FPRINT- 02-0 3

An Experiment on Local Light Speeds to Test the Gauge
and

Einstein’s Physical Space in General Relativity

RAS

C.Y. Lo

Applied and Pure Research Institute

17 Newcastle Drive, Nashus, NI 83660

i

0 11L0 0092421 1

March 2002

Absiract

It is shown that Einstein’s notion of physical space, that is, a Riemannian space which models reality, is the key to under-

stand Einstein’s theory of gencral relativity. A frequeitly ignored requirement for a physical space is that all physical require-
ments must be sufficiently satisfied. It is noted that if the measuring instruments are attached to the frame of reference, since
the measuiing insiruiticnis aind the coordiniates being measuied are under the samie niftuence of gravity, a Euclidean space
structure emerges as if gravity did not exist. This Euclidean structure clarifies the meaning of space-time coordinates and Ein-
siein’s equivalence principle. Then, it becoines necessary to investigate the actual gauge in reality. It is proposed that the real
gauge for the gravity of the globe would be identifiable by measuring the local light speeds. Concurrently, it is pointed out that
ihe belief that space-iime coordisiates have no physical meaitifig, is incompatible with Einsieiit’s equivalence principie and ob-

servations, but is related to Pauli’s version to which Einstein ohjected as inadequate in physics. It is pointed out that Pauli’s

aAvacs

version is responsible for the acceptance of inirinsically unpliysical Lorentz manifolds as valid in physics. It is shown through a
counter example that the loca! distance formula of Landau and Lifshitz, which is based on Pauli’s version, is invalid. Thus, it

would be necessary to review theorics, wiich were based on Pauli’s version, in terims of Einstein’s equivalence prisiciple.
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1. Introdaction

In general relativity {1,2}, Einstein models the reality as a Riemanuian {(to be wiore precise, pseudo-Riemaniian {3.4})
space-time, which is characterized by a space-time metric g that can be determined by the distribution of matter and the motion
of the frame of reference. Since gy is related measuremenis of space and tine, the notion of physical space was esi hiished.
In Einstein’s physical space, not only that space-time is curved (Riemannian), but also that space-time is never empty - 2

property that some theorists such as Synge [5] still do not accept. in 1954, Einsicin [6] wrote,

“For the functions gy describe not only the field, but at the same time also the topological and metrical structural

properties of the manifold. ... There is no such thing as an empty space, i.€., a space without field. Space-time does

not claim existence on its own, but only as a structural quality of the field.”
A physical space, by definiiion, is non-local atthough it may not be giobal as the case of Einsicin’s uniformily r
Moreover, since Einstein’s Riemannian space-time models reality, all the physical requirements must be sufficiently satisfled

by the space-time metric gj. This is an important, but oficn ignored, requirement for Einstein’s Riemannian space (-timc).

This nomenclature, “physical space” was used by Einstein as if well understood, for instance, in his correspondence to A
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7]. However, the fact is that currenily some professional relativisis sitll ask whiai is a physical space because Einsieiit’s

physical space has been incorrectly replaced with a Riemannian space with just the proper metric signature [8 9], Conse-

o NATRLI

quently, many theorists simply do not consider aiy physical requirement beyond the signature of the metric. This omission of

the notion of physical space, the foundation of general relativity, is the root of many current theoretical difficulties that lead to

invalid theories, iiicluding ihe accepiance of unphysical metric soluiions [10]. For insiance, Einsiein's equivalence principie is

applicable only to a physical space, but not an arbitrary Lorentz manifold (see Section 4). Thus, to apply this principle cor-
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rectly, one must show also that physical requiremenis are sufficiently satisfied in a Loreniz manifold, as Einstein did {1,2].

One might argue that a physical space has not been defined precisely because the physical requirements have not been de-

fined completely. This analysis shows that such an ambiguity could be a source of misunderstanding, but ihis notion is probably
defined as good as it could be in a physical theory. In fact, Einstein has indicated the difficulty of presenting general relativity
“precisely” as mathematics or even in the degree of Maxwell’s theory. He wrote in 1916 |1} the following:
"It is not my purpose in this discussion to represents the general theory of relativity as a system that is as simple and
logicai as possible, and with the minimum nuimber of axioms; bui my main object is (o develop this theory i such a
way that the reader will feel that the path we have entered upon is psychologically the natural one, and that the un-
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deilying assumptions will seem to have the highest possible degree of security."




Perhaps, this psychological approach left too much ambiguity to be imagined incorrectly. Note that, according to Chandra-
sekhar [11], Eddington cannot find a third person, who understands general relativity. This is supported by Eddington’s book
[12], where he also criticized Einstein’s understanding.

There are some basic differences between mathematics and physics. In mathematics, things have to be defined precisely
However, being guided by reality, physicisis define things only 10 a certain exient and improve their understanding laier as fur-
ther facts are known. For instance, the notion of energy was initially referred to mechanical energy only. Thus, many physica
concepts simply cannot be defined as in mathematics, although they can be explained adequately.

In this paper, Einstein’s physical space is explained and illustrated further with some examples. To this end, some related
concepts musi be clarified concurrently. These include Einstein’s equivalence principle, Einsicin’s measurement, covariance,

ce-time coordinate system, and the notion of gauge. Finally, an experiment on local light speed is proposed to help deter-

mining the still unsettled question of a valid physical space (see Section 7).

2. The Question of Gauge in General Relativity

In gencral relativity, the non-linear Einstein's field equation of 1915 version {1,2] for a space-time metric g ab iS
= 1 = .]
Gah ERp 2R g‘di’) KT(m)ab R (1)

where R , is the Ricci curvature tensor, its source T(m) ,, is the energy-stress tensor for massive matter and can depend on g,

However, among these 10 equations of tensor compenents, only six of them are independent, since

VG, = 0. )

Note also that for G, (a=x, y, z, t), there is no second order time derivative [13,1 141 Thus, for eq. (1), the initial condition o
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chy probierii is restricted by four consiraints. Thus, to solve Einsicin equation (1), four more conditions are needed.
st X

These four additional conditions are attributed as due to a certain freedom of choice of coordinates in the physical Rieman-

mian space, and are called the gauge conditions. An ofien-used gauge is the harimonic gauge condition {13,15],

12gaby =
ar“ (fgf g™} = 3




where g is the determinant of metric g,;. There arc two extreme views on the guestion of gauge: i) Fock [15] argued that the
harmonic gauge is the only physically valid gauge. It will be shown with a counier exafupic {5b) thai this is not true. ii) A
popular view is that the gauge condition is arbitrary although such a notion was rejected by Eddington [12]. Moreover, it has

been shown that this assumption of arbitrary gauge can lead o the acceptance of unphysical solutions {10,16-18].

