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Abstract 

In general relativity the notion of gauge for weak gravity, independent of its validity in physics, is also question­

able in mathematics. In 1917, Hilbert claimed that he had proved the general applicability of the linearized harmonic 

gauge for weak gravity and this is currently used as a theoretical basis. However, Eddington rejected this claim. Ein­

stein accepted it with an explicit reservation that the resulting metric must remain bounded and weak. It is shown that 

Hilbert's proof is actually incomplete and a counter example is provided to show Hilbert's claim is not generally valid 

such that Einstein's requirement is satisfied. 
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I. Introduction 

In this analysis, attention is called to a questionable, though more tban 80 years old, belief that the linearized 

Hannonic gauge (see eq. [7]) is always applicable to weak gravity. In 1917 Hi.'bert [I ~2] provided a "proof' for this 

belief after he pointed out that, for Einstein's equation, a solution is not unique due to the freedom of choosing 3 coor­

dinate system. In this paper~ it will be shown that Hilbert's proof is actually incomplete and a counter exanlple to his 

claim will be provided (in section 5). Thus, the choice of a gauge is actually restricted by physical requirements. 

In 1921 Einstein [3] already recognized the need ofcaution in the usage of such a gauge (see also section 4). WaId 

[4] pointed out that the linearized harmonic gauge and tlle linear field equation (eq. [8]) for weak gravity implies no 

radiation for a massive source. This inconsistency suggested that this gauge may not be generally applicable. Also, 

Eddington [5J may have discovered this already in 1923. Injustifying the linear equation for weak gravity, he rejected 

the notion ofgauge. Instead, he pointed out that the linear field equation would imply its differences from the Einstein 

equation is of second order terms. Thus, one may argue that the linearized harmonic gauge may still be approximately 

valid. It seems that the linear equation would provide a first order approximation for the Einstein equation. 

However, Hilbert's claim of unconditional applicability of the linearized harmonic gauge should still be ques­

tioned. The compatibility between Einstein'S equation and the harmonic gauge has not been really resolved since 

Fock [6J has discovered that, for massive sources in a dynamic situation, to obtain a solution for Einstein equation by 

extending the solution of the linear equation would inevitably lead to logarithmic divergence. On the other hand, it is 

known tbat the linear equation (eq. [8]) for weak gravity is the basis of Einstein's radiation fomllua £7J, which is sup­

ported by observations on the PSR 1913+16 binary pulsars [8]. Also, it has been shown that the linear field equation 

with a massive source ternl is derivable in terms of extending New10nian gravity with the physical principles that led 

to general relativity [9]. Then~ based on the principle of causality that causes are identifiable, it is proven that there is 

no bounded dynamic solution for an Einstein equation with the source term of massive energy-stress tensor [8,10). In 

other words, applicability of the gauge to a dynamic solution for massive matter cannot be tested directly. 

However, since the linear field equation with a non-massive source tenn has not been justified, it may still be pos­

sible that an Einstein equation with a source of non-massive matter has a bounded dynamic solution for gravity. This 

would allow us to show that, in tenns of mathematics, Hilbert's claim is not generally valid. Although he has shown 

that there is an equation for the gauge vector~ it remains to show that it has a bounded solution for this vector as re­
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quired by Einstein's notion of weak gravity (SCfw--tion 4). In other word, the general applicability of the linearized gauge 

has not been established in mathematics. 

From the viewpoint of physics, Hilbert's preposition on the linearized barnlonic gauge should also be questionable 

since there is no physical condition other than the smallness of the metric. Thus~ it is not surprising that Einstein [3] 

cautioned its usage. Wald (4] even discovered that t]lis gauge could lead to inconsistency in pllysics (section 3). Thus, 

the "current" belief of the arbitrariness of a gauge is questionable in tenns of both mathematics and physics [11]. A 

counter example will be provided in this paper to show that Hilbert's claim is not general valid in mathematics. 

