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16 Abstract 
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18 Einstein's equivalence principle was initially expressed in temlS of the equivalence of an accelerated frame and uniform grav

19 tty. Due to nmunders1anding, erroneous calculations, and misconceptions, this principle was challenged by various theorists as 

20 invalid. On the other hand, Einstein insisted on the fundamental importance of the principle to his general thoory of relativity. 

21 Einstein also objected to Pauli's version of equivalence pritlciple as inadequate in physics. It is pointed out that Einstein's in

22 finitesimal fonn of equivalence principle exists informally in his 1916 paper and his book. Einstein's version includes physical 

23 considerations beyond the mathematical theorems from which Pauli rephrased his version. The main difference from Pauli's 

24 version is that a local Minkowski space is obtained through a g....1Vitational acceleration to the frame of reference. Einstein's 

25 equivalence principle is proposed to only a physical space where all physical requirements are sufficiently satisfied. Therefore, 

26 before Einstein's calculation of light bending~ the geodesic equation was checke.d with perihelion of Mercury and time dilation 

27 was compared wHh earlier fOfinuJa of gravitational red shills, Analysis of the case of the uniformly rotating disk darifies Ein

28 stein's claim of general covariance and the need of restriction by Einstein's equivalence principle for a space-time coordinate 

29 system of a physical space. The application of Einstein's equivalenc.eprinciple is presented and discussed. It is pointed out that 

30 Pauli's version, which ignores ph}'Sical requirements beyond the metric signature, leads to theoretical difficulties and claims 

3 I that disagree )\:1th observation. Therefore, it is urged that theories based on Pauli's version be reviewed. 
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1. Introduction 

2 It is generally agreed, as pointed out by Einstein Pl, Eddington f2l, Pauli f31, Weinberg f4l, Misner, Thorne & Wheeler f5l, 

3 Straumann {6], and ¥u [7], that Einstein's equivalence principle is the theoretical foundation of general relativity. Einstein 

4 explained the initial form of his equivalence principle in terms of the uniform gravity and acceleration clearly in 1911 [1,8). 

After his principle of general relativity, Einstein proposed his equivalence principle for the general case of a fOUT dimensional 

6 Riemannian physical space-time}) in his 1916 paper 18]. However, a surprising fact is, as Einstein [9J saw it, that few like Ed

7 dington [2] understand Einstein's equivalence principle in terms ofphysics adequately. 

8 Einstein's e.quivalence principle is challenged by Synge's [10] now popular identification of "true" gravitational fields \-vith 

9 metrical curvature. Synge [10] "professed" his misunderstandings on Einstein's equivalence principle as follows: 

" ...1 have never been able to understand this principle...Does it mean that the effects of a gravitational field are indis-

II tinguishable from the effects of an observer's acceleration? If SQ, it is false. In Einstein's theory, either there is a gravi

12 tational field or there is none, according as the Riemann tensor does or does not vanish. This is an absolute property; it 

13 has nothing to do ",rith any observer's world line...The Principle of Equivalence performed the essential office of mid

14 wife at the birth of general relativity...I suggest that the midwife be now buried with appropriate honours and the facts 

of absolute spacetime be faced." 

16 Due to also misunderstanding, Thome [12] criticized Einstein's principle as follows: 

17 "In deducing his principle of equivalence, Einstein ignored tidal gravitation forces~ he pretended they do not exist. Ein

18 stein justified ignoring tidal forces by imagining that you are (and your reference frame) are very small." 

19 However, these problems have already been explained by Einstein. For instance, the problem of tidal forces bas been answered 

in Einstein's July 12, 1953 letter to A Rehtz [9] as follows: 

21 "The equivalence principle does not assert that every gravitational field (e.g., the one associated with the Earth) can be 

22 produced by acceleration of the coordinate system. It only asserts that the qualities of physical space, as they present 

23 themselves from an accelerated coordinate syste~ represent a special case of the gravitational field." 

24 This makes clear also that this principle is proposed for qualities of physical space (not an arbitrary manifold). Einstein (9) 

explained to Laue, "\Vliat characterizes the existence of a gravitational fiel~ from the empirical standpoint, is the non

26 vanishing of the r1jk (field strength), not the non-vanishing of the Riklm." and no gravity is a special case of gravity. This view 

27 is crucial in general relativity because it allows Einstein to conclude tlmt the geodesic equation is also the equation of motion of 
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1 a massive particle under gravity. Einstein insisted, throughout his life, on the fundamental importance of the principle to his 

2 general theory of relativity [9]. However, Einstein's insistence on this point has created a puzzle for philosophers and historians 

3 of science [9]. This shows also, how much was Einstein's equivalence principle being understood in terms ofphysics. 

4 Now, Pauli's "infinitesimal" - principle of equivalence, is commonly but mistakenly regarded as Einstein's version of the 

S principle, although Einstein bad objected this version of misinterpretation f9l In his article, 'What was Einstein's Principle of 

6 Equivalence?' Norton {9] recognized that Einstein's view is very different from Pauli's version. However, Norton {9] could not 

7 find Einstein's own version of infinitesimal equivalence principle readily from Einstein's work. Being essentially a historian,. 

8 Norton did not realize that Einstein presented bis infinitesim..aJ version as jfjust consequences ofhis earlier version (see Section 

9 6). Perhaps, Einstein did not feel the need of such a labeling, which did not seem to selVe any useful purpose in his 1916 paper. 

10 Apparently, he did not foresee that a seed of lasting confusion was sown. 

11 Currently, among those who accepted Einstein's equation and formulism, some theorists questioned or even rejected Ein

]2 stein's physical principles. After accepting Einstein's equation, Fock [II] took the lead of discrediting Einstein's principle of 

13 relativity with his own version of "principle of relativity" of his personal preference (see Section 4) and Einstein's equivalence 

14 principle with the support of his erroneous calculations on uniform gravity (see Section 7). Based on Fock [II] viewpoints and 

1S the problematic unrestricted covariance~ Logunov and Mestvirishvili [13] constructed "The Relativistic Theory of Gravitation" 

16 wbich modifies Einstein's fonnuJism and rejects both Einstein's principles. Recently, H. C. Ohanian and R. Ruffini [14] also 

17 adapted Fock's viewpoints in their book "Gravitation and Spacetime". Referring to Fock [Ill and Synge r101, they also explic

18 itly rejected Eiustein's principle of general relativity and criticized Einstein's equivalence principle as confusing instead of ex

19 amining their own understanding in physics. Nevertheless, J. A. Wheeler [14] evaluated tllis book as "The best book on the 

20 market of 500 pages or less2) on gravitation and general relativity." Also, C. J. Goebel {14] commented, "A sl>Ccial strength of 

21 this book is the attention paid to experimental gra"ity and to the physical aspects of general relativity." Thus,. misunderstand

22 ings have been developed intQ "ie\i\>pOims that are explicitly against Einstein's general relativity. 

23 Einstein's theory is severely attacked by many of those who should be his disciples, although most of them taking a some

24 what indirect approach. A central issue is that they incorrectly believed Pauli's "equivalence principle" as a valid physical prin

2S ciple. Some theorists such as Fock [11] and Ohanian and Ruffini (14] believed that Einstein's equivalence principle is invalid. 

26 Acrordingly, they also rejected Eim,1ein's Principle Qf General Relativity and called their book a theory of gravitation. On the 

27 other hand, some theorists such as Wald [I5] and Straumann [6] believed Pauli's version and Einstein's equivalenc:e principle 
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were equivalent. They therefore called their book as theory of general relativity. These manifest that theorists are confused by 

2 conceptual errors. Thus, to appreciate Einstein's theory properly, it is necessary to identify the related conceptual as well as 

3 mathematical errors. Then, one can clarify Einstein's equivalence principle, which is supported by observations. 

4 In this paper, for clarity, we analyze Pauli's subtle misinterpretation of Einstein's equivalence principle with some crucial 

details (Section 2). Then, we start with a discussion on Einstein's 1911 paper and the initial form of his equivalence principle 

6 [8]. The merits and deficiency of his early approach are deliberated (Section 3). To clarify Einstein's view on gravity and the 

7 meaning of his equivalence principle, the problem of uniform rotation is analyzed. In addition, the meaning of Einstein's gen

8 erally covariance is clarified as for mathematical calculations but is restricted to physical space..;time coordinate systems for 

9 physical interpretationK In addition, it is pointed out that Einstein's Riemannian space includes a Euclidean structure as a 

fmme of reference (Section 4). Then,. Einstein's version of infmitesimal equivalence principle for a curved Riemannian space-

II time is addressed. The application of Einstein's principle is presented and current theoretical errors are discussed (Sections 5 & 

12 6). To illustrate current misconceptions on Einstein's principle, related calculations by R. C. Tolman (16] and V. A. Fock [11] 

'1I ~J are analyzed (Section 7). In Section 8~ issues related tQ Einstein's principle are discussed and necessary re'",iew of current theo

14 ries is urged. It is pointed out that space-time coordinates have physical meanings and this is supported by experiments. 