To illustrate the notion of gauge, let us consider the simple case of a flat metric for a system K in special relativity, te.,

dszzczdtzwdxz_dyz_dzz, (4a
The units are centimeter and second, and c is the speed of light, 3x10'% cm/sec. This metric satisfies the equation
G,,=0 (4b)

Of course, there are other solutions that satisfy (4b). The specific solution would be determined by the physical conditions in-
volved in the chosen coordinate sysiem. For instance, if the frame of reference of a chosen coordinate system has no accelera-
tion toward K, it can have only a uniform velocity v, which has three components, Therefore, these four conditions determine
that the solution is just another flat metric.
For a uniformly rotating disk, Einstein [1,2] considercd an inertial system of reference K {x, v, z, ty and a system K’ (xX°, ¥°,
z’, 1’} inn uniform rotation 2 reiatively to K. The origins of both sysicms and their axes of z and 2’ permanently coincide. Then,

it can be shown that the metrics of K and K [1,3] are respectively as follows:

ds?=c2di? - dr? - 12 d¢? - dz? where x =r cos ¢, y=rsin¢, (5a)
and

ds? = (2 - QY dr? - dr? - (1 - QU r2 dp2 - dz?, (5b)
where

xX’=rcosy, y=rsing, r=1r, Z=2Z, and d=¢ + Q. (5¢0)

The local time of metric (5b) is ¢, and the local transformation between metrics (5a) and (5b) is
dp = db - Qde; (6a)
and

cdt’ = [edt - (1¥c)rdd[1 — (1K¥e)2)? . (6b)

Again, four conditions, i.¢., the rotation axis and the rotational velocity, determine the metric (5b). Then,




$ds=(1 - Qrctyl2r L7 dg = 2mr(1 - Qr2c?y12 o

et

would be the circumstance of a circle of radius r’ (= r) for an observer in K’. Thus, Einstein concluded that with a measuring
rod at rest relatively to K, the quotient of circumstances over diameter would be greater than x, and Euclidean geometry there-
fore breaks down in relation to ihe system K. The hariiionic gauge in terius of (X, y, , 1) is saiisfied for the flat meiric {5a), bui
is not satisfied for metric (5b). This illustrates that the understanding of Fock on Einstein’s theory is incorrect.

Another observation is that once the frame of reference is chosen, the metric and thus the gauge is determined. Neverthe-
less, for the metric due to an isolated spherically symmetric mass distribution, the gauge seems to still have a freedom (see Sec-
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tion 3). To clarii)
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his quesiiof, one must undersiand first what are the physical meanings of the space-time coordiiaies. Let us

start with Einstein’s notion of distance in general relativity.

3. Two Kinds of Complementary Distances and the Metric Solutions

In special relativity [1], the four-dimensional continuum (X, v, z, t) of physics has the line element in the special form
2 3 2
ds? = c2ai2 - dx2 - dy? - @2, ®)

However, although Euclidean geometry is abandoned in the sense of invariance, a Euclidean structure is nevertheless pre-

served. The spatial distance d (Py, Py) of two points Py (x4, vy, Zp) and P, (%, ¥,, Z,) in the frame of reference is still

d(P], Py= [(XI “Xz)l + (yl "Yg)z + (ZI - 22)2}1’/25 &)
In general relativity, the situation is different since the line clement is generally

”V

where g, is a general space-time metric in a Riemannian space. Note that, to obtain a local infinitesimal measurement, (8) is
used in (the infinitesimal form of) Einstein’s equivalence principle [1]. Thus, form (8) is not abandoned, and what has been
abandoned is ihat form (8) be considered as an invariant. Moreover, aithough one may not expect 1o derive formula (9) from
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(10}, in 2 different way, the Euclidean structure formula (9) is actually also preserved




To illustrate such a notion of distance, let us consider a solution of metric of S (X, y, z, ¥} in the isotropic form [13],
s a FieY \21/1 R Y Y, 21 _2 V) L A \4 dxz N 2 + d22 (11)
(1 — Mx/20y°7(1 + Mx/20)°]dt® - (3 + Mx/21)" (dx* + dy }

where M is the tota! mass of a spherical mass distribution with the center at the origin of the frame of reference K (X, y,2),r =
[x2 + y2 + z2}"2, and « is a coupling constant. Since the metric is a function of r, which is defined in terms of the Euclidean

structure E (x, v, ), the Euclidean structure is necessarily included in such a Riemannian space-time of Einstein.

P T¥

In fact, Einsicin {1] made clear that the light velocity is “defined in the sensc of Euclidean geometry.” However, he did not

clarify such geometry in terms of physical measurements {see also Section 6). Currently, many theorists incorrectly claime

. It

i although “Euclidean peomeiry breaks down {1]” in the mvariant

PO S 2 )

ihat coordinate light velocity has no meaning. Noie that th

line element ds? (5b), a Euclidean structure is necessarily preserved such that ¢’ is well defined in (5¢).
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If Einsiein’s equivalence principle is valid, at any point of the frame of reference of K, ihere is a local Minkowski space with
cy P Y Spal

ds? = 3412 - @X? - dY? - dZ?, (12)
such that

dT? = [(1 - Mx/20) (1 + Mk/2r) 4di? (13a)
and

di? = @X? +dy? + az% = (1 + Me/20* (@s? + dy? + d2?) (13b)

Then, time difation and spatial contraction are obtained as measured {1,2]. However, the physical meanings of formula (13)
and metric (11) are clear only if the meaning of parameter r has been determined.

