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Abstract 

The equivalence principle, which states the local equivalence between acceleration and gravity, requires 

that in a physical space a free falling observer must result in a co-moving local Minkowski space. On the 

other hand, a Lorentz metric which is not locally Minkowski, may not implies the existence of an acceleration 

to a particle. Thus, a time-like geodesic need not physically lead to a local Minkowski space and thus does 

not represent a physical free fall ing. Given that the co-moving local Minkowski space exists mathematically 

along a time-I ike geodesic in a Lorentz manifold, a crucial question for the satisfaction of the equivalence 

principle is whether a geodesic represents a phY6ica-l free falling. Also, Einstein1s equivalence principle 

necessari Iy restricts general mathematical covariance. Examples are given to illustrate the above statements. 

Moreover, there are Lorentz manifolds none of which can be diffeomorphic to a physical space. Thuo, de-

f,irlling a tight opeed in a Lo/t.entz mani{,oU i6 not on-ly inuaA.id ~ut mioffiad.ing. 



II As far as the prepositions of mathematics refer to real ity, they are not certain; and as far as they are 

certain, they do not refer to real ity." - - A. Einstein (in 'Geometry and Experience', 1921). 

1. Introduction. 

A major problem in general relativity is that any Riemannian geometry with the proper metric signature 

would be accepted as a solution of Einstein's equation of 1915; and many unphysical solutions were accepted 

as val id [1 ] . This clearly suggests that, for a manifold to be a physical space, the mathematical existence of 

local Minkowski space which is due to a Lorentz metric signature [2], would be insufficient. 

On the other hand, Einstein's equivalence principle requires that a free physical falling results in a co

moving local Minkowski space1 ) [3,4]. It seems, many relativists [5 -11 ] bel ieved that a proper metric 

signature would imply a satisfaction of the equivalence principle. A related question would be whether a 

satisfaction of the equivalence principle is sufficient for a manifold to be a physical space. Another possibility 

is that their belief is incorrect and that a mathematicat exil.>tence 0.(, ~ocat Minkow~ki ~paceo io a 

neceo~a-iy I>ut iMUt/rfyioient condition .(,Olt a ~atio.(,action 0.(, the equioatence pltinciple [12]. 

Einstein proposed that the equivalence principle is satisfied in a physical space. From his calculation of 

Iight bending [3,4], EiMtein 6ee11't6 to l>0Ueoe that a Riemannian 6pace M phY6icaUy lteaUzaUe 

i.(, and o~y i.(, the equioa.£ence pltinciple M 6atM.f,ie4. If Einstein is right, there must be some differ

ences between the mathematical existence of local Minkowski space and Einstein's equivalence principle. In 

other words, some physical understandings may have been missed from Einstein's equivalence principle. 

It should be noted that a physical "free falling" automaticaUy results in a local Minkowski space is a 

physical requirement (§ 2). However, in a Lorentz manifold although there always exists a local Minkowski 

space for any space-time point, a "free falling" may not result in a co-moving local Minkowski space (§ 

3). Moreover, there may not be acceleration even if the Lorentz metric is not locally Minkowski. 

The misconception that, in a Lorentz manifold, a "free falling" would result in a local Minkowski space 

[10,11], has deep-rooted mathematical and physical misunderstandings from believing in the general 

mathematical covariance [4, 10] . Thus, it would be necessary to demonstrate through detai led examples that 

diffeomorphic coordinate systems may not be equivalent in physics (§§ 3-5). These illustrations are based on 
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theoretical inconsistency, and thus is independent of the individual preferences of a theorist. 

The physical validity of mathematical general covariance is incompatible with that time has a direction 

[13] and other established facts. For example, to establish special relativity, it has been shown that the 

Galilean transformation is physically not realizable by the Michelson-Morley experiment [14] and is incom

patible with coordinate relativistic causality 2 J [15,16]. Thus, Einstein's interim proposal of a general covar

iance among all conceivable mathematical coordinate systems [4], has been proven to be an over-extended 

demand. (Also, the gauge due to general mathematical covariance, was not accepted by Eddington [17).) 