This paper is organized as follows: In section 2, the hannonic gauge is described in connection with the Einstein 

equation. The inadequacy of the current notion of gauge in general relativity is pointed out as due to ignoring physical 

requiretnents such as the equivalence principle!). This problem is illustrated with a shnple example. In section 3, the 

notion of weak gravity, as a physical requirement, is discussed in connection with field etluations. III particular, com­

patibility with the linear field equation for weak gravity is considered such that related theoretical problems for a valid 

solution can be addressed. In section 4, the mathematical "proof' of Hilbert for the general applicability of the lin­

earized harmonic gauge for weak gravity is analyzed and its incompleteness is pointed out as failing to show the satis­

faction of the weak gravity notion. His claim is also analyzed in tenus of physics in addition to mathematics. Then, a 

counter example to his claim is given in section 5. In section 6, t.lte importance ofphysical considerations in theoreti­

cal consistency and even in mathematical analysis is remarked. 

2. The Einstein Equation of1915 and the Notion ofGauge 

The non-linear Einstein's field equation of 1915 [7J is 

(la) 

where Rab is the Ricci curvature tensor, gab is the space-tilne metric, K is the coupling comstant, and T(m)ab is an 

energy-stress tensor of massive matter, which generally depends on &lb. 

The Einstein tensor Gab has the identity {7], 

(2) 
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Owing to eq. (1), ideutity (2) implies the conservation law, 

(3) 

Due to identity (2), four more conditions are needed to solve eq. (1) uniquely. These additional conditions are called 

gauge conditions and represent a choice of space-time coordinates [2]. However, su.ch a choice is actually not entirely 

arbitrary due to the fact that a space-time metric must satisfy physical requirements (for example, Einstein's equiva­

lence principle [3,12]) that may not be compatible with a given gauge. However, the current notion of gauge, which is 

based on mathematical diffeomorphism [4], requires only the proper metric signature. Note that Eddington [5] who 

understood. the equivalence principle does not accept this gauge notion. 

An often-used gauge condition is the hamlonic gauge (2,7] 

(4) 

where g is the detenninant of the metric. Recently, it has been found, in confirmation with Eddington's caution, that 

this gauge can be incompatible 'with the equivalence principle [3] and the principle ofcausality (that causes are identi­

fiable). For example, a solution for gravity of an electromagnetic plane wave would satisfy tbis gauge condition, but 

violate the physical principles [11,13]. Ivforeover, there are unphysical solutions 'with the proper metric signature, but 

none of them can be diffeomorphic to a physically realizable space-time [10,11]. 

A major problem in current theory ofgeneral relativity is its inability to distinguish a physical space from Inerely a 

mathematical manifold, which has the proper metric signature [14]. Consider the simple metric, 

(5a) 

where u(~ 2c) is a constant. htfetric (5a) is a solution of the Einstein equation Gab = O. Then, ds2 = 0 implies that the 

velocity of light is u. One might argue that metric (5a) can be transformed to 

(5b) 
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by the following diffeomorphism, 

dx' = dx~ dy' =dy, dz' =dz, and dt' = adt/c. (5c) 

Eq. (5c) implies, however, that the UI'jts oft and t' are distinct and the light speed remains a but not c. Thus, eq. (5c) 

is a rescaling, and only the physical units~ but not the physics, are changed. For example, the light speed can be ex­

pressed as 186,000 miles per second. If a. = 2e, metrie (5a) implies that the light speed would be le, i.e., 372,000 

miles/sec; and metric (5b) implies that tbe light speed is 186,000 miles/half-sec. 

On the other hand, if metric (5b) were considered as a local ~1inkowski space, then the local coordinate transfor­

mation (5c) is invalid in physics since Einstein's equivalence principle implies that (5c) must be obtained through a 

suitable acceleration [12]. Since (5a) implies all the Christoffel syulbols are zero, there is no gravitational accelera­

tiOIl. Thus, tbe equivalence principle is not satisfied. Also, in such a non-rotating free falling, the velocity of an ob­

server is a constant. ,A,.ccording to special relativity, this observer carries with himselfa new coordinate system, which 

must be obtained by a Lorentz transformation. But, a Lorentz transformation cannot transform metric (5a) to a local 

Minkowski space. In conclusion, the cause of an incorrect light speed is due to the failure of satisfying the equiva­

lence principle. And metric (5a), just like the Galilean transformation, bas tbe problem of being not physically realiz­

able. 

3. The Notion of Weak Gravity- and the Linear Field Equation 

From observation, Einstein [3] required that a weak source would produce a weak gravity. Theoretically, his no­

tion of weak gravity is based 011 the principle of correspondence and tbe principle of causality and as such is a physi­

cal requirement. Thus, whether this requirement can be satisfied by a field equation, must be proven. It turns out that 

the weak gravity requirement is satisfied by eq. (1) for static problems, but not dynamic problems [8] (see also § 4). 