Now, consider also the Schwarzschild solution of S (X, vy, 2", t

S

ds? = (1 - 2Mw/p)dr’? - (1 — 2M/p) ' dp? - p?d0? - p? sin®6dg?, (14)
where

xX’= p sin@ cosg, ¥y’ = p sin® sing, 2’ = p cosb, and p=[x2+y2+222

M is the total mass of a spherical mass distribution with the center at the origin of ihe frame of reference K’ (x°, v°, z°). If Ein-

stein’s equivalence principle is valid, at 2 point resting at K, there is a local Minkowski space (d¥X, dY, dZ, cdT) such that

d1? = (1 — 2Mx/p)dr? (15a)

and

di? = dx? + dy? + dz% = (1 - 2Mip)ldp? - p2do? - p? sin*ode?, (15b)
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Then, time dilation and spatial comiraction would be obtained as measured | 1,2}, Noi€ inal tne space contraciion is directional
and no longer isotropic. However, the physical meanings of formula (15) and metric (14) are clear only if the meaning of pa-

p =11 + Mx/2ry’, for  p>2M, (i6)
thien meiric {11) and (14) arc mathematically equivalent. The coordinates K (x, y, #) and K° (X', y°, 2’) are related io the

b de B B R a Seo
shown above, Einstein’s measurcment instrumenis arc resting reltative o the franie of reference, but in
hen, time dilation and space centraction are obtained. On the other hand, for 2 measuring rod attached {o the coordinate sys-
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z are under the same gravity, a Buclidean space straciure would emerge as if
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gravity did not exist. The Euclidean structure obeys distance formula (9) and is independent of the gravity invelved. Thus, in
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general relativity, space coordinates actually have a very clear phivsical meaning. Then, as Einsiein {1,2] poiiited out, the time
coordinate will be determined by the requirement of representing the local time.

If S is a physical space related to reality, the coordinate sysiems K {x, y, zJ does have the meaning of a Euclidean struciure

in terms of direct physical measurements. The same arguments would also be applicable to S°. However, metric {11) and metric

»

(14), though mathcmatically related, have different types of spatial contraction. Thus, only on€ of S or S’ can be a phiysicat
space and the two gauges are not equivalent in physics. On the other hand, since r and p are the same in the first order ap-
proximiation, these metrics were not distinguishable experimentatly? for ihe case of gravitational red shifis, light bending and
perihelion of Mercury. Fortunately, for the case of local light speeds, metric (11) and metric {14) would be different in first or-

A

). Thus, a valid physical space, in principie, can be determined experimentaily.

>

der (Sc‘ Section

To this end, one must address a current belief is that coordinates have no physical meaning. Such a belief is actually unre-

N

i [20]. Nevertheless, Pauli’s version “is now commoiily but mis-

lated to Einstein’s equivalence principie, but to Pauli’s versi

33

takenly regarded as Einstein’s version of the principle {21]” in spiie of the faci that Einsiein sirongly objecied® Pauli’s version

as a misinierpreiaiion j21]. A reasoti could be ihai this version is supporied aid required by uiresiricied mathematical covari-
ance that Einstein scemed to argue for in 1916 (see also Section 6).

Although Einstein deleted such arguments in his later book |2}, the damage has already been done. Pauli’s version and coii-

sequently unrestricted covariance were insisted on. The belief that space-time coordinates have no physical meaning was re-




garded as a “standard” theory by some theorists. This mathematical approach has made general relativity become a physical
theory ofien in name only. In addition to leading to logical inconsistence, such a belief disagrees with established physical re-
guirements such as the principle of causality and observations (Sections 4-7). Thus, such a believer not only disagrees with
general Telativity but also is wrong. Neveriheless, many iheorists managed 10 not seeing such problems.

For instance, based Pauli’s version, a formula of local distance (Section 4) was derived by Landau & Lifchitz [22]. This for-
mula was also produced by Liu {23] and Yu {24]. Not only was such a formula not challenged {25] but was used by Zel’dovich
& Novikov [3] with great faith. It will be shown with a counter example in Section 4 that such a formula is not valid
4. Bifferences of Pauli’s Version from Einstein’s Equivalence Principle

For the convenience of discussion, let us state first Pauli’s “equivalence principle” [20] as the following:

“For every infiniiely smail world region (i.e. a world region which is so smaii that the space- and time-variation of
gravity can be neglected in it) there always exists a coordinate system K, (X, X,, X3, X)) in which gravitation has
no influence either in the motion of particies or any physical process.”

Thus, Pauli has mistaken a conseguence, the existence of local Minkowski spaces, regarded as the equivalence principle itself.

1 Pauli’s version, the equivalence between acceleration and graviiy was niof even mentioned. Note that, undike Einstein’s

o]

physical space, here Pauli’s “world region” is only a mathematical notion [20]. Pauli’s misinterpretation becomes a seriou

un
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problem when it leads 1o the belief ihat any Loreniz manifold be regarded as valid in physics.

Different from Pauli version, Einstein requires additionally: i) “the special theory of relativity applies to the case of the ab-

[

senice of a gravitational field {1, p.1151” and ii) a local Minkowski space is obiained by choosing the acceleration. Einstein [1,

p-118} wrote, “... we must choose the acceleration of the infinitely small (“local™) system of coordinates so that no gravitationa!

field occurs; s 15 possibie for an infindicly small region.” As poinied oul by Fock {15], the notion of acceieration with respect
to a three-dimensional frame of reference?) is essential in Einstein’s theory 1,2}

) W A

Moreover, point i) implics that the Minkowski space is the only valid constant metric when gravity is absent. Point ii) im-
plies that acceleration to a static particle must exist. Let us illustrate these points are necessary with some simple examples.

Exaniple 1. Consider a Lorentz manifold L (x, v, z, 1) with its constant metric,

ds? = 4c2di? - dx? - dy? - 92, (17a)

where time unit is in sccond and length unit in centimeter. Metric (17a) implies that the “light speed” is 2c in the x~direction.