Moreover, there are intlr,inl.>ica-Uy unphysical Lorentz manifolds none of which is diffeomorphic to a 

physical space-time (§ 6). (Nevertheless, some mathematically "define" the physical Iight speed in terms of 

the local Minkowski space in an unphysical manifold.) Thus, to accept a Lorentz manifold as valid in physics, 

it is necessary to verify a satisfaction of the equivalence principle in a space-time coordinate system on 

which physical interpretation can be based. Then, for the purpose of calculation only, any diffeomorphism can 

be used to obtain new coordinates. In other words, only a mathematical (but not physical) coordinate system 

can be arbitrary. After this necessary rectification, some currently accepted Lorentz manifolds would be ex

posed as unphysical (§ 6), although geneAMJt.eAati(JUy a6 a phyoicM theoJr,y io una{,f,ec:te4. 

2. Two Mathematical Theorems in Riemannian Space and Einsteinls Equivalence Principle 

Currently, Einstein's equivalence principle is often incorrectly considered as equivalent to the mathemat

ical existence of local Minkowski space. Such a misunderstanding is related to two mathematical theorems of 

Riemannian space [2] which are often confused with Einstein's equivalence principle by some mathe

maticians and theorists. These theorems are: 

Theorem 1. Given any point P in any Lorentz manifold (whose metric signature is the same as a Minkowski 

space) there always exist coordinate systems (xjJ) in which 8gjJv/8xQ = 0 at P. 

Theorem 2. Given any time-like geodesic curve r there always exist a coordinate system (so-called Fermi 

coordinates) (xjJ) in which 8gjJv/8xQ = 0 along r. 
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From these theorems, it is clear that a local Minkowski metric exists at any given point and that along any 

time-I ike geodesic curve r, a moving local constant metric exists [2]. 

However, there is no physical specification for the local coordinate transformation, which transforms a 

Lorentz metric to a local Minkowski metric along a time-like geodesic curve. Therefore, there is nothing to 

exclude an unphysical situation, these theorems cannot represent a physical principle. Einstein [18] pointed 

out, II As far as the prepositions of mathematics refers to real ity, they are not certain; and as far as they are 

certain, they do not refer to real ity.1I Hence, an appl ication of a theorem should be examined for its physical 

relevance although 1I 0ne cannot really argue with a mathematical theorem [13] II. Note that a mathematical 

local coordinate transformation may not necessari Iy be related to the physics of a II free fall ing ll (see § 3). 

Einstein [4] proposed, as part of the equivalence principle, II special theory of relativity applies to the 

special case of the absence of a gravitational field." This means that the Minkowski metric is the only const

ant metric which is valid in physics. In other words, Einstein's equivalence principle is also supported by the 

Michelson-Morley experiment; and the equivalence principle restricts general mathematical covariance. But, 

theorists such as Synge [2] did not understand the physical meaning of Einstein1s proposal. 

3. Free Falling, Special Relativity, and the Equivalence Principle 

The equivalence principle is a relation between acceleration and gravity. Therefore, to determine whether 

the equivalence principle is satisfied, one can directly examine the acceleration of a particle related to the 

metric. One may also note that there are no accelerations involved in the above theorems. 

Initially, based on the observation that the (passive) gravitational mass and inertial mass are equivalent, 

Einstein proposed the equivalence of uniform acceleration and gravity. Soon, this proposal is changed to the 

local equivalence of acceleration and gravity because of the obvious fact that gravity is almost never uniform. 

Thus, if gravity is represented by the space-time metric, the geodesic is the motion of a particle under the 

influence of gravity. Then, for an observer in free falling, the local metric is locally a constant. To be con

sistent with special relatvity, such a local metric is requi red to be locally a Minkowski space. 

Since the mathematical existence of local Minkowski space is assured, the central problem in general 

relativity is whethAA the geode6ic /t,eP"L<Ment/.) a phY6ical ~ {,aUing. Note, however, that validity of 
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this global property is real ized ioea-Uy through a satisfaction of the equivalence principle. Also, Eddington 

observed [17J that special relativity should apply only to phenomena unrelated to the second order derivatives 

of the metric. Einstein [19J accepted this criticism and added the crucial phrase, "at least to a first 

approximation" on the indistinguishability between gravity and acceleration. 

To clarify the 1916 paper [4-], Einstein wrote in h-io wok [3), "According to the principle of equi

valence, the metrical relation of the Euclidean geometry are valid relative to a Cartesian system of reference 

of infinitely small dimensions, and in a suitable state of motion (free fall ing, and without rotation)." Thus, at 

any point (x,y,z,t) of space-time, a "free falling" observer P must be in a co-moving local Minkow~ki 

~paC(t L with the local metric 

( 1 ) 

whose spatial coordinates are attached to P, whose motion is governed by the geodesic, 

(2 ) 

and 

(3 ) 

are defined by the space-time metric gllV' (The attachment means that, between P and L, there is no relative 

motion, nor relative acceleration.) Thus, when a space-ship is under the influence of gravity only, the 

ioeM ~paee-time M automaticaUy Minkow~ki, i.e., no other action required. From the geodesic 

equation, it is clear that a Lorentz manifold need not imply a satisfaction of the equivalence principle. 

