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Abstract

In general relativity the notion of gauge for weak gravity, independent of its validity in physics, is also question-
able in mathematics. In 1917, Hilbert claimed that he had proved the general applicability of the linearized harmonic
gauge for weak gravity and this is currently used as a theoretical basis. However, Eddington rejected this claim. Ein-
stein accepted it with an explicit reservation that the resulting metric must remain bounded and weak. It is shown that

Hilbert's proof is actually incomplete and a counter example is provided to show Hilbert's claim is not generally valid

such that Einstein’s requirement is satisfied.
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L. Introduction

In this analysis, attention is called to a questionable, though more than 80 years old, belief that the linearized
Harmonic gauge (see eq. [7]) is always applicable to weak gravity. In 1917 Hilbert [1,2] provided a “proof” for this
belief after he pointed out that, for Einstein's equation, a solution is not unique due to the freedom of choosing a coor-
dinate system. In this paper, it will be shown that Hilbert's proof is actually incomplete and a counter example to his
claim will be provided (in section 5). Thus, the choice of a gauge is actually restricted by physical requirements.

In 1921 Einstein [3] already recognized the need of caution in the usage of such a gauge (sce also section 4). Wald
[4] pointed out that the linearized harmonic gauge and the linear field equation {(eq. [8]) for weak gravity implies no
radiation for a massive source. This inconsistency suggested that this gauge may not be generally applicable. Also,
Eddington [5] may have discovered this already in 1923. In justifying the linear equation for weak gravity, he rejected
the notion of gauge. Instead, he pointed out that the linear field equation would imply its differences from the Einstein
equation is of second order terms. Thus, one may argue that the linearized harmonic gauge may still be approximately
valid. It seems that the linear equation would provide a first order approximation for the Einstein equation.

However, Hilbert’s claim of unconditional applicability of the linearized harmonic gauge should still be ques-
tioned. The compatibility between Einstein’s equation and the harmonic gauge has not been really resolved since
Fock [6] has discovered that, for massive sources in a dynamic situation, to obtain a solution for Einsiein equation by
extending the solution of the linear equation would inevitably lead to logarithmic divergence. On the other hand, it is
known that the linear equation (eq. [8]) for weak gravity is the basis of Einstein's radiation formula [7], which is sup-
ported by observations on the PSR 1913+16 binary pulsars [8]. Also, it has been shown that the linear field equation
with a massive source term is derivable in terms of extending Newtonian gravity with the physical principles that led
to general relativity [9]. Then, based on the principle of causality that causes are identifiable, it is proven that there is
no bounded dynamic solution for an Einstein equation with the source term of massive energy-stress tensor [8,10}. In
other words, applicability of the gauge to a dynamic solution for massive matter cannot be tested directly.

However, since the linear field equation with a non-massive source term has not been justified, it may still be pos-
sible that an Einstein equation with a source of non-massive matter has a bounded dynamic solution for gravity. This
would allow us to show that, in terms of mathematics, Hilbert’s claim is not generally valid. Although he has shown

that there is an equation for the gauge vector, it remains to show that it has a bounded solution for this vector as re-




quired by Einstein's notion of weak gravity (section 4). In othier word, the general applicability of the linearized gauge
has not been established in mathematics.

From the viewpoint of physics, Hilbert's preposition on the linearized harmonic gauge should also be questionable
since there is no physical condition other than the smallness of the metric. Thus, it is not surprising that Einstein [3]
cautioned its usage. Wald [4] even discovered that this gauge could lead to inconsistency in physics (section 3). Thus,
the "current"” belief of the arbitrariness of a gauge is questionable in terms of both mathematics and physics [11]. A
counter example will be provided in this paper to show that Hilbert’s claim is not general valid in mathematics.

This paper is organized as follows: In section 2, the harmonic gauge is described in connection with the Einstein
equation. The inadequacy of the carrent notion of gauge in general relativity is pointed out as duc to ignoring physical
requirements such as the equivalence principle!). This problem is illusiraied with a simple example. In section 3, thé
notion of weak gravity, as a physical requirement, is discussed in connection with field equations. In particular, com-
patibility with the linear ficld equation for weak gravity is considered such that related theoretical problems for a valid
solution can be addressed. In section 4, the mathematical “proof” of Hilbert for the general applicability of the lin-
earized harmonic gauge for weak gravity is analyzed and its incompleteness is pointed out as failing to show the satis-
faction of the weak gravity notion. His claim is aiso analyzed in terms of physics in addition to mathematics. Then, a
counter example to his claim is given in section 5. In section 6, the importance of physical considerations in theoreti-

cal consistency and even in mathematical analysis is remarked.