Mathematically, one can obitain a local Minkowski space {(dX, dY, dZ, dT) with the local coordinate transformation,
dX =dx, dY =dy, but dZ =3dz, and dr=24dt. {17b)

Thus, Pauli’s version is satisfied. However, Einstein’s equivalence principle is not satisfied since there is no acceleration to

se from such that a local Minkowski space can be obtained Moreover, special relativity is not applicable in L.
AU S NG UNUNPC W UPRE RPN LTI P L Ay e Ao e 202 Al Al
Neveriheless, oni¢ might argue that the rescating, 2t = ¢, and 3z = 2’ would transform (17a) to ds* = ¢°ai™* - dx* - d@y~ —
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dz°2. However, this new metric form does not make L a Minkowski space sinice the unit of {” is %2 second. Note that a rescaling

s no physical content, but ihe local coordinate transformation (176) meais the ratic of two locat clocks j1,2].

Example 2. Consider the Galilean transformation from an inertial system K (X, v, z, § to the K' (X", ¥, 2, 1)) coordinates,
X=X, y=y, z=z'-, and t=t, (18a)

where v is a constant. Eq. (18a) transforms the flat metric (1) to another constant Lorentz metric

= [d + (0 - VAT + (c + Vi) dx? -y, (18b)

Thus, Pauli’s version is satisfied in K’. However, since (18b) failed “to define time in such 3 way that the rate of a clock de-

pends upon where the clock may be [1]”, according to Eiastein, ihe consiani metric {18b) is aiso invalid in physics.

Now, consider an observer P' resting at a point in K’ Mathematics ensures [1.5] the existence of a local Minkowski space

X, dY, dZ, dT), the local orthogonal tetrad of P, whose direction vp- is (0,9,0,dt)). Then,

di' = y(dT - vic2dZ), dz'=ydZ, dx'=dX, and dy'=dY, where vy=(1-v3c?)12 (18¢c)
is the correspondiiig transformation. Thus, (dx', dy', dz') and {(dX, dY, d2) share the same frame of reference because there is
1o accelcration or motion. However, therce is a spatial contraction and thercfore the principle of M--santv“) is violated.
hese examples illustrate also that, in Einstcin’s general relativity, the space-time mstric and the frame of reference play

crucial roles in the notion of a physical space-time. In Pauli’s version, however, because only the metric signature is consid-
ered, ihe question of physical space is ignored [ 18]. Moreover, if a coordinaic-independeni physical principie is violated, & Lor-

entz manifold needs not be diffeomorphic to a physical space [9]. It follows that Pauli’s version is intrinsically inadequate in

physics {8}, and thus would lead to incorrect theorics that cannot be remedied.
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Based on Pauli’s version, Landau & Lifshitz {14}, Liu [16] and Yu [17] derived the local distance formula for an arbiteary

space-time metric®). Their result stated that the final formula for the square of the spatial distance di? is.
8 where o 8= ."
%= -I84p ~ Bo Bop’ Boo) dx™ &= where a, P=12,3 (19a)
for
ds? = goo{dXO)? + 2 go, dx0dx® + g g dx* AP, where g5 > 0, (15b)

which is part of the inadequate physical condition®. The problem of (19) is that gy, may not be valid for the local time since
oily ihe meiric signature is considered in Pauli’s version. This uncertainty will be shown with two examples.

For instance, let us substitute transformation (6a) to metric {5a) and obtain the metric,

as? = (c? - QY di? - 2002 d¢dt - dr? - 12 dg2 - dz2? (56"

for the coordinate system K* (x’, y’, Z°, 1), which alsc has 2 Fuclidean subspace (r°, ¢, 2°). Note that the mathematical system
K* (x’, v, z’, i) is noi a physical space-time coordinaic system for ihe uniformly roiating disk K’ because what measured in a

4’

resting local clock is time ¢’ but not time ¢ that remains associating with the inertial frame of reference K. From (5b),

B
¢

Zel’dovich & Novikov {3], based on formula (19), obiains

dl = w’l 4 (1 g?,r 'ZI,\Q. 2 A¢‘ %_ 2’ (203)
and
cdt’ = cdi - (rCUyrdd |1 — TV (200)

IO 8%

which agrees with metric (5b). However, according (19), from the constant metric {18b) ong obiains

di?=dx? + &2 + (1 -V 2. 21a)

and
cdt” = cdi + (v/c)dz’[1 — {(vic)?j? (21b)

Foriuia (Z1a) 15 clearly incorrect for a local disiance in ihe case of no gravity, and 1” is 1ot the local time. (21) is related to
ds? = (1 - v¥c?) 2di? + dx"2 + dy’? + (i - v¥e2yidn 2, 22)

P PR

which, though a constani metric, is not the flat metric of the Minkowski space for special relativity.
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Mathematically, the derivations of (20) and (21) are identical. However, the pliysical situations are different. Physically,
there ic acceleration in the case of uniform rotation, but the Galilean transformation (18a) does not produce acceleration. This
illustraies thiat Pauli ’s version is inadequate in pliysics. Now, let us clarify Einstein’s equivalence principle further.

5. Einstein’s Equivalence Principle, the Principle of General Relativity, and Riemannian Space
In 1911, the initial form of Einstein’s equ principle is the assumption [1,26] that the mechanical equivalence of ai
'Lnrt_.a! sys{ m K nndera nugifnm

2aNF2 3%

3
:
3
£
3

tional ficld which generates a gravitational acceleration v (but, system K is free from

Tee 0
b

acceleration), and a system K' accelerated by y in the opposite direction, can be extended to other physical processes. This imi-
tia! form was further developed for a curved space [1,2]. However, Einstein’s equivalence principle was often questioned be-
cause of misundersianding. Syiige |5} professed his misunderstandings on Einstein’s equivaience principle as follows:
“_..] have never been able to understand this principle . Does it mean that the effects of a gravitational ficld are indis-
tinguishable fromi the effecis of an observer’s acceleration? I so, it is false. In Eiusicin’s theory, either ithiere ravi

is a gravi-
tational field or there is none, according as the Riemann tensor does or does not vanish.”

