?]1/2 dt’, where U is the local time. Thus, it is valid to consider dx%c in (20} as if the local
time. However, g, in (20) may not be valid for the local time of the local frame (dx!, dx?, dx%).

To show that (17a) may not be valid, one may consider 2 metric whose local distance is known. For example, consider the

Galilean transformation from an inertial system K (x, v, z, ) to the K' (X, ¥°, Z°, t’) coordinates,
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X=X, y=y, z=2z-v, and t=t, (21a)

where v is a constant. Eq. (21a) transforms flat metric (1) to another constant Lorentz metric

ds? = [@7' + (c - V)A'J-d7’ + (¢ + v)dt'}- dx'2 - dy'2, (21b)

Thus, Pauli’s version is satisfied in K’. However, since (21b) failed “to define time in such a way that the rate of a clock de-
pends upon where the clock may be {3]”, according to Einstein, (21b) as a space-time metric is invalid in general relativity.
Thus, this example illustrates also that the notion of local time is crucial for a physical space-time.

Now, consider an observer P' resting at a point in K’. Mathematics ensures the existence of a local Minkowski space [2], the

local orthogonal tetrad of P!, whose direction Vp’ is (0,0,0,dt"). Then, the orthonormal vectors of the tetrad are

a;=(1,0,0,0), a;=(0,1,00), a3=(0,0,a,p), and bp’ =(0,0,0,7) . (222)
where
o=y '1, =-yv/c2, and y=(1-v3/c?)12
Then
dt' =y(dT - v/c?dZ) , dz'=y1dZ, dx'=dX, and dy'=dY, (22b)

is the corresponding transformation for the local Minkowski space (dX, dY, dZ, dT). Thus, (dx', dy', dz') and (dX, dY, d7)
share the same frame of reference. It follows that the spatial contraction in z’-direction violates the principle of causality. This

failure manifests that the coordinate system K’ is not physically realizable. Note, however, that (21a), and (22b) imply

dt=vy(dT -vc2dZ), and dZ=ydz'=y(dz +vdp). 23)

This is just a Lorentz-Poincaré transformation. Transformation (22b) completes the transformation (21a) to (23).
Moreover, although P’ is resting at (x°, y’, 2°), as shown by (22b), the coordinate z” has gone through a contraction and the
time-time component of the space-time metric has also changed Thus, a particle resting at (x°, y°, z°) is incompatible with the

original gy,. This means that formula (15a) is invalid for this case. According to formula (15a), one has the local distance,

di2 = a2+ dy2 + (1 -v¥c2yldz2. (24a)

and
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ds? = (1 -v¥c?) c2dt"2 + dx’2 + dy’2 + (1 - v3/c?yldz’2. (24b)

(24a) is incorrect for a local distance for the case of no gravity, and t” is not the local time either. From special relativity, we
have dt = dt’, and it is invalid to consider dx%/c in (20) as if the local time. Thus, the derivation is not generally valid.
Obviously, there are mathematical similarities between (24b) and (7b). In fact, (22b) corresponds to (11b) and the first rela-
tion of (12a). But, because of gravitational acceleration, the frame of reference of local Minkowski space is distinct from that of
(7b), and (12a) is physically valid. These two examples illustrate that it is necessary to consider physics beyond the metric sig-

nature. In conclusion, Einstein was right, and Pauli s version is inadequate in physics and would lead 1o incorrect claims.

6. The Euclidean Structure and the Question of Gauge freedom

It has been shown in the case of a uniform rotating system that once the frame of reference is chosen, the space-time metric
of the physical space is determined. Einstein [22] stated in 1919, the body to which events are spatially referred is called the
coordinate system. On the other hand, many theorists, except Eddington [19], believed that a gange can be arbitrarily chosen.
Thus, it is necessary to clarify this issue of gauge.

In general relativity, the non-linear Einstein's ficld equation of 1915 version [2,3] for a space-time metric g ,;, is

G

a

b=Rap— 2R gy =-KT(m),, , 25

where R, is the Ricci curvature tensor, its source T(m) ,,, is the energy-stress tensor for massive matter and can depend on g, .

