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, 1 dimensional electron system described� 
.,;:� · f the DC conductance 0 f a - .., t rt 

We propose a new calc ulation 0� h'd f Landauer and Buttiker on ranspo
ch is based on tel eas 0� . hich

by the Luttinger model. Our approa nt al ebra. We analyse in detail the way m w . 
:~ ... :. 

! . ballistic channels and on the methods of eurr~ Tghi d t . es whether the conductance IS. 
m ed xt al� reservOlI'S s e errom al Q tthe system can be coupl to e ern . t f a uantum wire and a Fraction uan um 
renormalized or not. We provide a par~el treatmend 0 dg ~ Although both systems are described 

Hall cvstem on a cylinder with two Widely separate e. t'ifi d with different types of excitations, 
w" h h .cal electrons are I den e� . th

by the same effective theory, t e p ySl .' diff t As a consequence, the conductance m e 
and hence the COUp~g to exte:nal ;~e/~olI'S l:pin ~:~ation ~hereas the Hall conductance allows 

~';'-~:J wire is quantized in mteger UnIts 0 e per • 
~	 r' ...: . for fractional quantization. 

that the ballistic channel ~in ~ur case a qU~~u;ff:::~~ 
. Recent experiments on transport properties of quan- is attached to two reservOIrS of elect~ons WI . 

. tum ~ires [1,2] attracted new interest to the problem of chemical potentials. The difference m chemical pot~n
;conductance in a I-dimensional electron gas. h tials can be created in some other way than by turmng 

.... Since the work of Apel and Ri~e [3], whe~e t ~ au · fields In the derivation of the formula for the 
on e IectrlC·� .' t" f

.'� thors computed the conduc:tance 1D the I-dlmenslOt.Ia~ conductance one then uses only kmem.atlc proper .les ~ 
Luttinger model, it was beheved that t~e effects of m the ballistic channel, instead of dynamical properties, 
teraction in the one-channel quantum wire should lower . the Kubo formula. In this paper we show how to apply 
the conductance with respect to the value ~ese ideas to a Luttinger Fermi-liquid type ch~nnel. 

2� We study how the Luttinger liquid interac~s With extere (1)u:2h:� nal reservoirs. In order to clarify our analySIS of qu~tum 
wires we provide a parallel treatment of the Fractional 

predicted by the Landauer-Biittiker formula [4] .for the Quan'tum Hall system which is described by .t~e same 
case of non-interacting electrons. However, experimental effective Hamiltonian [11,12]. In contrast to opmlons ex
data suggest that this renormalization of conductance pressed in (6,10], we claim that these two systems can be 
does not actually take place (2]. analysed in a common framework. However, the electron

At the moment there exist a number of theoret
transfer between the Luttinger liquid and external reserical arguments (5-9] intended to� explain the non
voirs in these two systems is organized in a different way.renormallzation of the conductance in a I-dimensional 
This difference leads to the integer quantization of conelectron gas. One of them [5,6] is based on the idea that 
ductances in quantum wires, in contrast to the fractionalthe conductance of the 1-channel quantum wire is com�
quantization of Hall conductances.� pletely determined by the structure of the leads to which 

the wire is attached. So far as the electrons in the leads We replace the appealing but clearly unrealistic (one
form a Landau Fermi-liquid one chooses to model the dimensional) models ofthe leads [5,6] by a more universal 
leads by two semi-infinite I-dimensional I-channel non consideration which only relies on the fact that the leads 
interacting Fermi liquids whereas the wire is modeled by interact with the Luttinger liquid via electron transfer. It 
a Luttinger Fermi-liquid. Due to strong non-locality of is not easy to compare our approach to the one in [8-10], 
current-current correlators in I-dimensional systems the because these authors do not consider interactions of the 
calculation based on the Kubo formula leads to the non wires with the reservoirs, at all, while our analysis indi
renormalized result (1). cates that the correct definition of the voltage drop in a 

Another approach [8,9] is based on the observation that wire depends on how the physical electrons injected by 
the dielectric constant in the Luttinger Fermi-liquid in the reservoirs into the wire are described in the .Luttinger 
creases with increasing strength of interaction. This fact model. More precisely, one must correctly identify those 
changes the definition of the voltage drop which results conserved quantities in the Luttinger model that, in ther
in the cancellation of the renormalization ·factor in the modynamics, are canonically conjugate to the chemical 
conductance. potentials of the two reaservoirs. . 