Currently, misunderstanding persists. For instance, Thome [25] criticized Einstei

“In deducing his principle of equivalence, Einstein ignored tidal gravitation forces; he pretended they do not exist. Ein-

stein justified ignoring tidal forces by imagining that you are (and your reference frame) are very small.”
Apparently, Thorne did not read E

e

instein’s correspondence with others

thers on this problem of tidal forces since it was clearly an-
swered by Eunsteiin. For instance, i his Ju

“The equivalence principle does not a

!

ery gravitational field (e.g, the one associated with the Earth) can be
produced by acceleration of the coordinaic system. 1t ondy asseris that the gualities of physical space, as they present
themselves from an accelerated coordinate system, represent a special case of the gravitational field
Einstein {21} explainied to Laue,

“what characierizes the existence of a gravitational field, from the empirical standpoint, is
the non-vanishing of the Iy (field strength), not the non-vanishing of the Ryy,,.” and no gravity is a special case of grav-
ity®. 1t should also be noted that Einstein insisted, thiroughout his life, on the fundamental imiportance of the principie to
general theory of relativity. Norton pointed out that Einstein’s insigtence on thi

on this point has created a puzzle for philosophers

and historians of scienice {21]. This shows how much was Einstein’s principle being understood in termis of physic
Einstein believes, “The law of physics must be of such 2 nature that they apply to systems of reference in any kind of motion
Since the effects of a uniforimly 1

rotating cannot be equivalent to the effects of a linear

0')

{principle of geueral relativity).”
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eration, Einstein’s principle of equivalence, if exact, is really the equivalence of the effects of an accelerated frame ta a re-
Inted kind of uniforsm gravity whereas others incorrectly perceived that any gravily is equivalent to a uniformly accelerated

frame. In other words, Einsiein musi have realized that his initial equivalence principle illustrated only an idealized case.

These two principles also lead to [1.2] regarding the geedesic equation of the space-time metric g,

o aP

g2 rH# 0, 23a
PEIAR R 232
where
2 _ My p’o_ . uv <
ds” = gﬂvdx dx” Faﬂ = (6agy +(?ﬂgva ﬁygaﬂ)g /2, (23b)

as the equation of motion for a particle under the influence of only gravity since the acceleration to a particle under gravity is

independent of iis mass. Thus, gravily is due io ien meiric clemenis. For a resiing particle, ihe acceleration is due to the
Christoffel symbol TR, (11 # t). The geodesic plays an important role because Einstein used it to decide whether the metric is

valid in physics. For insiance, he used it to obtain the perihelion of Mercuiy {1,2].

An important but ofien omitted point is that Einstein’s equivalence principle is applicable only to a physical space in whic

. A

ail physical requiremenis are sufficienily satisfied since Ais Riemannian space models the reality. In deriving his formula for
the bending of light rays, Einstein [1,2] used the infinitesimal form of his principle, which is a generalization of the initial form

Y o

that the coordinate system fias a frame :ference and requires the exisience of a local Minkowski space (dX, dY, dZ, odT) at

any point [1]. The local coordinate transformation to local Minkowski metric along a time-like geodesic curve is,

JXY“
dxe = 5—,dy“ (23¢)

v

To determine the physical validity of a geodesic, Einstein [1,2] examined both the cause of and the consequence of (23c).
Einstein {27] poinied out, "As far as the prepositions of mathematics refers to reality, they are not certain; and as far as they
are certain, they do not refer to reality." No wonder Einstein strongly objected Pauli’s version. This philosophy of Einstein has

H R T R e

far reaching consequences in physics, and makes him a disiinct physicisi from other theorisis. Thus, an application of a ihco-

rem {such as Paunli’s “equivalence principle”) should be examined for its physical relevance although "one cannot really argn

LIV Xy K g

with a mathematical theorem {28]". This will be illusirated in the next section for the casc of a rotating disk.
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According to the principle of equivalence, the rotating system K’ may also be considered as a system at rest, with respect to

which there is a gravitational field (feld of centrifugal force, and force of Coriolis) [1]. Thus, the equivalence principle enables

an extension of the principle of relaiivity to accelerated motion, and the principle of general relativity is the phivsical basis of
covariance. This example illustrates also that Einstein’s notion of gravity needs not be related 1o a source, but can be just re-

lated to acceleration (as its causc). For metric (5b), the static acceleration is from J,g, , a spatial derivative to the time-tim

“

metric component. Thic suggests that gy corresponds the gravitational potential in Newtonian theory, and the equation of mo-
tion foi gravity is the geodesic equation [1,2]. Moreover, the rotating disk case shows not only that the space-time continuuin is

a Ricmannian space with a Lorentz metric, but also that the fame of reference need not be o Euclidean subspace.

6. Uniform Rotation and Physical Space-Time Coordinate Systems

In Einstein’s theory, it is necessary that both space-time coordinate systems K (x, v, z, t) for a flat space and K’ (X, v°, 2°,
) for a rotating sysiem have clear physical meanings. Here, it will be shown that the notion that coordinates have no physical
meaning comes from confusing an arbitrary coordinate system (which n not have a physical meaning) for a mathematical
calculation wiih a space-iime coordinaie sysiem (which does have a physical meaning) in piysics.

In a Riemannian space, since the mefric g,,, is not restricted as in special relativity, tensor equations are covariant with re-
spect to any substitutions whaiever (generally covariant). Moreover if the space-time continuuin in physics is a Riemannian
space, there are two advantages: i) Physical laws (tensor equation) would satisfy the principle of general relativity. ii) The calcu-
lations can be carried out in an aroitrary coordinaie system. In the 1916 paper, Einsicin was somewhat carried away by this
newfound freedom. Instead of recognizing an arbitrary coordinate system as a mathematical tool, he sought to justify this free-
dom in terms of phiysics. To argue for unresiricied covariance, Einstein wrote [1]:

"That this requirement of general covariance, which takes away from space and time the last remnant of physical ob-
jectivity, is a natural onie, will be seen from the following reflexion. All our space-time verifications invariably
amount fo 2 determination of space-time coincidences. If, for example, events consisted merely in the motion of ma-
terial points, then ultimately nothing would be observable but the meetings of two or more of these points. Moreove
the results of our measuring are nothing but verifications of such meetings of the material points of our measuring
instrumeints with other matenal poinis, coincideinces between the hands of a clock and poinis on the clock dial, and
rved point-events happening at the same place at the same time. The introduction of a system of reference serves

1o other purpose than to facilitate the description of the totality of such coincidences.”
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is eariier siaiemeni {1}, “So, he will be obliged io define time in such a way that the