When gravity (i .e., gravitational acceleration) exists, eq. (2) implies fll at3 :#= 0; and thus the space-

time metric gllv is not a constant. On the other hand, for a given non-constant metric gllv' an acceleration 

may not exist because fJ.l at3 (dxajds) (dxt3jds) can still be zero. For instance, when fJ.l tt = 0 (J,l :#= t), there 

is no acceleration for an initially static particle. But, fJ.l tt = 0 need not implies that gJ.lV is a constant metric. 

One may ask would the equivalence principle be satisfied in such a Lorentz manifold? Clearly, the equi
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valence principle is not satisfied. Since there is no acceleration nor motion, the particle remains in the same 

position (i .e. the particle is not in a local Minkowski space). Although such a coordinate transformation is 

mathematically possible, there is no phyoicat cauoe. to make such a transformation physically automatic. 

To illustrate this, let us consider a Lorentz manifold with the nonconstant metric, 

ds2 = ~ {exp(T/C) + exp(-T/C)}2dT2 - dx2 - dy 2 - dz2, ( 4 ) 

where C is a constant. From metric (4), the Christoffel symbols are zeros except f tt /2. If thet B t gtt

equivalence principle were valid, the equation of motion for a observer P at (x,y,z, T) is 

d2T dT dT� 
ds2 + f\t ~~ = 0, and (Sa)� 

where 

d 
f\t = dT (In{exp(T/C) + exp( - T/C)}). (Sb) 

Eq. (S) impl ies there is no spatial acceleration, and thus there is no physical cause to have a physical space-

time transformation due to gravity. Then, it follows eq. (S) that 

dT dx~
 
ds = k{exp(T/C) + exp( - T/C) }-1 and constant, x~ (= x, y, z) (6a)�ds 

for some constant k. Now, consider the observer P in the state 

dx/dT = dy/dT = dz/dT = 0; and thus dx/ds dy/ds dz/ds O. (6b) 

Thus, there is no change in the spatial position nor acceleration. Physically, this means that such an observer 

P would have the same frame of reference 3 ), whether "free falling" or not. 

If the equivalence principle were satisfied, according to Einstein's calculation of the light bending [3], 

ds2 = a and the space-time metric imply the measured light speed would be {exp(T/C) + exp(-T/C)}/2 .. 
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Then for such an observer, he would absurdly have two different light speeds from the same frame of 

reference. Thus, the geodesic cannot prepresent a physical free falling because its co-moving local metric is 

not automatically local Minkowski space. 

Moreover, since metric (4) is obtained from the flat metric 

(7a) 

with 

ct C { exp (T/ C) - exp ( - T/ C) } / 2, ( 7b) 

a diffeomorphism, this shows that a Gaussian system may not satisfy the equivalence principle. This example 

supports Einsteinls veiwpoint that once the frame of reference is chosen, the time-coordinate is determined. 

4. Physics beyond the Metric Signature. 

The above example shows that one must consider physics beyond the signature of a metric of a manifold. 

There are three physical aspects in Einstein's equivalence principle as follows [3]: 

1) In a physical space, the motion of a free fall ing observer is a geodesic. 

2) The local space-time of an observer is Minkowski, when 1) is true. 

3) A physical local coordinate transformation transforms the metric to local Minkowski, when 2) is true. 

Point 3) indicates the fact that this physical local coordinate transformation is due to free fall ing OIlone. In 

other words, the physical validity of the geodesic 1) is a prerequisite for the satisfaction of the equivalence 

principle, and validity of 3) is an indication of such a satisfaction. Thus, a satisfaction of the equivalence 

principle involves local physical properties which are beyond the mathematical tangent space [6). 

However, if Einstein had greatly emphasized the mathematical existence of local Minkowski spaces, in 

current theory, the equivalence principle has been incorrectly considered as such. 

