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Abstract

The most recent data from the four LEP Collaborations are used for a high
precision test of the minimal standard model. Various results concerning
the unknown parameters of the theory are presented and discussed. A crit-
ical analysis of the conventions usually adopted for reporting the errors on
physical quantities is performed. In particular the strategy for assigning Con-
fidence Level intervals to the Lagrangian parameters (m;,a,,m,) as well as

to the Z° parameters (M,,I',, R; etc...) is reexamined in the light of the
increasing experimental precision.
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for ALEPH (see the first paper in [7]). In Fig. 2 we report in the plane
m; — a, the exact contours of constant Ax? with the corresponding ellipses
derived under the assumption of a parabolic x2. The differences are, in some
cases, not negligible. For the sake of completeness, Fig. 3 shows the exact
contours at Ax? =1 and 2.30 (a and b respectively) in the plane m, — a, for
ALEPH (dotted line), DELPHI (dash-dotted line) L3 (solid line) and OPAL
(dashed line) [7].

To give a further example let us consider a set of electroweak parameters
as reported by the experimental Collaborations [8]:

I, = 2.48840.007GeV, o°=41.4440.17nb,
Ry 20.83 +0.06, A (I)=0.0164 % 0.0021,
M, = 7991+0.39GeV, M, /M, = 0.8807 4 0.0031,
Ty/Th = 0.220+0.003, A _(b) =0.098 + 0.009,
A7, = 0.142+0.017.

We would like to make some prediction for the Higgs boson mass. The idea
is to consider the Ax? = const curves in the m; — m,, plane for fixed o, and
M, = 91.187 GeV. These curves are reported in Fig. 4, where we can compare
Ax? =1 with Ax? = 2.30 which give informations on the 68% of probability
for m,, m,, separately or jointly. From these curves we learn, first of all, that
the standard model is compatible with the data at the 68% of probability for
a considerably high Higgs boson mass, and that to conclude that relatively
low Higgs boson masses are favored on the basis of the Ax? = 1 curve is
misleading, since in this way the correlation with m, is lost. Moreover we
learn that a prediction for m,, is heavily correlated with the value of a, and
it is enough to consider a, ~ 0.125 for being well above that value of m,
where perturbation theory breaks down in the scalar Higgs sector. To use

_______ the proiection of the Av? = 1 curve for givine a analitative estimate is more

have an uncorrelated error, which is a quadratic sum, statistical @ point-to-
point systematic error. Moreover we assume a common normalization factor
with variance around 1 given by the relative normalization error. Whenever



of the theoretical error on the determination of the unknown parameters
of the standard model. For definiteness we have considered our predictions
for L3 (electron channel) where the typical situation is as given in Tab. 1.
The largest relative error for the lineshape into electrons is ~ 0.2% (away
from the Z° peak) while the largest absolute error on the forward-backward
asymmetry into electrons is ~ 0.0025 (again away from the Z° peak), but
usually and expecially around the resonance they are considerably smaller.
The estimates of the error, as returned by the integration routines, can be
considered as a sort of systematics and we have made an attempt in order
to understand its possible influence. In the minimization procedure we have
modified the residuals in the electron channel and the total x? as follows

A—1)\? o \?
2 _ tr-1 - £
X = AC A+(A/\)+(Ap)’ (2)
where
Aa.th — %P
Aj(electrons) = Rger 3)
or

Ath +p — Ae®r

. — FB FB
A;(electrons) e Az , (4)

where we assumed conservatively AX = Ap = 2 x 1073, The result of the fit
and its modification with respect to a situation where the theoretical errors
are not included is

no theor. err.

— +theor. err.
x%/dof = 0.949 — 0.949,
M, = 91.193GeV  — 91.193GeV,
my = 81.4GeV — 80.7GeV,
a, = 0.1431 — 0.1431,
A =1 — 0.99972,
P =0 — 0.59986 x 1073,

Therefore we may conclude that the situation is well under control even in
the presence of a theoretical error due to the numerical integration over a
complicated phase space.

