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It is shown that Einstein's notion of physical space, that is, a Riemannian space which models reality, is the key to under­

stand Einstein's theory of general relativity. A frequently ignored requireutefit for a physical s-pace is that all physical require­

ments must be sufficiently satisfied. It ll; noted tl-.at if the measuring instruments are attached to the frame of reference, since 

the measuring ittstru.meilts and tlie coofdhtates Oeulg .measured are uuder the satne liiflueiK:e of graVity, a Euclidean space 

sLructure emerges as if gravity did not exist. This Euclidean stI....lch:re clari"fies the meaning of space-time coordinates and Ein­

stein's equivalence principle. Then. it becomes necessary to investigate the actual gauge in reality. It is proposed that the real 

gauge for the gravity of the globe ""ould be identifiable by measuring the local light speeds. Concurrently, it ll; pointed out tr.at 

the beUef that space-tuue coordinates hav·e no physical meaning, is incompatible witb Einstein's equivalence principle and ob­

ser:..rations, but is related to Pauli's version to which Einstein objected as inadequate in physics. It :is pointed out that Pauli's 

version is responsible for the a.c-ceptanc-e of intrinsically unphysical Lorentz manifolds as valid in physics. It is shown through a 

counter example that the local distance formula of Landau and Lifshitz, which is based on Pauli's version, is invalid. Thus, it 

woi.tld be necessary to review theories, which were based on Pauli's version, in terms ofEUistein's equivalence principle. 

04.20.-q,04.20.Cv 
FERMILAB 

MAR 5 2002 

LIBRARY 



2
 

1. Introduction 

In general relativity [1,2}, Einsteiil models the reality as a Riemannian (to be more pn:cise, pseudo-Riemannian [3,4]) 

of the frame of reference. Sinc-e gik is related measUfemeHts of space and time, tlie notion ofphysical space was established. 

In Einstein's physical space, not only that spact>-time is curved (pJemannian), but 31so tl1at sp3a7time is De'/er empty == a 

property that some theorists such as Synge [5) still do ilot accept. In 1954, Einstein [6J wrote, 

"For Lite fbllctions &k describe not only the field, but at the same time also the topological and metrical structural 

properties of tbe manifold.... There is 110 such thing as an empty space, Le., a space without field. Space-time does 

not claim existence on its own, but only as a structural quality of the field.., 

A physical space, by definition, is non-local although it may not be global as the c-ase of Einstein's uniformly rotating disk. 

1\10reover, since Einstein's Riemannian space.,time models realit'f, all the physical reqUirements must be sufficiently satisfied 

by the space-time metric gik This is an important, but often ignored, requirement for Einstein's Riemannian space (-time). 

This nomenclature, "physical space" WOuS used by Eir.5tein as if wen undergtood, for ir.5umce, in his correspondence to cA."L 

Recht [7]. However, the fact is that currently some professional relativists still ask what is a physical space because Einstein's 

pbysical space has been incorrectly replaced with a Riew..annian space with just the proper metric signatu..roe [8,9]. Conse­

quently, many theorists simply do not consider any physical requirement beyond the signature of the metric. This omission of 

the notion of physical space, the foundation ofgeneral relativity, ig the root of Iraany current theoretical difficulties that lead to 

invalid theories, inclUding the acceptance of tlfiphysical metric solutions [10]. For instance, Einstein's equivalence principle is 

applicable only to a physical space, but not an arbitrary Lorentz manifold (see Section 4). Thus, to apply this principle cor-

reedy, one must show also that physical requirements are sufficiently satisfied in a Lorentz manifold, as Einstein did [1,2]. 

One might argue that a physical space has not been defined predsely because the physical requirements have net been de= 

fined completely. TIils analysis shows that such an ambiguity could be a source of nilstiiiderstafidiiig, but this :notioti is probably 

de..fjned as good as it could be in a physical theory. In fact, Einstein has indicated the difficulty of presenting general relativity 

"precisely" as mathematics or e-ven in the degree of"tvfax-well's theory. He wTote in 1916 [1J the following: 

"It is not my purpose in this discussion to represents the general theory of relativity as a system that is as simple and 

logical as possible, and with the mininmm number of axioms; but my main object is to develop this theory- in such a 

way Lltat tbe reader win feel that the path we l1ave entered upon is psychologically the natural one, and that the un­

derlying assumptions "'ill seem to have the higl'lest possible degree of sa.unty. II 
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Perhaps, this ~-ychological approach left too much ambiguity to be imagined incorrectly. Note that, according to Cbandra­

sekhar {! ]l~ Eddington cannot find a t.hird person~ who understands general relativity. This is supported by Eddington's book 

[12], where he also criticized Einstein's unders'"Uiuding. 

There are some basic differences between mathematics and physics. In mathematics, things have to be defined precisely. 

However, being guided by Ie-ality, physicists define things only to a certain extent IDld improve their understanding later as fur· 

ther facts are known. For instance, the notion of energy was initially referred to mechanical energy only. Thus, many phY8-ical 

concepts simply cannot be defined as in mathematics, although they can be explained adequately. 

In this paper, Einstein'S physical space is explained and illustrated furt.'ter with some exa.-nples. To this end, some related 

concepts must be clarified coilc'unentIy. These include Einstein's equivalence principle, Einstein's meas-wement, covariance, 

space~time coordinate system, and the notion of gauge. Finally, an experiment on local light speed is proposed to help deter= 

mining the still unsettled question of a valid physical space (see Section 7). 

2. The Question of Gauge in General Relativity 

In general relativity, the non-linear Einstein's field equation of 1915 version [1,21 for a space-time metric gab is 

Gah == R ah - Yz R &th = -KT(m)ah , (1) 

where R ab is the Ricci curvature tensor, its source T(m) ab is the energy-stress tensor for massive matter and can depend on &th' 

However, among these 10 equations of tensor components, only six of them are independent, since 

(2) 

Note also that for Gat {a = X, y, Z, t}, there is no second order time derivative [13,14]. Thus, for eq. {l}, the iI".itial condition of a 

Cauchy problem is restricted by four constraints. Thus, to solve Einstein equation (1), four more conditions are needed. 