An important aspect of the equivalence principle is the automatic physical transfer to a local Minowski 

space. Einstein [4] proposed II special theory of relativity applies to the case of the absence of a gravitational 

field ll Thus, it is incorrect of claim that the equivalence principle is always satisfied in a Lorentz manifold • 
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because a merely mathematical existence of the orthogonal tetrad is insufficient (see also § § 5 & 6). In other 

words, the interpretation of the equivalence principle as identical to the mathematical theorems is not valid in 

physics. Such a misunderstanding is responsible for accepting many unphysical solutions as valid. 

Perhaps, this inadequate understanding is, in part, due to the fact that it is often difficult to see the 

physical validity of point 2) directly, i.e., how the metric transformed automatically to a local Minkowski 

space. To this end, exa.mining point 1) and/or point 3) would be useful. Point 1) is a prerequisite of the 

equivalence principle point 2). For Point 1) to be valid, i.e., the geodesic representing a physical free 

fall ing, it is requi red that the metric of such a manifold should satisfy all physical principles. Needless to say, 

such a metric must be physically realizable. If point 1) is valid in physics, point 3) should produce valid 

physical results. Thus, one can check point 3) to determine the validity of point 1) or vice versa. 

The mathematical existence of a Local Minkowski space alone implies only that Riemannian geometry is 

compatible with the equivalence principle. The physics is whether the existence of a physical local transform

ation which transforms the metric to a local Minkowski space. It is the equivalence principle that ensures the 

existence of such a physical transformation. Thus, one must carefully distinguish mathematical properties of a 

Lorentz metric from physical requirements. Apparently, a discussion on the possibility that the equivalence 

principle can fail in a Lorentz manifold, was oveJt-iooked by Einstein and others (see also §§ 5 & 6). 

To illustrate further that the equivalence principle can fail in a Lorentz Manifold, consider the metric, 

ds 2 dt2 - ~ {exp(X/C) + exp(-X/C)}2dX2 - dy 2 - dz 2 (8 ) 

If the equivalence principle were satisfied in manifold (t,X,y,zL the light speed in the X-direction, would be 

± 2 {exp( X/C) + exp( - X/C) } -1, and has limit zero as X ~ co without an identifiable physical cause. In 

general relativity, a very slow speed of light is due to strong gravity. 

To show that metric (8) also fai Is satisfying the equivalence principle, consider an observer P at 

(X o' yo,zo' to)' From metric (8 L one has that for P the geodesic equation is, 

i!.:.L d2z d2td
2

X + fX dX dX _ 0 d (9a)
ds 2 xx ds ds - , an ds2 = ds2 = ds 2 = o. 
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where 

d� 
fXxx = dT In [a (X)] , where a (X) { exp ( XI C) + exp ( - XI C) } I2� 

Note that d2 X/ds 2 can be zero if dX/ds = O. Thus, the gravity does not really cause an acceleration, and thus 

no physical changes should be produced by gravity. It follows eq. (9a) one obtains, for some constants k. 

1. (9b) 

If P is resting, i.e., dx/dT = dY/dT = dz/dT = 0; then only k t = 1 is non-zero. Thus, since in such a "free 

fall ing", there is no change in the spatial position nor any acceleration on P, the equivalence principle cannot 

be satisfied. Note also that metric (8) is obtained from the flat metric with the diffeomorphism 

x = C{exp(X/C) - exp(-X/C)}/2. (10) 

Thus, this example shows also that the space coordinates cannot be arbitrary. 

5. Incompatibility of the Galilean Transformation to the Equivalence Principle 

It will be shown that a Galilean transformation, which is experimentally unrealizable, is incompatible 

with the equivalence principle. In current theory, such an physically unrealizable transformation is incon

sistently believed as " va lid". The equivalence principle was incorrectly considered as satisfied in a Lorentz 

manifold because the physics of a time-like geodesic has not been adequately considered. 

Consider the Gal i lean transformation from (x, y ,z, t) to the K' coordinates, 

lt = e, x Xl I Y = yl, and z = Zl - vt , (11 a) 

where v is a constant. Eq. (11 a) transforms metric (7a) to another constant Lorentz metric 
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[dz ' + (c - v)dt'] [-dz l + (c + v)dt'] - dx'2 - dy'2. (11 b) 

This is a constant metric which is not Minkowski. Thus, point 1) of the equivalence principle is not satisfied. 