Based on weak gravity, Einstein "derived" the Newtonian approximation ",ith the linearized hannoDic gauge [3]. 

The notion of weak gravity requires that the deviations Y ab = (g ab - 11 ab) from the flat metric 11ab is small ( IYab I << 

1 ) . Ifall the terms of explicit second order of deviations are neglected, then eq. (1) and eq. (4) are reduced to 

(6a) 
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where 

(6b) 

and (6c) 

and 

(7) 

Eq. (7) is the Hllearized hannofJic gauge (or the Hilbetl condition). 

Gauge (7), "provided these conditions do not conflict with IYab I « 1 [3J " reduces eq. (6) to 

(Sa) 

However, eqs. (7) and (8) imply the linearized conservation law, 

ir T(m)cb = 0 . (9) 

which, as pointed out by \X/aId [4] and Yu [15]. implies no radiation for a massive source although, for a non-massive 

source tensor Tab, radiation may still be possible. 

To see whether eq. (8a) is compatible with the notion of weak gravity, consider the solution of eq. (8a) [4,7], 

3 
. K 1 . 3 2 ~ . '2r ab(xl, t) = - 23 JR T(m)ab[yl, (t - R)] d y, where R =L... (xl - yl) . (8b) 

i=1 

Solution (8b) would represent a wave if T(m)ab has a d)rnamical dependency on time tt (= t - R) [2,7]. An implicit 

gauge condition is that the flat metric llab is the asymptotic limit at infinity. Note that the integral in (8b) is finite and 

bounded since T(m)ab is non-zero only in a finite region. Moreover, eq. (8a) can be directly justified by the physical 

principles [9]. Thus, independent of eq. (1), the requirement ofu;'e existence of gravitational waves is assured. 

Some characteristics of an exact solution for the weak gravity due to massive matter can be obtained. They are: 
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i) Solution (8b) manifests that the first order approximation of the space-time metric includes a propagating wave, 

and is an almost periodic function of time for a sou.rce in an almost periodic motion. This is consistent with the 

principle of causality, which requires tt'lat the exact solution is also an almost periodic function. 

ii) Moreover, as shown be Eddington [5], from eq. (8) one obtains 

(8c) 

If eq. (8a) gives a first order approxirr.ation, aa f ab should be of second order [5,8] due to the conservation law, 

VaT(m)ab = 0 (which is independent of the notion of gauge). 

iii) By definition, an exact space-time metric element (in a Cartesian coordinate system) for weak gravity is a small 

deviation from the flat metric [3] and therefore must be bounded (i.e. Igab I < constant). On the other hand, ac­

cording solution (8b), the first order approximation OfYab is also bounded and is small for a small source (with a 

finite extend). Thus, eq. (8) is consistent witb the notion of weak gravity. Moreover, for the case of including sin­

gular mass distributions, in the region too close to the singular source, eq. (8a) is not valid for this problem. 

Thus, one must remodel T(m)ab such that weak gravity can be applied. 

Note that i) and iii) are also satisfied by the electromagnetic wave and condition ii) is similar to the Lorentz gauge. 

Thus, a gravitational wave should have a fruitful analogy with electromagnetism [7]. 

Also, there is a crucial difference between the argument based on the arbitrary applicability of gauge (7) for weak 

gravity and Eddington's argument. From linear field eq. (8), if the source is non-zero in a finite region, the first order 

approximation ofa space-th,.e inetric is bounded. It follows the consenTation law, VaT(m)ab = 0 hut aa r ab is of the 

second order, and this is independent of tbe gauge freedom. 

On the other hand, Einstein equation (1) allows the tenn 8a f ab to be of the first order, and thus additional condi­

tions are required to restrict them to be the second order. Also, since eq. (1) includes four constraint equations [7], it 

may not have a bounded solution for a dynamic problem. In fact, eq. (1) and eq. (8) are not compatible for a dynamic 

problem altllougl1 tlleyare for static problems [8,9J. The argument of Eddington assumes directly that eq. (8) and eq. 