:r
e

However, ifiis would be incompatible wi

rate of a clock depends upon where the clock may be.” Moreover, while all verifications amount to 2 determination of space-

e

idences, 1o predici such coincidences iheoretical faic cvenis of different locations in a defi-

£+

fus, a coordinaie system must be related 1o objective asurcments. In fact, as early as 1918, unrestricted general
covariance was questioned by Lenard [29]. As Eddington [12] pointed out, "space is not a lot of points close together; itisalot
of distances interiocked.” Undersiandably, Einsicin dropped ilic above invalid jusiification in his later book {2], and remarked,

As in special theory of relativity, we have to discriminate between time-like and space-like line clements in the four-

dimensional continuum; owing to the change of sign introduced, time-iike line clemenis have a real, space-like line elements
an imaginary ds. The time-like ds can be measured directly by a suitably chosen clock.” Thus, a space-coordinate and the time-
coordinates in physics arc not exchangeable as Hawking {28] claimed since ihiey have distinci characieristics and physica
mezanings. Einstein alse praised Eddington’s book to be the finest presentation of the subject ever written [30}.

In Einsicin’s theory, a physicai space (-time) has a frame of reference aid local time coordinates. Since (5b’) failed “to de-

fine time in such a way that the rate of a clock depends upon where the clock may be {117, and thus metric {5b%°) together with
i{s coordinaics is not a space-iime coordinaic sysiem, as Einsiein defined, that can be used for physical measurement and
therefore physical interpretation. Although metric (59°) has a Euclidean subspace, it is not a physical Euclidean structure, and
is 1ol relaied to space-iine measurements. Since K* is not a physical space, ilie equivalence principle is not applicable. More-
over, an application of Einstein’s equivalence principle would lead to invalid conclusions. In short, for physical considerations,

PUGE A

¢ must have not only jusi a mathematical coordinaic sysicm, but also a physical space-iime coordinaic system.

sl

A general feature in Einstein’s general relativity is that the Riemannian space-time has a BEuclidean structure that serves as
a frame of reference. Moreover, ihe Euclidean siructure is independent of gravily and thus aiso the matier distribution. If a spa-

tial measurement is performed with a measuring rod which is attached to the frame K’ (0, ¥’, 27), it would appear as Buclid-

S

€an. Since a measunng rod atiached o ihe sysiem K’°, would be under ihic s influence of gravity as wiiat is being measur
Thus, a manifold is physically compatible with the Buclidean structure only if this manifold is a physical space. It is based on
= ) 2ol

this implicit assumption that the cylindrical coordinate system (t’, ¢°, 2°) is well defined in K for metric (5b).

With a Euclidean structure, a Euclid-Riemann space shall be called an Finstein space named after its creator. However,

1

sinice a Euclidean siructure is meaningful only in a physical space, whose validity in turn must have a Euclidean siructure, this

.

seems to have a problem of logical circulation. In practice, one may first assume in priori that a Euclidean structure exists ©
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the Riemannian “space-time” under consideration. Accordingly, physical requirements are verified to confirm the existence of 2
Euciidean structure in a physical space. However, if that fails as the case of meiric (17a), such a manifold is not a physical
space. Thus, the apparent problem of circular logic does not really exist in general relativity.
r a uniformly rotating frame, K’ (x°, y’, 2z°, {’) is a physical space that saiisfies Einsiein’s equivalence principle. It will
wn that the time dilaticn and the spatial contraction are results due to comparisens with a clock and a measuring rod in
sicin’s equivaicnce principie, such a coordinaie sysieii
locally Minkowsld, To verify this, congider a particle P regting at (£, ¢, 2”). Then, P has the velocity of Or in the ¢’ -direction,

Y R )

which is denoied by dx”. Ii follows that ihe Loreniz coordinate transformation is,

rdd = [1 — (/)22 [dx+ rQdt™’} ; {24a)
and

cdt = [1 — ()YOTY2 fedt” + (fQV/OHIX] . (24b)
Then

rdd’ = [1 - (/P2 ax ; and cdi’ = J1 — (e QY2 edt™ {25a)
and

ds? = 2di"? —dr? - gx7? - dz2 (25b)
These are exacily the time dilation and spaiial coniraciion as would be measured.

’

For the coordinate system K* (X°, y°, 2, t), the question of time dilation is complicated because Einstein’s equivalence prin-

(‘t

iple is niot applicable. Nevertheless, lef us assumc that the Einstein’s equivalence principle could be applied to K*. Mathemati-
cally, for a particle P resting at K*, the state vector of P is {0, 0, 0, dt). According to transformation (5), P is also resting at |

PR 0 W S mpn £

with a staie vecior (0,0,0,di°). Then ihe local Minkowski space for P is ideniical io (25b). ii thus foliows that

=[1 - (1Y) V2 vy, (26a)
and
dt” = [1 — (rQ/c))V2 dt - [1 — (1)) V2 ¥/ c2) wddp’. (26b)
Thus,
dt=[1 - @Yo dar (26¢)

would be considered as the time dilation since a clock rest at K* hag d¢’ = 0. The problem of this derivation is that the parame-

’1!

ts > is not the local time for the frame K’ (x°, ¥ 2°). Thus, a time coordinate alone has no mcaning.
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Einstein |2} had remarked, “So ihere is nothing for it but io regards all imaginabic systems of coordinates, in principle, as

equally suitable for the description of nature. This comes to requiring that- The general laws of nature are to be expressed by

¢

equations which hold good for all systeins of co-ordinates, that is, are co-variant with respect to any substitutions whatever
(eenerally co-variant).” However, while general covariance is mathematically valid for all fensor equations in 3 Riemannian
space, this description of nature by the coordinate system K* (x°, y°, 2°, ) includes certain calculations but not physical inter-

pretations. Thus, in spite of this general covariance, the freedom toward the physical space-time coordinate systems that can
be used for physical interpretation is severely limited by his eguivalence principle. T general relativity, just as in special rela-
tivity [11, some mathematical coordinate systems are not physical realizable.