It follows that (1'lb) does not give the correct light speed. For light rays in the z'-direction, (11b) and 

ds 2 = °would imply the light speeds were 

dz' dz' 
c + v, or -c + v. (12 )dt' dt' 

Clearly, eq. (12) violates point 1) of the equivalence principle again since (12) also violates coo-idinate 

'lteA,ativi6tic caU/.)O!Uty (i.e., no cause event can propagate faster than the velocity of light in a vacuum). 

Nevertheless, this problem is currently being ignored by claiming (even against Einstein physical reasoning in 

his calculation of the light bending) that the coordinate light speed has no meaning by simply "define" 

invalidly (see next section) a light speed with the local Minkowski space. 

Moreover, according to the geodesic equation (2), metric (11 b) implies d2x'~jds2 0, and thus 

dx'~ 

ds constant. where Xl ~ (= Xl, l, Zl, or t') (13) 

at any point. According to the equivalence principle, no physical changes are caused by gravity. However, 

according to metric (11b), consider the "free falling" of an observer pi at (x'o,y'o,z'o,t'o) 

dx'jds dljds dz'jds 0, and dt'jds ( 14 ) 

For such a II free fall ing" observer pi is at rest and carries with him the frame of reference K' . But, the K' 

metric (1 'I b) is not a Minkowski space. Since a "free falling" does not automatically obtain a local 

Minkowski space, point 2) of the equivalence principle is violated. Moreover, for observer pi, according eq. 

(1) the measured light speed is c, but according (11 b) the light speed in the x-direction is (c 2 - v 2) 1/1. This 

inconsistency also implies that point 3) of the equivalence principle is not satisfied in K' . 
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Nevertheless, mCLthe-matiC6 ensures the existence of a local Minkowski space. According to condition 

(14), the time coordinate would remain the same dt'. But, the coordinate dz' is not orthogonal to de. In order 

to have three orthogonal space coordinates to form a local Minkowski space, one may transform dz ' by 

(15 ) 

But, the coordinate system (dx" ,dy" ,dz") is not co-moving with the observer P'. 

Now, let us work out the local orthogonal tetrad of p', whose direction v p ' is (O,O,O,de). Then, the 

orthonormal vectors of the tetrad are 

(1,0,0,0), a2 (0,1,0,0), a3 (O,O,Q,f3), and bp' =(O,O,o,y) ( 16a) 

where 

The corresponding transformations is as follows: 

dt ' y(dT - vjc2dZ), dz' y-1 dZ, dx ' dX, and dy' dY. (16b) 

Thus, (dx',dy',dz ' ) and (dX,dY,dZ) share the same frame of reference 3 ) because there is no acceleration nor 

motion. But, there is space measurement changes in the z-di rection. Metric (11 b) does not satisfy point 2) 

of the equivalence principle since there is no phy~icaA caU6e for transformation (16b). In relativity, such 

a physical transformation happens only when there is relative motion or the presence of gravity. But, pi is 

rest at K' . Thus, (16b) illustrates also that geodesic (14) does not represent a physical free falling. 

A misunderstanding of the equivalence principle, as Yu (p. 42 of [11)) believed, is that at any space

time point, it is always possible to establish a local Minkowski space which is related to a "free falling". 

However, ~ ~ nece,MaJl,y !>Uit iMufrfyicient. For instance, at any space-time point of manifold (11b), 

there is a local Minkowski space which is co-moving with a "free falling" observer in the manifold. But, in 
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such Lorentz manifolds, the geodesic does not represent a phy~icaA .(,!Lee fyaUing. 

The Gali lean transformation is an unphysical transformation, and it simply takes another unphysical 

transformation to cancel out the unphysical properties so introduced. In fact, (11 a), and (16b) imply 

dt Y(dT - v/c 2dZ), and dZ ydz' y (dz + v dt). ( 16c) 

Transformation (16c) is just a Lorentz- Poincare transformation. Transformation (15) is an inverse Gal i lean 

transformation; and (16b) completes the transformation (16c) starting form (11 a). 

It has been shown in different approaches that metric (11 b) is incompatible with physics and in particul

ar the equivalence principle. Since (11 a) is a Galilean transformation, it has been shown that the Galilean 

transformation is also not val id in general relativity. The fai lure of satisfying the equivalence principle should 

be expected since the Gal i lean transformation is experimentally not real izable. This analysis shows also that 

the Minkowski metric is only valid constant metric in physics. In fact, a general result is that if rO = 0 fortt 

a = x, y, or z, then the equivalence principle is satisfied only if the metric is Minkowski. 

