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Recent experiments on transport properties of quan-
- tum wires [1,2] attracted new interest to the problem of
- “conductance in 2 1-dimensional electron gas.

" Since the work of Apel and Rice [3], where the au-
thors computed the conductance in the l-dlmen510!}al
Luttinger model, it was believed that the effects of in-
teraction in the one-channel quantum wire should lower
the conductance with respect to the value

&2

c=2 h (1)
predicted by the Landauer-Biittiker formula [4] for the
case of non-interacting electrons. However, experimental
data suggest that this renormalization of conductance
does not actually take place [2].

At the moment there exist a number of theoret-
ical arguments [5-9] intended to explain the non-
renormalization of the conductance in a 1-dimensional
electron gas. One of them [5,6] is based on the idea that
the conductance of the 1-channel quantum wire is com-
pletely determined by the structure of the leads to which
the wire is attached. So far as the electrons in the leads
form a Landau Fermi-liquid one chooses to model the
!eads by two semi-infinite 1-dimensional 1-channel non-
interacting Fermi liquids whereas the wire is modeled by
a Luttinger Fermi-liquid. Due to strong non-locality of
current-current correlators in 1-dimensional systems the
calculation based on the Kubo formula leads to the non-
renormalized result (1).

Another approach [8,9] is based on the observation that
the dielectric constant in the Luttinger Fermi-liquid in-
creases with increasing strength of interaction. This fact
f:hanges the definition of the voltage drop which results
in the cancellation of the renormalization-factor in the
conductance.

Both approaches mentioned above are based on linear
response theory and its main tool, the Kubo formula, in
.their calculation of conductance. Yet there is anoth,er,
in many ways more intuitive approach basedyon ideas of

Lan ;&“uer and Biittiker [4]. In this approach e assumes
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w calculation of the DC conductance ofa

model. Our approach is based on the id:
current algebr:

led to external reservoirs.

1-dimensional electron system described
eas of Landauer and Biittiker on transport
2. We analyse in detail the way in whic.h
This determines whether the conductance 1S

renormalized or not. We provide a parallel treatment of a quantum wire and a Fractional Quantum T

Hall system on a cylinder with two widely separate
theory, the physical electrons are
al reservoirs is different. As a consequence,
f €2 /h per spin orientation wh

d edges. Although both systems are described

identified with different types of excitations,
the conductance in the

ereas the Hall conductance allows

that the ballistic channel (in our case 2 qua..ntun:x wire)
is attached to two reservoirs of electrons w1t'h different
chemical potentials. The difference in chemical poten-
tials can be created in some other way than by turning
on electric fields. In the derivation of the formula fqr the
conductance one then uses only kinematic properties of
the ballistic channel, instead of dynamical properties, as
in the Kubo formula. In this paper we show how to apply
these ideas to a Luttinger Fermi-liquid type channel.

We study how the Luttinger liquid interacts with exter-
nal reservoirs. In order to clarify our analysis of quantum
wires, we provide a parallel treatment of the Fractional
Quantum Hall system which is described by the same
effective Hamiltonian [11,12]. In contrast to opinions ex-
pressed in [6,10], we claim that these two systems can be
analysed in a common framework. However, the electron
transfer between the Luttinger liquid and external reser-
voirs in these two systems is organized in a different way.
This difference leads to the integer quantization of con-
ductances in quantum wires, in contrast to the fractional
quantization of Hall conductances.

We replace the appealing but clearly unrealistic (one-
dimensional) models of the leads [5,6] by a more universal
consideration which only relies on the fact that the leads
@ntera.ct with the Luttinger liquid via electron transfer. It
is not easy to compare our approach to the one in [8-10],
because these authors do not consider interactions of the
wires with the reservoirs, at all, while our analysis indi-
cates that the correct definition of the voltage drop in a
wire depends on how the physical electrons injected by
the reservoirs into the wire are described in the Luttinger
model. More precisely, one must correctly identify those
conserved quantities in the Luttinger model that, in ther-
modynamics, are canonically conjugate to the chemical
potentials of the two reaservoirs. ’

It is well known that a 1-dimensional interacting elec-
tron system is effectively described by the Luttinger
model [13]. For simplicity we consider spinless fermions
with short range two-body interactions. This makes the
comparison to the spin polarized Quantum Hall system



more straightforward. Polarization of fermio

! A ns can b

easr;lﬁf reg:overed in the final expression for conducta.ncee
e bosonized Lagrangian density of the Lutti :

- model looks as follows [13]: Y ® Tutiiner

hvp (1
3 [ 1 2
= 2E (Feer-a+g@er), @
Wher_e vp is the Fermi velocity, n = 0,¢ is the particle
d.ensn;y, I = €0:¢ is the electric current, and g is an effec-
tive coupling constant. The corresponding Hamiltonian
is given by

h‘UF

Ho= T/d2= (;1?:(3@)2'*'(1 +y)(éx¢)2) 5 (3)

w.here :: stands fqr standard Wick ordering. The model
with g= 0 describes a non-interacting 1 - dimensional
Fermi-liquid. )

The Hamiltonian (3) can be expressed in terms of left-
moving and right-moving currents:

Ho=2—:‘;/dz:(zz+1§)':, @)
where
IL= -;—(8¢¢+ vr\/1+9 8:9),
Ip= —%(@4’ —vpy/1+9 8:6), (5)
so that
I=elp~1Ig), n= vf;\/ITW(IL-i-IR)' (6)

Let us remark that the same effective Hamiltonian de-
scribes edge excitations of a spin polarized incompress-
ible Quantum Hall fluid on a cylinder [11] with one chiral
channel of excitations per edge. Then el and eI_ R are
the edge currents on the two boundaries of the cylinder.
The filling factor of the Quantum Hall fluid is Felated to
the effective coupling of the Luttinger model via:

1 )

Jits

Incompressibility requires that y—1is an odd intege;.

