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Abstract 

In general relativity, Einstein's measuring instruments are resting but in a free falling state, and measurements are per­

20 formed acron:Jing to Einstein's equivalence principle. On the other hand, if the measuring instruments are resting and are at­

21 tached to the frame of reference, since the measuring instruments and the coordinates being measured are under the same influ,. 

22 ence of gravity, a Euclidean space structure emerges as if gravity did not exist For example, the Schwarzschild solution has a 

23 complementary Euclidean structure. In agreement with observations, this notion of Euclidean structure clarifies the meaning of 

24 Einstein 'sphysicaI space, and explains the previous failures in obtaining a space-time metric for a uniformly accelerated frame. 

25 Nevertheless, Pauli's "equivalence principle" that ignores physical requirements beyond metric signature, leads to the incorrect 

26 belief that space-time coordinates have no physical meanings. To demonstrate the inadequacy of Pauli's version, it is shown 

27 that the local distance formula derived by Landau & Lifshitz is invalid TItis illustrates that theories based on merely the exis­

28 tence of local Minkowski space must be reviewed according to Einstein's equivalence principle. Moreover, this analysis shows 

29 that once the frame of reference is chosen, the gauge has been deterntined Experimental test and related issues are discussed. 
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I 1.. Introduction 

2 Some theorists including Pauli [1Jbelieved that "'it. is neces~ry to abandon Euclidean geometry" because "Einstein showed 

3 fOT example of a Totating reference system" the time intervals and spatia) distances in non-Galilean systems cannot just be de­

4 termined by means of a clock and rigid standard measuring rod." However~ the fact is tbat Euclide-~n geometry is abandoned 

5 only in the invariant line element (2~3). However~ as shown in the Schwarzschild solution I2l, the Euclidean structure is neces­

6 sarily preserved in Einstein's physical Riemannian space. It will be shown that such a structure is related to measurements, 

7 whjch are different from the measurement ofa line element that is related to Einstein's equivalence principle. 

8 For the four-dimensional continuum (x~ y, Z, 1) of physics in special relativity, the invariant line element has the form 

9 

10 (1) 

11 

12 where the units are centimeter and second, and c is the speed of light, 3xlOlO cm/sec. Thus, invarlance ofEuclideall geometry 

13 has been abandoned already in special relativity, and there are Lorentz contraction and time dilation (31. However, a Euclidean 

14 structure is preserved since the distance d (PI' P2) of points p} (Xl' y}, zl) and P2 (x2, Y2' z2)in the frame of reference is still 

15 
16 (2) 

17 

18 It will be shown that, in a different way, a Euclidean structure is actually preserved even in general relativity (see Section 4). 

19 Such a Euclidean stnleture would make a distinct class of Riemannian spaces. A Riemannian space-time together with its 

20 Euclidean structure shall be called the Einstein Space named after its creator (3]. 

21 In general relativity, the invariant line element is 

22 

23 ds2 = dxPdx v 
g J.lV ' 

(3) 

24 

25 where &>0 > 0 and glL
V 

is a general space-time metric in a Riemannian physical spacel). Note that form (1) is a special case of 

26 (3), and form (1) is used in the infinitesimal form of Einstein's equivalence principle £2,31. Thus, form (1) is not abandoned at 

27 aU, and what has been abandoned is that form (1) be considered as an invariant. 

28 However, the transformation from (3) to (1) is generally not global Thus, it seems that in general it would not be possible to 

29 have a simple global distance formula as (2). In general relativity, a local distance formula would be generally 
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where <x" ~ = 1,2, 3 (4) 

even if goa = O. Since metric elements &tp are not constants, a global distance formula derived from (4) is not possible. A dif­

ficulty related to (4) is that the meanings of spatial coordinates are not clear since dl depends on ~ that would change accord­

ing to the distribution of matter. Nevertheless, in Einstein's calculation, it is necessary to choose a frame of reference a priori. It 

will be shown that this is justified in terms ofthe notion of Euclidean structure. 

For example, consider a solution of metric with coordinates (x~ y, z, t) in the isotropic form [4]~ 

(5) 

where M is the total mass of a spherical mass distribution with the center at the origin of the frame of reference, (x, y, z) are its 

coordinates, r = [x2 + y2 + z2]l!2, and K is a coupling constant. Note also that the metric is a function ofr, which is defined in 

terms of the Euclidean characteristics of subspace (x, y, z). Therefore, the Euclidean structure of the frame of reference (x, y, z) 

is necessarily included in such a Riemannian space-time ofEinstein (see also Section 4). 

Moreover, this example illustrates that the existence of a Euclidean structure does not necessarily mean the existence of a 

Euclidean subspace in (5). To understand the physical meaning of the Euclidean structure in connection with the metric, we 

must first clarify what "measure" means in relation to Einstein's equivalence principle (see Sections 2 and 3). 

A popular version of the equivalence principle expressed by Pauli (1J is the following: 

"For every infinitely small world region (i.e. a world region which is so small that the space- and time-variation of gravity 

can be neglected in it) there always exists a coordinate system Ko (Xl~ X2, X3, )4) in which gravitation has no influence 

either in the motion ofparticles or any physical process." 

But, Einstein strongly objected this version and he argue.d that, for some case~ no matter how small the world region, special 

relativity would not exactly hold2) as reported in details by 1. Norton [5]. Nevertheless" in current literature Pauli's interpreta­

tion is incorrectly [51 considered as equivalent to Einstein's equivalence principle (see also Section 7). 

However, the fact is Pauli's version cannot be considered as equivalent to Einstein's. Einstein's version requires addition­

ally: i) "the special tlleory of relativity applies to the case of the absence of a gravitational field [3, p.lIS]" and Ii) a local rvlin­

kowski space is obtained by choosing the acceleration. Einstein [3, p.llS] wrote, "... we must choose the acceleration of the 

infinitely small ("local") system of coordinates so that no gravitational field occurs; this is possible for an infinitely small re­

gion." Moreover, since physical conditions other than metric signature are ignored in Pauli's version, such a coordinate system 
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may be physically unrealizable. For instance, if a physical requirement such as the principle of causality3) is violated. Then, a 

particle resting on its frame of reference would also mean that a physical principle is violated (see section 5). 

The frame of reference, as pointed out by Fock [6], is crucial ill Einstein's general relativity. Einstein chooses the frame of 

reference, and the time-eoordinate is determined by orthogonality. However, some theorists [6,7] considered Einstein's equiva­

lence principle is not well defined on the ground that the frame of reference is ill defined because the notion of distance is not 

clear. Moreover, Einstein contributed to such misunderstand in 1916 by claiming the over extended physical general covariance 

with the support of false arguments [3J, which he later dropped from his book [2}. TrJs will be pointed out and discussed in 

Section 3. Understandably, from the vic\'vpoint of general covariance, they do not see the existence of a Euclidean structure. 