In the end we are interested in presenting results for the secondary param-
eters and in identifying the correct definition for their errors. The covariance
matrix is, in our opinion, totally inadequate for this purpose and we tend to
attribute a scarce relevance to the variance



3. ér or
var (T';) =) E;'“_'ng 5;:%, (5)

1,j=1
where z, = M,,z; = m;and z3 = «,, C;; being the estimate of the covariance
of T; and Ej

C,'j = covar (5,',.1_:,') ’ Cii = var (f,) . (6)
Instead of considering the variance of the secondary parameters we prefer
to adopt the following procedure. As a result of a 3 parameter fit we con-
sider the region R, corresponding to p% of probability distribution for the
three parameters. For instance if p = 0.68 then we are discussing the region
R, bounded by Ax? = 3.53. Next we define the range of variation of the
secondary parameter f as

fmin = f(51752s§3)a (7)
fv = max £, f-= min £ (8)

and therefore
f=Fmin T80, 6fF =] fr— frin |- (9)

The resulting errors are rather conservative estimates of the allowed vari-
ations since they turn out to be larger, in general, than the corresponding
variances. We have illustrated the general idea by taking the ALEPH data
sample and a fixed value for M,,i.e M, = 91.187 GeV. In this case p = 0.68
is given by the region in the m; — a, plane bounded by the Ax? = 2.30 curve.
This curve is reported in Fig. 10 together with the curves corresponding to
the maxima and minima of I',,I';, and R,. In a field-theoretical language we
attribute a primary significance to the unknown Lagrangian parameters of
the standard model and derive a region which reflects some content of prob-
ability that the standard model is consistent when the parameters are inside
that region. Secondary parameters are those parameters which do not ap-
pear directly in the Lagrangian of the standard model and moreover are not
obtainable as a consequence of a direct experimental observation but rather
follow from a fit to some set of data. For these parameters we prefer to give
the minimum and maximum values over the relevant region of the primary
parameters. In any case the non-linearity of the model is such that the exact
distribution of the various quantities is not known and the associated prob-
abilities as deduced from a comparison with the chi-square distribution will
only be approximately correct.



The outlined strategy has been followed in obtaining the results shown
in Tab. 2-5. The best values for a 3-parameter fit (Mz, m, and a,) to line-
shape and asymmetry data are quoted (Tab. 2-5a) together with the error
estimate as given by the covariance matrix (cov.), the intersection method
(int.) or the projection method (proj.). The data sample used are the most
recently published by the four LEP experiments [7]. In general and within
the errors we find a reasonable agreement between m, as obtained from our
global fit to the data and m, as reported by the LEP Collaborations as a
consequence of a model independent fit. Perhaps the largest difference in
the central value is for L3 where we find m, = 72%5° GeV from a fit to the
fully extrapolated observables or m; = 83*%* GeV from a fit to the realistic
observables vs a reported value of 132133 GeV. A closer study of the fit could
be done by looking at the residuals, which directly measure the deviations
between the experimental observables and the fitted values. The examination
of the fit should be done in terms of the stretch functions or pulls. Given
ax? = A'C'A with A; = z; — n;,(t = 1,...,n) then the i-th pull can be
expressed as

Z; = ST . (10)

Vo2 (z:) — o¥(ns)

The pull z; is anticipated to have a distribution which is fairly close to N(0,1).
If, in a fit, we find that one of the z; deviates very much from the others
then the corresponding experimental point should be abandoned if it looks
suspicious. For our case the lineshape into u’s has a pull of 3.9 at /s =
91.222 GeV and of 2.8 at /s = 93.228. If the muons are excluded from the
fit we obtain instead m, = 14515; GeV.

In Tab. 2-5b the corresponding best values for the Z° parameters I'j,
I'z, R; and o} are reported together with the error estimate as given by the
covariance matrix and by the projection method. As can be seen, whereas
different error estimates lead to almost equivalent results in the case of La-
grangian parameters, in the case of Z° parameters the projection method
gives asymmetric errors which in most cases are almost a factor of 2 larger
then the corresponding (symmetric) errors as estimated by means of the co-
variance matrix. Tab. 6 a and b collect the weighted average over the four
experiments for Lagrangian and Z°® parameters respectively. The weighted
average has been obtained by following the iterative procedure described
in [15]. While in each entry the errors are more or less halved, the same
relation between the various kinds of error estimates is maintained.
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Figure and Table Captions

Fig. 1 - The curves Ax? = 1 (solid line) and Ax? = 2.30 (dashed line) in
the (AR;, AT'z) plane. The region which contains the 68% of the probability
distribution for R; and I'z jointly is bounded by the Ax? = 2.30 ellipse.