Another consequence is the reaffirmation of coordinate relativistic causality in vacuum. The possibility 

that the speed of Iight could be larger than c through a coordinate transformation is inconsistent with the no

tion that c as the maximum possible speed. The equivalence principle rules out such a possibility. It thus foll

ows that physically the speed of Iight cannot be larger than c at the presence of gravity. In fact, in agreement 

with the equivalence principle, observation confirms that gravity only leads to a reduction of the light speed. 

It has been illustrated that the Gal i lean transformation is incompatible with the equivalence principle in 

the absence of gravity. In fact, the incompatibi Iity is also true even when gravity is present. 

6. Covariance, Physical Principles, and Intrinsically Unphysical Lorentz Manifolds 

Kretschmann [20] pointed out that the postulate of general covariance does not make any assertions 

about the physical content of the physical laws, but only about their mathematical formulation, and Einstein 

entirely concurred with his view. However, Einstein [4] argued also that there is no immediate reasonII ••• 

for preferring certain systems of coordinates to others, that is to say, we arrive at the requirement of general 
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co-variance. II This is, of course, incorrect since the equivalence principle Iz,ejects some coordinate systems. 

The equivalence principle is a requirement for a valid physical space-time coordinate system. In a free 

falling, the co-moving local coordinate system must be Minkowski -- a non-covariant requirement. 

Moreover, general covariance must be restricted because a distinction between time and space is inherent. As 

Hawking [13] pointed out that IIsomething that distinguished the past from the future, giving a direction to 

time. 
1I 

The principle of general relativity requi res only the equivalence of all frames of reference 3 ). 

Einstein proposed that the equivalence principle is satisfied in a physical space-time. This also means that 

the equivalence principle is satisfied, only if the manifold is physically realizable. The theorems in mathe

matics support this principle by showing that the local Minkowski spaces always exist for a Lorentz manifold. 

With the question on the existence of local Minkowski spaces removed, the remaining question is whether the 

physical motion of a free falling is represented by a geodesic. It follows that, for a Lorentz metric, the metric 

is not valid in physics, if and only if the local transformation due to a "free falling ll produces unphysical 

results. For instance, since coordinate relativistic causality is not satisfied by metric (11 b), assuming the 

validity of the equivalence principle leads to unphysical results. 

On the other hand, all the previous unphysical manifolds in this paper can be considered as diffeomorphic 

to a physical space. Naturally, one would ask whether a Lorentz manifold is always diffeomorphic to a phys

ical space. If this were true, then the metric signature would be essentially equivalent to the equivalence 

principle. Thus, it is important to find out whether theJr,e a/l,e int'Unoica£ly unphyoica4 LO!z,e,ntz 

mani{-,o~ any of, which cannot be cU{y{,eomoltphic to a phyoica4 opace. 

In general, to determine whether a given manifold can be diffeomorphic to a physical space, is a diffic

ult problem because all possible diffeomorphisms must be considered. The fact that a manifold is not a phy

sical space if the equivalence principle is not satisfied at one point, is not very useful because a new manifold 

may be obtained by modifying the coordinates in a small region. However, if a manifold cannot be diffeo

morphic to a physical space, this manifold must fail a physical requirement which is independent of the choice 

of coordinates. For instance, failing the principle of causality can be such a case. 

In fact, there are examples of intltinoica£ly unphysical Lorentz manifolds in the literature [1, 12] . For 

instance, an accepted solution of metric for an electromagnetic plane wave [21 ] is 
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ds 2 du dv + H du 2 - dxi dxj, where H (17) 

and 

hij (u) 2: 0, hij hji , where u t - z, and v = t + z . 

Here t is the time coordinate; and x, y, z are the space coordinates; and hij (u) is related to the cause of this 

gravity, an electromagnetic plane-wave. It can be easi Iy shown that metric (17) is a Lorentz manifold. 

Nevertheless, since H can be ~evliUy large, this is incompatible with Einstein1s notion of weak gra

vity and the correspondence principle4 ). In the Iight bending experiment, the gravitational effect of the Iight is 

implicitly assumed to be negligible. Thus, metric (17) cannot be valid in physics. Moreover, because the 

condition 1 2: (1 + H)/ (1 - H) may not be valid, metric (17) does not satisfy coordinate relativistic causa

lity. Therefore, the equivalence principle is not satisfied because physical requirements are violated. Although 

a space with an electromagnetic plane-wave is not a vacuum, it does not seem to have any physical reason to 

exclude this consideration, since the scattering between Iights is extremely small. 