In Einstein’s general relativity, the spatial Euclidean structure is retained, the time coordinate is related to a iocal clock, and
a physical space-timic is an Einstein space, which satisfies physical requirements sufficiently. Nevertheless, some”) still argue
that Einstein does not have a monopoly on the theory of physics, and Einstein’s version differs from Pauli’s only in philosophy.
Such an argument manifests that those theorists disregard physical requirements as well as ebservations. It has been shown that
Pauli’s version has lead o logical inconsisiency, in conflict with established physical requirementis such a the principle of cau-
sality, and disagreement with observations [9]. Moreover, that coordinates in physics have physical meanings is not limited to
Einstein's theory, and is as old as physics. For example, Hawking |28} pointed out, “an artow of time, something that distin-
guishes the past from the future, giving a direction to time.” Therefore, 2 time coordinate must be distinct from a space coordi-
nate. A fundamerial reason is simiply ifiai ihere are non-scalars in physics.

Moreover, if coordinates have no objective meaning, 2 tensor compenent would have no physical meaning unless it can be

aQ

derived in coordinate free notations, i.€., scatars. On the other hand, a tenisor component and a scalar can be numerically equal
only for some special coordinate systems. If such a relation of equality is meaningful in physics, the related special coordinate
sysiem musi hiave phiysical incaning, The usage of a physically meaningful coordinaic systeni is necessary because simply non-

scalarg are involved in physics. Thus, that space-time coordinates have no meaning in physics is actually self-defeating in logic.

7. Light Speeds under Gravity and the Michelson-Morley Experiment

It has been shown that space-time coordinates have and must have physical meanings. The frame of reference of a physical
s s PR, I LY W PP S SR - The Ao Ao et o e S Yioica adl . oo . N TN . SR L S
space has a Euclidean structure that, except for iis transformation propeny, is jusi the same as an ordinary Euclidean space.
Thus, a coordinate light speed®) is meaningful in physics and is measurable. Although Finstein calculated the bending with

both the isotropic metric and the Schwarzschild metric {1,2], he only assumed the validity of the equivalence principie.
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Theoretically, assuming the isotrepic metric (11) to be valid in physics, the local light speed would be isotropic, and

_czl_: I‘MK/Z'.a zl—-ZMK , where  di? = d&x2 +dy2 + a2 (24)
dt (1+Mx/2r) r

However, if the Schwarzschild sclution (14) is valid, the light speeds would be directional as follows:

1
:

ﬂqzl_ZMx and pdé _ I_ZMK) zl__MK‘ @5)

dt fo, dt P P

Thus, at the surface of the globe, the vertical light speed is different from the horizonta! light speed. This means one can use

- R R

ihe Micheison-Morley type apparaius io measure ihe fight speeds to deiermine whether the Schwarzschiid or ihe isoiropic soiu-

tion is more realistic. According to Einstein, the Michelson-Morley experiment is not the foundation of special relativity. This

2R VAULANY WA xE LLRAV N EERLR Y KX

is actually fortunate; oiherwise, onc would have to make an implicit assumpiion that the effect due o graviiy is negligible.

In the Michelson-Morley experiment, both of the arms are in the horizontal position. Therefore, although the effects of grav-

AW

ity were unavoidably accounied for, ihere is no speed difference. (Noie ihat Einsiein did not jusiify Special Reiativily on the
Michelson-Morley experiment.) However, if one arm is horizontal and the other arm is vertical, a speed difference would be

1.1 4

hould ihe mctric be Schwarzschild-type (Appendix). From the experimental point of view, of course, the design for a

defected

ot

rertical and horizontal exchange would be more complicated.

8. Discussions and Conclusions

In Einstein’s theory of general relativity [1,2], a central issue is to find the space-time metric for the physical Riemannian

space that models the realistic situation. Since an Einstein’s physical space models reality, in such a Riemannian space, all

&

physical requirements must be sufficiently satisfied, and therefore cannot be arbitrary. This means that a space-time coordinate
sysicrn caniiol be arbitrary and therefore mathemaiical covariance must be resiricied by physical considerations. Ti follows ihat
Pauli’s version is inadequate in physics because the existence local Minkowski spaces is only one requirement among many,
Thus, the notion of a phiysical space is really the foundation of gencral relativity.
An Einstein’s physical space {(Xime) has a frame of reference and a time coordinate for the descriptions of local time in
(147 Efoee

physic {1,2]. However, since ihe space is curved, ihe notion of a frame of reference uncicar io iheorisis such as Fock [15] who

associated a frame of reference with a flat three dimensional space. Moreover, from this pure mathematical approach, they [15,

31] concluded that Einstein’s equivalence principle and the principle of general relativity are invalid {15, 31]. In terms of phys-
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ics, however, the frame of reference is also associated with a Euclidean structure, which is independent of the invariant line
clement of the space-time metric. Thus, the space coordinates have a very clear physical meaning Moreover, based on the no-
tion of a Euclidean structiire, a space-time metric can be found for a uniformly accelerated frame to support Einsiein’s equiva-
lence principle. Thus, this clarification of the frame of reference alsc proved that the objection of Fock is actually invalid. Ein-
stein [1,2] has shown through the case of a uniformly rotating disk that, for a given framie of reference, a time coordinate for
local time can be determined. Now, it is clear that space-time coordinates have physical meanings.

Currently Pauli’s version of equivalerice principle is cither mistaken as the same as Einsicin’s equivalence principle for
those regarded their work as part of general relativity, or used to replace Einstein’s version for those regarded their work as
theories of gravitation. A reason of the prevailing of such misunderstandings is perhaps due io that Einstein’s equivalence prin-
ciple has not been explained precisely. Now, with the notion of Euclidean structure, for the first time, Einstein’s equivalence
principle is explained clearly and precisely. Since Einstein’s equivalernice principle plays a crucial role in determining the valid-
ity of physical space, the notion of Einstein’s physical space is also clearer.

It is on this theoretical basis that one can further investigaic the realistic gauge for a given frame of reference. For insiance,
now the physical meaning of the local light speeds has been clarified, it makes sense to measure them directly with, for in-
stance, a Michelson-Moriey type experiment. It is hoped that the proposed niew experimeni would further help clarifying the
relatienship between the frame of reference and the notion of gauge. Then, it would be possible to verify whether the Maxwell-
Newton Approximation [9,32], the linear equation for weak gravity, is directly valid in physics.