Fig. 2 - The exact contours of constant Ax? for Ax? =1 (a) and 2.30 (b) in
the m; — a, plane, to be compared with the corresponding ellipses as derived
under the assumption of parabolic x2. ALEPH data sample.

Fig. 3 - The exact contours of constant Ax? for Ax? =1 (a) and 2.30 (b) in
the m, — a, plane, for ALEPH (dotted line), DELPHI (dash-dotted line), L3
(solid line) and OPAL (dashed line).

Fig. 4 - The contours at Ax? = 2.30 and 1 (a and b respectively) in the
m; — In(mg/Mz) plane for Mz = 91.187 GeV and a, = 0.118 (solid line),
0.128 (dashed line) and 0.138 (dotted line).

Fig. 5 - The contours at Ax? = 1 (dash-dotted line) and 2.30 (solid line) in
the plane m; — In(mg/M3z) for a, = 0.138 (a) and 0.118 (b). ALEPH data
sample.

Fig. 6 - The same as Fig. 5 for DELPHI data sample.
Fig. 7 - The same as Fig. 5 for L3 data sample.
Fig. 8 - The same as Fig. 5 for OPAL data sample.

Fig. 9 - Ax? = 2.30 contours in the plane m; — «, from covariance matrix
(dash dotted line) and from full calculation (solid line). ALEPH data sample.

Fig. 10 - The Ax? = 2.30 contour in the plane m; — a, from full calculation
(solid line) and the curves corresponding to the maxima and minima of I',, T',
and R;. ALEPH data sample.

12



Tab. 1 - Our prediction for cross sections and forward-backward asymme-
tries in the electron channel for the L3 experimental setup together with the
numerical errors coming from the integration over the realistic phase space.

Tab. 2a - The best values of a 3-parameter fit (Mz, m; and a,) to line-
shape and asymmetry data together with the errors estimate as given by the
covariance matrix (cov.), the intersection (int.) and the projection (proj.)
method. The dots indicate a lower value below open top production. ALEPH
data sample.

Tab. 2b - The best values of the Z° parameters corresponding to the La-
grangian parameters of Tab. 2a together with the errors estimate as given by
the covariance matrix and the projection method. ALEPH data sample.

Tab. 3a - The same as Tab. 2a for DELPHI data sample.

Tab. 3b - The same as Tab. 2b for DELPHI data sample.

Tab. 4a - The same as Tab. 2a for L3 data sample.

Tab. 4b - The same as Tab. 2b for L3 data sample.

Tab. 5a - The same as Tab. 2a for OPAL data sample.

Tab. 5b - The same as Tab. 2b for OPAL data sample.

Tab. 6a - Weighted average of the Lagrangian parameters of Tab. 2-5a.

Tab. 6b - Weighted average of the Z° parameters of Tab. 2-5b.

13



ete™ Observables

M, = 91.193 GeV m, = 100 GeV m,, = 300GeV a, = 0.140

Vs(GeV) | o(nb) | Ao x10%nb) | A., |AA., x10°
88.231 0.36752 0.41 0.40563 0.157
89.236 | 0.51184 0.43 0.31480 0.111
90.238 0.81996 0.47 0.20640 0.070
91.230 1.0604 0.50 0.11008 0.053
92.226 0.66936 0.48 0.07670 0.076
93.228 0.38229 0.49 0.10970 0.141
94.223 0.26000 0.55 0.17373 0.250
88.480 0.39372 0.41 0.38520 0.146
89.470 | 0.56530 0.44 0.29061 0.100
90.228 0.81593 0.47 0.20751 0.070
91.222 1.0615 0.50 0.11066 0.053
91.254 1.0568 0.50 0.10836 0.053
91.967 0.78418 0.51 0.07793 0.069
92.966 0.43543 0.55 0.09657 0.053
93.716 0.31022 0.50 0.13924 0.183