These four additional ronditiong are attributed as due to a certain freedom of choice of coordinates in the physical Rieman= 

nian ~-pace, aiiu afe cailed the gauge coomtiOfiS. An often-used gauge is the nafiIiOtiic gauge condition [13,15], 

(3) 
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where g is the detenninant of metric gab' There are two extreme vie"'w'S on the question of gauge: i) Fock U51 argued that the 

tlafitlomC gauge is the onlyphy&icaliy valid gauge. It wiil be shown with a coomer exantple (5b) that this is not true. ii) A 

popular ,..ie'.\' is that the gauge condition is arbitrary although such a notion was rejected by Eddington [12]. ~1oreover, it has 

been shown tttat this assumption ofarbiuary gauge can lead to the aCCqJtance of unphysical solutions [10,16-18]. 

To illustrate the notion of gauge, let us consider the simple case of a flat metric for a system K in 8Pechd relativity, i.e., 

(4a) 

The units are centimeter and second, and c is the speed ofligt'lt, 3xl010 crrJsec. This metric satisfies the equation 

(4b) 

Of course, there are other solutions that satisfy (4b). The specific solution would be determined by the physical condttions in= 

volved in the chosen coordinate system. For instance, if the frame of reference ofa chosen coordinate system has no accelera­

tion toward K, it can ha-ve only a uniform -velocity v, which l-..as three components. Therefore, these four conditions determine 

that the solution is just another flat metric. 

For a uniformly rotating disk, Einstein [1,2] considered an inertial system of reference K (x, y, z, t) and a system K' (x', y', 

z' ~ t ') in uniform rotation n relatively to K. The origins ofboth systems and their axes ofz and z' peIlIianently coincide. Then~ 

it can be shm-vn that the metrics ofK and K' [1,3] are respectively as follows: 

where x = :r cos 4', y = r sin 4', (5a) 

and 

(5b) 

wJlere 

x' = r' cos 4>', y' :::: r' sin <P', r = r', z = z', and 4> = 4>' + Ot. (5c) 

The local time of metric (5b) is t', and the local transformation between metrics (Sa) and (5b) is 

del>' =del> - Odt ; (6a) 

and 

edt' = [edt - (rQ/c)rdel>J[i - (rQ/C)2]-1 . (6b) 

Again, four conditions, ie., the rotation axis and the rotational velocity, determine the metric (5b). Then, 
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(7) 

would be the circumSlauce of a circle of radius f' (= r) for an observer ill K'. TIlUS, Einstein concluded that witli a measuring 

rod at rest relatively to K', the qu.otieut of drclL".)Bmllces over diameter '.volid be greater t-lJan 1t, and Euclia--va..". geometl"'j there~ 

fore breaks down in reiation to the system K'. The harmonic gauge in terms of (x, y, z, t) is satisfied for the flat metric (5a), but 

is not satisfied for metric (5b). This illustrates that the understanding ofFock on Einstein's theory is incorrect. 

Another observation is tbat once the frame of referenc-e is chosen, the metric and thus the gauge is determined Neverthe­

less, for the metric due to an isolated spherically Sj'1llUletric mass distribution, the gauge ooeWJS to stilllmve a freedom (see Sec= 

lioil 3). To ciaruy this questioil, one must understand first what are the physical meanifigs of the space-time coordiitates. Let tiS 

start \vith Einstein's notion ofdistance ill genera! relativity. 

3. Two Kinds of Complementary Distances and the ~fet..ic Solutions 

In special relativity [1], the four=dimensional continuum (x, y, Z, t) ofphysics has the line element in the special fonn 

") ") ~ ") ") 2 ")
ds'" = c...at... - dx'" - dy - dz"', (8) 

However, although Euclidean geometry is abandoned in the sense of invariance, a Euclidean structure is nevertheless pre= 

(9) 

In general relativity, the situation is different since the line element is generally 

ds 2 = 0 dxll dxv (10) 
o flV ' 

where g~lV is a genera! space=time metric in a Riemannian space. Note that~ to Obt.aill a local infinitesimal measurement, (8) is 

used in (the infinitesimal form of) Einstein's equivalence principle [1]. Thus, form (8) is not abandoned, and what has been 

abandoned is that fonn (8) be considered as an invariant. rvforeover~ although one may not expect to derive formula (9) from 

(10), in a different wa:y, the Euclidean mrueture formula (9) is actually also preserved 
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To illustrate such a notion of distance, let us consider a solution of metric of S (x, y, Z, t) in the isotropic form [13], 

..1-2 .._ [(.. -/" .._,2", ...... I --/" .._)z..dtZ {"I ~ "'NII~~/')ii',}4 (ux uy..L.2 + dz-2) (11)MKJ- .......2 ~
 us = 1- L.Trl\.I -r- NlKlL.-r] - \. .YV.... . 

where M is the total mass of a spherical mass distribution with the center at the origin of the frame of reference K (x, )', z}, r = 

{Xl + y2 + z2]l!2, and K is a coupiing constant. Since the metric is a function ofr, which is defined in terms of the Euclidean 

structure E (x, y, z), the Euclidean structure is necessarily included in such a Riemannian space-time of Einstein. 

III fact, Einstein [1] made cleaf that the light velocity is "defined in the sense of Euclideall geometry." However, he did not 

clarify such geometry in terms of physical measurements (see also Section 6). Currently, n-.any theorists incorrectJy claimed 

that coordinate light velocity has no me-aning. Note that tIlat although "Euclidean gemuetry breaks down (11" in the invariant 

line element dgz (5b), a Euclidean structure is necessarily preserved such that </>' is well defined in (5c). 

IfEinstein's equivaieiice principie is vaHd, at any point of the ffame Offefereiice ofK there is a iocai ivfinkowski s-pace with 

(12) 

such that 

(13a) 

and 

(13b) 

Then, time dilation and spatial contraction are obtained as Ulea:>llfed (1,2]. However, the pbysicalmeanings of fom1Ula (13) 

and metric (II) are clear only if the meaning ofparameter r has 'been determined. 