Nevertheless, the inadequacy of Pauli's version for a world region of a physical space seemed not a serious problem until it 

is itlOOtteCiry daitued {Sj that the existence ofLocai Minkowski space had replaced Einstein's equivalence principle such that 

any Lorentz manifold could be justified as valid in physics. This replacement of Einstein's equivalence principle distorted gen­

eral relativity. For instance, Einstein's notion ofphysical space [2,3,5] has been ignored to the point tbat professional relativists 

often ask what is a physical space. In this paper, to illustrate the problem of such a distortion, it 'will be shol\n that Pauli's ver­

sion was the source ofan invalid formula ofdistanc--e (see Section 3) derived by Landau & Lifshitz (9). 

Based on the misconception that a frame of reference was necessarily associated with a Euclidean subspace, Fock [6J blamed 

his failure in obtaining a spac:e-time metric fOT a uniformly accelerated system as an intrinsic problem ofEinstein's equivalence 

principle. Accordingly, Fock claimed also that the principle of general relativity were invalid To be aware of the seriousness of 

this problem, one should note that Fock's followers include Wheeler and his students Ohanian and Ruffini (7]. The calculation 

of the space-time metric corresponding to an accelerated frame will be presented in a separate paper [10]. 

In view of the fact that P..auli'S veThi.on\.,'as popularly in the literature, a problem such as the invalid formula of Landau & 

Lifshitz would be just a drop of water in the bucket. Note that their invalid formula was still followed with great faith [11-13] 

since its im'alidity had not been found although their book. is well known [14]. The purpose nftlis example is to demonstrate 

that it is necessary to review man)' of the existing theories in tenns of Einstein's equivalence principle. 

lvloreover, it was believed that a gauge condition would be arbitrary although gauge is related 10 a choice of coordinates. 

This analysis shows that once the frame of reference is chosen, the space-time coordinates are determined (section3), and there­

fOTe the gauge has also been determined (Section 6) To show these problems clearly, it would be necessary to understand first 

Einstein's equivalence principle starting from the beginning. 
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2. Einstein's Equivalence Principle, the Principle of General Relativity, and Einstein's Riemannian Space 

2 In general relativity~ virtual measurements are perfonned by utilizing Einstein's equivalence principle, as shown in Ein­

3 stein's calculation of the time dilation and spatial contraction £2,3]. Thus, we should clarify what Einstein's equivalence prin­

4 ciple actually is. In 191 I, the initial foml of this principle is the assumption [3] that the mechanical equivalence of an inertial 

5 system K under a uniform gravitational fiel~ which generates a gravitational acceleration y (but, system K is free from accel­

6 eration), and a system K' accelerated by "{ in the opposite directio~ can be extended to other physical processes. This initial 

7 form was further elaborated for a curved space due to additionally the principle ofgeneral relativity. 

8 However, Einstein's equivalence principle was often questioned because of inadequate understanding. A noted theorist 

9 Synge [15J professed his misunderstandings on Einstein's equivalence principle as follows: 

]0 "...1 have never been able to understand this principle...Does it mean that the effects of a gravitational field are indis­

11 tinguishable from the effects of an observer's acceleration? If so, it is false. In Einstein's theory, either there is a gravi­

12 t2tiomd field or there is none, according as the Riemar.n tensor does or does not vanish. This is an absolute property; it 

13 has nothing to do with any observer's world line ...The Principle of Equivalence perfonned the essential office of mid­

14 wife at the birth of general relativity ... I suggest that the midwife be now buried with appropriate honours and the facts 

15 of absolute spacetime be faced." 

16 Currently, such misunderstandings persist after all tllese years. For instance, Thorne [14] criticized Einstein, 

17 "In deducing his principle ofequivalence, Einstein ignored tidal gravitation forces; he pretended they do not exist. Ein­

18 stein justified ignoring tidal forces by imagining that you are (and your reference frame) are very small." 

19 Apparently, Thome paid little attention to Einstein's correspondence on this problem. For instance, the question of tidal forces 

20 has been clearly answered by Einstein. For instance, in his July 12, 1953 letter to A. Rehtz [16) Einstein wrote, 

2J "TIle equivalence principle does not assert that every gravitational field (e.g., the one associated with the Earth) can be 

22 produced by acceleration of the coordinate system, It only asserts that the qualities of physical space, as they present 

23 themselves from an accelerated coordinate system, represent a special case of the gravitational field." 

24 Einstein [5J explained to Laue, "What characterizes the existence of a gravitational field. from the empirical standpoint, is the 

25 non-vanishing of the !11k (field strength), not the non-vanishing of the R-iklm." and no gravity is a special ('-ase of gravity4). The 

26 viewpoint that gravity must be associated with the non-vanishing of the ~, instead ofjust the non-vanishing of the r1ik, can 

27 be traced back at least to Newton's theory of gravity. This difference in philosophy has important consequence in physics. For 

28 instance, it is Einstein's viewpoint that leads to the geodesic e.quation being identified as the equaLion of motion of gravity, and 
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subsequently the notion of a curved space-time. It will be shown, their criticisms are due to inadequate understanding of Ein­

2 stein's equivalence principle, which plays a cmcial role in many aspects of general relativity (see also Sections 4-7). 

3 It should be noted that Einstein insisted, throughout his life, on the fundamental importance of the principle to his general 

4 theory of relativity [5]. NQrton pointed out that Einstein's insistence on this point bas created a puzzle for philosophers and 

historians of science r51. This shows how much was Einstein's principle being understood in tenns of physics. 

6 Moreover, some [6,7] considered Einstein's failure in obtaining a valid fonnula for light bending in 1911 as a deficiency of 

7 Einstein's principle, in spite of his success in 1915. Fock [6J even supported their belief with explicit calculations. However, 

8 his calculation must be in'valid since Maxwell-Newton Approximation, the linear equation for weak grnvity5) due to massive 

9 sources can be derived directly from Einstein's equivalence principle [17). A main problem in Fock's calculation is his implicit 

assutrrption that the related Riemannian spare should have a Euclidean subspace. Apparently, he fails to see that the frame of 

11 reference needs to be related to only a Euclidean stnlcture (Section 3). 