2. The Einstein Equation of 1915 and the Notion of Gauge

The non-linear Eiastein's field equation of 1915 [7] is

Gap =Ryl - 5 LR = - KT(W)gp, (12)

where Rgp is the Ricci curvature fensor, gap is the space-time metric, K is the coupling constant, and T(m)ap, is an
energy-stress tensor of massive matter, which generally depends on gap.

The Finstein tensor Ga, has the identity {7],

VEG,,=0. 2



Owing 10 eq. (1), ideniily (2) implics the conservation law,
VCT(m),,, = 0. ©)

Due to identity (2), four more conditions are needed to solve eq. (1) uniquely. These additional conditions are called
gauge conditions and represent a choice of space-time coordinates [2]. However, such a choice is actually not entirely
arbitrary due to the fact that a space-time metric must satisfy physical requirements (for example, Einstein’s equiva-
lence principle [3,12]) that may not be compatible with a given gauge. However, the current notion of gauge, which is
based on mathematical diffeomorphism [4], requires only the proper metric signature. Note that Eddington [5] who
understood the equivalence principle does not accept this gange notion.

An often-used gauge condition is the harmonic gauge [2.7]
0 l yii%
Py (lg]zg*") =0, @)

where g is the determinant of the metric. Recently, it has been found, in confirmation with Eddington's caution, that
this gauge can be incompatible with the equivalence principle [3] and the principle of causality (that causes are identi-
fiable). For example, a soluiion for gravity of an electromagneiic plane wave would satisfy this gauge condition, but
violate the physical principles [11,13]. Moreover, there are unphysical solutions with the proper metric signature, but
none of them can be diffeomorphic to a physically realizable space-time [10,11].

A major problem in current theory of general relativity is its inability to distinguish a physical space from merely a

mathematical manifold, which has the proper metric signature [14]. Consider the simple meiric,

ds? = o2dt? - dx2 - dy? - dz2, (5a)

where (2 2¢) is a constant. Metric (5a) is a solution of the Einstein equation G4, = 0. Then, ds? = 0 implies that the

velocity of light is o. One might argue that metric (5a) can be transformed to

ds? = c2dt? - dx? - dy? - dz?, (5b)




by the following diffeomorphism,
dx' = dx, dy' = dy, dz' = dz, and dt' = adt/c. (5¢)

Eq. (5c) implies, however, that the units of t and t' are distinct and the light speed remains « but not c. Thus, eq. (5¢)
is a rescaling, and only the physical units, but not the physics, are changed. For example, the light speed can be ex-
pressed as 186,000 miles per second. If « = 2c, metric (5a) implies that the light speed would be 2c, i.e., 372,000
miles/sec; and metric (5b) implies that the light speed is 186,000 miles/half-sec.

On the other hand, if metric (5b) were considered as a local Minkowski space, then the local coordinate transfor-
mation (5¢) is invalid in physics since Einstein’s equivalence principle implies that (5¢) must be obtained through a
suitable acceleration [12]. Since (5a) implies all the Christoffel symbols are zero, there is no gravitational accelera-
tion. Thus, the equivalence principle is not satisfied. Also, in such a non-rotating free falling, the velocity of an ob-
server is a constant. According to special relativity, this observer carries with himself a new coordinate system, which
must be obtained by a Lorentz transformation. But, a Lorentz transformation cannot transform metric (5a) to a local
Minkowski space. In conclusion, the cause of an incorrect light speed is due to the failure of satisfying the equiva-
lence principle. And metric (5a), just like the Galilean transforination, has the problein of being not physically realiz-

able.

3. The Notion of Weak Gravity and the Linear Field Equation
From observation, Einstein [3] required that a weak source would produce a weak gravity. Theoretically, his no-
tion of weak gravity is based on the principle of correspondence and the principle of causality and as such is a physi-
cal requirement. Thus, whether this requirement can be satisfied by a field equation, must be proven. It turns out that
the weak gravity requirement is satisfied by eq. (1) for static problems, but not dynamic problems [8] (see also § 4).
Based on weak gravity, Einstein "derived” the Newtonian approximation with the linearized harmonic gauge [3].