Now, consider also the SchwarzschHd solution ofS' (x', y" z', 1') 

(14) 

where 

x'= p sine coS<p, y' = p sine sin<p, z' = p cose, and 

M is the total mass of a splIericalmass distribution witli tlIe center at the origin of tlie frame of reference K' (x', y', z'). IfEin­

stein's equivalence principle is valid, at a point resting at K', there is a local !v!irJmwski space (<LX, dY, dZ, edT) such iliat 

(15a) 

and 

(I5b) 
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Then, time dilation and spatial contraction would be otltained as measured [1,2}. Note tbat the space contraction is directional 

rameier p bas Decll deiefliillied. Ifp and f are related by i13} 

for p> 2Ml(, (i6) 

then metric (11) and (14) are mathematically equivalent. The coordinates K (x, y, z) and K' (x', y', z') are related to the 

Euclideancoon:lip.:lte system wben 1'...1 = O. TIre dock rates ~md tlregpatial cont.~onsof(I!) and (14) are related by (16). 

As sbown above, Einstein's measurement instruments are resting relati\'c to the frame of reference, but in a fTee fall state. 

Tben, time dilation and space rouLraction Me obtained. On tbe other rumd, for a measuring roo att..ached to tbe coordinate S'iS~ 

tem, since the measuring rod and the cooi'dinate are under tIle same gravity, a Euclidean space structure would emerge as if 

gravity did not exist. The Euclidean sLrlJct'..rreobeys distance formula (9) a..-Id is independent of tlre gravity involved. Thus, in 

general relativity, space coordinates actually have a very clear plIYsical meaning. Then, as Einstein [l,2j pointed out, the time 

coordinate wiI! be determined by tbe requirement of representing LlJe loea! time. 

If S is a physical space related to reality, the coordinate systems K (x, y, z) does lmve the meaning of a Euclidean structUi\; 

in terms ofdirect physical measurements. Tbe sa..-ne arg..:.ments would a!ro be applicable to S'. However, metric (11) 3..~d metric 

(14), though mathematically related, have dit.Lferent types of spatial contraction. TIms, only one of S or S' can be a physical 

space and LlJe two gauges are not equivalent in physics. On the other band, SL'1cer 3..'1d p are the same in the [ust order ap= 

proxinmtion, these metries were not distinguishable experimentally!) for the case of gravitational fed stili's, 1ig..~t bending and 

perihelion of~1ercu_rf·.Fortunately,for the case of local light speeds, metric (II) and metric (14) wou!d be different in first or~ 

der (see Section 7). Thus, a valid plIysical space, in principle, can be determined experimentally. 

To dus end, one must address a current belief is tbat coordinates have no pllYsica! meaning. SUdl a belief is acmaHy u.'1re~ 

lated to Einstein's equivalence principle, but to Pauli's version [20}. Nevertheless, Pauli's version ""is now commonly but mis­

iakefi1y regarded as EiiiSieifi'svc-csluft urihe pritic1pie (21j" in spite ufihe fact that Einsle-i:fi SifUtlgiy objected2) Pauii's version 

as a misifiietpreiatioii [21]. A reason couid be mat this version is stipported and reqwred oy uurestricted iuatbematical covari­

ance that Einstein seemed to argue for in 1916 (see also Section 6). 

AltbougI'1 Einstein deleted such arguments in his later book (2), the damage has already been done. Pauli's version and con­

seq-.rently unre~7icted CGvuriance were im;isted on. The belief that space-time coordinates huve no physical mea..'ling was re= 
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garded as a "'standard" theory by some theorists. This tnathematical approach has made general relativity become a physical 

theory often in name only. In addition to leading to logical inconsistence, such a belief disagrees with established physical re-

general relativity but also is wrong. Nevertheless, many theorists managed to not seeing such problems. 

For instance, based Pauli's versio~ a formula of local distance (Section 4) was derived by Landau & Lifshitz [22}. This for~ 

mula was also produced by Liu {23] and ¥u {24j. Not only was such a formula not challenged (25] but was used by Zet'dovich 

& Novikov [3] with great faith. It will be shown "with a counter exatr.ple in Section 4- that such a formula is not valid. 

4. Ditrerenc-es of Pauli's Version from Einstein'g Equivalence Principle 

For the convenietr....e of discussio~let us state first Pauli's "'equivalence principle" [20] as the following: 

«For every infinitely small world region (i.e. a world region which is so small that the space- and time-variation of 

gravity can be neglected in it) L;ere always exists a coordinate system Ko (Xl' X2, X3, X4) in which g.-avitation has 

no influence either in the tnotion ofparticles or any physical process." 

Thus, Pauli has mistaken a COl".sequence, the existence of local ~J.l'.kowski spaces, regarded as the equivalence principle itself. 

In Pauli's version~ the equivalence between acceleration and gravity was not even mentioned. Note that~ unlike Einstein's 

physical space, here P~uli's "world region" is orJy a n'Ulthelnatical notion (20). P~llli'g misinterpretation becomes ~ serious 

problem when it leads to the belief that any Lorentz manifold be regarded as valid in -physics. 

Different from Pauli version, EiI'.stein requires additionally: i} "the special theory of relativity applies to the case of the ab­

senre of a l;lavitational field (1, p.IIS]" IDid il) a local tvfinkowski space is obtained by choosing the acceleration. Einstein [1, 

p.IIS] wrote, " ... we must ch()OL',;£ the acceleration of the infinitely small ("local") system of coordinates 80 that no &~yitational 

field (x.,~UfS~ this is possible fOf ani:tllifiilety st1:iaUregiotl." AspoinlOO out by Fock (is], the fiOtiofi of acceleration with respect 

to a three-dimensional frame of reference3) is essential in Einstein's theory [1,2J. 

!vforeover, point i) implies that the Minkowski space is the only valid co11stant metric when gravity is abseIlt. Point ii) im­

plies that acceleration to a static particle must exist. Let us illustrate these points are necessary with some simple examples. 

EXaIuple 1. Consider a Lorentz maIiifold L (x, y, z, t) with its constant metric, 

(17a) 

where time unit is in second and length unit in centimeter. 1Vfetric (17a) implies that the "light ~peed" is 2c in the x-direction. 
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1vlatllematically, one can obtain a local tvfinkowski space (<lX, dY, dZ, dT) with the local coordinate transformation, 

dX=dx, dY=dy, hut dZ= 3dz, dT=2dt. (17b) 

Tlms, Pauli's version is satisfied. However, Einstein's equivalence principle is not satisfied sillce there is no acceleration to 

choose from such that a local ~·:finkowski space can be obtained,~1"oreover, special relativity is not applicable in L. 