However, to show that metric (17) cannot be diffeomorphic to a physical space, needs another approach 

since boundedness and coordinate relativistic causal ity is subjected to the choice of coordinates. 

The gravitational force related to r Z = V2 (1 +H) 8H/8t has arbitrary parameters (the coordinate origin).tt 

This arbitrariness in the metric violates the principle of causal ity (i .e., the causes of phenomena are identifi

able) [16]. It follows that the geodesic does not represent a physical free falling. Also, as shown in eq. 

(16), a tetrad leads to a local coordinate transformation which is derived from the metric of a manifold. A 

transformation with arbitrary parameters cannot be valid in physics. Thus, the Lorentz manifold (17) cannot 

be diffeomorphic to a physical space since a diffeomorphism cannot eliminate the arbitrary parameters. 

This example illustrates further that a crucial question for a satisfaction of the equivalence principle in a 

Lorentz manifold is whether a geodesic represents a physical free fall ing. Moreover, the existence of intrins

ically unphysical Lorentz manifold implies that to define the light speed in terms of the local Minkowski 

space is invalid. One might argue that since the local Minkowski space always exists, one can surely define 

anything from it. But, the argument has one problem that the light speed is not a mathematical but a physical 

object. A physical object must be consistent with physics and therefore cannot be defined just mathematically. 
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7. Conclusions and Discussions 

The equivalence principle, which states the local equivalence between acceleration and gravity, requires 

that a free fall ing observer must result in a co-moving local Minkowski space. Physically, the equivalence 

principle, requires that a /rtee bcdUng OMeJ(,VeJ(, muot I>e automatically (i.e., without additional efforts) 

in a co-moving ioca1 Minkow~ki ~pace. For a long time, many theorists (outstanding physicists such as 

Eddington [17] are the exceptions) had mistaken that a mathematical existence of the local Minkowski space 

as the satisfaction of Einstein's equivalence principle. An obvious problem is, however, that the geodesic 

equation indicates that an acceleration may not exist even for non-constant metrics. 

As stated by Einstein, the equivalence principle is necessary to ensure that [4] II special theory of 

relativity applies to the case of the absence of a gravitational field." This is supported by the fact that, undeJ(, 

the irz,.(yluence ob on,(,y g'tavity, the ioccd opaoo-time ob a ~pac~hip it.> a ioca1 Minkow~ki ~pace. 

Thus, nature unequivocally defeats any attempt to misinterpret the equivalence principle. 

The Minkowski metric in special relativity is a special case of the metric in general relativity. Never

theless, this special case is very useful in clarifying whether all the principles which lead to general relativity 

are compatible with each other. The equivalence principle can be considered as a generalization of the Min

kowski metric. Thus, this principle may not always be compatible with the c.ovariance principle. For instance, 

due to the equivalence principle, the Minkowski metric is the OMY valid constant space-time metric. 

The Galilean transformation implies that there is no maximum limit for the light speed and therefore is 

also in conflict with general relativity. To establish special relativity, the Galilean transformation is proven to 

be uMecdizaUe by experiments. Thus, a Galilean transformation cannot be compatible with the equivalence 

principle which is applicable to only a physical space. Thus, it is physically invalid to extend the space-time 

physical coordinate system to an a'tIYi.t'talty Gaussian system. This means that the equivalence of all frames of 

reference does not require the physical equivalence of all mathematical coordinate systems. 

The fact that there is a distinction between the equivalence principle and the proper metric signature 

would imply also that the covariance principle must be restricted. No wonder, unrestricted covariance has 

been found to be a problem for a consistent physical interpretation [22,23]. The fact that metric (17) is 

intrinsically unphysical resolves its seemingly paradox with the Iight bending calculation in which the gravity 
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due to the Iight is impl icitly assumed to be negl igible [3,4]. This is another example that a rn..-iounde/t.

otanding of, the. eqt.UvcUenoo plltincip..£e can ,(,eadt, to dioag'l,eemento with eapeJlimento. 

Perhaps, due to confusing mathematics with physics, Einstein's equivalence principle is often not explain

ed adequately in some books [2,7,9,11 J. Theorists such as Synge [2 J and more recently Friedman [24 J 

incorrectly believed that the existence of local Minkowski space has replaced the equivalence principle that 

initially motivated it. Such theorists advocated explicitly that the basis of general relativity should be the 

Einstein field equation alone rather than the equivalence principle. Because they did not see the physical 

meaning of the equivalence principle beyond the theorems in mathematics, they incorrectly considered the 

equivalence principle as merely a useful midwife which has helped gestating general relativity and thus have 

done its duty. Therefore, they can suggest only the field equation as the foundation of general relativity. 