16 2. Pauli's Inadvertent Misinterpretation and the Frame of Reference 

17 It is wen known that Pauli, at the age of 21, wrote an article on general relativity for the Mathematical Encyclopedia at the 

18 recommendation of A. Summerfeld. But, few other than historians knew that Einstein disagrees with Pauli's interpretation of 

19 the equivalence principle f91. Apparently, Summerfeld, or subsequently many other excellent theoreticians did not detect 

Pauli's subtle mistake over years. In Pauli's otherwise excellent article, he bas indeed demonstrated his lmderstanding of some 

21 subtle arguments of this subject. For instance, he pointed out the possibility ofan antigravity coupling. So, Summerfeld's judg

22 ment on Pauli's understanding on this matter is partially right. 

23 Unfortunately, Pauli's inadvertent misinterpretation on Einstein's principle is very popular. Let us first trace back to the dis

24 agreement [9} between Einstein and PaulL Pauli's [3, p.145) version of the equivalence principle is as follows: 

"For every infinitely small world region (i.e. a world region which is so small that the space- and time-variation ofgravity 

26 can be neglected in it) there always exists a coordinate system Ko (Xl, X2, X3, X4) in which gravitation has no influence 

27 either in the motion of particles or any physical pror...ess." 
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1 Einstein strongly objected this version [9] since, for some cases, no matter how small the world region, special relativity would 

2 not exactly hold (see also metric [11a]). This objection made clear also that Einstein regards the equivalence of the effects of an 

3 accelerated frame of reference and gravity being exact only for a special case as he implied in his 1916 paper [8]. 

4 However, his critics disregard this and related explanation of Einstein [91. For instance, the criticism of Ohanian and Ruf-

S fini [14, p. 54] to Einstein's equivalence principle was based on misinterpreting the initial version of 1911 as a general equiva~ 

6 lenee between the acceleration and any gravity. Their inadequate understanding of Einstein's principle is also evident from 

7 their another statement, "In order to avoid confusion, we will base our further development of gravitational theory on the very 

8 precise and unambiguous equality mr = IrtQ. This equality is necessary and to a large e),.1ent, sufficient for the constmction of 

9 the relativistic theory." Apparently, they regarded their own confusion (see also Section 6) as originated from Einstein. 

10 Another important point is that~ as pointed out by Fock [II], Einstein'5 equivalence principle is related to acceleration to-

II ward a frame of reference [1,8). The space-time continuwn of reality is modeled with a physical space (-time) that includes a 

12 frame ofrefercnce on which the physical space-time coordinate system together with a space-time metric is based [1,8]. On the 

13 other hand, Pauli's version does not consider any physical condition beyond the existence of a local MinkO\,vski space. Conse

14 queml)', Pauli's version misleadingly sugge~1ed that a physical frame of reference does not play any role. The~ the existence of 

15 a local Minkowski space is presented as if only a possible matbematical choice but not a physical result as it should be. 

16 This omission inadvertently gives the opportunity ofa misinterpretation tbat any Lorentz manifold could be considered as a 

17 physical space because only the signature of the metric of a manifold is examined while other physical requirements are ig

18 nored. Nevertheless, Einstein {9] did not point out clearly the relation between the need of a valid space-time coordinate system 

19 and a satisfaction ofEinstein's equivalence principle. This seems to have an effect that helps the acceptance ofPauli's view. 

20 A physical requirement for Einstein's version of infinitesimal equivalence principle (Section 6) is that it must be applied to 

21 a physical space. In a free fall, a local space must be uniquely Minlrowskian. For example, when a space ship is under the influ

22 enre of gravity only, the local space-time is knovin to be automatically Minkowskia~ as determined by the physics of gravity. 

23 Moreover, if the manifold under consideration is a physical space (-time)~ it satisfies all physical principles sufficiently. Thus, 

24 the mathematical existence of a local b..1inkowski space need not mean a satisfaction of Einstein's equivalence principle that 

25 depends on the ph)'sical validit}r of the local coordinate transfonnation (see Sections 5 & 6). If the conditions for a physical 

26 space are taken intoconsidere:ttion, Eim1cin's equivalenc-e principle is not exactly a local principle as Fock {II] misinterpreted. 

27 
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3. The Initial Form of Einstein's Equivalence Principle and the Gravitational Red Shifts 

2 In 1911, Einstein [8J derived the gravitational red shifts from the initial form of his principle, the equivalence of a uni

3 formly accelerated frame and the uniform gravity. This is independent of the need ofa Riemannian space with a Lorentz signa

4 ture, which is additionally due to the principle of general relativity and special relativity r11. A known deficiency of his results 

then is an incorrect formula for light speeds under gravity. Einstein [17] corrected this formula in 1915. 

6 Nevertheless, an unverified belief advocated by Fock [II} and w..any others [14,I8J is that Einstein's equivalence principle 

7 could be intrinsically incompatible with the notion of a curved space. Such a belief must be very absurd to Einstein since his 

8 argument for a Riemannian space is based on his equivalence principle U,8]. 

9 Recently, such a belief has been proven to be fundamentally incorrect since Maxwell-Newton Approximation, the linear 

field equation for weak gravity, that produced a valid light bending, has been derived [18J with Einstein's equivalence principle 

11 (see Section 4) together with the notion ofa Riemaluuan space if Newtonian theory is taken as a fonn offirst order approxima

12 tion. Another mistake of Ohanian and Ruffini r141 is that, instead of the Maxwell-Newton Approximation, their linear equation 

13 is based on the linearized conservation law, which has been proven invalid for gravity by Wald {IS] and Yu (19]. They [14] 

14 also claimed, in disagreement with Eddington [2] and Pauli [3J,. that the covariance principle is a dynamic principle, 

To appreciate Einstein's ingenuity, it would be e'lsier to start from Iris paper of 1911, where he found that his equivalence 

16 principle is compatible with the Doppler effects and even the notion of photon. Thus, Einstein's equivalence principle has been 

17 :finnI~' established on the ground of universality of physics. Since the notion of curved space would produce a second order ef· 

18 feet in his consideration of the effect of gravitational red shifts [1], Einstein's 1911 derivation of the red shifts is valid. 

]9 Einstein assumed that the mechanical equivalence of an inertial system K under a Ulmon» gravitational field, which gener

ates a gravitational acceleration y (but, system K is free from acceleration), and a system K' accelerated by y in the opposite 

2] direction, can be extended to other physical processes. He considered two material systems 81 and 82 which are situated ini

22 tially at rest on the z-a.xis of system K and are separated by a distance h so the gravitation potential in 82 is greater that S1 by 

23 yh. If a definite radiation energy E2 is emitted from 82 to 81 at the moment that system K' has zero velocity relative to an iner

24 tial system Ko, the radiation ""ill arrive at 81 when the time hie has elapsed (to a first order approximation); and at this mo

ment the velocity of 81 relative to Ko is yhlc = v. According to special relativity, the radiation arrives 81 with a greater energy 

26 El which (to a first order approximation) is related to E2 by 

27 
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(1) 

The above is consistent with, E = mc2 in the sense of mass-energy conservation [20]. By assumption, exactly the same relation 

holds if the same process takes place in the system K, which is not accelerated, but is provided with a gravitational field. Then, 

gravity must act also on radiation, and we may replace yh by the gravitational potential t1> and obtain 

(2) 

Thus, the energy increment of radiation due to gravity is resolved by the equivalence of the K and K' systems. 

If the radiation emitted in the uniformly accelerated system K' in 82 towards 81 had the frequency v2 relatively to the clock 

in 82, then at the arrival of radiation in 81, it has a greater frequency VI relatively to 81, such that to a first approximation 

(3a) 

If the radiation is emitted at time that K' has no velocity, 81 at the time of arrival of the radiation, has relative to K, the velocity 

"{hIe. Eq. (3a) is an immediate result of the Doppler's principle. 