Nevertheless, one might argue that the rescaling, 2t ~ t', and 3z ~ z' would trdnsfoftil (l7a) iO ds2 ~. c2dt'2 - dx2 - dy2 ­

dz~2. HOly-ever, this new metric form does not mak-e La }Vfinkow-ski space since u~e unit oft' is ~ second. Note that a rescaling 

has no physical content, but the local coordinate transformation (17'0) means the ratio of two local clocks [1,2J. 

Example 2. C-onsider tbe Galilean trausfonnation from an inertial system K (x, y, z, t) to the K' (x', y', z', t') coordinates, 

~ __, _......L. 
x = x', y=y', Z. - Z. - Vl, and t = t', (18a) 

where v h; a constant. Eq. (18a) transforms the flat metric (1) to an.ot.'J.er const~l1t Lorentz metric 

ds2 = [dz' + (c - v)dt'J[-dz' + (c + v)dt'J- dx'2 - dy2. (l8b) 

Thus, Pauli's version is satisfied in K'. However, since (18h) failed "to define time in such a way that t.'J.e rate ofa dock de­

pends upon where the clock filay be [1]", according to Einstein, the COiiStafii mettic (18b) is also invalid in physics. 

Now, consider an obc.£rver pI resting at a point in K'. ~1athematicsensures [1,51 the existence ofa local ~Ainkowski space 

(dt~, dY, dZ, dT), the local orthogonal tetrad ofP', whose direction vp ' is (O,O,O,dt'). Then, 

dt';: y(dT - v!c2dZ), dz' ~ y-1dZ, d.x··~ dX, and dy' ~ dY, where (18e) 

is the corresponding tran.sfonuation. TIlliS, (dx', dy', dz') and (<lX, dY, dZ) share the same frame of reference because there is 

no acce:eration or motion. However, there is a spatial contraction and therefore the principl.e of causality4) is violated. 

These examples illustrate also that, in Einstein's general relatiyity, the :space-time metric and the frame of reference play 

crucial roles in the notion of a physical gpace=time, In Pauli's version, however, because orJy the metric sigr.ature is consid~ 

ered, the question of physical space is ignored i18J. ivloreover, ifa coo.tdinate-ltldependent physical principle is vIolated, it LOf­

entz manifold needs not be ditfecrnorphic to a physical space [9}. It follows that Pauli's vel'Sion is intrinsically inadequate in 

physics [8J, and thus would le""ad to illc-orrect theories that cannot be remedied. 
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Based 011 Pauli's versiOil~ Landau & Lifshitz [14J, Liu [16J and Yu [17] derived the local distance fOlluula for an arbitrary 

space~time metri(4). Their result stated that the final formula for h~e MJuare ofthe spatial distance dl2 is. 

_. 0 _ 1 '" ')where 0:., J-' -1, ~, (19a).:J 

for 

where &0 >0, (19b) 

which is part of the inadequate physical condition5). The problem of (19) is that!50o iI1a:-i not be valid for the local time since 

only the metric signature is considered in Pauli's version. This uncertainty will be shown with two examples. 

For in~Ulnce, let us substitute tra..n.sformation (6a) to metric (Sa) and obtain the metric, 

(5b') 

for the coordinate system K* (x', y', z', t), wl'oich also !'.as a Euclidean subsn~ (r', 4>', z'). Note that the mathell'.atical system 

K-'!': (x', y'~ z'~ t) is not a physical space-time coordinate system for the UIliformly rotating disk K' bec-ause what measllfed in a 

resting local clock is time t' but not time t that remains asoociating with the inertial frame of reference K. From (5b'), 

Zel'dovich & Novikov (3), based on formula (i9), obtains 

(20a) 

and 

edt' = edt - (rQ/e)rd<p'[l - (rQ/C)2]-1 (20b) 

which agrees with metric (5b). However, according (19), from the constal1t metric (ISb) one obtains 

(21a) 

and 

edt" = edt + (v!c)dz'[l - (v/c)2r1 (2Ib) 

FOflnula (21a) is deatiy incorrect fOt a local distance in the case OffiO gravity, and t" is not the local time. (21) is related to 

(22) 

which, tbough a con~"1allt metric, is not tlie flat metric oftbe 1'vfinkowski spac-e for special relativity. 
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!v1atbematically, the derivations of (20) and (21) are identical. Howe-ver, tlle physic-al situations are different. Physically, 

there is acceleration in tbe case of unifoml rotation, but the Galilea.'l tranm-ormation (l8a) does not produce acceleration. This 

illustrates that Pauli '05 version is inadequate ill physics. Now, let us clarify Einstein's equivalence principle further. 

•• • _. n··. Ln· •• fG • R I +., d n: • co5. Einstein's Eqmvaaence r rillCip.e, tile r nnCip.e 0 enera. e ad" y,an niemannian i:Jpace 

In 1911, the initial form of Einstein's equivalence principle is the assumption i1,26J that the mechanical equivalence of all 

inertial system K under a u.niform gravitational field, which generates a gravitational acceleration y (but, system K is free from 

acceleration), and a system K' accelerated by y in the opposite direction, can be extended to other physical processes. This ini­

tiat form \vasfurther developed for a curved space fI ,2]. However,Einsfein's equivalence principle was often questioned be~ 

cause of misunderstanding. Synge is] professed his rlJiSltilderswlldillgs OIl Einstein's equivalence principle as follows: 

" ...1 have never been able to underst~.nd this principle...Does it mea.'l that ~lte effects of a gravitational field are indis~ 

tinguishable from the effects of au observer's acceleration? If so, it is false. In Einstein's tlIeory~ either there is a gravi­

tationalficld or there is none" according as the Riematm tensor does or does not vanish." 

Currently, misunderstanding Persists. For instauc-e, Thorne [25} criticized Einsteifi~ 

"In deducing his principle ofeqwJlvalence, Einstein ignored tidal gravitation forces; he pretended they do not exist. Ein= 

stein justified ignoring tidal forces by imagining that you are (and your reference frame) are very small." 