However, among these 10 equations of tensor components, only six of them are independent, since
VaG,, = 0. (26)

Thus, to solve Einstein equation (25), four more conditions are needed. These four additional conditions are attributed as due to
a certain freedom of choice of coordinates in the physical Riemannian space, and are called the gauge conditions. There are two
extreme views on the question of gauge: i} Fock [6] argued that the harmonic gauge is the only physically valid gauge. This has
been proven wrong for the case of a uniformly rotating system. it) A popular view is that the gauge condition can be arbitrarily
chosen although such a notion was rejected by Eddington [19]. This invalid notion was popular because it seems consisient
with another incorrect noiion that a space-time coordinate system can be arbitrary. This is incorrect because it has been shown

that this assumption of arbitrary gauge can lead to the acceptance of unphysical solutions [23-25].
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For a spherical static distribution of mass, due to the principle of causality [26], the exterior gravitational field has the cen-

tral symmetry, which requires {4]
ds? = F(rc?de? - D) dr? - C()(2do? + 2 sin20 dg?) . an

If D(r) = C(r) is assumed, one obtains the isotropic solution (5). However, this is not the only solution. If C(r) = 1 is assumed,

one obtains another well-known solution, the Schwarzschild solution [3] with coordinate (x, v, z, 1),

ds? = (1 — 2Mx/p)df? - (1 — 2Mx/p) dp? - p2do? - p? sin?0 de? (28a)
where

pP=xt+yi+?, Xx=psinb cosp, y=psinBsinp, and z=pcosd (28b)
are defined in terms of Euclidean structure, and M is the total mass and « is the coupling constant. Since the metric is defined
in terms of coordinates p, 9, and ¢, the Riemannian space is actually defined in terms of Euclidean characteristics of subspace
(x. y, z). Moreover, the local time can also be considered as the rate of a local clock attached to that point.

Einstein {3] stated that the velocity of light is defined in the sense of Euclidean geometry. In spite of Einstein’s declaration,
some theorists were not aware of such a Fuclidean structure, and incorrectly claimed the coordinate velocity of light has no
physical meaning. Nevertheless, theorists [6,7,11-13] accept the deflection of light — a fact related to coordinates®),

For clarity of this analysis, let us follow some steps of Einstein’s derivation in section 22 of the 1916 paper [3].

“For a unit-measure of length laid “parallel” to the axis x, for example we should have to set ds? = -1; dx = dx3 =
dxy = 0. Therefore -1 = g;; dx;z. If in addition, the unit-measure lies on the axis of x, the first of equations (70) gives

g11 = - (1 + a/r). From these two relations it follows that, correct to a first order of small quantities dx = 1 — a/2r.”

In the above, the key words are “should have to set”, and they actually mean applying his equivalence principle if it is valid.
However, unlike the case of metric (7b) (to which validity of this principle is proven by relation [12]), validity of Schwarzschild
metric (28) for a physical space and therefore validity of the equivalence principle has not been proven. In a similar situation
for an isotropic metric, Einstein [2, p.91] used the phrase, “the possibility of getting” to indicate the uncertainty on the assumed
validity of his equivalence principle.

Einstein relied on his 1911 formula for gravitational red shifts and the perihelion of Mercury to justify the validity of a

space-time meiric. However, these did not lead 1o a unique metric since both metrics (5) and (28) gave the same result for the
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same order of approximation. Moreover, both metrics give the same first order approximation for the bending of light. Thus,
these two metrics, though related to the same frame of reference, are indistinguishable by his three tests.

On the other hand, these two metrics give distinct space contractions, which is measurable according to Einstein. Thercfore
at most only one metric gives the realistic space contraction since these two metrics have the same frame of reference. (The
uniqueness of gauge in connection with a frame, has been demonstrated in the case of a uniformly rotating system.) To this
end, in principie, one can measure the local light speeds to decide which metric is more realistic. It is suggested that a Michel-

son-Morley type interferometer [27] with a vertical arm and a horizontal arm can do the job [28].

7. Discussions and Conclusions

In general relativity, Einstein [2,3,5] models the reality with a physical space (-time) that has a frame of reference and its
time coordinate is related to the local time rate for the descriptions of the physics. Since such a physical space models reality,
all physical requirements must be sufficiently satisfied. Einstein proposed his equivalence principle to a physical space.

Thus, a physical space is a Riemannian space with a Lorentz space-time metric that together with the space-time coordi-
nates forms a physically valid space-time coordinate system. Although the Euclidean geometry breaks down in the invariant
linc clement, a Euclidean structure of the frame of reference is necessarily in place. Since such an intrinsic Euclidean structure
is independent of the gravity in the physical space, the physical meanings of space-time coordinates can be clearly defined in
terms of measurements bhased on measuring instruments attached to coordinate system.