If yh is substituted by the gravitational potential <I> of 82 - that of SI being taking as zero - then the equivalence principle, to 

the fiTSt order approximation gives 

(3b) 

Ifon the surface of a star (where 82 is located) the light is emitted to the Earth (81) where the frequency of the arriving light is 

measured, then eq. (3b) implies v = "0(1 + <f>/c2), where <f> is the (negative) difference of gravitational potential between the 

surface of the star and the Earth. Also, if (2) and (3) are compared, then one would conjecture that the energy of a photon be 

E=kv, (4) 

where k: is a constant. However, this is not the only connection with quantum theory- For instance, Bohr [17] has to consider 

that the theory ofgeneral relativity is a justification for his uncertainty principle in quantum theory. 
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In the above, the formula for gravitational red shifts is derived from the equivalence principle alone with the Newtonian 

scalar theory as a first order approximation. This derivation has put Einstein's equivalence principle firmly in the ground of 

universality of physics and experimental confirmation. However, the effects of a curved space have not been adequately ac

counted for, and this inadequacy causes the deficiency on the calculated bending of light rays. Currently, the derivation of the 

Maxwell-Newton Approximation, which shows that the gravitational red shifts are directly related to &t the time-time compo

nent ofthe space-time metric [1], has removed any remaining doubt on validity ofEinstein's equivalence principle (18,21]. 

4. The Principle of General Relativity, Riemannian Covariance, and Einstein Space 

Because there is an inherent epistemological defect for preferring the inertial system, Einstein was not entirely happy ""rith 

special relativity. Einstein believes, "The law of physics must be of such a nature that they apply to systems of reference in any 

kind of motion (principle of general relativity)." Along this road, he arrived an extension of the postulate of relativity. In his 

opinion, this is favored by his previous work on the equivalence of a uniformly accelerated frame of reference K' and uniform 

gravity. From the vi~1JOint of the principle of general relativity, Einstein's principle ofeqUivalence is real(v the eqUivalence 

of the effects of an accelerated frame to a related uniform grlwity whereas others incorrect{v perceived that any gravity is 

eqUivalent to a uniform(v acceleratedframe. This is evident since the effects of a uniform rotation cannot be equivalent to the 

effects of a linear acceleration. In Einstein's view, no gravity is a special case of gravity. 

In pursuing the general theory of relativity, according to the equivalence principle, Ein...qein is able to "produce" a gravita

tional field merely by changing the system of coordinates. Then, he was able to conclude that the geodesic equation is an equa

tion of motion f'Or gravity. It thus, follows that the space-time in reality has a Riemannian geometry instead of Euclidean ge

ometry. Thus, Einstein's principle of general relativity means that gravitation is fundamentally involved in any theory ofphys

ics not only that a unification of gravitation and electromagnetism is needed due to that all charged particles are massive. This 

analysis also clarifies that the space-time in remity having a Riemannian geometry is also due to the equivalence principle. In 

other words, the equivalence principle enables an extension of the principle of relativity to accelerated motion. In addition, the 

frame of reference has a Euclidean Structure in the Riemannian space although this structure is not an invariant. 

Einstein considered a Galilean (inertial) system of reference K (x, y, z, t) and a system K' (x', y" z', C) in uniform rotation 

n relatively to K. The origins of both systems and their axes of Z pemmnently c.oincide. For re.ason of symmetry, a circle 
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around the origin in the X y Y plane of K may at the same time be regarded as a circle in the X' y Y' plane of K'. Theny accord

2 ing to special relativity, in the X, Y plane and the X', Y' plane, the metrics ofK and K' {22] are respectively the following: 

3 

4 (Sa)y = r sin 4>,where x = r cos 4>, 

and 

6 (5b) 

7 Then, 

8 (5c)where x' = r' cos 4>', y' = r' sin 4>', 

9 

would be the circumstance of a circle of radius r' (= r) for an observer in K'. Thus, Einstein conclude<L "With a measuring rod 

II at rest relatively to K', the quotient of circumstances over diameter would be greater than n." and Euclidean geometry therefore 

12 breaks down in relation to the system K'. Moreover, Einstein [8] wrote, "An obsenrer at the common origin of c.o-ordinates, 

13 capable of observing the clock at the circumferences by means of light, would therefore see it lagging behind the clock beside 

14 him...So, he will be obliged to define time in such a way that the rate of a clock depends upon where the clock may be." 

According to the principle of equivalence, K' may also be considered as a system at rest, ",i1h respect to which there is a 

16 gravitational field (field of centrifugal force, and force of Coriolis). Thus, Einstein's notion of gravity, though has a cause such 

17 as Q, -needs not relate to a source, but just relate to acceleration to a resting massive particle (see also Section 1). This example 

18 shows also that the equivalence principle enables an extension of the principle of relativity to accelerated motion. 

19 Thus~ Einstein concluded~ "LY'l general theory of reJati\ity, space and time cannot be defined in such a way measured by the 

unit measuring-rod, or difference in the time co-ordinate by a stand clock." (It will be shown later that in such measurements, 

"')1 
Ll the instruments are resting, but in a free fall state.) Since a physical space-time is Riemannian, covariance must be done in 

22 terms of Riemannian geometry. However, in addition to metric (5b), K' still includes a Euclidean structure for the fram,e of 

23 reference, If a measuring rod is attached to the system K', since roth are under the Satne influence of gravity, a Euclidean stIDe

24 ture emerges. In other words, not only is K' a Riemannian space as indicated by (5b), but also K' has a Euclidean structure. 

To illustrate the Euclidean structure further, consider the Schwanschild solution, 

26 

27 (63)p>2MGfor 

28 where 

29 (6b)z' = p case.andy' = p sine sincp,x'= p sine coscp, 

9
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Metric (6a) is a function of p (= [x,2 + y'2 + z'2J1I2). The radicals p is related to Euclidean coordinates (x', y', z'), and thus the 

metric is defined in terms characteristics of a Euclidean structure, which is corresponding to the metric whenM = O. 

Thus, as shown, the notion ofa Euclidean space is still implicitly included within a Riemannian space although the Euclid

ean structure is not an invariant, just as in special relativity. In fact, this is the mathematical basis that the cylindrical coordi

nate system (r', q>', z') is well defined in K'. Thus, the Euclidean structure is an integral part o/Einstein 's theory. For clarity, a 

Euclid-Riemannian space with a Euclidean structure shall be called an Einstein space named after its creator. 

Einstein assumed that a frame of reference always has a Euclidean structure. Since such an assumption is implicit, Ein

stein's equivalence principle was vel)' difficult to be comprehended especially for those who are essentially mathematicians. 

This might explain that why Pauli's "equivalence principle was so readily accepted in spite ofEinstein's objection. 

To see the local coordinate transformation between metric (Sa) and (5b), let liS consider the coordinate transformation [22] 

to the uniformly rotating disk, in terms of Ne\\1on's notion of "absolute time" as follov,'s: 

x = x' cos nt - y' sin Qt, (7a) 

y = x' sin Ot + y' cos Ot, 

Z =:z' 

where Q is the angular velocity; or in cylindrical coordinates, 

r=r', z=z'. <\>=<\>' +01. (7b) 

Then, the resulting metric has the following form, 

(5b') 

However, the mathematical coordinate system K*(x', y', z', t) is not a physical space-time coordinate system for the uniformly 

rotating disk K' because the time coordinate t remains associating with the inertial frame of reference K. 

In other words, metric (5b') together with its coordinates is not a space-time coordinate system that can be used for physical 

interpretation. For instance, it follows from ds2 = 0 that the coordinate light speed produced by (5b') could be larger than c (a 

problem of Newton's notion of absolute time). Since a physical principle is violated, the equivalence principle would not be 

10
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applicable in the coordinate system K*(x', y', z', t). TIris example of Einstein's demonstrates the necessity that, for physical 

2 interpretation, you have, not only just a mathematical coordinate system, but also a physical coordinate system. 

3 Nevertheless, as claimed by Zel'dovich & Novikov [22}, it is possible that metric (Sb') alone can be used to recover metric 

4 (5b), This is expected since the metric is transformed from a physical metric. (For an arbitrary Lorentz manifold, however, it 

5 has been shown that the hope offmding a valid space-time coordinate system cannot be guaranteed [231.) 