Apparently, Thorne did not read Einstein '8 correspondence with ethers on this problem of tidal forces since it was clearly an­

swered by Einstein. For in:)lance, in his July 12, 1953 letter to A. Relltz [21] Einstein wrote, 

"The equivalence principle does not assert that every gravitational field (e.g., the oue associated ~vitb the Earth) can be 

produced by acceleration of the coordinate system. It only asserts that the qualities of physical space, as they present 

themselves from an accelerated coordinate ~-{stem"representa special case of the gravitational field.-' 

Einstein [21] explained to Laue, "what char-aeterizes the existence of a gravitational field, from the empirical standpoint, is 

the non"'vanismng of the rtik (field strength), not the non~vanishing of the Rikim." and no gravity is a special case of grav~ 

ity-6). It SllOuld also be noted that Einstein insisted, throughout his life, on the fuudamental importaIlce oftlle principle to his 

general theory of relativity. Norton pointed out tbat Einstein's insistence on this point has created a puz.z.le for pbilosophers 

and historians of science i21]. This shows bow much was Einstein's principle being understood in terms of physics. 

Einstein behev~ "The law of physics must be of su.ch a nature ~ltat they apply to systems of reference in any kind of motion 

(principle of general relativir-y)." Since tbe effects of a wliformly rotating cannot be equivalent to the effects of a linear 
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eration, Einstein's principle of equivalence, if exact, is real(v the equivalence of the effects ofan accelerated frame to a re­

lated kind ofunifoy,,/. grtr,,'ity """I:erea.~ ntl/ere incorrectl}' percei~'ed that I1l1y gra~'ity' il..f; equi\.1alent to a unij{)rml}' accelerated 

frame. In other words, Einstein must have realized that his initial equivalence principle illustrated only an idealized case. 

(23a) 

where 

(23b) 

as the equation of motion for a pa.--ticle under the influence of orJy g..~vity since the acceleration to a particle under gravity is 

indeperu:lenl of its mass. Tirus, gravity is due to ten metric elements. For a resting particle, the acceleration is due to the 

Christoffel symbol rf.ltt (Jl 7= t). The g..,~sic plays an inlpmtant role because Eitlstein used it to decide whether the metric is 

valid in physics. For instance, he used it to obtain the peiihelion ofrvfercury {I,2l. 

p.-u~ important but often emitted point is that Einstein's equivalence principle is applicable only to a physical space in which 

aU physical tequlretiienlS are sufficiently satisfied sinCe his Riemannian space model'> the reality. In deriVlfig his formula for 

the bending of light rays, Einstein [1,2] used the infit"Jtesimal form ofrJs principle, wrJch is a generalization of the initial form 

that the coordiiUlte system hilS a frame ojrejerence and requires the existence ofa local fvfinkowski space (dX, dY, dZ, edT) at 

any point [1]. The local coordinate transformation to locall\.1irJmwski met..-ic along a time=like geodegic curve ig, 

(23c) 

To determine the physical validity ofa geodesic, Einstein [1,2) examined both the cause of and the consequence of (23c). 

Einstein (27) pointed out, "As far as the prepositions of mau'1ematic-s refers to re-ality, they are not cerillin~ and as far as they 

are certain, they do not refer to reality." No wonder Einstein strongly objected Pauli's version. This philosophy of Einstein has 

far reaching consequences Itlphysics, atld fiiakes him a disrtnci physic"isi [t01U other theorists. Thus, an application of a theo­

rem (such as Pauli's "equivalence principle") should be examined for its physical relevance although "one cannot really argue 

with a mathematical theorem [28]". This win be illustrated in the nex1 section for the c-ase ofa rotating disk. 
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According to the principle of equivalence, the rotating system K' may also be considered as a system at rest, with respect to 

wrJcb tbere is a gravimtionalfield (field ofcentrifiIgal force, and force ofCariolis) [1]. Thus, the eqUivalence principle enables 

an extension of the principle ofrelativi~V to accelerated motion, and the principle ofgeneral relativi~V is the physical basis of 

covariance. This example illustrates also that Einstein's notion of gravity needs not be related to a source, but can be just re~ 

lated to acceleration (as its cause). For metric (5b), the static aC"~leration is from o,..,fu , a spatial derivative to the time4ime 

metric component. This suggests that gtt corresponds the gravitatiop,.al potential in Newtorjan theory, and the equation of mo­

tion for gravity is the geodesic equation [1,2J. :tvloreuver, the rotating disk case shows not cmly that the spac-e-time continuum is 

a Riemanr,ian space with a Lorentz metric, but also that the frame o/reference neednot be a Euclidean subspace. 

6. Uniform Rotation and Physical Space-Time Coordinate Systems 

In Einstein's theory, it is neces~ry that both space-time coordinate systems K (x, y, Z, t) for a flat space and K' (x', y', z', 

1') for a rotating system have clear physical meanings. Here, it will be shown that the notion that coordinates have no physical 

m.earaing com.es from confJsing an arbitrorf coordinate system (which needs not have a physical meaning) for a Iuathematical 

calculation with a space-time coordinate system <,which does have a physical meaning) in physics. 

In a Riemap""njan space, since the metric !;tv is not restricted as in special relativity, tensor equations are covariant with re-

SPect to any substitutiollswhatever (generally covariant). tvforeover if the space-time continUU1ll in physics is a Riemannian 

space, tbere are nvo am'autageg~i) Pltygicallaws (tensor equation) would §ati~JY the principle ofgen~ral relativity", ii) The caIcue 

lations can be canied out in an arbitrcuy coordinate system. In the 1916 paper, Einsteiil was somewhat Carried away by tIlls 

ne"wfound freedom. Instead of recogrJzing au arbit.."1L.~r coordinate S'fstem as a mat..'tematical tool, he sought to justify this free­

dom in tenllS ofphysics. To argue for ulirestricted c-ovariance, Einstein wrote [1J: 

"T.r.at t..'ili; recrJirement ofgeneral covariance, which takes away from space and time the last reIr..nant ofphysical ob-~ 

jectivity, is a natural one, will be seen from the followingreflexion. All our spac-e-time verifications invariably 

amount to a determination ofspaceetime coincidences. If, for example, events consisted merely in the motion of ma­

terial points, then ultimately nothing would be observable but the meetings of two or morc of these points. fvloceover, 

the results of our measuring are nQtrnng but verifications of such meetings of tbe material points of our measuring 

instruments with other material points, coincidences between the hands of a clock and points on the dock dial, and 

obserr..red point=events happening at t.'te same place at the same time. The introduction ofa ~fstem of reference serves 

no other purpose than to facilitate the description of the totality of such coincidences." 
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However~ tbis would be incompatible with tris earlier statement (l]~ "So~ he wiII be obliged to define time in such a way tliat the 

rate of a dock depends upon ,,;'here the dock may be." ~10reover, while all verifications afi'.oun.t to a determination of space'" 

timecoifjddefices~ to predict such coincidences tbeofetic-ally~ oue must be able to relate events ofdifferent JocatioltS in a defi­

nite manner. (Examples are the gravitational red shifts and the light bending.) 