Once the intrinsic nature of the Euclidean structure is recognized, the physical meanings of space-time coordinates are clari-
fied. It follows that the frame of reference, acceleration, and Einstein’s equivalence principle are also clearly defined in terms of
physics. Thus, the objections of Fock [6] and his followers [7] on general relativity are clearly based on misinterpretation only.

From Einstein’s simple example of uniform rotation, we have learned also, the difference between a space-time coordinate
system and an arbitrary mathematical coordinate system is distinguishable. As shown in Section 3, K and K’ are physical
space-time coordinate systems, whereas K* is only a mathematical coordinate system. Einstein’s equivalence principle is appli-
cable, as shown, only in a physical space, otherwise the so-calculated local time rate and local spatial contraction would be in-
compatible with physics. This also illustraies the inadequacy of Pauli’s version.

Thus, it becomes clear that a manifold may not be a physical space even though it is diffeomorphic [29] to a physical space.
In other words, for a Lorentz metric to be valid in physics, there are physical conditions to be considered. It has been shown

that for a non-constant metric Loy the existence of acceleration to a static observer (i.c., I',, # 0 for some p # t) is necessary for
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a physical space {12]. The invalid derivation of a local distance formula by Landau & Lifshitz [9] demonstrates that an inade-
quate understanding of physics at the fundamental level could happen to even otherwise very competent theorists”).

Now, it is clear that Pauli’s version of the equivalence principle is essentially a mathematical statement, but is not a physical
principle because it does not contain adequate physical requuemems for a situation in reality (see also Appendix). The physical
inadequacy of Pauli’s version is because physical requirements beyond metric signature arc ignored. Since a physical principle
is replaced by merely the existence of the local Minkowski space, Landau & Lifshitz {9] derived an invalid formula for a local
distance. However, it was followed with a blind faith by others [11-13].

Morteover, if the existence of the local Minkowski space were the only physical condition as in Pauli’s version, it became
necessary that the space-time coordinates have no physical meaning. This is in direct conflict with the fact that non-scalars
exist in physics. Thus, one cannot help concluding that such theorists have inadequate vederstanding in mathematics and phys-
ics at the fundamental level. Moreover, as specified by Einstein [2,3], the coordinate system used for the calculation of Ein-
stein’s three predictions has very clear physical meanings.

As the notion of Euclidean structure is clarified, it becomes obvious also that once the frame of reference has been chosen;
the gauge is determined since, according to Einstein [2,3], the space contractions are measurable. Thus, although the isotropic
solution and the Schwarzschild solution produce experimentally indistinguishable predictions for the three tests, they cannot be
boih valid since they produce different space contraciions. Ii should be noted ihat the vahidity of the equivalence principle for
these metrics is still an unverified assumption (see also Appendix), whose justification was based on of the 1911 formula for
gravitational red shifis and the perihelion of Mercury. It remains from the experiment to find the hinds that can be used to de-

termine the appropriate gauge.
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Appendix: The Physics of Geodesic and Mathematical Theorems
The equivalence principle is applicable only in a physical space, where a geodesic representing a free falling particle [2,3].
Therefore, it would be useful to discuss the mathematical theorems related to a geodesic. The principle of relativity and the

equivalence principle imply that the physical space-time is a Riemannian space with a space-time metric function gy,y. For an
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idealized point-like classical massive particle (which has no spin, charge, or other attributions), the equation of motion under
gravity is the geodesic equation. The gravitational field is zero if the Christoffel symbols are zero.

Currently, Einstein's equivalence principle is often incorrectly considered as equivalent to an existence of local Minkowski
spaces. Such a misunderstanding is related to two mathematical theorems 15} as follows:

Theorem 1 Given anv poi tz manifold (whose metric signature ig the same as a Minkowski space) there al-

ifold (wh sigr
ways exist coordinate systems (x M) in which 0, fOx* =0 at P.

Theorem 2. Given any time-like geodesic curve I there always exist a coordinate system (so-called Fermi coordinates) (x!) in
which 0g,,,/0x* =0 along I.

From these theorems, it is possible to establish further that a local Minkowski metric exists at any given point and that along

any time-like geodesic curve I', a moving local constant metric exists {15].