12 Einstein was not entirely happy with special relativity. Einstein believes, "The law of physics must be of such a nature that 

13 they apply to systems of reference in any kind of motion (principle of general relativity). ~~ From the viewpoint of the principle 

14 of general relativity, since the effects of a uniformly rotating cannot be equivalent to the effects of a linear acceleration, Ein­

stein's principle of equivalence, if exact, is really the equivalence ofthe effects ofan accelerated frame to a related kind of 

16 uniform gravityw;'hereas others incorrectly perceived that any gravity is equivalent to a uniformly acceleratedframe. In other 

17 words, Einstein's initial equivalence principle must be an example to illustrate an idealized case. 

18 These two principles also lead to (2,3] regarding the geodesic equati~ 

19 

(6a) 

21 where 

22 ds2 = dxJ.1 dxv 
gpv ' (6b) 

23 

24 and gl-lv is the space-time metric, as the equation of motion for a particle under the influence of only gravity since the accelera­

tion to a particle under gravity is independent of the mass (or equivalently mI = nlo). Thus, gravity is due to ten metric ele­

26 ments, and this can be used to derive the linear field equation for weak gravity of massive matter [17]. For a resting particle, 

27 the acceleration is due to r~tt (J.1 *- t), and this is a physical restriction on gp.v a non-constant space-time metric. 
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On the other hand,. if gravity must be associated with the llon~vanishingof the Rtldm as some argued [6,7,11-15], the justifi­

2 attion for the geodesic equation as the equation of motion would be broken., and so fur there is no alternative valid justification. 

3 One lnight argue that the geodesic equation would be derived from the field equation.. To do this, one must flrst derive the fleld 

4 equation independent of the geodesic equation. Ohanian and Ruffini f71 tried to derive the 1915 Einstein equation from their 

5 linear field equ.:1.tion. Unfortunately, both their derivation and their linear equation, which is based on their notion ofgauge, are 

6 found to be invalid {J 7]. In practice., the geodesic also pla'ys an important role because it is used to decide whether the metric is 

7 valid in physics. For instance, Einstein used it to obtain the perihelion ofMercu.ry f2,3}. 

8 In deriving his fonnula for the bending of light rays, Einstein [2,3] used the infinitesimal form of his principle6), which is a 

9 generalization of the initial fonn that has a frame of reference [3]. An important but often omitted point is that Einstein's 

10 eqUivalence principle is applicable on(v to a physical spacel) in which aU physical requirements are sufficiently satisfied since 

11 his Riemannian space models the reality. This will be illustrated in analyzing the case of Einstein's rotating disk. 

12 Einstein considered a Galilean (inertial) system of reference K (x, y, z, t) and a system K' (x', y', z', 1') in unifonn rotation 

13 n relatively to K. The origins of both systems and their axes of z and z' permanently coincide. For reason of symmetry, a circle 

14 around the origin in the x-y plane ofK may at the same time be regarded as a circle in the x'-y' plane ofK'. Then, according 

15 to special relatil/ity, in the x-y plane and the x'-y' plane, the metrics orK and K' [2, 11Jare respectively the following: 

16 
17 where x = r cos $, y = r sin 4>, (7a) 

18 and 

19 (7b) 

20 where 

21 x' = r' cos ~~, and y' = r' sin $'. (7c) 

22 Then, 

23 (8) 

24 

25 would be the circumstance of a circle of radius r' (= r) for an observer in K'. Thus, Einstein concluded that with a measuring 

26 rod at rest relatively to K', the quotient of circumstances over diameter would be greater than 7t, and Euclidean geometry there­

27 fore breaks down (in the metric [7b] but preserves in [7c) in relation to the system K' (see also Sections 3 & 4). 

28 Moreover, as Einstein pointed out, "an observer at the common origin of co-ordinates, capable ofobserving the clock at the 

29 circumferences by means of light, would therefore see it lagging behind the clock beside him". Einstein £31 continued,. "So, he 

30 )l,rjll be obliged to define time in such a way that the rate ofa clock depends upon where the clock may be." Thus, Einstein 
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concluded, "In general theory of relativity, space and time cannot be defined in such a way that differences of the spatial coor­

dinates can be directly measured (in the way Einstein defined) by the unit measuring-r<><L or differences in the time co-ordinate 

by a stand clock." Concurrently Einstein, in effect, defined a physical space-time coordinate system together with its metric 

tbat is related to local clock rates and local spatial measurements (see also Section 3). In other words, Einstein has established 

the notion of a physical spacel ) where all physical requirements are sufficiently satisfied. 

According to the principle of equivalence, K' may also be considered as a system at rest, with respect to which there is a 

gravitational field (field of centrifugal force, and force of Cariolis) [3]. Thus the equivalence principle enables an extension of 

the principle ofrelativity to lJccelerated motion. This example illustrates also that Einstein's notion of gravity needs not be 

related to a source, but can be just related to acceleration (as its cause). For metric (7b), the static acceleration is from 8,u!:tt , a 

spatial derivative to the time-time metric component. This suggests that &: corresponds the gravitational potential in Newtonian 

theory, and this is confinned by subsequent calculations [2,3}. In short, the rotating disk case shows not only that the space-

time continuum is a Riemannian Space with a Lorentz metric, but also that the equation of motion for gravity is the geodesic 

equation. Moreover, in Einstein's theory, the principle of general relativity is the physical basis of covariance. 

3. Covariance and Physical Space-Time Coordinate Systems 

In Einstein's theory, as shown by K (~y, z, t) and K' (x', y', z', 1'), it is clear that the coordinates ofa space-time coordi­

nate system have definite physical meanings. Here, it will be sho\\n that the notion that coordinates have no physical meaning 

comes from confusing an arbitrary coordinate system (which needs not have a physical meaning) for a mathematical calcula­

tion with a space-time coordinate system (which does have a physkal meaning) in physics. 

In a Riemannian space, since the metric gj.tv is not restricted as in special relativity, tensor equations are covariant with re­

spect to an)' substitutions whatever (generally covariant). Moreover if the space-time continuum in physics is a Riemannian 

space, there are two advantages: i) Physical laws (tensor equation) would satisfY the principle of general relativity. ii) Calcula­

tions can be carried out in an arbitrary coordinate system. In the 1916 paper, Einstein was somewhat carried away by tltis new­

found freedoJR Inste.'Kt of recognizing an arbitraIY coordinate system as a mathematical tool~ he sought to justify this freedom in 

terms of physics. To argue for unrestricted covariance, he wrote £31: 

"That this requirement of general covariance, which takes away from space and time the last remnant ofphysical ob­

jectivity, is a natural one, will be seen from the following reflexion. All our space-time verifications invariably 

amount to a detennination of space-time coincidences. If" for example, events consisted merely in the motion of ma­
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1 terial points, then ultimately nothing would be observable but the meetings of two or more of these points. Moreover, 

2 the results of our measuring are nothing but verifications of such meetin~ of the material points of our measuring 

3 instruments with other material points, coincidences between the hands of a clock and points on the clock dial, and 

4 observed point-events happening at the same place at the same time. The introduction ofa system of reference serves 

no other purpose than to facilitate the description of the totality of such coincidences." 