Thus~ a coordinate system must be related 10 objective pbysical measwements. In fact, as early as 1918, unrestricted general 

covariance was questioned by Lenard [29]. As Eddington [12] pointed. out, Itspace is not a lot of points close together~ it is a lot 

of dis"t.aficesjnterlocked" vnders"tandably, Einsteiu dropped tbe above invalid justificatiou in bis later book [2J, and remarked, 

"As in special theory of relathity, we ha'/e to discriminate behveen time",liY~ and space",Uke line elements in the four", 

dimensional continuum; owing to the change of sign introduced, time-like line elements bave a real, ~pac-e-like line elernents 

an imaginary ds. The time=like ds can be measured directly by a suitably chosen clock." Thus, a space"Coordinate and the time", 

coordinates in physics are not exchangeable as Hawking (28] claimed since they have distinct characteristics and physical 

meanings. Einstein also praised Eddington's book to be the finest presentation of the subject ever written [30]. 

In Einstein's tJ'loory, a physic-aJ space (-time) has a franle of reference and local time coordinates. Since (5b') failed "to de­

fine time in such a wa)' that the rate of a clock depends upon where the cleek may be [1]" ~ and thus metric (5b') together with 

its c-oordinates K* is not a space-time coordinate system, as Einstein defined, that can be used fOf physical meas-UIenient and 

therefore physical interpretation. .AJthough metric (Sb') peas a Euclidean subspace, it is not a physical Euclidean structu.re, and 

is not related to space-time meastlfemeuts. Since K* is not a physic-al space, the equivalence InirlCiple is not applicable. tvfore­

over~ an application of Einstein's equivalence principle would lead to invalid conclusions. In short, for ph)'sical oonsiderations~ 

one must have not only just a matbematical coordinate system, but also a physical space-time coordinate system. 

A general feature in Einstein's general relativity is that the Riemannian space=time peas a Euclidean structure tpeat serves as 

a rranle of reference. Moreover, the Euclidean structure is independent of gravity aI,d thus also the matter distribution. Ifa spa­

tial measurement is performed with a measuring red \l,'}>.1ch is attached to the frame K' (x'~ y', z'), it would appear as Euclid", 

eaD. Since a measuring roo atmched to the system K', would be under the same influence ofgravity as wllat is being measured. 

Thus~ a manifold is physically compatible with the Euclidean structure orJ~y if t1'.1s n'..anifold is a physical space. It is based on 

tbis hliplicit assumption that the cylindrical coordinate system (r', 4J', z') is weU defined in K' for metric (5b). 

With a Euclidean structure, a Euclid-Riemann space shall be called an Einstein space named after its creator. Hm"ever, 

since a Euclidean structure is meaningful only in a physical ~pace, whose validity in tum must have a Euclidean structure, this 

seems to have a problem of logical circulation. In practice, one may first assu.-n:e in priori that a Euclidean structu.--e exists in 
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the Riemannian '"gpace=time" under consideration. Accordingly, physical requirements are verified to confirm the existence of a 

EueHrle-an strlll;lure in a physical space. However~ if trmt fails as the case of metI;c (l7a)~ such a manifold is llOt a physical 

space. Thus, the apparent problem of circular logic does not really exist in general relativity. 

For a unifoluuy rotating fiame~ K' (x', y'~ z\ t') is a physical space that satisfies Einstein's equivalence principle. It will be 

shown that the time dilation and the spatial contraction are results due to comparisons with a clock and a measuring rod in 

relatively rest~ but at the beginning of a free fall According to Einstein's equivalence principle~ such a coordinate system is 

locally ~.1inkowski. To verify this, consider a particle P resting at (r'. 4>', z'). Then, P ha,.Cj the 'velocity of Or in the <»' =direction, 

which is denoted by dx". It follows that the Lorentz coordinate transformation is, 

(24a) 

and 

edt = [1 - (nde)2rl/2 [edt" + (nde)dx"] . (24b) 

Then, 

and (25a) 

and 

(25b) 

These are exactly the tittle dilation and s-patial contractkm as wouid be measured. 

For the coordinate system K* (x', y', z', t), the question of time dilation is complicated be"...ause Einstein's equivalence prin­

ciple is not applicable. Nevertbeles&,let us assume that the Einstein's equivalence principle could be applied to K*. rvfathemati­

cally, for a particle P reming at K*, the state vector ofP is (0,0,0, dt). According to transformation (5), P is also resting at K' 

Wiih a state vel,"iOf (O,O~O,dt'). Then the local ivHnkowski space for P is identical to (25b). It thus follows that 

(26a) 

and 

(26b) 

Thus, 

(26c) 

would be considered as the time dilation since a dock rest at K* has d<P' = O. The problem of this derivation is that the parame­

ter ""f' is not tlie local time for the fraule K' (x', y' z'). Thus, a time coordinate alone has no meaning. 
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Einstein [2] had remarked, "So there is nothing for it but to regards all imaginable systems of coordinates, in principle, as 

eq'..:ally suitable for the description of nature. This comes to reqillring that> The general laws ofnature are to be expressed by 

equations which hold good for all systems of co-ordinates, that is, are co-variant .."iitll respect to an.v substitutions hillatever 

(generally co~variant). " However" while genera! covariance is mathematically valid for aU tensor equations in a Rie1l'..anr.1an 

space, this description of nature by the coordinate system K~ (x', y', z', t) includes certain calculations but not physical illtef­

pretatiollS. Thus, in spite ofthis general covariance, the freedom tou'ard the physical space~time coordinate systems that can 

be used for physical interpretation is severe~v limited by his eqUivalence principle. In general relativity, just as in special rela­

tivity {.I], some mathematical coordinate systems are not physical realizable. 

In Eillstein's general relativity, the spatial Euclidean stFUcture iSre'"lilined. the time coordinate is related to a local clock, and 

a physical space-time is an Einstein space, w.bich satisfies physical requirements s-ufficiently. Nevertheless, some7) still argue 

that Einstein does not have a monopoly on the theory of physics, and Einstein's version differs from Pauli's only in philosophy. 