6 To obtain a physical coordinate system including the time t' of the rotating disk, a comparison of (5b) and (5b') leads to, 

7� 

8 dq>' = d4> - ndt ; (8a)� 

9 and� 

10 edt' = (edt - (rQ/c)rd+)(l - (rQ/cfJ-1 . (8b) 

11 

12 Thus, it is necessary to modify the time coordinate 1'. An interesting fact of this local coordinate transformation is that (8a) can 

13 be obtained directly from (7b) and looks like a Galilean transformation. The inverse transformation is as follows: 

14� 

15 cdt = edt' + (rQ/c)rdep'[l - (rnlc)2J-1 . (8c)� 

16� 

17 It would be difficult to guess the factor [1 - (rOIc)2l1, which seems to be incompatible with time dilation and spatial contrac�

18 tion manifested in metric (5b). But, the time dilation and the spatial contraction are results due to comparisons with a clock and 

19 a measuring rod in relatively rest at the beginning of a free fall. According to Einstein's equivalence principle (see Sections 5 

20 and 6)~ such a coordinate system is JocaUy Minkowski To verify this, consider the Lorentz coordinate transformation~ 

21� 

22 (9a)� 

23 and� 

24 edt = [1 - (rO.Ic)2J-l!2 [edT + (rQJc)dX] . (9b)� 

25 Then,� 

26 and cdt' = [1 - (rOIc)2yl!2 edT (9c)� 

27� 

28 These are exactly the time dilation and spatial contraction. This illustrates that a particle resting at K', can attached to a local� 

29 Minkowski space. This probably was a starting point ofEinstein's version ofinfinitesimal eqUivalence principle. 

30 In addition, from metric (5b), a light speed at r' (;to 0) observed in system K' would be smaller than c because of time dila

3J tion effect of grmTit)\ But~ space contraction is directional. The light speed is even smaller in the (p-direction, that is, a light 

11� 
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1 speed can decrease more after a velocity Or' is "added to". However, such relations for the coordinate system K* (x', y', z', t), 

2 in spite ofr~' = (1 - (rQ/c)2]1/2 dX, are complicated. Since dt = {I - (rQ/c)2rl/2 edT + (rOIc2) dX], a corresponding time di

3 lation for dt in K* is not there. This illustrates also that the Galilean transformation (7) is invalid in general relativity. 

4 For the frame K' (x', y', z'), Einstein {S] remarked, "So he "ill be obliged to define time in such a way that the rate ofa 

clock depends upon where the clock may be." The time coordinate for K' (x', y', z'), as sho\\n, is severely restricted because 

6 the time is related to the local clock rate. Thus, Einstein invented the notion of a space-time coordinate system in physics. On 

7 the other hand, Einstein [8J also remarked, "So there is nothing for it but to regards all imaginable systems of coordinates, in 

8 principle, as equally suitable for the description of nature." From the above examples, this description of nature by the coordi

9 nate system K* (x', y', z', t) includes certain calculations but not physical interpretations. 

Thus, although tensor equations may be covariant with respect to any substitutions of whatever (generally covariant), the 

11 freedom toward the physical space-time coordinate system, and thus a valid physical interpretation, is severely limited by his 

12 equivalence principle. In his ~ Einstein [1] remark~ "A.1i in special theory of relativity, we have to discriminate between 

13 time-like and space-like line elements in the four-dimensional continuum; owing to the change of sign introduced, time-like 

14 line elements have a real, &pace-like line elements an imaginary ds. The time-like ds can be measured directly by a suitably 

chosen clock." Special relativity has already taught us [8] that some mathematical coordinate systems are not physically realiz

]6 able and therefore cannot be used to describe nature. The same has been illustrated for general relativity3). 

17 Moreover, from metric (5b), the metric element (c2 - Q2r '2) is zero at a point r'0' which corresponds to the speed of a parti

18 de resting at r'0 would reach the light speed. When r' > r'0 ' two metric element change signs. Would this mean that the space 

19 coordinate r'~' becomes time-like and the time coordinate becomes space-like? The answer is obviously no because we have r 

= r', and r is still space-like according to metric (5a). The correct answer is that when r' 2:: r'0 ' the coordinate system K' no 

21 longer makes sense in physics. The frame of reference K' cannot go beyond r'0 because c is the upper limit of any speed for 

22 moving matter. This illustrates that a formal validity in mathematics could be inadequate in physics, and also that, for a spatial 

23 coordinate system to be me.aningful in physics, in principle a massive particle must be able to rest on it The change of sign for 

24 very large r manifests such a restriction in physics. Othen"ise, it would be impossible that such a coordinate system can be as

sociatoo with local physical measurements. For instance, it would be difficult for Einstein to put a clock there! In the above, 

26 Einstein has shown also that physical coordinates need not cover the entire space-time as in special relathity. 
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1 In 1916 earlier Einstein seemed to believe that any Gaussian system would be a valid space-time coordinate system. To ar

2 gue for a beliefof the momen~ that is., unrestricted covariance, he wrote [8], 

3 "That this requirement of general covariance, which takes away from space and time the last remnant ofphysical ob

4 jcctivity, is a natural one, will be seen from the following reflexion. All our space-time verifications invariably 

amount to a determination of space~time coincidences. If:. for example, events consisted merely in the motion of ma

6 ferial points, then ultimately nothing would be observable but the meetings oftwo or more of these points. Moreover, 

7 the results of our measuring are nothing but verifications of such meetings of the material points of our measuring 

8 instruments with other mat£rial points, coincidences between the hands of a clock and points on the clock dial, and 

9 observed point-events happening at the saIne place at the same time. The introduction of a system of reference serves 

no other purpose than to facilitate the description ofthe totality of such coincidences." 

11 Hmyever, this argument seems to be incompatible with Ius equivalence principle and his earlier statement [8], "So he will be 

12 obliged to define time in such a way that the rate ofa clock depends upon where the clock may be." 

13 Moreover, while all verifications indeed amount to a determination of space-time coincidences, in order to predict such co

l4 incidences tbeoretically, one must able to relate events of different locations in a definite mallllCf. Thus, a coordinate system 

must be related to objective physical measurements. In fact, as early as 1918, unrestricted general covariance was questioned 

16 [241. As Eddington (21 pointed out, "space is not a lot of points close together; it is a lot of distances interlocked. It Under

17 standably, Einstein [1] in his lecture of 1921 dropped the above argUluent and emphasized Ius equivalence principle first, and 

18 remarked, "As in special theory of relativity, we have to discriminate between time-like and space-like line elements in the 

19 four-dimensional continuum; owing to the change of sign introduced, time-like line elements bave a real, space-like line ele

ments an imaginary ds. The time-like ds can be measured directly by a suitably chosen clock." Thus, a space-coordinate and the 

21 time-eoordinates in physics are not exchangeable as Hawking [25J claimed since they have distinct characteristics and physical 

22 meanings. Einstein also praised Eddington's book of 1923 to be the finest presentation of the subject ever written [26]. 

23 However, the damage to general relativity has already been done, and a prevailing conceptual crror3) is the belie!of validity 

24 of any Gaussian system as a space-time coordinate S"jstem in physics. Consequently, Einstein's equivalence 1J1;nciple is misun

derstood and is often incorrectly replaced by the condition for the mathematical existence of a local Minkowski space. 

26 in short, gener-al covariance has no rneaning beyond the fact that a ten...f;(Jf cak..'ttIation 'must be in terms of Riemannian ge

27 ometr}". Kretschmmm [27] pointed out in 1917 that the postulate of general covariance does not make any assertions about the 
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physical content of the physical laws, but only about their mathematical formulation; and Einstein [28J entirely concurred with 

this view. As Pauli [31 pointed out "The general covariant formulation of the physical laws acquires a physical content only 

through the principle of equivalence in consequence of which gravitation is described solely by the (metric) gki .... " 

In Einstein's theory, the principle of general relativity is the physical basis ofcovariance. However, in order to eliminate the 

term general relativity fonn a theory of gravity, Fock [11, p.6) defined a different "principle for relativity" as follows: 

"When speaking of the relativity of a frame of reference or simply of relativity, one usually means that there exist iden

tical physical processes in different frames of reference. According to the generalized Galilean principle of relativity 

identical processes are possible in all inertial frames of reference related by Lorentz transformations. On the other 

hand, Lorentz transfonnations chamcterize.d the unifonnity of Galilean space-time. Thus~ the principle of relativity is 

directly related to uniformity. This also shows that the nomenclature introduced in Einstein's first papers, by which the 

theory of unifonn Galilean space is named "Theory of Relativity" can to some extent be justified." 

Fock's "principle of relativity" is based on identical processes~ whereas Einstein's principle is based on the covariance ofphysi

cal la"ws. Thus it is, at most, a matter of personal preference (i.e.~ without any scientific value) that Fock claimed Einstein's 

principle of relativity to be invalid. But, such a denial of Einstein's principle of relativity would leave the requirement of 

mathematical covariance without any physical basis. Thus, one may wonder whether Fock's approach4) makes sense in physics. 

Einstein's principle of relativity is also the theoretical basis for the geodesic equation to be the equation ofmotion for gravity, 

whereas Fock's "principle of relativity" does not seem to serve a useful scientific purpose. Since the motion of a particle in an 

initial system is a straight line, the shortest line between two points, the corresponding equation of motion for system K' is the 

geodesic equation in Riemann geometry. Thus, gravity is due to ten metric elements that include the velocity-dependent force. 

But, the time-time metric component gtt still plays the dominating role ofa potential that provides the acceleration to a resting 

particle. In other words, the rotating disk shows not only that general relativity requires a Riemannian Space, but also that the 

equation of motion involves more than .lust a potential. 