However, there is no satisfactory proof of rigorous validity of Einstein's field equation [25) (e.g., the 

inadequate source term, as mentioned in § 1, is the cause of the unphysical solution (17) [ 16J). Experi

mentally, the validity of Einstein's equation has not yet been established beyond do.ubt [26]. In fact, the 

invalidity of Einstein's equation for two-body problems was conjectured by Hogarth [27J; and Einstein 

himself had pointed out that his equation may not be val id for matter of very high density [3 J. Moreover, it 

has been proven experimentally that, for dynamic problems 5 ), Einstein's equation of 1915 must be modified 

(28] and Vi Imaz (29] also pointed out that Einstein's equation of 1915 is only a test particle theory. 

But, the equivalence principle remains indispensable because of its solid experimental foundation (9,10, 

28]. Moreover, as illustrated, its failure is always accompanied with a violation of another physical require

ment. Thus, as Weinberg [5 J points out, lIit is much more useful to regard general relativity above all as a 

theory of g'l,avUation, whose connection with geometry arises from the peculiar empirical properties of 

gravitation, properties summarized by Einstein's Principle of the Equivalence of Gravitation and Inertia. 1I 

Nevertheless, since a Lorentz manifold may not satisfy the equivalence principle, further considerations 

must be made for its valid applicability. This analysis clarifies that the equivalence principle consists of three 

integral parts: 1) the validity of a geodesic representing the motion of a particle; 2) a free falling observer 

automatically in a local Minkowski space; and 3) validity of the local coordinate transformation which trans

form the metric to a local Minkowski space. On the equivalence principle, the crucial feature is not the 
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mathematical existence of a local Minkowski space, but its automatic physical formation in a free falling. 

To ensure this, point 1) must be valid and validity of point 3) would follow. On the other hand, it would not 

be practical to consider val idity of all metrics, discussions in a paper must be Iimited to the essentials. 

In conclusion, the equivalence principle is a theoretical framework and it restricts the covariance. The 

mathematical theorems show only that Riemannian geometry is compatible with general relativity. Due to the 

over-extended covariance, a criterion for a satisfaction of the equivalence principle in a Lorentz manifold 

was not considered. This analysis shows that any physical requi rement is a necessary condition for a satisfact

ion of this principle. Also, since unphysical solutions can be eliminated by this restriction, physical under

standing in general relativity is enhanced [16]. Then it is possible to extend the theory of general relativity 

such that its scope would encompassing every fundamental aspects of physics as Einstein [30] envisioned. 
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ENDNOTES 

1) A local Minkowski space is a short hand to express that special relativity is locally valid in the co

moving local Minkowski space, except for phenomena involving the space-time curvature. 

2) In some text books, the coordinate relativistic causal ity (Le., the Iight speed c is the maximum velocity of 

propagation for any event) was considered to be equivalent to the existence of local Minkowski spaces. 

This is not true for a Lorentz manifold may not satisfy the requirement of coordinate relativistic causality. 

3) According to Einstein, the body to which events are spatially referred, is called the coordinate system 

[31]. To be more precise, a spatial coordinate system attached to a body (i.e., no relative motion nor 

acceleration) is its "frame of reference ll [3,4]. Then, these coordinates together with the time-co
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ordinate form the space-time coordinate system. Thus, a frame of reference can be chosen physically 

and, due to the equivalence principle, the time-coordinate is determined accordingly. Thus, one may call 

loosely the frame of reference as a coordinate system. In this paper, for the purpose of considering a 

satisfaction of the equivalence principle, a frame of reference and a related space-time coordinate 

system, are distinguished as above. 

4)� Some theorists, R. Penrose [21] for example, bel ieve that a space-time metric could be unbounded even 

if the source is weak. 

5)� A dynamic solution in gravity is related to the dynamics of its source matter. A dynamic source, accord

ing to relativity, would generate gravitational radiation. For a weak source, according to Einstein, such a 

solution is bounded. However, as pointed out by F. E. Low [32], a time-dependent solution can be 

obtained simply through a coordinate transformation and therefore may not relate to dynamics. 
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