Moreover, it is also hoped that, by clarifying some current theoretical misconceptions and confusions, general relativity
would progress and renew with added vigor. In particular, Pauli’s version, though once prevailing, has becn proven as inade-
quate in physics. It leads 0 in direct conflict with established physical principles and observations. For example, based on Pauli
version, Penrose [33] accepted an intrinsically unphysical Loreniz manifold as valid in physics since such a manifold cannot be
diffeomorphic to a physical space [9]. As shown, it can lead to invalid theories. Thus, it is necessary to review theories, which

were based on Pauli’s version, in ierms of Einstein’s equivalence principle.
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Appendix: The Vertical Laser Interferometer Gravitational Experiment
A laboratory light § is focused on a thinly silvered glass plate P which divides the light into two beams at right angle to
1 O E—— each other, one of which goes to mirror M; and is
reflected back through the plaie to B, and ihe oiher
u of which goes to mirror M back to the plate, and is
* reflected to B,. The distance from M; to Pis d;, and
the distance from M, to P is d,. The vertical light

speed is (c- v,)) and the horizontal light speed is (¢ -

M . e
2 vp). v, can be considered as a constant if the change

of r (or p) is small in comparison with R, the radius

of the carth. The mirrors take the top position alter-

natively. When mirror M is at the top (or alterna-

PPYL L S

tively at ihe botiom), the time 77 taken by the light to
go from P to M; and back to Pis ¢; = 2d;/ic - v,), and the time ¢, taken by the light to go from Pto M, and back to Pigt; = 2

dy/{c - vy). Then, the time difference is

Ar=t, —1 =2( a -—d‘—} (Al)

c—v, c—-Vv,

When mirror 34> is at ihe iop {or ai (iie boiioin), ihe time 1, iaken by the light o go from £ io M and back to Pis 17y = 2 dy/fc

Y o:\nd tha h!n t’

Vi QI IV 1

7 taken by the light to go from Pto M; and back to Pis £’; = 2 dy/fc - v;). Then, the time difference is

t

! d d N\
At’::'z—t'iﬂ{ B J (A2)

Then,
-,

AT = Ar—Af'=2(d, +d)
-V, )(c v,)

(A3)

is the total time difference that corresponds to a distance approximately, since both v, and v, are much smaller than ¢,
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Av
d ~ cAT =2(d; +d,)— where Av=v, —v, (A4)
C
For the isotropic gauge, Av =¥, —v, = 0. However, for the Schwarzschild solution, we have

13 A A
Av _Mx 8. GM where R, = 6.378x106 meter, (AS)
¢ R, 8m® R’

is the radius of the earth M is the mass of the earth and G is the coupling constant in Newtonian theory. Thus, the second fac-

BN 4 P SO S I - te o Fririoe b Af ald S sl
The wavelengih of of visible l is of the order of 50600 ;‘x If the u&pﬁi‘fwd effectisa fﬁuge shift of about onc-tenth of a
fringe, then Ad should be 500A {33]. Then, the required total length of the arms is larger than that of Michelson-Moriey,

However, v, can indeed be treaied as if a constani and distinguisiung ihese two gauges 15 well within the experimenial accu-
racy. The accuracy of the experiment wounld increase as the arm lengths increase. Moregver, the effective arm length would

P

incicase several times, by causing cach

i pencil 1o be reflecied back and foith beitween a number of mirrois {1]. Note also that the

top, bottom and horizontal alternative positions would help detecting the effects of mechanical stretch and compression.

Endnotes
1) Inview of (16), the Schwarzschild solution and the isotropic solution actually give slightly different predictions.
2) Einstcin’s objection made ciear that his own version of infinitesimal equivalence principle is distinct from Pauli’s.

3) Fock [15] was aware of that Einstein’s principle is related to the frame of reference and acceleration. However, Fock re-

fated a frame of reference wiih only a Euclidean space, insiead of a Euclidean structure {19] (e.g. ds?= @2 - 20y di2- (1 -

\%

2U/cHy 1 ax? - (dy? + dz2), and ¢ > 2U(x, ©) = 2a (x - C) = 0, where a is an acceleration in the x-direction, and C is a con-
siant). Consequenily, Fock claimed that Einstein’s equivaience principle and his principle of relativity o be invalid.

4} The time-tested assumption that phenomena can be explained in terms of identifiable causes is called the principle of cau-
safity. This principie is ihe basis of reievance for ali scieniific investigations. This pic implies thai the gravitational

s prin
radiation must have sources and any parameter in a physical solution must be related to some physical causes [8,9]. Thus,

if an unphiysical parameter exists in the metric, such a manifold would not be diffeomorphic (o a physical space {18].
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5) Landau & Lifshitz [22] is well studied in the West [25]. Based on Pauli’s version, the so-called “physical condition”

e
@

Bw EBon Zm £

Lo &o 8021
£00 > 0. £ 0o gox(__l)>0’ €o £y €p >0, and 8o & L &1 (-1)> 0.
g1 Zul g gy g J 2% En En &xn
20 21 8
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This inadequate physical condition is satisfied by metrics (5b°), (17a), and (18b).

6) Supporting the view of Einstein, Weinberg [13, p.3] declared, “In my view, it is much more useful to regard general rela-

tivity above all as a theory of gravitation, whose connection with geometry arises from the peculiar empirical properties of

gravitation, properiies sunimarized by Einsicin’s Principle of the Equivalerice of Graviiation and Inertia.”
7Y  Currently the question of whether Pauli’s version is equivalent to Einstein’s has not been settled. Some theorists such as
Wald {34}, Straumann [4], Liu [23], and Yu {24} believed that they are equivalent. On the other hand, some theorists such

as Fock [15] and Ohanian, Ruffini, & Wheeler [31], who belicve they are not equivalent, rejected also Einstein’s principle
o [y | ‘I e ! ~

eral relaiiviiy and called ihicir books a theory of graviiaiion.

8) Some theorists [23] define light speed as di/dt, where d/ is defined by the local distance formula (17a). However, unlike

the coordinate light speed defined by Einstein [1,2], such a pure mathematical quantity has no basis in physics.
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