(1) to be compatible~ and thus the possibility of being incompatible is still open; besides aa r ab being of the second 
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order is different from of aa r ab = 0 (see section 4). Apparently~ Einstein's notion of weak gravity also implies that 

the freedom of space-time coordinates is restricted [9J. 

~1oreover~ that Einstein equation (1) does not have djT.amic solutions (which include gravitational waves) for 

weak gravity [8] is supported by tbe fact tliat nobody bas been able to sbow tbe existence of a dynamic solution. Al­

though Damour and Schmidt [16) claimed the existence of dynawJc solutions for eq. (1), they have not shown that 

such solutions are compatible with Einstein's notion of weak gravity as physics requires [9]. Also, although Christo­

douIou and Klainennan [17] claimed the existence of source free global solutioraS describing weak gravitational 

waves, tbey have not been able to justify these waves with dynamic sources. Moreover, the assumed dynamic nature of 

their initial condition has not been proven as valid. Thus, their claim is actually groundless. On the other hand, their 

initial conditions are incompatible with Einstein's radiation formula [18]. Thus, their claim is also invalid. 

In fuet, as early as 1936, Einstein [19] himself discovered that his eq. (1) does not admit a propagating wave soIu­

tion. The subsequent "plane-waves" proposed by Bondi, Piralli and Robinson [20J have no weak limit. Hogarth [21] 

conjectured in 1953 that there is no physical dynamic solution unless the gravitational energy tensor is added to eq. 

(1), and Lo [8] proved that eq. (8) is actually an approximation of the modified Einstein equation, 

1 
Gab == Rab - 2" gab R = - K{T(m)ab - t(g)abl ' (10) 

where t(g)ab is the gravitational energy-stress tensor. 

It has been proven that there is no bounded dynawje solution for eq. (1) with a massive source [8,18,23]. Thus, it 

is impossible to illustrate the incompatibility between eq. (1) and gauge (7) through a dynamic solution. Perhaps, this 

is a main reason that the conditional validity of the gauge was not discovered. Nevertheless, we may analyze the static 

solutions that can be made satisfying the linearized gauge, and find out the difficult in extending such a feature to a 

dynamic situation. If an exact solution is insisted, a non-massive source term must be used in eq. (1). Note also for a 

non-massive source tensor Tab, eq. (8) could be invalid since the physical principles can justify eq. (8) only the case 

of a massive source [9]. In other words, eq. (8) may not be generally applicable (see metric [23] in section 5). 

4. The Questionable Claim of Hilbert and His Incomplete Proor 
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Since a gauge must be compatible with physical requirements such as Einstein's equivalence principle, and etc., in 

contrast to the belief of Fock [22], the validity of a gauge can only be conditional Since Einstein's notion of weak 

gravity is a ph)'sical requirement, the application of gauge (7) rna)' lead to a violation of weak gravity for some situa­

tions as Einstein worried. Here, it will be shown dira..--tI.y that Hilbert's claim is invalid in mathematics. 

Surprisingly, in Hilbert's proof [1] for the freedom of gauge (7), there is no requirement for Yah' except their small­

ness. Hilbert considered an infinitesimal coordinate transfonnation (1,4,7] 

(11) 

It foHows eq. (11) one has 

(12) 

Then, for gab == flab + Yaband g'ab = flab + y'ab ' one has 

(13) 

Eq. (13) is called a gauge transformation, andC:;a is a gauge vector. 

It is well known that Gab{l) is invariant under transformation (13). Thus, for weak gravity, the order of Gab is in­

variant under a gauge (13) if it maintains Yab being smallness of the first order~ and therefore Gab is either of the first 

order or the second order ofdeviations. 

Then, to satisfy the linearized harmonic gauge Be r' cb ::<i 0, one should obtain a gauge vector C:;a such that 

c­
-0 r cb ' (14a) 

and 

.i -ESb(x , t) ­ 1 f~ ~ - i 3 - 4n R 0- r cb[Y , (t - R)] d Y, where 
3 

R2 = L (xi _yi)2 . (14b) 
i=l 
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is a solution. Then, 8Sb would be at least of the same order as Be r cb. Moreover, if eq. (8) is valid, SB;}Sb would 

have a higher order, and the first order of rab is essentially the same since 

(15) 

and sOaC;:b would be of the same order as Yab. An implicit assumption is that the integrals are finite and bounded. 