5. Mathematical Theorems on Geodesics, and Physics in a Physical Space 

Since the equivalence principle is applicable only in a physical space, where a geodesic representing a free falling particle, it 

would be useful to discuss the mathematical theorems related to a geodesic. The principle of relativity and the equivalence 

principle imply that the physical space-time is a Riemannian space \\lith a space-time metric function gllv, For an idealized 

14� 
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point-like classicaJ massive particle (which has no spin, charge, or other attributions), the equation of motion under gravity is 

2 independent of the tnaS.S:. and is the geodesic equation, 

3 

4 (lOa) 

5 where 

6 (lOb) 

7 

8 is the Christoffel symbols, and ds2 =gJ.tvdxJ.1dxV . Thus, the gravitational field is zero if r~ = O. 

9 Currently, some [9,29] have mistaken the geodesic representing a motion or the existence of local Minkowski spaces as Ein

10 stein's equivalence principle. Such misunderstandings are related to two mathematical theorems flO] as follows: 

11 Theorem 1. Given any point P in any Lorentz manifold (whose metric signature is the same as a Minkowski space) 

12 there always exist coordinate systems (x Jl) in which ag~v;axo.== 0 at P. 

13 Theorem 2. Given any time-like geodesic curve r there always exist a coordinate system (so-called Fermi coordinates) 

14 (xJ.l) in which ogJ.tyloxo. =0 along r. 

15 From these theorems, it is possible to establish further by simple algebra that a local Minkowski metric exists at any given point 

16 and that along any time-like geodesic curve r, a moving local constant metric exists [10]. 

17 However, there is nothing relating these two theorems to an existence of acceleration to a static particle or other physical 

] 8 situations. Also, there is no physical specification to be the cause of the local coordinate transformation, 

19 

20 (lOc) 

21 

22 such that (IDe) transforms the Lorentz metric gJ.tv to a local Minkowski metric along a time-like geodesic curve. Pauli's version 

23 of the equivalence principle is essentially a simplified rephrasing of these theorems. Einstein [30) pointed out, "As far as the 

24 prepositions of mathematics refers to reality, they are not certain~ and as far as they are certain, they do not refer to reality." An 

25 application of a theorem should be examined for its relevance although "one cannot really argue with a mathematical theorem 
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(25]". The physical validity of a geodesic depends ofwhether transfonnation (IOc)., which transforms from an Einstein space to 

2 the local Minkowski space~ is valid in physics. To this end, we can examine either the cause of or the consequence of (1Oc). 

3 It wiJJ be shown that transformation (IOc) in an Einstein space (see Section 4) can be invalid in physics. Consider a mani

4 fold K and its orthogonal metric, whose spatial unit is a centimeter and the time unit is a second, as fonows: 

6 (lla) 

7 

8 K is obviously a Lorentz manifold with a Euclidean structure and therefore is an Einstein space. 

9 Consider a particle P resting at point (Xo, Yo' zo) at time to· Since rlJ.uP = 0, P stays at the same point (Xo, Yo' zo) forever. 

Thus, the coordinates ofP are (Xo, Yo' zo, t) at time t. Then, the local coordinate transformation to a local Minkowski metric is 

11 

12 dX=dx, dY = dy, dZ= dz, but dT=2dt (llb) 

13 

14 The local coordinate transformation (lIb), which is not a rescaling of units, is invalid in physics. Since there is no gravity or 

relative velocity between the frame of its tetrad and the frame K, there is no physical cause that makes a clock rate changes. 

16 Thus, the Einstein space (11a) is not a physical space that models reality. Otherwise, there were two standard clocks having 

17 different rates, though resting at the same point of a frame of reference. Nevertheless, Pauli's equivalence principle is satisfied. 

18 In next section~ it will be shown that a non-eonstant Lorentz metric may be imralid in physics. For instance, a static observer 

19 may not receive any acceleration., and a Lorentz manifold may not be diffeomorphic to a physical space (18,23]. 

21 6. Einstein's Infinitesimal Equivalence Principle and its Application. 

22 The mathematical theorems are compatible with Einstein's Infinitesimal equivalence Principle, which is applicable only to a 

23 physical space (-time) that models reality such that all physical requirements are sufficiently satisfied. Both of Einstein's ver

24 sion and Pauli's version agree on the existence of a local Minkowski space at any point. But, only Einstein specified such a 

space is obtained through a choice of acceleration. Einstein wrote in the Section 4 of his 1916 paper [8)~ "For this purpose we 

26 must choose the acceleration of the infinitely small ("local") system of the coordinates so tbat no gravitational field occurs~ this 

27 is possible for an infinitely small region." Any acceleration to a particle is, of course, relative to a fraule of reference, and there

28 fore the physical Riemannian space, in a priori, includes a Euclidean structure (see Section 4). 
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In other words, Einstein's principle is proposedfor a physical space that has a frame ofreference with a Euclidean struc

2 ture. This difference means that Einstein's equivalence principle is a physical principle, whereas Pauli's version is only a re

3 phrasing of mathematical theorems. Moreover, Einstein's equivalence principle explicitly requires the existence of acceleration 

4 for a static massive particle (i.e., rt: * 0 for some ~;:j;; 1,), and as shown later, theoretical self-consistency demands this. 

5 Consider a local space L (X, Y, Z, CT) whose origin is attached to a particle in free fall. The Galilean weak equivalence 

6 principle that all massive matter falling with the same acceleration in the physical space implies only that, at the origin, r~ = 

7 0 for J.l :j:. T, but the local metric need not have 

8 

9 
8gap (X, Y,Z ,cT) 
-~----=o 

axu 
for any a., f3, (j'. (12a) 

10 

11 But, the mathematical theorems imply that this is always possible. Moreover, the local metric of space L can be chosen as 

12 

13 (12b) 

14 

15 i.e., a local Minkowski metric. Metric (12b) is proposedby Einstein [IJ due to, '!special theory of relativity applies to the special 

16 case of the absence of a gravitational field." This proposal is the essence of Einstein's infinitesimal equivalence principle that 

17 includes its initial form and later version as the special cases. Now, we shall call it simply as Einstein's equivalence principle. 

18 Einstein r11 clarified, "According to the principle of equivalence, the metric relation of the Euclidean geometry are valid 

19 relative to a Cartesian system of reference of infinitely small dimensions and in a suitable state of motion (free falling, and 

20 without rotation)," This is the way that Einstein proclaimed the final infinitesimal form of his principle on the local equiva

21 lence of gravity and a suitable acceleration in a physical space. 

22 In addition, Eddington f21 observed that special relativity should apply only to phenomena unrelated to the second order 

23 derivatives of the metric. Einstein [31J accepted this criticism and added the crucial phrase, "at least to a first approximation" 

24 on the indistinguishability between gravity and acceleration. 

2S The real world is modeled by a physical space, where the physical principles are satisfied. The local transformations, 

26 

27 8X a axP 
gllv (x, y, z, et) = --- ~Ln(X, Y, Z, cT), 

r axil 8xv '"'Up 
where &4J(O,O,O,O), =TlafJ (12e) 

28 and 
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8l 'tra, 

dX~a,_~ dll 
--- X (12d)

axil ' 

by assumption, are due to gravity - the physical cause. Moreover, the results implied by (12d) must be valid in physics. Einstein 

{I,8] obtained the time dilation and space contraction through (12d). Thus, the application ofEinstein's principle lies on show

ing that the Euclid-Riemannian man~rold under consideration is a physical space. 0 the other hand, Pauli's version has no 

physical requirement for (12d), and thus accepts unphysical Lorentz manifold such as (11a). Thus, the claim of Friedman [29], 

"The existence of local Minkowski space has replaced the equivalence principle that initially motivated it:' is incorrect 

In summary, in addition to a proper metric signature required by Pauli's version, there are physical conditions that Ein

stein's equivalence principle requires. These additional physical requirements for a physical space are the following: 

I) A time-like geodesic represents a physical free fall. 

2) The local transformation (12c) in a free fall is automatically due to gravity. 

3) The local transfonnation (12d) is valid in physics. 

Since the physical validity of a geodesic cannot be determined at one point, a physical solution must be established in a finite 

region of the physical space-time. In other words, when applied to a curved space, Einstein's principle is necessari(V consid

ered afJ non-local. To establish 1), validity of physical principles or requirements is needed. To verify requirement 1), Einstein 

(1] has shown an agreement with the Mercury perihelion. Requirement 2) is Einstein's equivalence principle, but it is difficult 

to prove its validity directly. The usual method is assuming it validity and examine its consequences through requirements 1) 

and 3)~ Thus, another cnlcial point of Einstein's principle is whether the transformation (12d) that leads to local ~1inkowski 

space (12b)~ has a valid physical cause, and this can be found out by examining the physical validity of its consequences. To 

this end, Einstein [1] has compared his earlier formula for gravitational red shifts5), before deriving his formula for the light 

bending. In addition, one may assume the validity ofboth 1) and 2) and then examine requirement 3). 