The notion of weak gravity requires that the deviations y ., = (g 5, - N1 53) from the flat metric 1, is small ( | Yab | <<

1) . If all the terms of explicit second order of deviations are neglected, then eq. (1) and eq. (4) are reduced to

1
Gap'D = - KTm)yp , where Gyl = - 3%, 7 gp + Hy, 6a)




where
1 _ = 1 _
H(l)a s-gac[ﬁb;/ac-i-@a}'bcj-# *Z‘nabacad}’cd, (6b)
A 1 ed
Pap =T~ ;M and  y=1ye (62)
and
7 cb=0. ™

Eq. (7) is the linearized harmonic gauge (or ihe Hiibert condition).

Gauge (7), "provided these conditions do not conflict with Iya o ] << 1 [3] " reduces eq. (6) to

1
SO0 o1, = K Ty, (8a)

However, eqgs. (7) and (8) imply the linearized conservation law,
FTm)pb=0. )

which, as pointed out by Wald [4] and Yu [15], implies no radiation for a massive source although, for a non-massive
source tensor Ty, radiation may still be possible.
To see whether eq. (8a) is compatible with the notion of weak gravity, consider the solution of eq. (8a) [4,7],

3
7 abch = - 3= 5 Tamlgplyl, (- R)] 3y, where RZ=3 (d-yh2.  (8b)

i=1

Solutior (8b} would represent a wave if T(m),;, has a dynamical dependency on time t' (=t - R) [2,7]. An implicit
gauge condition is that the flat metric 1, is the asymptotic limit at infinity. Note that the integral in (8b) is finite and
bounded since T(m),y, is non-zero only in a finite region. Moreover, cq. (8a) can be directly justified by the physical

principles {9]. Thus, independent of eq. (1), the requirement of the existence of gravitational waves is assured.

Some characteristics of an exact sotution for the weak gravity due to massive matter can be obtained. They are:



i) Solution (8b) manifests that the first order approximation of the space-time meiric includes a propagating wave,
and is an almost periodic finction of time for a source in an almost periodic motion. This is consistent with the
principle of causality, which requires that the exact solution is also an almost periodic function.

ii) Moreover, as shown be Eddington [5], from eq. (8) one obtains

B ) K .
A ap(xl 0= - 5~ ATl ¢ - R) Py, (80)

If eq. (8a) gives a first order approximation, 02 7 ;) should be of second order [5,8] due to the conservation law,
VaT(m),y, = O (which is independent of the notion of gauge).
iii) By definition, an exact space-time metric element (in a Cartesian coordinate system) for weak gravity is a small

deviation from the flat metric {3} and therefore must be bounded (i.c. ( 9ap [ < constant). On the other hand, ac-
cording solution (8b), the first order approximation of v, is also bounded and is small for a small source (with a

finite extend). Thus, eq. (8) is consisient with the notion of weak gravily. Moreover, for the case of including sin-
gular mass distributions, in the region too close to the singular source, eq. (8a) is not valid for this problem.

Thus, one must remodel T(m),y, such that weak gravity can be applied.

Note that i) and iii) are also satisfied by the electromagnetic wave and condition ii} is similar to the Lorentz gauge.
Thus, a gravitational wave should have a fruitful analogy with eleciromagnetism [7].

Also, there is a crucial difference between the argument based on the arbitrary applicability of gauge (7) for weak
gravity and Eddington's argument. From linear ficld eq. (8), if the source is non-zero in a finite region, the first order
approximation of a space-time metric is bounded. It follows the conservation law, V2T(m),, = 0 that 82 y , is of the
second order, and this is independent of the gauge freedom.

On the other hand, Einstein equation (1) allows the term 62 7 ;, to be of the first order, and thus additional condi-
tions are required to restrict them to be the second order. Also, since eq. (1) includes four constraint equations [7], it
may not have a bounded solution for a dynamic problem. In fact, eq. (1) and eq. (8) are not compatible for a dynamic
problem aithiough they are for static problems [8,9]. The argument of Eddingion assumes directly that eq. (8) and eq.