However, since Yab can be non-zero almost evetj'Where, there is no guarantee that the integration in (l4b) or (15) 

to be finite. Even if they are finite, they may not be bounded. For an unbounded g8aSb' it is meaningless to consider 

its order in terms of any parameter. (In classical electrodynamics, an unbounded gauge function is, nevertheless, ac­

ceptable since such a gauge function has 110 physical meaning.) Thus, Hilbert's proof is at least incomplete. 

Thus, the above analysis supports Einstein's [3] worry of inconsistency that an arbitrary gauge condition may not 

be compatible with the requirement of weak gravity. Nevertheless, (7) is applicable to the static case. To see this, let 

us consider a static vacuum solution of eq. (1) [2], 

(16) 

where r2 = x2 + y2 + z2, C =KM/4 for a spherically distributed mass ?vI. The first order approximation of metric (16) 

gives exactly the same result as eq. (8) [3]. From metric (16), we have, at large f, 

rtt ~ O(KIr), but aa rat = O~ (17a) 

and 

e2 eoay = - a [-(1 + _)2], and 
ax x 4r2 2r 

(I7b) 

Hence, integral (15) converges and sOASh is also bounded. A solution satisfying the harmonic coordinates [7] is 

I-elr c I-elr e 2 

ds2 = (__ )2dt2 • (1 +- )2(dx2 + dy2 + dz2) ds2 - ( ) - (xdx + ydy + zdz) (18)
I+elr r l+c/r r 4 

There is a difference from merely satisfying eq. (4) approximately. 
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Now, consider the well-known Schwarzschild solution 

ds2 = (1 - 2c )dt2 _ (l _ 2c t 1cJr2 _r2dQ2 
(19)r r 

From metric (19), we have 

2c 2cxv 2c 
Ytt = --, and YXY=--3~' (1 __ )-1. (20) 

r r r 

The first order of eq. (20) was obtained by Einstein in 1916 [12]. 

It follows eq. (20) that \ve have 

- {2c c 2c 1r t.t = - - (1- -) (1- - ) - }, but fJ'J y- at 
=O·

' (21a) 
r r r 

and 

(2Ib) 

The tenus of O(C/r2), do not make integral (14) to bave a logarithmic divergence because there are cancellations in 

the integration. Since aa r Cl x is of the first order, eq. (8) does not provide an approximation for metric (19). 

However, for a dynamic problem, Hilbert's proof would not be applicable because eq. (1) may not have a bounded 

solution. For example, the unbounded "plane-wave" solution of Bondi et a1 [20] illustrates that it may not always be 

possible to have a bounded time-dependent solution for eq. (1) [9J. In other words, for a dynamic situation, it may not 

be possible to reduce aa f ab to second orders no matter how weak the source could be [IJ]. 

One may argue that for weak gravity, we may ex-pect that the solution at large r, is essentially similar to (16) ex­

cept that C becomes time..<fependent. This would mean 

rtt ~ O(e/r), but aaYat:t:O. (22a) 

Thus, 

:::lX - + ay - + az - - 0if 1I- r xt r yt ./ r 7t - . (22b) 
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Then, it is not clear that ca· rat remains of the second order and the integrals (14) and (I5) are finite. 

5. A Counter Example for the Harmonic Gauge 

For simplicity, let us consider a weak gravitational wave satisfying 0cac r ab -=:; 0 everywhere in a region. If gauge 

(7) is valid, G (1) ab must be of second order. Since the order of Gab is gauge invariant, gauge (7) can be applicable 

only if Gab is of second order. Therefore, a metric as a counter example would have its Gab to be of the first order, 

but [)cac r ab ~ 0 everywhere. Thus, such a counter example would not satisfy the vacuum equation Gab = 0 and has 

a dynamic tensor of the first order in the source. To illustrate tllis, let us consider a plane-wave as follows: 

K ,., 
Yxx = Yyy = Yxy =: 4 Ao/[l-cos 2m (t - z)] , (23a) 

=-y =[1-2y ]-1/2_] (23b)Ytt zz xx ' 

and otherwise Yab = O. Obviously, metric (23) has the proper signature. The source term of the Einstein equation is 

where P =.pz = m , andPx ==Py ==0 (23c)t 

and 

~ K
P (t - z) = - G cos2ro (t - z), where G = gxxgyy - (gXy)2 == I - '2 Ao2[1 - cos 20) (t - z)]. 