Tab. 1




ALEPH - Lagrangian parameters

x?=102.538 (x%/dof = 1.1923)

central cov. +err. (int.) | -err. (int.) | 4err. (proj.) | -err. (proj.)
Mz | 91.182 GeV || 5.9 MeV || 5.9 MeV 5.9 MeV 6 MeV 6 MeV
me 170 GeV 40 GeV 33 GeV 40 GeV 36 GeV 46 GeV
o, 0.121 0.014 0.013 0.013 0.014 0.014
Tab. 2 a
ALEPH - Z° parameters
central cov. +err. (proj.) | -err. (proj.)
Ty || 1742 MeV || 8 MeV 15 MeV 15 MeV
Tz || 2494 MeV || 10 MeV 18 MeV 18 MeV
R 20.78 0.11 0.20 0.20
ol | 41.46 nb | 0.09 nb 0.17 nb 0.18 nb
Tab. 2 b




DELPHI - Lagrangian parameters

X2=57.486 (x2/dof = 1.08453)

central cov. +err. (int.) | -err. (int.) | +err. (proj.) | -err. (proj.)
Mz | 91.191 GeV || 7.4 MeV | 7.1 MeV 7.1 MeV 7.4 MeV 6.8 MeV
me 117 GeV 76 GeV 53 GeV 59 GeV
a, 0.136 0.019 0.017 0.017 0.019 0.019
Tab. 3 a
DELPHI - Z° parameters
central cov. +err. (proj.) | -err. (proj.)
'y || 1744 MeV || 11 MeV 19 MeV 19 MeV
T'z || 2493 MeV || 13 MeV 23 MeV 25 MeV
R, 20.90 0.14 0.35 0.26
op | 41.34nb | 0.13 nb 0.09 nb 0.34 nb
Tab. 3 b




L3 - Lagrangian parameters

x2=90.024 (x?/dof = 0.88258)

central cov. +err. (int.) | -err. (int.) | +err. (proj.) | -err. (proj.)
Mz || 91.193 GeV || 5.5 MeV 5.7 MeV 5.7 MeV 5.9 MeV 5.7 MeV
™m, 72 GeV 79 GeV 59 GeV 68 GeV
a, 0.143 0.015 0.013 0.013 0.030 0.016
Tab. 4 a
L3 - Z° parameters
central cov. | +err. (proj.) | -err. (proj.)
'y || 1743 MeV || 8 MeV 15 MeV 18 MeV
I'z || 2491 MeV || 9 MeV 18 MeV 25 MeV
R 20.96 0.11 0.29 0.22
oy || 41.28 nb | 0.10 nb 0.12 nb 0.12 nb
Tab. 4 b




OPAL - Lagrangian parameters

x2=41.116 (x?/dof = 0.88258)

central cov. +err. (int.) | -err. (int.) | +err. (proj.) | -err. (proj.)
Mgz || 91.184 GeV | 6.3 MeV 7.0 MeV 7.0 MeV 7.0 MeV 7.0 MeV
™m, 73 GeV 78 GeV 65 GeV 69 GeV
a, 0.132 0.015 0.015 0.015 0.019 0.016
Tab. 5 a
OPAL - Z° parameters
central cov. +err. (proj.) | -err. (proj.)
I'n || 1736 MeV || 9 MeV 18 MeV 18 MeV
I'z || 2484 MeV || 11 MeV 22 MeV 26 MeV
R; 20.88 0.11 0.30 0.22
o) | 41.35nb || 0.09 nb 0.14 nb 0.25 nb
Tab. 5 b




AVERAGE - Lagrangian parameters

int.

cov. proj.
Mz || 91.188 £ 0.003 GeV | 91.188 + 0.003 GeV || 91.188 + 0.003 GeV
™y 134 + 30 GeV 120132 GeV 1151357 GeV
a, 0.132 + 0.008 0.133 + 0.007 0.131+3:919
Tab. 6 a

AVERAGE - Z° parameters

cov. proj.
T, || 1741 + 4 MeV | 1741 4+ 9 MeV
Tz || 2491 + 5 MeV || 249171} MeV
R, | 20.88 + 0.006 20.87191%
o | 41.37 £ 0.05 nb || 41.3473% ob

Tab. 6 b
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