Note that Einstein has checked validity ofonly some physical principles, such as the correspondence principle in connection 

with Newtonian theory. It is known that many accepted metric solutions are actually unphysical [32,33]. Moreover, for a given 

metric gp.v' acceleration may not necessarily exist for a static observer. When rJ.1tt = 0 (fl ':t= t), there is no Newtonian accelera

tion for a resting particle although the metric may still be non-constant. However, since there is no acceleration for an initially 

static particle, it would remain forever in the same position "'ith the same frame of reference. Thus, the same unit clock and/or 

the same unit measuring-rod would have two different readings. In other words, static acceleration must exist 

18 
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1 To illustrate this, let us consider a Lorentz manifold KT with the non-constant metric,� 

2� 

3 (13)� 

4 

where ch(T/C) :;:: rexp(T/C) + exp(-T/C)l!2, and C (> 0) is a constant. Metric (13) can be considered as including a Euclidean 

6 structure and metric (13) becomes a flat metric when C :;:: 00. From metric (13), the Christoffel symbols are zeros except r t,tt = 

7 8tgtv2, and thus no static acceleration. In addition, the physical cause of gravity is not clear. 

8 Let us assume that a time like geodesic were a physical free fall and Einstein's equivalence principle were applicable in tbis 

9 manifold, and examine the consequence. The equation of motion for an observer P at ("0, YO' zO, TO) would be 

11 where r~ =!!-In {ch (TIC)}.
dT 

(14a) 

12 and 

13 
d 2 x d 2 y d 2 z
------0 
ds2 - ds2 - ds2 - , 

(14b) 

14 

Eq. (14) implies that there is no spatial acceleration to cause a local transformation. Then, it follows eq. (14) that 

16 

17 
D 
- =k{exp(T/C) + exp(-TIC)r1 
ds 

and 
~~ 
-ds :::: constant, xf.C. (= x, y, z) (15a) 

18 

19 for some constant k Now, consider the observer P in the state 

21 dx/dT = dy/dT = dzldT =0; and thus dxlds = dy/ds = dz/ds = O. (I5b) 

22 

23 Thus, the geodesic of P is (xO' YO' zo' T), and P would have the same frame of reference whether at "free fall" or not. 

24 Consider the local Minkowski space ofP at ("0, YO' zO, TO) 

26 (16a) 

27 and 

28 dx' = dx, dy' = dy, dz' = dz, and dT' = ch(T/C)dT. (16b) 

29 
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1 is the local transformation to the local Minkowski space if Einstein's equivalence principle were applicable. Thus, KT is not a 

2 physical space since (16b) implies that two standard clocks have different rates, resting at the same point of a frame. Although 

3 K T is diffeomorphic to the Minkowski space K by the transformation t:::; C{exp(T/C) - exp(-T/C)}12 and have the same Euclid

4 ean structure, T in metric (13) is not the local time for a physical space-time coordinate system. 

To show further that Einstein's equivalence principle makes a difference in physics from Pauli's version, let us examine an 

6 accepted manifoltL which is due to an electromagnetic plane wave [34] as follows: 

7 

8 ds2 =du dv + H du2 - dxi dJ, where H = hij(u)xixi, (17) 

9 and 

hjj(u) 2 0, hij:::; hji' where u:::; ct - z, and v:::; ct + Z . 

11 

12 Here t is the time coordinate with the unit in second; and x, y, z are the space coordinates with the unit in centimeter; and hij(u) 

13 is an energy-stress tensor related to the cause of this gravity, an electromagnetic plane-wave. It can be easily shown that metric 

14 (17) has the proper signature, and therefore Pauli's "equivalence principle" is satisfied 

When the source of gravity is removed, i.e., hij{U):::: 0, metric (17) is reduced to the flat metric, which is also the form of met

16 ric (17) when x = 0 and y :::; O. However, metric (17) violates coordinate relativistic causality since 1 ~ (1 + H)/(l - H) may not 

17 be vaJid. Since H > 0 implies gtt > c2, it would have an unusual blue shift compared with the situation of no gravity. Independ

18 ent of the strength of hij, H can be arbitrarily large. This is incompatible with Einstein's notion of weak gravity. Due to special 

19 relativity, the correspondence principle to classical electrodynamics requires H to be negligible. In the light bending calcula

tion, the gravity of the light is implicitly assumed as negligible. Thus, manifold (17) is not valid in physics. 

21 In addition, a time-like geodesic does not represent a free fall. The gravitational force related to r Ztt = ~(l + H)c28H/8t has 

22 parameters (the coordinate origin). However, the principle of causality, by the virtue of symmetry, requires that a valid solution 

23 is independent of the coordinate origin. This coordinate origin, being unrelated to any ph)lsical cause, is a parameter in viola

24 tion of this principle [23,35). Thus, physical aspect of point 1) cannot be valid. Moreover, since this violation is independent of 

the coordinate system used, the manifold is intrinsically unphysical and cannot be diffeomorphic to a physical space. Appar

26 ently, Penrose [34] did not consider the principle of causality, and therefore he accepted metric (17) as valid in physics. 

27 
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8. Misunderstandings and Misleading Calculations of Tolman and Fock. 

2 The case of an accelerated frame was first deliberated by Einstein, and the reality is a curved space -time was concluded 

3 However, in the literature the connection between an accelerated frame and a space-time metric has not been established as 

4 Einstein envisioned. Here, it will be shown that a main reason is due to conceptual errors. Theorists have implicitly assumed 

that an accelerated frame is related to a Euclidean subspace, instead ofjust a Euclidean stnlcture. 

6 To apply Einstein's equivalence principle, it is crucial that the space-time under consideration must be a physical space, 

7 Theorists, both for and against general relativity have made mistakes by ignoring this. For example, Logunov and Mestvirshvili 

8 [13J showed that inconsistent results would be obtained through a coordinate transfonnation. On tbe other hand,. Tolman [16] 

9 also ignored this problem in his illustration of Einstein's equivalence principle. Thus, instead ofvaIidity of Einstein's theory, 

Tolman seemed to show its opposite, i.e., arbitrariness and invalidity just as LOgtmov et a1 claimed. Nevertheless, tIus is difIer

11 ent form Fock flll, who had the purpose ofestablishing his wrong theory. 

12 Tolman claimed that his treatment [16] is based on the relation of the principle of equivalence to the fundamental idea of 

13 the relativity of all kind of motion. To illustrate the equivalence principle, he started with system Ko with the flat metric, 

14 

(18a) 

16 

17 for the first observer. Consider a second observer in a system K', which can be taken as moving relative to the first with the 

18 acceleration a in the x-directio~uses the coordinates x', y', z', and t' as given by 

19 

, 1 2 x = x- -at 
2 

y'=y z' =z l' =t (I8b) 

21 

22 according to the usual transformation to accelerated axes, which Tolman regards as a reasonable change at least at low veloci

23 ties. Substituting from (18b) into (18a), Tolman thought that he obtained the formula for interval for the second observer as 

24 

(19) 

26 

27 Then, according to the geodesic e,quation, from metric (17) Tolman obtained 

28 
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1 
d 2x d 2 

V d 2z dll 
-=-~=-=-=0' 
ds2 ds 2 ds2 ds2 

' 

(20) 

2 and 

3 
d 2 x' -a 
ds 2 =c 2 _ a2t,2 ' 

(21a) 

4 

5 
d 2v' d 2z' lilt' 
-~-=-=-=O 

ds 2 ds 2 ds 2 
(21b) 

6 

7 are approximately the equations of motion for the case of particles having negligible velocity. Thus, in spite of that (18b) is 

8 essentially a Galilean transformation, Tolman claimed that the equivalence principle was illustrated by (21). 

9 On the other hand, consider a particle P in K' at the beginning of a free fall. Since the velocit:r ofK' relative to Ko is v = at, 

10 for the local Minkowski space (X, Y, Z, T) ofP, we have dx = y{dX + v dT], edt = y{cdT + (v/c)dX], where y = [1- (v/c)2]-1I2. 

11 It thus fonows (18) that there is no time dilation although ydx' = dX. Thus, K' is not a physical space. This shows Tolman does 

12 not understand the needofa local time in Eim1.ein's theory (see Section 4). 

13 Moreover, if Tolman's calculation were valid, he actually showed that Einstein's equivalence principle were invalid In Ein

14 stein's {8] anafy~1s, the effects of an accelerated frame can be related to a gravitational potential <1>, which is a function of spa

15 tial variables in Newtonian theory as shown in eq. (3). But, an the metric elements of (19) are functions of time t'. Although 

16 rX'ft' '* 0, the non-zero term in (21a) comes from ~'x' but not from ~'l' (since 8 jJgt't' =0 for J..l * t'). 