6 However, this seems to be incompatible with his earlier statement [3], "So, he will be obliged to define time in such a way that 

7 the rate of a clock depends upon where the clock may be." 

8 Moreover, while all verifications amount to a determination of space-time coincidences, to predict such coincidences, one 

9 must be able to relate events of different locations in a definite manner. (Examples are the gravitational red shifts and tlIe light 

bending.) If a space-time coordinate system is related to objective physical measuremen~ it must have physical meanings. In 

11 fact, as early as 1918, unrestricted general covariance was questioned by Lenard f181- As Eddington [191 pointed out, "space is 

12 not a lot ofpoints close t{)gether~ it is a lot ofdistances interlocked." For physical considerations, one must have not only just a 

13 mathematical coordinate system, but also a physical space-time coordinate system. 

14 Understandably, Einstein [2] dropped the above invalid justification later, and remarked, "As in special theory of relativity, 

we have to discriminate between time-like and space-like line elements in the four-dimensional continuum; owing to the 

16 change of sign introduced, time-like line elements have a real~space-like line elements an imaginary ds. The time-like ds can 

17 be measured directly by a suitably chosen clock." Thus, a space-coordinate and the time-coordinates in physics are not ex­

18 c.bangeable as Hawking [20] claimed sin~ Liley have distinct characteristics and physical meaning,t;. Einstein also praised Ed­

19 dington's book to be the finest presentation of the su~iect ever written [211. 

Note that Einstein's theory is based on his notion of a physic-at space l ), which has a frame of reference and local time coor­

21 dinates that are orthogonal to the frame. To illustrate the difference between the physical space and a manifold in mathematics, 

22 consider the coordinate transformation to the uniformly rotating disk, in terms ofthe time t ofK as follows {II]: 

23 
24 x = x' cos Qt ­ y' sin Ot,. y = x' sin Ot + y' cos Qt,. and z=z' , (9a) 

or 

26 r = r', z = z'. <P = <P' + at, (9b) 
27 

28 in cylindrical coordinate systems of K and K', where Q is the angular velocity. Note that both (x, y, z) and (x', y', z') are 

29 Euclidean subspaces. Then substituting the new coordinates (x', y'~ z') or (r', ~\ z') to metric (7a), we obtain a metric 
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(7b') 

for the coordinate system K* (x', y', z', t). However, the mathematical system K* (x', y', z', t) is not a physical space-time co­

ordinate system for the uniformly rotating disk K' because what measured in a resting local clock is time t' but not time t that 

remains associating with the inertial frame of reference K. In other words, (7b') failed "to define time in such a way that the 

rate ofa clock depends upon wbere the clock may be [3]", and thus metric (7b') together with its coordinates K* is not a space­

time coordinate system, as Einstein defined, that can be used for physical measurement and therefore physical interpretation. 

Moreover, since a physical principle is not satisfied in K*, the equivalence principle is not applicable. It will be shown that 

this principle is, in fact, not satisfied in K*. Nevertheless, as shown by Zel'dovich & Novikov [11}, it is possible to recover met­

ric (7b) that represents local measurements Qftime and distance from the mathematical metric (7b') alone (see also Section 5). 

This illustrates that one can start with an arbitrary mathematical coordinate system. 

To obtain a physical transfonnation for the time l' of the rotating disk, a comparison of (7b) and (7b') leads to, 

dap' = dq> - adt ; (lOa) 

and 

cdt, = [cdt - (rQ/c)rdq>)[l - (rQ/c)2}-1 . (lOb) 

or 

(lOc) 

Note that (lOc), which modifies the time coordinate from t to 1', transforms (7b') to (7b). Now, (7b) is clearly related to (7a). 

The factor [I - (rQlc)2]-1 in (10) is due to time dilation and spatia] contraction manifested in metric (7b). Let us verify that 

the time dilation and the spatial contraction are results due to comparisons with a clock and a measuring rod in relatively rest at 

the beginning of a free fall. According to Einstein's equivalence principle such a coordinate system is locally Minkowski. To 

verify this, consider a particle P resting at (r', f, z'). Then, P has the velocity of Or in the $' -direction, which is denoted by 

dx". It follows that the Lorentz coordinate transformation is, 

(Ita) 

and 

edt = [1 - (rQ/c)2)-l/2 [edt" + (rQlc)dx"] . (lIb) 

Then, 

(12a) 

and 
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2 

(l2b) 

3 These are exactly the time dilation and spatial contraction as measured This illustrates that a particle resting at K'. can at­

4 tached to a local Minkowski space. 

5 Thus, this is an example that Einstein's version of infinitesimal equivalence principle is satisfied. In addition, a light speed 

6 at r' (* 0) observed in system K' would be smaller than c due to the time dilation effect of gravity. The light speed is even 

7 smaller in the q>-direction. In other words, a light speed can decrease more after a velocity Qr' is '"added to". 

8 However, for the coordinate system K* (x', y', z', t), the question of time dilation is complicated because Einstein's equiva­

9 lence principle is not applicable. Nevertheless, let us assume that the Einstein's equivalence principle could be applied to K*. 

10 Mathematically, for a particle P resting at K*, the state vector of Pis (0, 0, 0, dt). According to (lOc), P is also resting at K' 

11 with a state vector (O,O,O,dt'). Then the local Minkowski space for P is identical to (12b). It thus follows that 

12 
13 (13a) 

14 and 

15 (l3b) 

16 Thus, 

17 (14) 
18 

19 would be considered as the time dilation since a clock rest at K* has &p' = O. The problem oft-his derivation is tbat the parame­

20 ter "t" is not the local time for the frame K' (x', y' z'). Thus, a time coordinate alone has no independent physical meaning. 

21 This calculation confirms that Einstein's equivalence principle is applicable only to a physical space where all physical re­

22 quirements are sufficiently satisfied. This illustrates also that Pauli's ver.won being satisfied, is only a statement of mathemati­

23 cal properties (see also Appendix). A related problem is how do we know \oJlhether a lllanifold is a physical space. Then, we 

24 must do what Einstein (2)] did, that is, examining consequences ofthe metric "'vith physical requirements (see also Section 6). 