(1) to be compatible; and thus the possibility of being incompatible is still open; besides 82 7 ,, being of the second



order is different from of 2 7y, = 0 (sce section 4). Apparently, Einstein's notion of weak gravity also implies that
the freedom of space-time coordinates is restricted [9).

Moreover, that Einstein equation (1) does not have dynamic solutions (which include gravitational waves) for
weak gravity [8] is supported by ihe fact that nobody has been able io show the exisience of a dynamic solution. Al-
though Damour and Schmidt [16] claimed the existence of dynamic sclutions for eq. (1), they have not shown that
such solutions are compatible with Einstein’s notion of weak gravity as physics requires [9]. Also, although Chisto-
doulou and Klainerman [17] claimed the existence of source free global solutions describing weak gravitational
waves, they have not been able to jusiify these waves with dynamic sources. Moreover, the assumed dynamic nature of
their initial condition has not been proven as valid. Thus, their claim is actually groundless. On the other hand, their
initial conditions are incompatible with Einstein's radiation formula [18]. Thus, their claim is also invalid.

In fact, as carly as 1936, Einstein {19] himse!f discovered that his eq. (1) does not admit a propagating wave solu-
tion. The subsequent "plane-waves” proposed by Bondi, Pirani and Robinson {20] have no weak limit. Hogarth [21]
conjectured in 1953 that there is no physical dynamic solution unless the gravitational energy tensor is added to eq.

(1), and Lo [8] proved that eq. (8) is actually an approximation of the modified Einstein equation,

Gab =Ry g R = - KIT(m)y, - (elgp) (10)

where t(g) 51, is the gravitational energy-stress tensor.

It has been proven that there is no bounded dynamic solution for eq. (1) with a massive source [8,18,23]. Thus, it
is impossible to illustrate the incompatibility between eq. (1) and gauge (7) through a dynamic solution. Perhaps, this
is a main reason that the conditional validity of the gauge was not discovered. Nevertheless, we may analyze the static
solutions thai can be made satisfying the linearized gauge, and find oui ihe difficuii in exiending such a feature to a
dynamic situation. If an exact solution is insisted, a non-massive source term must be used in eq. (1). Note also for a

non-massive source tensor Ty, eq. (8) could be invalid since the physical principles can justify eq. (8) only the case

of a massive source [9]. In other words, ¢q. (8) may not be generally applicable (see metric [23] in section 5).

4. The Questionable Claim of Hilbert and His Incompiete Proof



Since a gauge must be compatible with physical requirements such as Einstein’s equivalence principle, and etc., in
contrast to the belief of Fock [22], the validity of a gauge can only be conditional. Since Einstein's notion of weak
gravity is a physical requirement, the application of gauge (7) may lead to a violation of weak gravity for some situa-
tions as Einstein worried. Here, it will be shown directly that Hilbert's claim is invalid in mathematics.

Surprisingly, in Hilbert's proof [1] for the freedom of gauge (7), there is no requirement for v, except their small-

ness. Hilbert considered an infinitesimal coordinate transformation {1.4,7]
X, =X, +eb,. an
It follows eq. (11) one has

' Og o¢
8ab= 8ab T+ Sgac—ax—b"}.ggbcga'

[4 C

+ . (12)

Then, for 8ab = Map T Yaband glab =Mt ‘{'ab , onc has
Yab ™ Yab + 80,5 + 80454 - (13)

Eq. (13) is called a gauge transformation, and C, is a gauge vector.

It is well known that G,,(Y is invariant under transformation (13). Thus, for weak gravity, the order of G, is in-
variant under a gauge (13) if it maintains y,, being smallness of the first order; and therefore G,y is either of the first
order or the second order of deviations.

Then, to satisfy the linearized harmonic gauge 97 ’ _,, = 0, one should obtain a gauge vector C, such that

800ty = ~0°7 b « (14a)

and

3
(X, 0 = - S FF bl - Rl &y, where R2=2 (d-y)2.  (14b)

i=1
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is a solution. Then, e, would be at least of the same order as 87 _, Moreover, if eq. (8) is valid, £0,C,, would

have a higher order, and the first order of 7 _,_ is essentially the same since

68,5 1) = - 2= 0,0 F v, (¢~ R 63y, (15)

and £5,Cy, would be of the same order as v,p, . An implicit assumption is that the integrals are finite and bounded.
However, since v, can be non-zero almost everywhere, there is no guarantee that the integration in (14b) or (15)
to be finite. Even if they are finite, they may not be bounded. For an unbounded €0,y it is meaningless to consider

its order in terms of any parameter. (In classical electrodynamics, an unbounded gauge function is, nevertheless, ac-
ceptable since such a gauge function has no physical meaning.) Thus, Hilbert's proof is at least incomplete.