Such an argument Ir.;ln.ifests that those theorists disregard physical reqillrements as well as woervations. It has been shown that 

Pawi's version has lead to logical inconsistency, in conflict with established physical requirements stich a the principle of cau­

sality, and disagreement with obsef'l~ations {9]. ?\.1oreover, that coordinates in physics have physicallueanings is not limited to 

Einstein's theory, and is as old as phy"sics. For example, Hawking i28J pointed. out, "an arrow of time, something that distin­

guit;hes the past from the fi:hlre" givir~ a direction to time." Therefore., 8 th~e coordinate must be disf.r.ct from 8 space coordi~ 

nate. A fundatnental reason is simply that there are non-scalars in physics. 

1\1oreover, if coordinates have no objective meapjng, a tensor component would have no physical meapjng upJess it can be 

derived in coordinate free notations. i.e., scalars. On the other hand, a tensor component and a scalar can be numerically equal 

orJy for some gpeciu:l coordinateSOi8teIll&. IfSOden a relation ofequality is meaningful in physics, the related special coordinate 

system must have physical meamng. The usage of a physically meaningfw coordinate system is necessary because simply fion­

scalars are involved in physics. Thus, that space-time coordinates have no meaPjng in physics is actually self-defeating in logic. 

7. Light Speeds under Gra"ity and the l\liehelson-~1.orleyExperiluent 

It has been shown that space-time coordinates have and must have physical mea..-rings. The frame of reference of a physic81 

space has a Euclidean structure that, ex:cept fOf its tran.sfofil1atlofi property, IS just the same as an ordinary Euclideafl space. 

Thus., a coordinate light speedS) is meaningfid in physics and is :r£8soJrable. Although Einstein calculated the bending with 

both the isotropic metric and the Schwarzschild metric [1,2], he only assumed fue validity of the equivalence principle. 
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Theoretically, assuming the isotropic metric (11) to be valid in physics, the localli~\t speed would be isotropic, and 

dl l-AfTc/2r -1- 2AfTc where (24)
dt (1+MK/2r)3"'" r' 

However, if the Schwarzschild solution (14) is valid, the light speeds would be directional as follows: 

dp =1- 2MK and (25)
dt P 

Thus, at the surface of the globe, the vertical light speed is different from the horizontal light s~"'d. This means one can use 

the Nllcheison-ivlofley type apparatus to measure the iight speeds to determifie whether the Schwaflsdiild Of the isotropic solu­

tion is more realistic. l~..ccording to Einstein, the !\1ichelson-11orley experiment is not the foundation of special relativity. This 

is actually fortunate; otherwise, one would have to make an implicit assumption tbat tbe effect due to gravity is negligible. 

In the 1'.1ichelson=t....torley experiment, both of the 3I1l15 aa""e in the horizontal position. Therefore, although the effects of g..-.lv= 

ity were unavoidably accounted fot, there is fiO speed difference. (t~ote tnat EifiStelfi did not justify Spec-ial Relativity ofi the 

Michelson-Morley experiment.) However, if one ann is horizontal and the other arm is vertical, a speed diJference would be 

detected should tbe metric be Schw-anschild-type (Appendix). From the experimental point of 'View, of course, the design for a 

vertical and horizontal exchange would be more complicated. 

8. Discussions and Conclusions 

In Einstein's theory of general relativity [1,2], a central issue is to find the space-time metric for the physical Riemannian 

~pace that models the realistic situation_ Since an Einstein's physical space models reality, in such a Riemannian space, all 

physical requirements must be sufficiently satisfied, and therefore cannot be a...--bitrary. This means that a space=time coordinate 

~ystem catifiOl be arbiitaIy an.d lherefute mathematical COVaf'iafiCe mUSt be restricted by pny~ical considerations. it foilows that 

Pauli's version is ir..a<.L~..mte in physics because the existence local Mir.kowski spaces is only one requirement among 11".any. 

Thus, the notion ofa physic-at space is really the foundation of general relati'Vity. 

An Einstein's physical space (=time) has a frame of reference and a time coordinate for the descriptions of local time in 

phy&1c (1,2]. However, Mfice the space is cuNeO, the fiotion of a frame of reference \mdear to theorists such as Fock {i5] who 

associated a frame of reference with a flat three dimensional space. t-.1oreover, from this pure mathematical approach, they [15, 

31) concluded that Einstein's equivalence principle and tbe principle of general relativity are invalid [15, 31]. In tenus ofphys­
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ics, however, the frame of reference is also associated with a Euclidean structure, whicll is independent of the invariant line 

element of the spaceetime metric. Thus, the space coorditlates have a very clear physical meaning. h.10reover, based on t..lte De.­

tiou of a Euclidean stFacture, a space-tune metric can be found for a uniformly acceler-ated frame to support Einstein's equiva­

lence principle. Thus, t.1ris cla..f"jfication of t.1:te fran'laC of reference also proved that the objectJon ofFock is aetuaUy invalid Ein­

stein [1,2] has shown tbrough the case of a unifonnly rotating disk that, for a given frame of reference, a time coordinate fOf 

local time ca."} be determined. Now, it is clear that space--time coordinates have physical meanings. 

Currently Pauli's version of equivalence principle is either mistaken as the same as Einstein's equivalence principle for 

those regarded t.lteir work as part of general relativity. or used to replace Einstein's 'version for those regarded their work as 

theories ofgravitation. A reason of the prevailing of such misunderstandings is perhaps due to tllat Einstein's equivalence prin­

ciple has not been explained precisely. Now, with the notionof' Euclidean structure, for the fi....st time, Einstein's equivalence 

principle is explained clearly aud precisely. Since Einstein's equivalence principle plays a cFacial role in detemIining the valid­

ity ofphysical space. the notion ofEinstein's physical space is also clearer. 

It is on this theoretical basis tlIat one call further investigate the realistic gauge for a given frame of reference. For insumce, 

now the physical mear..ing of the local light speeds has been clar'Jied, it makes sense to meaS-,lfe them directly with. for in­

stance, a Michelson-rvlorley type experiment. It is hoped that tlIe proposed new experiment would farther help clarifying the 

relationship between the frame of.reference and the notion of gauge. Then, it would be possible to verify whether the Maxwell­

Newton Approximation [9,32], the linear equation for weak gravity. is directly valid in pbysics. 