However, there is no physical specification on what is the cause of the local coordinate transformation,

® = ox” s

*-6:;7 Iy (AD)

such that (A1) transforms the Lorentz metric gaﬁ(y“) to a local Minkowski metric along a time-like geodesic curve. In particu-

lar, there is nothing relating these two theorems to an existence of acceleration to a static particle or other physical situations.
Thus, they are just mathematical theorems. Pauli’s version of equivalence principle is essentially a simplified rephrasing of
these theorems. No wonder Einstein strongly objected. Einstein [30) pointed out, "As far as the prepositions of mathematics
refers to reality, they are not certain; and as far as they are certain, they do not refer to reality.”

Einstein’s equivatence principle gives crucial specific descriptions such as physical acceleration with respect to a frame of
reference. Nevertheless, it is still insufficient to decide whether the peodesic or the transformation is valid in physics. To justify

the physical validity of a space-time metric, Einstein examine the geodesic and both the cause of and the consequence of (Al).

Endnotes
1) In general relativity, a Riemannian space-time (M, g) is a physical space-time, according to Einstein {2,3]. Such a

Riemannian space M is characterized by a space-time metric g that can be determined by the distribution of matter. It
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is in the sense of that the metric g;, as well as the space-time, is subjected to physical considerations. Moreover, since

Einstein’s Riemannian space-time models reality, all the physical requirements must be sufficiently satisfied by the
space-time metric g;,. As demonstrated by Einstein [2,3), it is necessary that a geodesic represents a free fall. The no-
menclature, “physical space” was in fact used by Einstein, for instance, in his correspondence to A. Reht {16].
Einstein’s objection made clear that he has his own version of infinitesimal equivalence principle. This should have
been obvious because Pauli claimed that he did not invent his version but got it from the work of Einstein. Neverthe-
less, Norton [5], being a historian, failed in identifying Einstein’s version because it was not labeled as such.

The time-tested assumption that phenomena can be explained in terms of identifiable causes is called the principle of
causality. This principle is the basis of relevance for all scientific investigations, This principle implies that the gravi-
tational radiation must have sources and any parameter in a physical solution must be related to physical causes [8,26].
Einstein’s viewpoint is supported by Weinberg |4, p.3} who stated, “In my view, it is much more uscful to regard gen-
eral relativity above all as a theory of gravitation, whose connection with geometry arises from the peculiar empirical
properties of gravitation, properties summarized by Einstein’s Principle of the Equivalence of Gravitation and Inertia.”
The 1915 equation was guessed by Einstein, and the role of his equivalence principle in arriving his equation was not
explicit. In addition, his equation does not have a dynamic solution as conjectured by Hogarth in 1953 [8,31].

For the infinitesimal form of Einstein’s equivalence principle, the local metric may have the Minkowski form at only
one point. Thus special relativity is only approximately valid even in an infinitesimal region. Moreover, as pointed out

by Eddington [19], such an approximation would be valid only if the problem is unrelated to curvature.

oo Lot Loz Lo3

g g ow Lo Zo 2 2 2 g
The conditions: g,, > 0, ® NS0, lg gy g |>0,and [T TN SP CB A 1)50 were called
810 &n g% 8&n &n E8x
820 8n 8»

83 83 8n £
physical condition for a physical coordinate system [9,12,13]. Nevertheless, they are actually insufficient in physics.
The deflection of light is an angle that can be measured at infinity by explicit comparisons using physical measures
(millimetres on a photographic plate, for instance). However, this depends on a coordinate system because, to trans-
form two dots in a photographic plate to an angle, one must refer to the coordinate system used to take the photos. For
instance, such transformations are first based on the Schwarzschild coordinate system {3]. Moreover, one cannot de-

fine a defection angle in terms of a uniformly rotating system.
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9) By no means, this glorifies incompetence; rather it shows possible vulnerability of an icon. Moreover, well-known
theorists such as Penrose [32] Bondi [33] and Wheeler {34] would ignore physical principles. Consequently, althongh
Hogarth [31] conjectured that there is no gravitational wave solution from the 1915 equation, they accepted unphysicat
gravitational “waves” [35], because they did not consider the principlc of causality. Moreover, Einstcin and Feynman
[36] had claimed incorrectly the existence of dynamic solutions for the 1915 Einstein equation [35). Christodoulou and

Klainerman [37] even claimed incorrectly that they had constructed dynamic solutions [8].
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