Thus, the above analysis supports Einsiein's [3] worry of inconsistency that an arbitrary gauge condition may not
be compatible with the requirement of weak gravity. Nevertheless, (7) is applicable to the static case. To see this, let
us consider a static vacuumi solution of eq. (1) [2],

1-C/2r

C
ds? = (—— 2242 - (1 + — YHdx2 + dy? + d22 16
S (1+C/2r) ( 2r)( dy ) (16)

where 12 = x2 + y2 + 22, C = KM/4 for a spherically distributed mass M. The first order approximation of metric (16)

gives exactly the same result as eq. (8) [3]. From metric (16), we have, at large r,

7 ~OK/M), but &F_ =0 (17a)

and

vy ——8[ (1+—)2] and 8yac}7¢xz Cry, (17b)

Hence, integral (15) converges and €0, is also bounded. A solution satisfying the harmonic coordinates [7] is

lc/rc

1- "" D)% tax rydy +2dn) (18)

das? = Sy )Zcu2 a+= )z(dx2 +dy? + dz2) as? - (I3

There is a difference from merely satisfying eq. (4) approximately.
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Now, consider the weli-known Schwarzschild solution
2= 1.2 42 2 2402
ds -(1——r—)dt - (1 -==yldr? - r2dQ2 (19)
r

From metric (19), we have

2

__2 _ 2cx 2. _; _ 2exy 2¢ . _
The first order of eq. (20) was obtained by Einstein in 1916 [12].
It follows eq. (20) that we have
_ 2c 2¢ -
Fe=-{=(1-5) 1=, but 7 =0; @1a)
r r r
and
- 2% ? 2% . _, 2. 2 :
27 =0 L (E- 1=y o (2 (1o Ky g 20E () 2y
r r r r v r r r
~ O(C/r?) + O(C4/e3) (21b)

The terms of O(C/r?), do not make integral (14) to have a logarithmic divergence because there are cancellations in

the integration. Since 82 y _ _ is of the first order, eq. (8) does not provide an approximation for metric (19).

However, for a dynamic problem, Hilbert's proof would not be applicable because eq. (1) may not have a bounded

solution. For example, the unbounded "plane-wave" solution of Bondi et al. [20] illustrates that it may not always be

possible to have a bounded time-dependent solution for eq. (1) [9]. In other words, for a dynamic situation, it may not

be possible to reduce 82 y _, to second orders no matter how weak the source could be [11].

ab

One may argue that for weak gravity, we may expeci that the solution at large r, is essentially similar to (16) ex-

cept that C becomes time-dependent. This would mean

7..~OCH, bt 27, 20 (22a)

8,827 _, ~O(l/) if O5F o+ OVF  +07F =0 (22b)
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Then, it is not clear that &° 7 __ remains of the second order and the integrals (14) and (15) are finite.

5. A Counter Example for the Harmonic Gauge

For simplicity, let us consider a weak gravitational wave satisfying 0_0°7 _, = 0 everywhere in a region. If gauge
(7) is valid, G'") _ must be of sccond order. Since the order of G, is gauge invariant, gauge (7) can be applicable
only if G, is of second order. Therefore, a metric as a counter example would have its G, to be of the first order,
but 5.9°% ,,, ~ 0 everywhere. Thus, such a counter example would not satisfy the vacuum equation G_, = 0 and has

a dynamic tensor of the first order in the source. To illustrate this, let us consider a plane-wave as follows:

K .
Vi = Vyy S ¥ay = Ay{l-cos 20 (t-2)], (23a)

Ter == Vo, = (1-2p, 1717 - 1, (23b)
and otherwise y_, = 0. Obviously, metric (23) has the proper signature. The source term of the Einstein equation is

T,=pt-2)PP, where P, =-P, =@, and P,=P =0 (23¢c)
and

2
K Il
pit-z)= -%’- cos2o (t - z), where G = £8yy - (gxy)Z =1- —2—A04[1 - ¢os 20 (t - z)].

It is clear that metric (23) satisfies the weak gravity requirement and G, is of the first order in K. But eq. (8) is not

1
valid because 3 0. 7 ;, = 0. Thus, metric (23) is a counter example for the harmonic gauge. Since this is a demon-

stration of mathematics, here we shall not consider the physics of this wave (which is discussed in reference [13]).