17 Tolman simply ignored that Einstein's later paper [1,8] confirms his 1911 analysis, and one has the relations, 

18 

19 and a· ~ - a~xi 
1 

(22) 

20 

21 where <1l is the negative gravitational potential and a function of x'. Obviously, (19) is not consistent with equation (22). Thus, 

22 if Einstein's equivalence principle is valid, metric (19) cannot be a physical space. Since Tolman believed in physical validity 

23 of arbitrary coordinates, he would also disregard that. (19) would imply the light speed in the x-direction to be -at'± c. 

24 In an attempt to overcome the deficiency ofmetric (19), in 1958 Fock [11] modified transformation (18) with 

25 

26 x = x'  .!. at'2 
2 ' 

(23) 
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2 However, Fock does not seem to have any justification other than a desire of putting a new term into the metric element &t so 

3 

4 

that its spatial derivative ofreJated gravitational potential would generate the required acceleration as (22). Then, he obtained 

6 

7 

8 

9 

(24) 

The term 2ax' seems to serve the purpose, and metric (24) would be superficially compatible with relation (22). 

However, the equation of motion even for dx'/ds = 0 is very complicated as follows: 

(25a) 

11 

12 

13 

14 

It is clear that (25a) is not exactly a uniform acceleration. Also, validity of (24) required two more inequalities as follows: 

(25b)and 

16 However, the second inequality catillot be justified in terms of physics, and can be traced back to the unjustified second trans

17 formation in (23). Thus (23) also does not lead to a physical space. Moreover, the velocity of light in the x'-direction would be 

18 

19 (26) 

21 

22 

But, the light bending experiment supports that a speed reduction under gravity. Since metric (24) is time-dependent, this also 

disagrees with observation. Moreover, metric (24) is in fundamental theoretical disagreement ,,'ith Einstein's earlier and also 

23 

24 

subsequent analysis [1,8]. In short, metric (24) still does not represent a physical space. 

Nevertheless, Fock [11] still believed that the problem of time-dependence could be resolved 'within the framework of the 

26 

27 

28 

29 

speculated metric (4). Fock [11] proposed the following mathematically ingenious transformation, 

x = x' cosh (at'/c) + (c/a)(cosh (at'/c) - I) 

y=y'; z=z' 

(27a) 

(27b) 

31 t = (cIa) sinh (at'Ie) + (x'/e) sinh (at'/e) , (27e) 
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24� 

2 although its physics is not clear. Under the condition afJc« 1, the above equation can be written approximately as� 

3� 

4 x = x' + at' 2/2; y =}"; z = z'; t = l' (28)� 

6 Substituting (27) into the flat metric, one obtains exactly� 

7� 

(29a)�8 

9 

Finally, Fock has obtained a metric whose time dilation seems to be compatible with Einstein's paper of 1911. An important 

11� difference is that Einstein is based on physical considerations; whereas Fock gave only a pure mathematical manipulation. 

12 To determine the validity of a manifold as a physical space, the physics must be considered Apparently, the mathematical 

13 requirement, at'/c « 1, instead of just at'/c < 1, is to make (28) approximately valid, but it does not seem to have a physical 

14 basis. Moreover, metric (29), in addition to be incompatible with the observed light bending, does not produce a uniform accel

eraiion as claimed. The equation ofmotion for dx'/ds = 0, though better than (25a), is not a uniform gravity as follows: 

16 

d 2x'
17 -,.,-= -ac-2[l +ax'lc2r1.� (29b) 

ds'" 

18 

19 As expected, Fock cannot find a valid interpretation for (29a). Nevertheless, Fock believed that this is due to an intrinsic deft

ciency of Einstein's equivalence principle. Fock [II] believed that the only.correct metric form would approximately be, 

21 

22 (30) 

23 

24 where U = - <1>. However, metric (30) is not universal because form (30) cannot accommodate the case of a uniform rotation. 

A common problem of Tolman and Fock is that they tried to impose a Euclidean subspace. This judgment will be confirmed 

26 by presenting an accelerated frame in terms of an Einstein space, and this will be presented in a separated paper f361. 

27 

28� 8. Discussions and Conclusions 

29� The "Einstein elevator" thought experiment is commonly used in the formulation of Einstein' equivalence principle. This is 

challenged by theorists based on the notion of a "true" gravitational field characterized by the non-vanishing curvature. Since 
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1 the tidal forces cannot be transformed away by a coordinate transformation, Einstein's insistence on the fundamental impor

2 tance of the principle on general relativity was a puzzle to many theorists. The fact was that the initial fonn of Einstein's 

3 equivalence principle was presented only as an idealization of the realistic situation without sufficient clarification. 

4 Norton found the initial form of Einstein'5 equivalence principle is misinterpreted and Einstein objecte~ with good reason, 

Pauli's version as a misinterpretation, and thus did an excellent job as a historian. A related question is that if Einstein strongly 

6 ~jected Pauli's version of infinitesimal equivalence principle, in view of the importance of the infinitesimal case, should not 

7 Einstein have his own? Obviously, the answer must be yes, especially Pauli got his from Einstein's work, but Northon failed in 

8 identifjdng Einstein's own version. However, in view ofiliat many professional physicists specialized in general relativity had 

9 failed, why should a historian succeed in this task? 

Norton found that a problem appears to be different notions for gravity. Although many theorists remain in the area of New

11 tonian theory of gravity due to a source~ Einstein {9] believes6), ~what characterizes the existence of a gravitational field, from 

12 the empirical standpoint, is the non-vanishing of the rlik (field strength), not the non-vanishing of the Rildm" and that no 

]3 gravity is a kind of gravity. Thus, Einstein ',,,,' principle ofequivalence is real(v the equivalence ofthe effects ofan accelerated 

14 frame to a related un~rorm gravity whereas others incorrect~y perceived that any gravity is equivalent to a un~rorm(v acceler

oled frame. This is evident if one considers also the case of unifQrnl rotatioo. From this, it is also evident that Einstein's 

16 equivalence principle is incompatible with Newtonian notion of gravity. Apparently, this point was not aware ofby many theo

17 rists. For instance, Bergmann [33} "illustrated" the initial version of Einstein's principle witb Einstein's elevator under the 

18 gravity of the globe, and thus inadvertently supported misleading criticisms. 

19 A fact contributes to the current confusion is that Einstein's version of infinitesimal equivalence principle was not presented 

clearly in one location of his paper. Einstein put his version only as if consequences of his earlier version without the expected 

2] further labeling (see Section 1). There are two differences from Pauli's version: 1) As Einstein observed, according to the 

22 mathematical theorems, gravity cannot be transformed away for some cases; 2) The manifold under consideration must be a 

23 physical space-timeI ), which is ·very clear for the cases of uniform acceleration and unifonn rotation. This is also clearly im

24 plies by specifying that a local Minkowski space is obtained by choosing the appropriate acceleration. Einstein demonstrate.d 

the need of 'verifying a physical space by checking the perihelion of Mercury and the formula for gravitational red shifts with 

26 his space-time metric before the calculation of light bending. However, the notion of a physical space was implicitly assumed as 

27 self-ev'ident, and the characteristics of a frame of reference were not explained clearly in terms of Euclidean structure. 
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Another confusing point is that Einstein predicted definitive time dilation and space contraction measurements with a coor

2 dinate system of a physical space while claiming general covariance with respect to arbitrary coordinate systems. As shown in 

3 the case of uniform rotation, any arbitrary coordinate system can be u..sed for calculations because of general covariance of Rie

4 mannian geometry while a space-time coordinate system (of the physical space) that can be used for physical interpretation, is 

restricted by his equivalence principle. Related to this is the question of criterion for a physical space. For a given Lorentz met

6 ric, it would be non-trivial to determine that such a manifold is a physical space. Although there is a theoretical framework for 

7 such an examination (Section 6), it seems, further work on this area may be needed to make such a process more definitive. 

8 A central is.~ue for tile applicability ofEil1steill's equivalence principle is whether the Lorentz manifold under consideration 

9 is a physical space (time). However, both Tolman f161 and Fock [111 and more recently Ohanian and Ruffini [141 did not un

derstand the need of Einstein's notion of a physical space (see Sections 4 and 7). Logunov and ~1estvirishvili {13] did not see 

11 the implicit notion of physical space, and thus turned again Einstein. III additioll, based on Pauli's version, theorists like'Vald 

]2 (l5) believed in unrestricted covariance ,vitbout being aware of the physical space. Thus, as JX)inted out by Bonner, Griffiths, 

13 MacCallum [38,391, a consistent physical interpretation is a problem in current theory. 

14 Due to Pauli's version, it became necessary to believe that in general relativity space-time coordinates have no physical 

meaning, and thus runs against the fact that there are phenomena such as gravitational red shifts related to non-scalars in phys~ 

16 ics. Moreover~ in disagreement with Einstein, the coordinate light speed was considered as meaningless. It is based on such a 

17 belief that Hawking [251 declared, "In relativity, there is no real distinction between the space and time coordinates, just as 

18 there is no real difference between an:y two space coordinates." On the other hand, Hawking {25] also believes, "an arrow of 

19 time, something that distinguished tIle past from tlle future, giving a direction of time". TI1US, tllere is a distinction between a 

time coonDnate and a space ciJOfdinate. Nevertheless., Hawking puts these tWO coiitfadictol1' statements iii the same book [25]. 