Both approaches mentioned above are based on linear It is well known that a I-dimensional interacting elec
response theory and its main tool, the Kubo formula, in tron system is effectively described by the Luttinger 
their calculation of conductance. Yet there is another, model [13]. For simplicity we consider spinless. fermions 
in m¥y ways more intuitive approach baseexn ideas of with short range two-body interactions. This makes the 
Lanluer and Biittiker [4].~~_~hi~.~PP.:Qach i e assumes comparison to the spin polarized Quantum Hall system 
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more straightforward. Polarization of fermions can be 
easily recovered in the final expression for conductance. 

The ~osonize~ Lagrangian density of the Luttinger 
. model looks as follows [13]: 

£ =h:r (v~ (8,<p)' - (1 +g)(8~<p)2) > (2) 

where vp is the Fermi velocity, n = 8~¢ is the particle� 
density, I =e8t ¢ is the electric current, and 9 is an effec�
tive coupling constant. The corresponding Hamiltonian� 
is given by� 

Ho= h:r Jdz : (v~ (8,<p)' + (1 +g)(8~<p)2) :. (3) 

where :: stands for standard Wick ordering. The model� 
with 9 = 0 describes a non-interacting 1 - dimensional� 
Fermi-liquid. .� 

The Hamiltonian (3) can be expressed in terms of left�
moving and right-moving currents:� 

h J . (4)Ho = 2VF dx : (IL + f~) : , 

where 

IL =~(8t<P + vF.Jf+Y a~<p), 

IR =-~(8t<P - vF.Jf+Y a~<p), (5) 

so that 

.1= e(IL - fR.) , n = ~(IL + lR.)' (6) 
up 1+9 

Let us remark that the same effective .Ha~iltonian de
scribes edge excitations of a spin polarized. mcompr~ 
ible Quantum Hall fluid on a cylinder [11] wIth one chiral 
channel of excitations per edge, The~ elL and e{!i dare 
the edge currents on the two boundanes ~f t~e cy m er. 
The filling factor of the Quantu~ Hall flUid 15 ~e~ated to 
the effective coupling of the Luttmger model VIa, 

v= ~, (7) 

Incompressibility requires that V-I is a~ o~: i~:~::~ger 
In order to measure conductances ~ ~ , 

model we should couple it to two reservolIS ~Ith dddfi~~nt 
. 1 (4) Th' an be done m two l11er

ch~mical potentia s ' 1S C • r ed in the
We shall see that one way IS rea lZ 

ent ways. H 11 t m The corresponding conductance 
Quantum a sys e . . 
should be interpreted as the Hall conductance 

e2 
~) 

(jH =v h' 
The other way of coupling the Luttinger model ~ reser
voirs is realized in thin wires and leads to t e non

renormalized value 

\ 
,:1 

(9) 

The coupling of reservoirs to the Luttinger .liquid can 
only be organized via electron transfer. We therefore 
must identify excitations in the Luttinger liquid which 
correspond to electrons and assign to them the chemical 
potentials of reservoirs according to the conditions of the 
measurement. 