It is clear that metric (23) satisfies the weak gra"ity requirement and Gab is of the first order in K. But eq. (8) is not 

valid because ~ CPoc f ab = O. Thus, metric (23) is a counter example for the hannonic gauge. Since this is a demon­
2 

stration of mathematics, here we sball not consider the physic'S ofthls wave (which is discussed in reference [13]). 

Also, wave (23) satisfied oaTab = 0, but this is not a guarantee for gauge (7) since 

a aa y- == -K 0)2 A 2 cos2ro (t - z) (24)t at 0 

is of the first order~ and is non-zero almost everywhere. Now, although the equation 

-etac-Yct(t-z), (25) 
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has 

where R2 = L
3 

(xi - yi)2 . (26) 
j=! 

as a fomlal solution. But, integral (26) is not a bounded solution. If eq. (25) had a bounded solution, then the ap­

proximate linear equation would be 

(27) 

But, eq. (27) does not provide an approximation, since it also does not have a bouIlded solution [13]. From the above 

analysis, it is not possible to transform weak wave (23) such that gauge (7) is satisfied while the trallsfomled gravita­

tiona] wave remains bounded and weak as Einstein [3] required (see also Appendix). 

6. Renlarks 

In conclusion, the linearized harmonic "gauge condition" (7) is not always applicable. ~1athematics is a valuable 

tool for physics because what is right in physics can be proven in mathematics and conversely one cannot prove a 

preposition, which is not correct in physics. It has been proven in terms of physics that the current notion of gauge 

based on diffeomorphism alone is inadequate (9,11]. But, Hilbert's claim suggested the contt-ary. Accordingly, it 

should be invalid in mathematics although this invalidity is not directly depending on the physical arguments. 

Hilbert is not the only one who has mistaken on the question of choosing a gauge. Fock [22) had made a similar 

mistake of ignoring physical requirements and thus believed that, independent of the physical situation, only the har­

monic gauge is valid. When he failed to show the effects of a unifOIDl acceleration with a space-time metric, he 

claimed that Einstein's equivalence principle is invalid. Fack [22] and his followers [23] are of course wrong. 

In fact, one does not have to go far to see such a mistake. For instance, the example of rotating disk in Einstein's 

1916 paper has the metric [24], 

(28) 

where.Q is the angular velocity of the disk The rotating disk has a frame of reference (r', ~', z), 3r.n (28) is the only 

valid metric in physics. There are other mathematical coordinate systems, but (28) is the one valid in physics because 
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he is "obliged to define time in such a way that the rate of a clock depends upon where the clock may be [12)." Obvi­

ously, metric (28) does not satisfy the hannonic gauge. Nevertheless, (28) is diffeomorphic to the flat metric, ds2 
=:;: 

c2dt2 - dx2 - dy2 - dz2, which satisfies the harmonic gauge. Tn other words, when a frame of reference is chosen, the 

gauge may have been detenrJned. This example also serves to show hmv the theoretical bias can affect a theorist. 

Experimental tests may not be considered as capable of verifying directly all aspects of a theOly because it takes a 

theorist to identify implicit assumptions and theoretical inconsistency may not appear in a readily testable form. For 

instance, when covariance is tested, it is tested in a physical space. Since an unphysical space does not exist in nature, 

it is in principle futile to test unrestricted general covariance experimentally. 

Some theorists believed that a physical justification for a solution should be obtained only from compaIison with 

experiment [14]. Such an attitude and the above difficulty probably result in a tendency of not examining the physical 

validity of a solution. In other words, a physical problem is often treated from the viewpoint of only pure mathemat­

ics, and physical requirements are often not sufficiently considered in calculations. As pointed out by Kinnersley {] 4], 

most of the exact solutions describe situations, which are not physical. 

IVforeimportant, sometimes mathematical judgment can be impaired by prejudices due to insufficient physical con­

siderations. IfHilbert [1] is not immune to such shortcomings, who is? 
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Appendix: Physical Solutions and Validity of a Field Equation 

Although the linear equation (27) does not have any bounded (in magnitude) weak solution, as Einstein required, 

it is known that this equation have solutions. However, as ShOW11 in electrodynamics, a mathematical solution may not 

be valid in physics. A physical condition for weak gravity, as pointed out by Einstein {3], is that the resulting metric 

solution must remains bounded and weak. Hilbelt [1] also claimed that such a condition of weak gravity was satisfied. 