2S Einstein (3] had remarked, "So there is nothing for it but to regards all imaginable systems of coordinates, in principle, as 

26 equally suitable for the description ofnaiure. This comes to requiring that:- The gf..merallaws ofnature are 10 be expre,<.;'sed by 

27 equations which hold good for all systems of co-ordinates, that is, are co-variant with respect to any substitutions whatever 

28 (generally co-variant), " However~ while general covariance is mathematically valid for all tensor equations in a Riemannian 

29 space, this description of nature by the coordinate system K* (x', y', z', t) includes certain calculations but not physical inter­

"1'\
.JV pretatiufiS, Thus, in spite ofgeneral covariance, the freedom t{}1ttwrd the physical space-lime coordinate 5ystems that can be 

31 usedfi,r physical interpretation is severe{v limited by his eqUivalence principle. Special relativity has alread)' taught us [3J that 
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some mathematical coordinate systems are not physically realizable and therefore cannot be used to describe nature. The same 

2 has been ilJustrated for general relativity. In short~ nature can be described clearly and accurately only in terms ofa valid space­

3 time coordinate system with an appropriate space-time metric. 

4 

5 4. Riemannian Space-time, the Euclidean Structure, and the Einstein Spaces 

6 The fact that Einstein's equivalence principle plays a crucial role in choosing a space-time coordinate system makes a four­

7 dimension space-time continuum in physics a special kind of Riemannian space in addition to having a Lorenz metric. A fea­

8 ture in Einstein's theory of general relativity is that the Riemannian space-time has a Euclidean structure that serves as a frame 

9 of reference. Such a geometry structure shall be called a Euclid-Riemann space (or an Einstein space). 

lOAn Einstein space is a physical space if it sufficiently satisfies all ph)'Sical requirements, including a time coordinate that is 

11 related to local time. It should be noted that if a change of the coordinate system were not considered~ the frame K' (x', y', z') 

12 could be considered as a Euclidean space as if gravity did not exist. Thus, a Euclidean structure in a physical space is inde­

13 pendent of gravity. Because of such independence, it becomes possible to make the meanings of coordinates very clear. 

14 If a spatia) measurement is performed 'with a measuring rod which is attached to the frame K' (x', y', Z '), it would appear as 

15 Euclidean. (Note that the directional spatial contraction in metric (7b) is measured with a resting measuring rod ill the state of 

16 free faU as shown by equation fIll.) The physical reason is that since a measuring rod attached to the system K', would be un­

17 der the same influence of gravity as what is being measured In fact, it is based 011 this implicit assmuption that the cylindrical 

]8 coordinate system (f'~ qJ'~ z') is well defined in K'. One may recall ttmt although K* also bas the Euclidean subspace (r', <p'~ z'). 

19 the resulting K' (x'; )or', z'; f) no longer has a Euclidean subspace. But, the metric (7b) still retains a Euclidean structure. Its 

20 existence would merge as a Euclidean subspace ifone reduces the cause of gravity to zero, incase of metric (7b), i.e., n = o. 

21 One of the difficulties in understanding Einstein's theory is that tbe notion of Euclidean structure has not been explicitly 

22 e3\pJaine.d. For instance, Fock {6] failed in underS""tandiug Eip-..Mein's equivalence principle because he believed tbat an acceler­

23 ated frame must be related to a Lorentz manifold that has a Euclidean subs~1ce. Perbaps, tIle popularity of Pauli's [1] version, 

24 in spite ofEinstein's objection f51, is due to that Pauli omitted the frame of reference and related acceleration. 

25 A valid spaceetime coordinate system is cnlcial for a pllysical space. The system K* (x', y', z', t) also has the same spatial 

26 cooldinates~ but the time t is not associated with the frame K' (x', y', z'). Consequently, K* is not a physical space~time since it 

27 fails some physic.'ll requirenlents, Thus, an Einstein space is a Riemannian space with a Euclidean structure, and it is a physic.'ll 

28 space if it sufficiently satisfies all physical requirements, including Einstein's equivalence principle. 
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Moreover~ the Euclidean structure is meaningful in physics only in a physical space. However~ mathematically the existence 

2 of a Euclidean structure has to be assumed a priori. Then, validity of the existence of a Euclidean structure must be verified� 

3 because such a structure may be incompatible with the Riemannian space.� 

4 For example, consider a manifold L (x, y, z, t) and its metric,� 

6 (15) 

7 

8 with time unit in second and length unit centimeter, and c = 3xl010 em/sec. Metric (15) implies that the "light speed" in the x­

9 direction is lc. Since L is clearly not a physical space., it does not make sense to assume the existence ofa Euclidean structure. 

Mathematically, one can obtain a local Minkowski space (dX, dY, dZ, dT) with the local coordinate transformation, 

11 

12 dX=dx, dY=dy, dZ= 3dz, but dT=2dt. (16) 

13 

14 Thus, Pauli's version is satisfied. However, Einstein's equivalence principle is not satisfied since there is no acceleration (since 

aU the Christoffel symbols are zero) to choose from such that a local Minkowski space can be obtained. Moreover, although the 

16 gravitational field is absent, special relativity is not applicable in L since L is not a Minkowski space. 

17 Nevertheless, one might argue that a rescaling, 2t = l' and 3z = z' would transform (15) to ds2 = c2dt,2 - dx2 - dy2 - dz,2. 

18 However, this new metric form does not make La Minkowski space since the unit oft' is 'l'2 second. Note that a rescaling has 

19 no physical content, but the local coordinate transfonnation (16) means tlle ratio of two local clocks (see Section 3). For a parti­

cle P resting at a point (Xo, Yo' zo) in L at time to, the coordinates of P are (Xo, Yo' zo, t) at time 1. The local coordinate trans­

21 formation (16) is, of course, not a resca1ing of units. However, since there is no gravity or relative velocity, there is no physical 

22 cause that makes a clock rate changes. Thus, the principle ofcausality is violated, and (15) is not valid in physics. 

23 This example illustrates that it is necessaJ:Y to verify tllat the existence of a Euclidean structure is valid in physics. A physi­

24 cal Eudide..an structure can exist only in a physical space where Einstein's equivalence principle is satisfied. 

26 5. An Invalid Formula for Local Distance and Pauli's Version of Equivalence Principle.� 

27 The derivation of Zel'dovich & Novikov [11], though has the same result, is based on Landau and Lifshitz [9]. They stated� 

28 that the final formula for the square of the spatial distance dl2 is. 

29 
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where <x, f3 = 1,2,3 (17a) 

2 if 

3 (17b) 

4 

This formula was derived also by Liu and Yu [12,131. For the uniformly rotating disk, from (7b') one obtains metric (7b) and 

6 
7 (18) 
8 

9 which agrees with metric (7b). However, fonnula (15), based on Pauli's version, is actually not generally valid. 