A1oreover, it i§ also hoped that, by clarit)ring some cu..~t theoretical misconceptions and confusions, general relativity 

would progress and renew 'Witb added vigor. In particular, Pauli's version, thougll once prevailing, bas been proven as inade­

quate in physics. It leads to in direct conflict with est~blisbedphysical principles and obse.."Vations. For example, based on Pauli 

version, Penrose [33] accepted an intrinsically unphysical Lorentz manifold as valid in pbysic-s since such a manifold cannot be 

diffeomorpr..ic to a physical space {9). ..4:.8 shovm, it can lead to invalid theories. Thus, it is necessary to review theories. which 

were based on Pauli's versioll, in terms ofEinstein's equivalence principle. 
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Appendix: The Vertical Laser Interferometer Gravitational Experiment 

A laboratory light S is focused on a thinly silvered glass plate P which divides the light into two beams at right angle to 

each other~ one of wpJch goes to n~Jrror Mj and is 

reflected back tbrough the plate to Bland the other 

of which goes to mirror M2 back to the plate, and is 

reflected to B2. The distance from Ml to Pis d], and 

the distance from M2 to Pis d2. The vertical light 

speed is (c- vu) and the horizontal light speed is (c -

Vh). Vu can be considered as a constant if the change 

s 
of r (or p) is small in comparison with Re the radius

O~--nt==+=====~==--4 

of the earth. The mirrors take the top position alter­

natively. When mirror Mj is at the top (or altema­

lively at the oottom), the time i1 taken by the light to 

go from Pto MI and back to Pis tj = 2d]/(c -- v,,), and the time t2 taken by the light to go from Pto~V2 and back to Pis t2 = 2 

d1/((; - vIJ. Then, the time difference is 

{ d2 d1 JM=/2 -tl =2l------- • (AI) 
c-vh c-vu 

When mirror M2 is at the top (or at the bottom), the time t'2 taken by the light to go from P to M2 and back to Pis t'2= 2 d2/(c 

Vu), and tbe time t '} taken by tbe jig..ltt to go from Pto ..Mi and back to Pis t '} = 2 dj/(c", vn}. Tl1en, tlle titne difference is 

(A2) 

Then, 

(A3) 

is the total time difference that corresponds to a distance approximatel)', since both Vu and Vh are much str.aUer than c, 
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wbere� (A4) 

For the isotropic gauge, Av::= V u -Vh =O. However, for the SChwarzschild solution, ,,'e r..ave 

wl1ere Re =6.378xl06 meter,� (A5) 

is the radius of the earth,1\.1 is the mass of the earth, and G is the coupling constant in Nelvtonian theory. Thus, the second fac= 

The wavelength ofvisible liy'rt is of the order of 5000 A. If the e:"{pected effect is a fringe shift of about oile-tenth ofa 

fringe~ then Ad stroilld be 500A {33]. Then~ tlie required total length ofttie aJIliS is larger tllan that ofMichelson-l\rfofley, 

(dj� + dLJ ~ 36 meter (A6) 

racy. The accuracy of the experiment would increase as the arm length.«i increase. !'Aoreover, the effective arm length would 

rr-lCfea5e seveIaI nlnes, by causing each pendl to be reflected back and forth between a nurrtber ofm.blors (I]. Note also that the 

top, bottom and horizontal alternative po~tions wmdd help detecting the effects of mechanical mretch and compression. 

Endnotes 

1) In vie'''' of (16), the Schwarzschild solution and the isotropic solution actually give slightly different predictions. 

2) Einstein's objection jnade dear tImt his own version ofinfinitesimal equivaleJlce J?1;ndpIe is distinct from Pauli's. 

3) Fock [15] was aware of that Einstein's principle is related to the frame of refere...-tce and acceleration. However, Fock. re= 

lated a frame of reference with only a Euclidean space, instead ofa Euclidean structure fi9) (e.g., ds2 = (c2 - 2U) dt2- (1 ­

2U/c2t 1dx'2- (dy2 + dz2), and c'2 > 2U(x, t) = 2a (x - C) >- 0, where a is an acceleration in the x-dirC\.---tiOll, and C is a con­

sumt). Consequently, Fock claimed tbat Einstein's equivalence principle and bis principle of relativity to be invalid. 

4)� The time=tested assumption that phenomena can be explained in terms of iden.tifiable causes is called the principle ofCQU= 

-,'atity. This piinciple is the basis of relevance for all scientific inve:>ug;ttions. Tbis principle implies tbat tbe gravitational 

radiation must have sources and any parameter in. a physical solution must be related. to some physical causes [8,9]. Thus, 

if an i.liipbysicaI parameter exists in the metric, such a fllanifold would :not be diffeomorpbic to a physical space [18]. 
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5)� Landau & Lifshitz [22] is well studied in the West [25]. Based on Pauli's version, the S(Xalled "physical condition" is: 

gOl g02 
gOI g03 ]goorgoo gml r gJlglO gl2

&0>0, IgOO gOI((_I) >0, glO gIl and� gJ3 (-1»0.
g'2 J> 0,

g10 g11� g20 g21 g22 g23
1 

1920 g21 g22 
Lg30 g31 g32 g33 

This inadequate physical condition is satisfied by metrics (5b'), (17a), and (18b). 

6) Supporting the view of Eins""u;in, Weinberg [13, p.3] declared, "In my view, it is much more useful to regard general rela­

thily above all as a theory of gra,itation, wh05e connection 'with geometry ari5es from the peculiar empirical properties of 

gravitation, properties sWIooarized by Einstein's Principle of the Equivaiencc of Gravitation and Inertia." 

7)� Currently, the question of whet.h.er Pauli's version is equivalent to Einstein's has not been settled. Some theorists such as 

Wald [34], Straumaiin [4], Liu i23], and Yu [24] belie-ved that they are equivalent. On the other hand, some theorists such 

as Pock [15] and Ohanian, Ruffini, & \\'heeler (31), who believe they are not equivalent, rejected al80 Einstein's principle 

of generai relativity Wid called their books a theory ofgravitation. 

8)� Some theorists (23} define light speed as dl/dt, where df2 is defined by the local distance fonnllia (l7a). !imvever, unlike 

the coordinate light speed lk-fined tTy Einstein [1,2J, such a pure mathematical quantity has no basis in physics. 
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