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, 1. Chern-Simons theory. 

Chern-Simons theory has co~e to play an important role in three-dimensional topol­

ogy because of its connections with Ray-Singer analytic torsion [1], the Gauss linking 

number [2,3,4], the Jones polynomial in knot theory [5] and its generalizations [6,7], an,d 

three-manifold invariants [6,8]. Recently, Chern-Simons forms and -actions over non­

commutative spaces [9] have been defined [10,11] and turn out to provide a unifying 

perspective for topological gauge theories in odd and even dimensions [11]. 
The comparatively trivial abelian pu~e Chern-Simons theories (which reproduce the 

Gauss linking number and analytic torsion) have turned out to be fundamental building 

blocks for a theory of the fractional quantum Hall effect [12-17]. This effect is one of the 

more exciting effects in condensed matter physics, discovered and explored between 1980 

and the present, [18-21]. It has also been observed thatSU(2)-Chern-Simons theories come 

up in problems of condensed :m:atter physics connected with the 'theory of spin liquidsj see 

e.g. [22]. 

Thus, it is well justified to start this report with a short review of the definition' and 

some mathematical properties of Chern-Simons theory. 

Let M be an oriented, framed three-manifold (the framing of M corresponds to a 

choice of a trivialization of the tangent bundle of M). Below, we shall consider the example 

where M = ]R3. Let G be a compact Lie group, or let G = ]RN. Let E denote the total 

space?f a principal G-bundle with base space M, and let V be a connection on E. Locally, 

we may describe V in terms of its components, A, (the "gauge potential))) in some local 

trivialization of E. These components are I-forms onM with values in Lie G (the Lie 

algebra of G). The Chern-Simons 3-forIIi o~ M is defined, locally, by the formula 

C S(3)(A) = tr (A/\ dA + ~ A /\ A /\ A)~ (1.1) 

where tr(·) is a trace on Lie G that is invariant' under, the adjoint action of G on Lie G. 
The Chern-Simons action functional, S, is defined, formally, by 

S(A) = 4~ JCS(3)(A). (1.2) 
M 

Unfortunately, this definition does not make sense in general. To understand the problems 

with (1.2), we consider the example where M = S3 and G = SU(N)., We choose an 

, orthonormal basis {Ta}~:l' DN = N 2 -I, in AN-l = Lie SU(N) and choose tr(.) such 
that 

tr (Ta Tp) = -l£.5a P, (1.3) 
2. 

k,E JR. Since 11'3 (G) = Z,the action SeA) in eq. (1.2), with tr(.) as in (1.3), is defined only 

modulo 27rkZ. It follows that exp i SeA) is a well-defined, single-valued functional of the 

connection V if and only if k E Z. Similar remarks apply to general compact Lie groups. 

2� 



Assuming now that tr(·) has been chosen such that exp i SeA) is a well-defined func­

tional of V, quantized Chern-Simons theory is defined as a mathematically precise inter­
pretation of the formal Feynman "functional measure" 

dP (A) := Z-l exp i SeA) VA, (1.4)' 

where VA is a formal Lebesgue measure on the affine space of connections on E, and the 

normalization factor Z (the partition function) is chosen such that JdP(A) = 1. .One 

would hope to extract from (1.4) a precise definition of dP(A) asa complex measure 

on the space, A, of orbits of gauge potentials under the action of the group of gauge 
transformations. 

The functional exp i S(A) does not require choosing a metric on M, and one might 

expect, therefore, that dP(A) is independent ora choice of a metric on M. Unfortunately, 

this is a wrong expectation. 'J;'he definition of "'VA" involves the choice of a metric on 

M, and, in order to eliminate dependence of dP(A) on that metric, one must add to 

S(A) a "counterterm" which is given by the Chern-Simons action of the Levi-Civita spin 

connection, [6,23]. One may then hope to arrive at a definition of dP(A) that depends 

only on the framing of M and hence yields what is called a topological gauge theory [6,24]. 