The logic for the derivation of (15) is as follows: For an arbitrary metric g!J.v ,one has 

] 1 

12 (19a) 

13 Then 

14 ds2 = &o(dx')2 + g'afJ dx a dx~ (19b) 

where 

16 dx'O = dxO+ p~ dxa/p~ (p­ > 0)ova ovO ovO . , and 

17 

18 are a new time coordinate and new metric elements. Thus, one can start with an arbitrary coordinate system8), and derive an 

19 orthogonal coordinate system. However, this may not always lead to a physical space with the same frame of reference. 

The mistake comes form Pauli [1] who considered any Lorentz manifold with a proper metric signature as valid in physics. 

21 Without realizing that some coordinate systems may not be physically realizable, to examine the passage of time; at a given 

22 point, it becomes obvious to him that dx l = dx2 = dx3 .= 0 [11-13]. TheIl, ds will be the time separation between two nearby 

23 events; i.e., it will be the interval of time multiplied by the speed of light, ds = c d"t. Consequently, 

24 
(20) 

26 

27 since in any reference frame formed by real bodies, it is always tme that &0 > O. Then, following from (19) and (20), (15a) 

28 would be obtained. For metric (7b'), dr' = d~' == dz' = 0 implies the particle is resting at the rotating dis~ and from special 

29 relati"ity, we have d't = [1 - (rQ/C)2]1/2 dt', where l' is the local time. Thus, it is valid to consider dxo/c in (20) as if the local 

time. However, &0 in (20) may not be valid for the local time of the local frame (dx1, dx2 , dx3). 

31 To show that (17a) may not be valid, one may c-Onsider a metric whose local distance is known. For example, consider the 

32 Galilean transformation from an inertial system K (x, y, z, t) to the K' (x', y', z', 1') coordinates, 
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2 x=x', y=y', z=z'-vt', and t = t',� (21a) 

3� 

4 where v is a constant. Eq. (21a) transforms flat metric (1) to another constant Lorentz metric� 

6 ds2 = Idz' + (c - v)dt'J[-dz' + (c + v)dt')- dx,2 _dy,2, (2Ib)� 

7� 

8 Thus, Pauli's version is satisfied in K'. However, since (2Ib) failed "to define time in such a way that the rate of a clock de­�

9 pends upon where the clock may be [3]"~ according to Einstein, (2Ib) as a space-time metric is invalid in general relativity.� 

Thus, this example illustrates also that the notion of local time is crucial for a physical space-time.� 

II Now, consider an observer P' resting at a point in K'. Mathematics ensures the existence ofa local Minkowski space [21, the 

12 local orthogonal tetrad ofP', whose direction vp' is (O,O,O,dt'). Then, the orthonormal vectors of the tetrad are 

13 

14 at = (1,0,0,0), a2 = (0,1,0,0), a3 =:: (O,O,a.,P), and hp' =:: (O,O,O;y) , (22a) 

where 

16 

17 Then 

18 dt' = y(dT - v/c2dZ), dz' = y1dZ, dx' = dX, and dy' = dY , (22b) 

19 

is the corresponding transformation for the local Minkowski space (dX, dY, dZ, dT). TIlus, (dx', dy" dz') and (dX, dY, dZ) 

21 share the same frame of reference. It follows that the spatial contraction in z'-direction violates the principle of causality. This 

22 failure manifests that the coordinate system K' is not physically realizable. Note, however;. that (21a), and (22b) imply 

23 

24 dt = y(dT - vc-2dZ), and dZ = ydz' = y (dz + v dt). (23) 

26 This is just a Lorentz-Poincare transformation. Transfonnation (22b) completes the transformation (21a) to (23). 

27 Moreover, although P' isreming at (x', y'" z'), as shown by (22b), the coordinate z' bas gone through a contraction and the 

28 time-time component of the space-time metric has also changeA. Thus, a particle resting at (x', y', z') is incompatible with the 

29 original ~o. This means that formula (15a) is invalid for this case. According to formula (15a), one bas the local distance, 

3] (24a) 

32 and 
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(24b) 

2 

3 (24a) is incorrect for a local distance for the case of no gravity, and t" is not the local time either. From special relativity, we 

4 have d't = dt', and it is invalid to consider dx°/c in (20) as if the local time. Thus, the derivation is not generally valid. 

Obviously, there are mathematical similarities between (24b) and (7b). In fact, (22b) corresponds to (lIb) and the first rela­

6 t.ion of (J 2a) Bu~ because of gravitational acceJeratio~ the frame of reference of local Minkowski space is distinct from that of 

7 (7b), and (12a) is physically valid These two examples illustrate that it is necessary to consider physics beyond the metric sig­

8 nature. In conclusion~Einstein was right, and Pauli's version is inadequate in physics and would lead to incorrect claims. 

9 

6. The Euclidean Structure and the Question of Gauge freedom 

11 It bas been shown in the case ofa uniform rotating system that once the frame of reference is chosen, the space-time metric 

12 of the physical space is determined. Einstein [22] stated in 1919, the body to which events are spatially referred is called the 

]3 coordinate system. On the other hand, many theorists, except Eddington [19], believed that a gauge can be arbitrarily chosen. 

14 Thus, it is necessary to clarify this issue ofgauge. 

In general relativity, the non-linear Einstein's field equation of 1915 version f2,31 for a space-time metric gab is 

16 
17 (25) 

18 
19 where R ab is the Ricci curvature tensor, its source T(m) ab is the energy-stress tensor for massive matter and can depend on &'b' 

However, among these 10 equations of tensor components, only six ofthem are indePendent, since 

21 
22 (26) 

23 

24 Thus, to solve Einstein equation (25)~ four more conditions are needed. These four additional conditions are attributed as due to 

arertain freedom ofchoice ofcoordinates in the physical Riemannian space, and are called the gauge conditions. There are two 

26 extreme views on the question of gauge: i) Fock [6] argued that the harmonic gauge is the only physically valid gauge. This has 

27 been proven wrong for the case ofa uniformly rotating system. ii) A popular view is that the gauge condition can be arbitrarily 

28 chosen although such a notion was rejected by Eddington 119]. Tilis invalid notion was popular because it seems consistent 

29 with another incorrect notion that a space-time coordinate system can be arbitrary. This is incorrcxi because it has been shown 

that this assrnnption of arbitrary gauge can le.ad to the acc.eptance oflmphysical solutions [23-25]. 
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For a spherical static distribution of mass, due to the principle of causality [26], the exterior gravitational field has the cen­

2 tra] symmetry, which requires [4] 

3� 
4� (27) 

6 IfD(r) = C(r) is assumed, one obtains the isotropic solution (5). However, this is not the only solution. If C(r) = 1 is assumed,� 

7 one obtains another well-known solution, the Schwarl.schild solution (3] with coordinate (~y, z, t),� 

8� 
9 (28a) 

where 

11 x = p sine cos<p, y = p sine simp, and z =p cose (28b) 
12 

13 are defilled in tenus of Euclidean structure, and M is the total mass and K is the coupling constant. Since the metric is defined 

14 in terms of coordinates p, e, and cp, the Riemannian space is actually defined in terms of Euclidean characteristics of subspace 

(x, y, z). Moreover, the local time can also be considered as the rate of a local clock attached to that point. 