Also, wave (23) satisfied 63Tab = 0, but this is not a guarantee for gauge (7) since
8,27 .. =Ko? Aj? cos2e (t-2) 24

is of the first order, and is non-zero almost everywhere. Now, although the equation

eacéc (a‘t(;t) = “atacj"—ct (t“Z) r (25)
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has

3
&8y Gy, ) = - {;I ;’; BV oy t-R1ddy,  where RZ=D i-yh2. ()

i=]

as a formal solution. But, integral (26) is not a bounded solution. If eq. (25) had a bounded solution, then the ap-

proximate linear equation would be
8.8°7 ,=-2Kp(t-2)P_P, Q7N

Bat, eq. (27) does not provide an approximation, since it also does not have a bounded solution [13]. From the above
analysis, it is not possible to transform weak wave (23) such that gauge (7) is satisfied while the transformed gravita-

tional wave remains bounded and weak as Einstein [3] required (see also Appendix).

6. Remarks

In conclusion, the linearized harmonic "gange condition" (7) is not always applicable. Mathematics is a valuable
tool for physics becanse what is right in physics can be proven in mathematics and conversely one cannot prove a
preposition, which is not correct in physics. Tt has been proven in terms of physics that the current notion of gange
based on diffeomorphism alone is inadequate {9,11]. But, Hilbert's claim suggested the contrary. Accordingly, it
should be invalid in mathematics although this invalidity is not directly depending on the physical arguments,

Hilbert is not the only one who has mistaken on the guestion of choosing a gauge. Fock {22} had made a similar
mistake of ignoring physical requirements and thus believed that, independent of the physical situation, only the har-
monic gauge is valid. When he failed to show the effects of a uniform acceleration with a space-time metric, he
claimed that Einstein’s equivalence principle is invalid. Fock [22] and his followers [23] are of course wrong.

In fact, one does not have to go far to see such a mistake. For instance, the example of rotating disk in Einstein’s

1916 paper has the metric [24],

ds? = (2 - Qi ar? - dr? - (1 - Qe Uc?y 12 4p? - d2? (28)

where Q is the angular velocity of the disk. The rotating disk has a frame of reference (1°, ¢’, z), and (28) is the only

valid metric in physics. There are other mathematical coordinate systems, but (28) is the one valid in physics because
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he is “obliged to define time in such a way that the rate of a clock depends upon where the clock may be [12].” Obvi-
ously, metric (28) does not satisfy the harmonic gauge. Nevertheless, (28) is diffeomorphic to the flat metric, ds* =

c2di2 - ax2 - dy2 - d7.2, which satisfies the harmonic gauge. In other words, when a frame of reference is chosen, the
gauge may have been determined. This example also serves to show how the theoretical bias can affect a theorist.

Experimental tests may not be considered as capable of verifying directly all aspects of a theory because it takes a
theorist to identify implicit assumptions and theoretical inconsistency may not appear in a readily testable form. For
instance, when covariance is tested, it is tested in a physical space. Since an unphysical space does not exist in nature,
it is in principle futile to test unrestricted general covariance experimentally.

Some theorists believed that a physical justification for a solution should be obtained only from comparison with
experiment [14]. Such an attitude and the above difficulty probably result in a tendency of not examining the physical
validity of a solution. In other words, a physical problem is often treated from the viewpoint of only pure mathemat-
ics, and physical requirements are often not sufficiently considered in calculations, As pointed out by Kinnersley {14],
most of the exact solutions describe situations, which are not physical.

More important, scmetimes mathematical judgment can be impaired by prejudices due to insufficient physical con-

siderations. If Hilbert [1] is not immune to such shortcomings, who is?
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Appendix: Physical Solutions and Validity of a Field Equation

Although the linear equation (27) does not have any bounded (in magnitude) weak solution, as Einstein required,
it is known that this equation have solutions. However, as shown in electrodynamics, a mathematical solution may not
be valid in physics. A physical condition for weak gravity, as pointed out by Einstein [3], is that the resulting metric
solution must remains bounded and weak. Hilbert [1] also claimed that such a condition of weak gravity was satisfied.