This can be done naturally for incompressible Quan
tum Hall fluids. In this case the chiral channels are spa
tially separated by the bulk of the sample and the reser
voirs are attached directly to each of them. Mathemat
ically this is expressed by adding an e~tra term to the 
Hamiltonian: 

(10) 

where J1.L and J1.R are the chemical potentials ~fthe reser
voirs, eV =J1.R - J1.L, NL and NR are conserved electron 
numbers in the left-moving and right-moving channels 
(corresponding to the two different edges of the sample): 

(11) 

We denote by 10 the expectation value of the current 
operator I in the ground state l}f0 which ~inimizes the 
energy functional < l}f, H...HallW> ~l}f. an arbitrary state of 
the system). Since Ho is quadratl~ ~n !~ and IIf-' th~ ex~ 
plicit value of 10 is obtained by mIn1mlZIng the clasSical 
energy functional 

over lL and lR and using (6). The result is 

2 
J1.R· J1.L) e V (13)

10 =e v ( h - h = v h . 

Th the Hall conductance is given by formula (8). This� 
res:~t agrees with therenormalized conductance� 

in the Luttinger model. . ' 
the Quantum Hall system the left- and r1ght-movmg

In nted by operators 
edge excitations of charge e are represe 

WL(X) =: exp{i1r(.Ji + g¢(x) + :p J~ 8t ¢dx)} : ,� 

1 fa:� 
WR(X) =: exp{i1r(.J!+9<b(X) - up :t<bdX )} : (14) 
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These operators describe particles with Fermi statistics 
only when VI + 9 is an odd integer [11,12]. These values 
of the filling factor 

1 
II =� -=---~ (15)

2m+ 1 

correspond to Laughlin's plateaux [14] in the theory of 
the Fractional Quantum Hall Effect. 

Next we turn to the analysis of quantum wires. For 
generic values of the coupling constant g, neither left- nor 
right-moving excitations can be identified with electrons. 
Hence, we cannot assign particular values of chemical po
tentials to these excitation branches. Yet, there always 
exist other fermionic excitations of charge e that describe 
the physical electrons in the Luttinger model. They are 
created by applying the operators W+, W_ given by 

w+(x) =: exp{~1r(4)(x) + 2-. JII: 8t 4>dx)} : , 
. vp 

W_(x) =: exp{i1r(4)(x) - -1 JII: 8t 4>dx)}:. (16)
vp 

These operators coincide with WL, WR only in the non
interacting model (g = 0). The particle densities corre
sponding to the operators W+ and W_ are given by 

1 + v'1+'9 1 - ,;n:g
n+ = 2 nL + 2 nR, 

1 -� v'I+9 1 + vr+9 (17)
n_� = 2 nL + 2 nR· 

It is natural to view the chemical potentials of the 
reservoirs as the variables conj ugate to the conserved 
charges 

N+ = Jdx n~ , N_ = Jdx n_ (18) 
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which measure the total number of electrons created by 
powers of 1If+ and 1If_, respectively. If the quantum chan
nel in the wire is ballistic and adiabatic, the chemical 
potential of the left reservoir is conjugate to N+ whereas 
the chemical potential of the right reservoir is conjugate 
to N_. The counterpart of the Hamiltonian (10) is there
fore given by 

(19) 

A calculation similar to the one in (13) shows that the 
ground state of HWire carries a current 

(20) 

which yields formula (9). Note that in our calculation we 
have assumed that eV » hvp/L, where L is the length 
of the wire. Two spin polarizations of electrons can be 
included in the final answer for conductance of a single 
quantum channel by multiplying by a factor of 2 which 
leads to (1). Our analysis can be easily extended to fi
nite temperatures. This and other generalizations will be 
considered elsewhere. 

We conclude that although the Quantum Hall system 
and the quantum wire are described by the same effec
tive Hamiltonian, the way in which they are coupled to 
reservoirs in transport measurements is different. Math
ematically, this is reflected in using chemical potentials 
J.l.L(J.l.R) ofleft(right) reservoirs conjugate to different con
served charges NdNR), for Quantum Hall fluids, and 
N+(N_) for quantum wires. As a consequence, in the 
Quantum Hall system the conductance depends on the 
effective coupling constant related to the filling factor by 
(7), but this is not the case for the quantum wire. 
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