16 Einstein [3] stated that the velocity of light is defined in the sense of Euclidean geometry. In spite of Einstein's declaration, 

17 some theorists were not aware of such a Euclidean structure, and incorre..ctly claime4 the coordinate velocity of light has no 

18 physical meaning. Neverthele~ theorists (6, 7~, 1] -13] accept the deflection oflight - a fact related to coordinates8). 

19 For clarity of this analysis, let us follow some steps of Einsteill'S derivation in section 22 of the 1916 paper (3). 

"For a unit-measure of length laid "parallel" to the axis ~ for example we should have to set ds2 = -1; dx2 == dX3 = 

21 dx4 = o. Therefore -1 = gIl dX12. If in addition, the unit-measure lies 011 the axis of x, the first of equations (70) gives 

22 gIl == - (1 + air). From these two relations it follows that, correct to a fust order of small quantities dx == 1 - a/2r." 

23 In the above, the key words are "should have to set", and they actually mean applying his equivalence principle if it is valid. 

24 However, unlike the case of metric (7b) (to which validity of this principle is proven by relation [121), validity of Schwanschild 

metric (28) for a physical space and therefore validity of the equivalence principle has not been proven. In a similar situation 

26 for an isotropic metric, Einstein [2, p.911 used the phrase, ""the possibility of getting" to indicate the uncertainty on the assumed 

27 validity of his equivalence principle. 

28 Einstein relied on his 1911 fonnula for gravitational red shifts and the perihelion of Mercury to justify the validity of a 

29 space-time metric. However~ these did not lead to a unique metric since both metries (5) and (28) gave the same result for the 
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same order of approximation. Moreover, both metries give the same first order approximation for the bending of light. Thus, 

2 these two metrics, though related to tbe same frame ofreference, are indistinguishable by his three tests. 

3 On the other hand, these two metrics give distinct space contractions, which is measurable according to Einstein. Therefore 

4 at most only one metric gives the realistic space contraction since these two metrics have tbe same frame of reference. (The 

5 uniqueness of gauge in connection with a frame, bas been demonstrated in the case of a unifonnly rotating system.) To this 

6 end, in principle, one can measure the local light speeds to decide wInch metric is more realistic, It is suggested that a Michel­

7 SQn-Morley type interferometer f271 with a vertical arm and a horizontal arm can do the job f281­

8 

9 7. Discussions and Conclusions 

lOIn general relativity, Einstein [2,3,5] models the reality with a physical space (-time) that has a frame of reference and its 

II time coordinate is related to the local time rate for the descriptions of the physics. Since such a physical space models reality, 

12 all physical requirements must be sufficiently satisfied. Einstein proJXlsed his equivalence principle to a physical space. 

13 Thus, a physical space is a Riemannian space with a Lorentz space-time metric that together with the space-time coordi­

14 nates forms a physically valid space-time coordinate system. Although the Euclidean geometry breaks down in the invariant 

15 line element, a Euclidean structure of the frame of reference is necessarily in place. Since such an intrinsic Euclidean structure 

16 is independent of the gravity in the physical space, the physical meanings of space-time coordinates can be clearly defined in 

17 terms ofmeasurelnents based on measuring instruments att~cbe-AI to coordinate system. 

18 Once the intrinsic nature of the Euclidean structure is recognized, the physical meanings of space-time coordinates are clari­

19 fied. It follows that the frame of reference, acceleration, and Einstein's equivalence principle are also clearly defined in terms of 

20 physics. Thus, the objections ofFock [6] and his followers [7] on general relativity are clearly based on misinterpretation only. 

21 From Einstein's simple example ofunifonn rotatjon~ we have learned aJso~ the difference between a space-time coordinate 

22 system and an arbitrary mathematical coordinate system is distinguishable. As shown in Section 3, K and K' are physical 

23 space-time coordinate systems, whereas K* is only a mathematical coordinate system. Einstein's equivalence principle is appli­

24 cable, as slIown, only in a physical space, otherwise u'Ie so-calculated local time rate and local spatial contraction would be in­

25 compatible with physics. Tms also illustrates the inadequacy ofPauli'5 version. 

26 Thus, it b;cmr.es clear that. a manifold may not be a physical sp.1.Ce even tbough it is diffeomorphic [29] to a physic.1l space, 

27 In other words, for a L-orentz metric to be valid in physics, there are physical conditions to be considered. It has been shown 

28 that for a non-constant metric ~v' the existence of acceleration to a static observer (i.e., r!J.tt :1= 0 for some J.l :1= t) is necessary for 
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a physical space [12]. The invalid derivation of a local distance formula by Landau & Lifshitz f91 demonstrates that an inade­

2quate understanding ofphysics at the fundamental level could happen to even otherwise very oompetent theorists9). 

3 Now, it is clear that Pauli's version of the equivalence principle is essentially a mathematical statement, but is not a physical 

4 principle because it does not contain adequate physical requirements for a situation in reality (see also Appendix). The physical 

inadequacy of Pauli's version is because physical requirements beyond metric signature are ignored. Since a physical principle 

6 is repiaced byi:tlerely the existence of the local Minkowski space" Landau & Lifshitz [9] derived an invalid formula for a local 

7 distance. However, it was followed with a blind faith by others [11-13]. 

8 Moreover} if the existence of the local Minkowski space were the only physical condition as in Pauli's version, it became 

9 necessary that the space-time coordinates have no physical meaning. This is in direct conflict with the fact that non-scalars 

exist in physics. Thus, one c~nnot help concluding that such theorists have inadequate understanding in mathematics and phys­

11 ks at the fundamental level. More.over, as specifie.d by Einstein [2,3J, the coordinate S)'Stem lL~ for the calculation of Ein­

12 stein's three predictions has very clear physical meanings. 