In order to measure conductances in the Luttinger
model we should couple it to two reservoirs Yvith dxffgrent
chemical potentials [4]. This can be done in two filﬁ'er—
ent ways. We shall see that one way 18 realized in the
Quantum Hall system. The corresponding conductance

should be interpreted as the Hall conductance

v=

2
oH =V ih—' (8
he Luttinger model to reser-

The other way of coupling t
: 4 ires and leads to the non-

voirs is realized in thin w
renormalized value
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The coupling of reservoirs to the Luttinger liquid can
only l?e or.gamzec‘l via electron transfer. We therefore
must identify excitations in the Luttinger liquid which

correspond to electrons and assign to them the chemical

potentials of reservoirs according to the conditions of the
measurement.
This can be done naturally for incom 1

: . pressible Quan-
tum Hall fluids. In this case the chiral channels are spa-
tla.lly separated by the bulk of the sample and the reser-
voirs are at.tached directly to each of them. Mathemat-
lcall){ this is expressed by adding an extra term to the
Hamiltonian:

Hyan = Ho+ pLNL + prNR, (10)
wl?ere 41 and pr are the chemical potentials of the reser-
voirs, eV =pPR=pL, N;, and Np are conserved electron
numbers m.the left-moving and right-moving channels
(corresponding to the two different edges of the sample):

NL:/dZnL,nL:_l_VIL;
vF

1
NR=/dz ng, ng = —V Ip. (11)
(a

We denote by Io the expectation value of the current
operator I in the ground state ¥, which minimizes the
energy functional < ¥, Hyuan¥ > (¥ an arbitrary state of
the system). Since Ho is quadratic in I and Ig, the ex-
plicit value of Io is obtained by minimizing the ‘classical’
energy functional

h v
E(IL,Ir) = :2;;;(-’% +I%) + ;;(#LIL +prlr) (12)

over I, and Ig and using (6)- The result is

2
= BR KLY _, & 13
Ig=ev B h) uhV. (13)
Thus, the Hall conductance is given by formula (8). This

result agrees with the renormalized conductance

N

1 e

J1+gh

g =

in the Luttinger model. ) .
In the Quantum Hall system the left- and right-moving

edge excitations of charge e are represented by operators

4y (0) = explin(TT 3@ + o= [ 893}

Yr(z) = exp{in(y/1 +g¢(z) — 'Jl;j 8,6dz)}: - (14).
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These operators describe particles with Fermi statistics
only when /T + g is an odd integer [11,12]. These values
of the filling factor

1
Y om+1

correspond to Laughlin’s plateaux [14] in the theory of
the Fractional Quantum Hall Effect.

Next we turn to the analysis of quantum wires. For
generic values of the coupling constant g, neither left- nor
right-moving excitations can be identified with electrons.
Hence, we cannot assign particular values of chemical po-
tentials to these excitation branches. Yet, there always
exist other fermionic excitations of charge e that describe
the physical electrons in the Luttinger model. They are
created by applying the operators ¥, ¥_ given by

(15)

¥4(s) = explin(d(e) + - [ “aigda)}

V_(z) = exp{i7r(¢(x)—;1; f “ogda)}: . (16)

These operators coincide with ¥ L, Yg only in the non-
interacting model (¢ = 0). The particle densities corre-
sponding to the operators ¥, and ¥_ are given by

_ 1+an+1—\/ﬁ‘§n
= — ,

2
=1—\/I+gn 1+\/1+gnR
2 2 ’

It is natural to view the chemical potentials of the
reservoirs as the variables conjugate to the conserved

charges .
N+=/d:c_n.;., N.:/d:cn_.

ny

(17)

L+

n.

(18)

which measure the total number of electrons created by
powers of ¥, and W_, respectively. If the quantum chan-
nel in the wire is ballistic and adiabatic, the chemical

- potential of the left reservoir is conjugate to N4 whereas

the chemical potential of the right reservoir is conjugate
to N_. The counterpart of the Hamiltonian (10) is there-
fore given by '

Hwire = Ho+pr Ny + ppN_. (19)
A calculation similar to the one in (13) shows that the
ground state of Hwire carries a current

o=e(E2_t) -2y (20)

h h h

which yields formula (9). Note that in our calculation we
have assumed that eV > hvp/L, where L is the length
of the wire. Two spin polarizations of electrons can be
included in the final answer for conductance of a single
quantum channel by multiplying by a factor of 2 which
leads to (1). Our analysis can be easily extended to fi-
nite temperatures. This and other generalizations will be
considered elsewhere.

We conclude that although the Quantum Hall system
and the quantum wire are described by the same effec-
tive Hamiltonian, the way in which they are coupled to
reservoirs in transport measurements is different. Math-
ematically, this is reflected in using chemical potentials
pr(ur) of left(right) reservoirs conjugate to different con-
served charges Np(Ng), for Quantum Hall fluids, and
N4 (N_) for quantum wires. As a consequence, in the
Quantum Hall system the conductance depends on the
effective coupling constant related to the filling factor by
(7), but this is not the case for the quantum wire.
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