Let us examine the physics of some solutions of the linear equation,

7" 00, F(x,y,2,0) =[48,8, — 8,0, —0,0,1F(u.v,z,t) = f(u) (AD)
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where »™" are the flat metric (+,---), u=({ -z} andv=({+2).

If F is a function of only t and z, then the inhomogeneous solutior depends not only on u but also v, and is
Ft. )= 2 a2)

1t should be noted that, duc to the factor v, F(t, z) is not bounded even for a very small source term f{t). If Fis also a

funiciion of x and y, then the inhomogeneous solution of eq. (A1) would have anoiher form as follows:
FG Y, 2,0= -7 68 +¥) T (A3)

Note that solution (A3) of Penrose [25] is also not bounded. Moreover, the principle of causality implies that any pa-
rameter in a sclution for physics must be related to some physical causes. If the cause for field F is independent of
coordinates x and v, then sofution (A3) violates the principle of causality. Solution (A3) depends on the parameters,
the origins of the x-axis and y-axis, but they are unrelated to any physical cause.

The left-hand side of eq. (Al) can be considered as a Maxwell's equation or an equation of linearized gravity.
Then, one may examine a field equation after the related physical cause has been identified.

For linearized gravily, ihe funciion F would relate io the deviations from a fiai metric. If ihe physical cause is an
clectromagnetic planc-wave propagating in the z-direction, then the related source energy-stress tensor would be a
function of u [13,14], and thus the source term in linearized gravity would have the form fu). Then, according to
solution (A2), the metric would have a factor v and is unbounded. On the other hand, the principle of causality im-
plies ihat the meiric is a function of u only [{9.13]. This coniradiction manifesis thai eq. (Al) is not an appropriate
form since the electromagnetic plane-waves are supported as an idealizations [13].

In other words, the principle of causality implics that there are weak gravity exact solutions (e.g., of an ¢lectro-
magnetic wave), which cannot be approximated with linearized gravity.

For the case of Maxwell’s equation, ihe principle of causality requires that the source ierm may not be in the form
of a plane-wave f(u). Thus, a charged particle must be invariably massive, and therefore, according to special relativ-

ity, it is impossible to have a charged source, moving with the velocity of light. Some might argue that since Maxwell



16

equation in the Lorentz gange has weak and bounded physical solutions for a weak source, (27) should have a
bounded weak solution. It is now clear that such an argument based on similarity is irrelevant.

Althoungh the question of causality is not clear for equation (27), the gauge terms would be added (sec eq. [13]D) to
the initial solution and forms a new sofution, which is subjecied to causality. For instance, as Einstein pointed out, it
must remain to be bounded and weak. According to (23), the cause of the gravitational wave is a function of only u. It
follows that the principle of causality requires that a physical solution of (27) must also be a function of u. In conclu-

sion, the analysis supports that there is no bounded solution for equation (27).

ENDNOTES

1) In many textbooks, the equivalence principle is actually Pauli’s version [2] which “is now commonly but mistak-
enly regarded as Einsicin’s version of the principle {26]” in spite of Einstein strongly objected Pauli’s version as
a misinterpretation [26]. Pauli [2] regards the equivalence principle essentially as the mathematical existence of
iocal Minkowski spaces. Different from Pauli, Einsicin requires additionally: i) “the special theory of relativity
applies to the case of the absence of a gravitational field [27]” and ii) a local Minkowski space is obtained by
choosing the acceleration. Einsiein {27] wrote, “... we must choose the acceleration of the infinitely small (“lo-
cal”) system of coordinates so that no gravitational field occurs; this is possible for an infinitely small region.”
The notion of acceleration with respect to a three-dimensional frame of reference is essential in Einstein’s theory
[3,22]. Moreover, Einstein’s principle is proposed for a physical space [12,26], where physical requirements are
sufficiently satisfied {16.18]. Fock [22] believed in Pauii, but regarded Einstein’s equivalence principle as invalid,

in part, because of misconceptions such as a frame of reference must be related to a Euclidean subspace [28].
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