13 As the notion of Euclidean structure is clarified, it becomes obvious also that once the frame of reference has been chosen; 

14 the gauge is determined since, according to Einstein (2,3], the space contractions are measurable. Thus, although the isotropic 

solution and the Schwarzschild solution produce experimentally indistinguishable predictions for the three tests, tbey cannot be 

16 roth valid since tbeyproduce different space (untrde.iiofiS. It should Denoted that tire 'Validity of the equivalence principle for 

17 these metrics is still an unverified assumption (see also Appendix), whose justification was based on of the 1911 fonnula for 

18 gravitational red shifts and theperihelir,'ll of lvlercluy. It ferr..ains from the experiment to -fmd the binds that can be used to 00­

19 termine tbe appropriate gauge. 
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Appendix: The Physics of Geodesic and Mathematical Theorems 

26 The equivalence principle is applicable only in a physical space, where a geodesic representing a free falling particle [2,3]. 

27 Therefore" it would be useful to discus.s the mathematical theorems related to a geodesic. The principle of relativity and the 

28 equivalence principle imply tbat the physical space-tirne is a Riemannian space with a space-time metric function gl!v, For an 
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jdealjzed point-like classical massive particle (which has no spin., charge., or other attributions)., the equation of motion under 

2 gravity is the geodesic equation. The gravitational field is zero if the Christoffel symbols are zero. 

3 Currently., Einstein's equivalence principle is often incorrectly considered as equivalent to an existence of local Minkowski 

4 spaces. Such a misunderstanding is related to two mathematical theorems J151 as follows: 

6 Thenrem 1. Given any point P in 3-.t!y Lorentz mfU1ifold (whose metric signatm-e. is tlle same as 3 l\1finkows-lci space) there al­

7 ways exist coordinate systems (x Ii) in which ag~Ja,cx-= 0 at P. 

8 Theorem 2. Given any time-like geodesic curve r there always exist a coordinate system (so--called Fermi coordinates) (xJ.1) in 

9 which 8gJ,J.\J8xa. ::= 0 along f. 

From these theorems, it is possible to establish further that a local Minkowski metric exists at any given point and that along 

11 any time-like geodesic curve r, a moving local constant metric exists [15}. 

12 However, there is no physical specification on what is the cause of the local coordinate transformation, 

13 

14 (AI) 

16 such that (AI) transforms the Lorentz metric &p(y~) to a local Minkowski metric along a time-like geodesic curve. In particu­

17 lar, there is nothing relating these two theorems to an existence of acceleration to a static particle or other physical situations. 

18 Thus., they are just mathematical theorems. Pauli's version of equivalence principle is essentially a simplified rephrasing of 

19 these tbeorems, No wonder Einstein strongly objected. Einstein [30J pointed out, "As far as the prepositions of mathematics 

refers to reality, they are not certain; and as far as they are certain, they do not refer to reality. " 

21 Einstein's e.quivalenc.e principle gives crucial specific descriptions such as physical acceleration with respect to a frame of 

22 reference. Nevertheless, it is f21iU iILqfificiem to decide ""'bether the geodesic or the transformation is valid in physics. To justify 

23 the physic.al validity ofa space-time metric" Einstein exa-mine the ge.odesic and both the cause of and the conse...quence of (AI). 

24 

Endnotes 

26 I) In general relativity, a Riemannian space-time (M, g) is a physical space-time, according to Einstein [2,3]. Such a 

27 Riemannian space M is c~'uaeterizedby a space-time metric g that can be determined by the distribution of matter. It 
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is in the sense of that the metric &k as well as the space-time, is su~jected to physical considerations. Moreover, since 

2 Einstein's Riemannian space-time models reality, all the physical requirements must be sufficiently satisfied by the 

3 space-time metric ~k' As demonstrated by Einstein [2,3], it is necessary that a geodesic represents a free fall. The no­

4 menclature, "physical space" was in fact used by Einstein, for instance, in his correspondence to A. Reht [16]. 

5 2) Einstein's objection made clear that he has his own version of infinitesimal equivalence principle. This should have 

6 been obvious because PauJi claimed that he did not invent his version but got it from the work of EinsteiR Neverthe­

7 less, Norton £51, being a historian, failed in identifying Einstein's version because it was not labeled as such. 

8 3) The time-tested assumptioo that phenomena can be explained in tenns of identifiable causes is called the principle of 

9 causality. This principle is the basis of relevance for all scientific investigations. This principle implies that the gravi­

10 tationaJ radiation must have sources and any parameter in a physical solution must be related to physical causes [8,26). 

11 4) Einstein's viewpoint is supported by Weinberg £4, p.3] who stated, "In my view, it is much more useful to regard gen­

12 eral relativity above all as a thooryof gravitation, whose connection with geometry arises from the peculiar empirical 

13 properties of gravitation, properties summarized by Einstein's Principle of the Equivalence of Gravitation and Inertia." 

14 5) The J915 equation was guessed by Einstein, and the role of his equh'alence principle in arriving his equation was not 

15 explicit. In addition, his equation does not have a dynamic solution as COI~Jecturedby Hogarth in 1953 £8,31]. 

]6 6) For the infinitesimal fonn of Einstein'5 equivalence principle, the local metric may have the Minkowski form at only 

17 one point. Thus special relativity is only approximately valid even ill all infinitesimal region. Moreover, as pointed out 

18 by Eddington [19], such an approximation would be valid only ifthe problem is unrelated to curvature. 

goo got g02 J [g00 gOI g02 g03] 
. . goo gO} glO gn g12 g1319 7) The conditiOns: &0 > 0, (-1) > 0, g10 gIl g 12 > 0, and (-1) > 0 were called Iglo gIlI [ g20 g21 g22 g23 

g20 g21 g22 
g30 g31 g32 g33 

20 physical condition for a physical coordinate system [9,12,13]. Nevertheless, they are actually insufficient in physics. 

21 8) The deflection of light is an angle that can be measured at infinity by explicit comparisons using physical measures 

22 (millimetres on a photographic plate, for instance). However, this depends on a coordinate system because, to trans­

23 form two dots in a photographic plate to an angle, one must refer to the coordinate system used to take the photos. For 

24 instance, such transfonnations are rust based on the Schwarzscbild coordinate system [3]. l\.10reover, one cannot de­

25 fine a defection angle in tenus ofa uniformly rotating system. 
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9)� By no means~ this glorifies incompetence; rather it shows possible vulnerability of an icon. Moreover, well-known 

theorists such as Penrose [32] Bondi [33] and Wheeler [34] would ignore physical principles. Consequently, although 

Hogarth (31) corYectured that there is no gravitational wave solution from the 1915 equation~ they accepted unphysical 

gravitational "waves" f351, because they did not consider the principle of causality. Moreover, Einstein and Feynman 

[36} had claimed incorrectly the existence ofdynamic solutions for the 1915 Einstein equation [35}. Christodoulou and 

Klainerman [37] even claimed incorrectly that they had constructed dynamic solutions [8]. 
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