The kinds of functionals on A one would like to integrate with the "measure" dP(A) 
are Wilson loops: Let {, be a loop in M (i.e., a smooth embedding of SI in M), and let R 

be an irreducible, unitary representation of G. We define 

WR[L:] := TrRR [p exp ( JA]. (1.5) 
t:, 

where P indicates path ordering, and ( is some positive constant ("field-strength renor­

malization" constant) to be determined. For a smooth Lie G-valued I-form A, the R.S. of 

(1.5) can be defined via Chen's iterated integrals, i.e.) through its D,yson series. 

As it stands, the expression on the R.S. of eq. (1.4) is nonsense. A conventional strat­

egy used to make sense of (1.4) is to fix a gauge and apply the Faddeev-Popov procedure 

[25] to interpret VA. "Fixing a gauge" consists in choosing connection-dependent, local 

trivializations of E in such a way that the gauge potentials, A, satisfy·certain constraints. 

We wish to exemplify gauge fixing in a special case, following [7]: We choose G.= SU(N) 
and M = IRs. Points z E M are represented by (Cartesian) coordinates (z+,z-,t), with 

z+, z-, t in IR. We expand the gauge potential A in the basis {dz+, dz-) dt} of I-forms: 

(1.6) 

where ai(z) E AN-I, i = +,-,0. We choose a basis {Ta}~:1 in AN-l and a trace, tr(·), 
on AN -1 as specified in (1.3). Then 

DN� 

ai{z) - Laf(z) Ta ,� 

a=1 
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where af(x) is a function on M, 'Vi,-a. One easily shows that the condition 

(1.7) 

fixes a gauge (called "light-cone-u , or ((axial" gauge). In this gauge, the Chern-Simons 

action S of eq. (1.2) takes the form 

(1.8) 

This action is quadratic in A. One may ther~fore attempt to interpret the measure dP(A) 

in (1.4) as a "complex Gaussian measure". Well, it actually is a "complex Gaussian", but 

it isn't a measure. However, all we really need to be able to do is to calculate moment" 

of dP(A). Let (.») denote formal integration, JdP(A)(·), with respect to dP(A). The 

first moments, (ai(x»), 'Vanish and the second moments, (ai(::c) a~(y)), can be expressed 
in terms of the partial derivative of a.Green function of the d'Alembertian8+8_ with 

respect to x+. Together, they determine all higher moments; ("Wick's theorem"). It is 

t� advantageous to complexify the planes {t =const.}, use complex coordinates, z = z+ E C, 

i = x- E C, and analytically continue the moments o!.dP(A).in x+. The physicists call 

this "Wick rotation". Wick rotation is convenient, but not indispensable, in the following 

calculations. The Wick-rotated second moments are: 

(a~ (::c) a:(y») - 0, for all j, a, {3, 

(a+ (::c) a~(y») - 0, for all a, (3, 

(a~(::c) ag(y») - 0, for all a, f3, 

and 

(a+(z, t) ag(w, s») =2,\saP S(t _ s) __1_, (1.9)
z-w 

with,\ = -lik. Expectations, ('»), of more complicated fun'ctionals of A can be calculated 

from (1.9) by using Wick's theorem. In particular, we may calculate expectations of 

"Wilson lines" and Wilson loops from (1.9), (e.g. by expa:nding them in a Dyson series). 