21 A related problem in current theory is that physical requirements are often ignored. As pointed out by Kranter, Stephani, 

22 Redt and 1\Ifac-CaHum {321, unphysical solutions are often accepted as ifvalid in physic-s, Violating the principle ofcausality is 

23 a major problem, The Maxwell-Newton Approximation implies that a gravitational wave solution is bounded in magnitude 

24 {1St and thus roundedness is needed to be associated 'Wi.th a SOluce, Hoviever, many "wave" solutions afe unbounded [33,35]. 

It is invalid to replace Einstein's equivalence principle, which has been firmly established on the theoretical ground ofuni

26 versality of physic-s and experiments, with Pauli's "equivalence principIe" which has proven to be inadequate in physics be

27 cause it merely requires the existence of local Minkowski spaces, Moreover, sncll a replacement demands that coordinates have 
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no physical meanings f401. On the other hand, Einstein's implicit notion of a physical space requires defInitive physical mean

2 ings for coordinates of a space-time coordinate system in physics. Such a replacement will also be incompatible with physical 

3 principles such as the correspondence principle~ the principle of causality, and etc (18). 

4 Observations support, as Einstein's equivalence principle requires, that the space-time coordinates have physical meaning. 

5 In the deflection of light calculation7), Einstein [2] has made clear that the velocity of light is defined in the sense of Euclidean 

6 geometry, and so is the deflection. Although the angle of light deflection c-an be measured at infinity by explicit comparisons 

7 using physical measures (millimetres on a photographic plate, fur instance), such an angle is not independent of a physically 

8 me.aningful coordinate &ystem." To transform two dots in a photographic plate to an angle, one must refer to the coordinate 

9 system used to take the photos. For example, such transformations are first based on the Schwanschild coordinate system [8]. 

I0 Moreover, a defiecition is again&t tbe straight line (1-7], which is defined implicitly as the tmjectory of a light ray when the sun 

11 was absent (and as the approximate trajectory when the light ray is far away from the sun). However, for a uniformly rotating 

12 coordinate &)'s1em., the light TdjI is not a straight line, and a deflection angle cannot be defined "lith mrpect to such a coordinate 

13 system. Thus, Pauli's version t..l}at ignored Einstein's notion of physical space is not supported by observation. 

14 It has been judged that theories ofthe Wheeler-Hawking School are different fTom Einstein's general relativity (29,33]. They 

15 often based on Pauli's version but not Einstein's equivalence principle. It would be very beneficial for general relativity, ifpre

16 vioos works were reviewed in terms of Einstein's equivalence principle. In fact" some works of Wheeler and Hawking have al

17 ready been proven invalid in physics [33]. It is hope this paper would add an imPetus for restoring the confidence on Einstein's 

18 principles6) and thus accelerate the further development ofEinstein's general relativity. 

19 
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ENDNOTES 

2 1) A Riemannian physical space-time (M, g), according to Einstein [1,8}, is a RiemalUlian space in mathematics. Such a Rie

3 mannian space M is characterized by a space-time metric g tbat can be detemlined by the distribution of matter. It is in the 

4 sense of that the metric &k is subjected to physical conside:rations, that Einstein considers the four-dimensional space-time 

continuum of reality as a physical space-time. In "Relativity and the problem of space", Einstein {31] \\-Tote, 

6 "For the functions &k describe not only the field, but at the same time also the topological and metrical structural 

7 properties of the manifold. ... There is no such thing as an ernpty space, i.e., a space without field. Space-time 

8 does not claim existence on its OWll, but only as a structural quality of the field" 

9 Moreover, since Einstein's Riemannian space-time models reality, all the physical requirements must be sufficiently satisfied 

by the space-time metric~. This is another requirement for Einstein's physical space (-time). Since Einstein's equivalence 

II principle is a physical requirement proposed for the real world, to apply this principle correctly to a Lorentz manifold, one 

12 must show, as Einstein did [1,8}, that all known physical requirements are sufficiently satisfied. 

13 One might argue that a physical space has not been defined precisely because the physical requirements have not been de

14 fined completely. However, physical requirements are almost what physics is all about, and can be defined more complete as 

physics progress. Thus, the physical requirements are not complete until the end ofphysics if it has an end. Einstein himself 

16 has indicated the difficulty of defining general relativity "precisely" as mathematics or even in the degree of Maxwell's the

17 ory. Einstein wrote in 1916 [8] the following: 

18 "It is not my purpose in this discussion to represents the general theory of relativity as a system that is as simple and 

19 logical as possible, and with the minimum number of axioms; but my main object is to develop this theory in such a 

way that the reader will feel that the path we have entered upon is psychologically the natural one, and that the un

21 derlying assumptions will seem to have the highest possible degree of security." 

22 Another problem is that he has not been able to describe precisely the physical process (due to a free fall), which transforms a 

23 metric near a point to a local Minkowski space although he infers the correct result. 

24 2) There are only a few books on gravitation and general relativity, which exceed 500 pages, on the market. This author finds 

only four. They are: a) Gravitation and Cosmology: principles and applications of the general theory of relativity (John Wiley 

26 Inc., 667 pages) by. S. Weinberg; b) Gravitation (Freeman, 1279 pages) by C. W. Misner, K. S. Thome, & 1. A. Wheeler; c) 
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Stars and Relativity (Dover, 522 pages) by Ya. B. Zel'dovich & 1. D. Novikov, d) Relativity Thermodynamics and Cosmol

ogy (Dover, 501 pages) by R. C. Tolman. 

3) Some theorists,. for example Bergmann [37} and Liu [41J, believed incorrectly that the equivalence of all frames of reference 

must be represented by the equivalence of all coordinate systems. For instance, the exchange of the time coordinate and a 

spatial coordinate would form a new coordinate system. But such a new coordinate system is not related to any frame of ref

erence.Moreover, it is based on unrestricted covariance that Logunov and Mestvirishvili {13] rejected general relativity. 

4) Fock's problem actually started from special relativity. Fock [11] claimed, 'We saw that to any energy E one should 

ascribe amass m =E/c2 and to every mass one should ascribe an energy E = mc2."However, this is inconsistent 

with general relativity that has a tensor source for gravity [20]. According to Einstein [42}, only the latter is valid. 

Tolman [16) also made the same kind ofmistake in the fonn ofan assumption, "Hence in what follows we shall postulate in 

general that a quantity of energy E always has immediately as...~iated with a mass m of the aIDoWlt m = E/&." 

5) Currently, the bending of light is calculated directly without going through all Einstein's steps, because the checking has 

already been done. By so doing, one may be misled to believe that Einstein's equivalence. principle is equivalent to Pauli's 

version. Consequently, in the literature, unphysical metric is often accepted as valid (32,33). 

6) A tmditional viewpoint of the Physics Department of MIT is that general relativity must be understood in terms of physics. 

Weinrerg {4] advocated, "In my view, it is much more useful to regard general relativity above all as a theory ofgravitation, 

whose connection with geometry arises from the peculiar empirical properties of gravitation, properties summarized by Ein

stein's Principle of the Equivalence of Gravitation and Inertia." Thus, Einstein'8 viewpoint of gravity is supported. However, 

many (5,10,11,14,22,25] believe that tme gravity is related to the non-vanishing of the curvature RucIm. 

7) The defection of light can be calculated directly from the Maxwell-Newton Approximation 0,211 for massive matter, a lin

ear equation for weak gravity, which bas been derived from physical principles including Einstein's equivalence prin.ciple 

(18,29]0 Tills would suppIeniefit Einstein's 1916 derivation (8) and also his 1921 derivation (1] from the 1915 Einstein equa

tion. It has been found tllat the 1915 Einstein equation does not have a dynamic solution and is. actually inconsistent with the 

linear equation for a dynamic situation f21,331. Gullstrand f431 was first to question the existence of dynamic solutions for 

the 1915 equation in his 1921 report to tIle Nobel Committee [17]. Ei.rb~ein [44J himself also recogilized the deficiency of tbe 

1915 equation when he was working with Rosen [45~46] on the question ofgravitatiooal radiation. 
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