Let us examine the physics of some solutions of the linear equation, 

(AI) 
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where Tfmn are tJ'le flat metric (+,-,-,-), u == (t - z), and v == (t + z). 

IfF is a function of only t and z, then the inhomogeneous solution depends not only on u but also v, and is 

F(t, z) ~ ~ ff(f)dt (Al) 

It should be noted that, due to the factor v, F(t, z) is not bounded even for a very small source term f(t). IfF is also a 

function of x and y, then tbe iuholtlogenoous solution of eq. (AI) would have another form as follows: 

F(x, y, z, t) = --1 
(x2 +y2) f(u) (A3)

4 

Note that solution (A3) of Penrose [25] is also not bounded. Moreover, the principle ofcausality implies that any pa­

rameter in a solution for physics must be related to some physical causes. If the cause for field F is independent of 

coordinates x and y, then solution (A3) violates the principle of causality. Solution (AJ) depends on the parameters, 

the origins of the x-axis and y-a"Xis, but they are unrelated to any physical cause. 

The left-hand side of eq. (AI) can be considered as a tvfa"..well's equation or an equation of linearized gravity. 

Then, one may examine a field equation after the related physical cause has been identified. 

For linearized glavity, the function F would Ielate to the deviations fIOllt a flat metric. If the physical cause is an 

electromagnetic plane-wave propagating in the z-directiol'~ then the related source energy-stress tensor would be a 

function of u (13,14], and thus the source tenn in linearized gravity would have tile fonn f(u). Then, according to 

solution (A2), the metric would have a factor v and is unbounded. On the other band, the principle of causality im­

plies that the metric is a function ofu only [9.13]. This contradiction manifests that eq. (AI) is not an appropriate 

form since the electromagnetic plane-waves are supported as an idealizations [13]. 

In other words, the principle ofcausality implies that there are weak gravity exact solutions (e.g., ofan electro­

magnetic wave), which cannot be approximated with linearized gravity. 

For the case of !vfaxweU's equation, the principle of causality requires that the source tenn may not be in the form 

of a plane-wave f(u). Thus, a charged particle must be invariably massive, and therefore, according to special relativ­

ity, it is impossible to have a charged source, moving with tbe velocity of light. Some might argue that since Maxwell 
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equation in the Lorentz gauge has weak and bounded physical solutions for a weak source, (27) should have a 

bounded weak solution. It is now clear that such an argunlent based on sim.ilarity is irrelevant. 

Although the question of causality is not clear for equation (27), the gauge terms would be added (see eq. [13]) to 

the initial solution and fOfiUS a new solution~ which is subjected to c-ausality. For instance~ as Einstein pointed out~ it 

must remain to be bounded and·weak. According to (23), the cause of the gravitational wave is a function ofonly u. It 

follows that the principle of causality requires that a physical solution of (27) m.ust also be a function of u. In conclu­

sion, the analysis supports that there is no bounded solution for equation (27). 

ENDNOTES 

1)� In many textbooks, the equivalence principle is actually Pauli's version [2] which "is now commonly but mistak= 

enIy regarded as Einstein's version of the principle [26]" in spite of Einstein strongly objected Pauli's version as 

a misinterpretation [26]. Pauli [2] regards the equivalence principle essentially as the mathematical existence of 

local Minkowski spaces. Different from Pauli~ Einstein requires additionally: i) "the special theory of relativity 

applies to the case of the a~...ence of a gravitational field [27]" and ii) a local ~1inkowski space is obtained by 

choosing u~e acceleration. Einstein [27] wTote~ " ... we must choose the acceleration of the infinitel)' small ("10­

cal") system of coordinates so that no gravitational field occurs; this is possible for an infinitely small region." 

The notion of acceleration with respect to a lluee-dimensional rranle of reference is essential in Einstein's theory 

[3,22]. Moreover, Einstein's principle is proposed for a physical space [12,26], where physical requirements are 

sufficiently satisfied [lO~18]. Fock [22] believed in PauJi~ but regarded Einstein's equivalence principle as invalid, 

in part, because of misconceptions such as a frame of reference must be related to a Euclidean subspace [28]. 
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