Let 11 ,' •• ,I'm be a partition of {I", " n}, m = 1,2,··· ,n :::;:: 1) 2)··· . To every index 
set Ii we assign a representation) Ri, of SU(N). Each index j E Ii. labels a smooth curve 

I;(t) = {z;{t')'E C : to < t' ~ t} 

in the complex plane which determines a smooth curve u;(t) in R3 given by 

u;(t) = {(Re z;(t'), 1m z;(t'), t') : z;{t') E 1';(t))to~ t' ~. t}. (1.10) 
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• 
We define a\ "Wilson line operatorU

, Wj(t), by setting 

Wj(t) := Rt[Pexp( JA], (1.11 ) 

O'j(t) 

where ( > 0 is a field strength renormalization constant. This operator is a holonomy 

matrix of the connection '\1 with components A and acts on the representation space VR 
t 

of SU(N). It is easy to see that 

dWj(t) - (dQj(t) Wj(t), (1.12) 

where 
t 

aj(t) .- dRt V{0.+ (Zj( t'), t') Zj(t') +0.0 (Zj(t'), t')} dt' ], 
to 

with ~(t) = dz(t)/dt,. and dIll. the representation of AN-l determined by Rt.; j E Ii, 
l=l,··· ,m. 

The basic object in a mathematically precise definition of SU(N) pure Chern-Simons 
theory on lR 3 is 

(l.I3) 

which is 'an endomorphism of the vector space 

(1.14) 

with R(i) = Ri' for j E Ii, n = 1,2,3,··· . One may attempt to calculate tPn(t, to) by 
deriving a differential equation for it. We define 

DN 
Oij := L 1[ ® ... ® dR(i)(Ta ) ® ... ® dR(;)(Ta ) ® ... ® 1[, (1.15) 

a=l 

for all i~j, with I :::; i < j :::; n. Using (1.12), one shows - see [7] - that 

tPn(t,to) = K, :E (1.16) 
l~i<j~n 

where K, = (2 A. Eq. (1.16) is th~ celebrated Knizhnik-Zamolodchikol1 equation, [26]. An 

alternative method to calculate tPn(t, to) would be to expand all Wilson line operators, 

Wj(t), in their Dyson series and to calculate the resulting terms by using Wick's theorem 

and (1.9), [27J. 
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• 
Let M denote the su~set of en consisting of n-tuples, ! = (ZI,··· ,zn), of complexn 

numbers, with Zi =1= z;, for i 1= j, and letMn be the universal cover of M n . Let K be 

the space of Vn-valued functions on M n . On K we may define a connection I-form, w, by 

setting 
w = It L d log(zi -z;) Oi;. (1.17) 

1::;i<;::;n 

This connection is called Knizhnik-"Zamolodchikov connection. It is easy to verify that w 

is flat, i.e., 
dw + w I\w = O. 

This is a consequence of the infinitesimal pure braid relations 

(1.18) 

where i,;, k and l are all distinct. Eq. (1.16) may now be written as 

which is the equation for a parallel transporter. 

Let (Z1' ... ,zn) be a point in Mn, and let 1[" be an arbitrary permutation of {I,· .. ,n} 
leaving the subsets II,·· . ,1m invariant. Let u; = U;(tl) be a curve in ft.3, as in (1.10), 

starting at the point (Re z; , 1m z;, to) and ending at (Re Z1r(;) , 1m Z1r(;) , t1), for j = 

1,· .. ,n. The family of all ntuples {Ut,···, un} of such curves that do not intersect 

each other is a ttnion of disjoint homotopy classes of curves labelled by elements, b, of a 

subgroup, E n(1},·"· , 1m ), of the braid group, En, onn strands defined by the property 

that the cosets of elements of Bn (ll , .•• ,1m ) modulo the normal subgroup of pure braids 

are permutations 1[" of {I,··· ,n} leaving 11,··· ,1m invariant. Let b E B n (11 ,·.·· ,1m ), 

and let {U1,··· ,un} be n curves in the homotopy class b. Let iPn(b; t}, to) be a solution 

of the Knizhnik-Zamolodchikov equation (1.16) for the curves {Ut,··· ,un}, with initial 

condition iPn(b; to, to) = n Iv". Then 

(1.20) 

defines a representation, iPn, of BnCll ,' •• , 1m ) on Vn. This is a consequence of the identity 

(representation property) and the flatness of the Knizhnik-Zamolodchikov connection w. 

Let 
9 r-t R(n)(g):= R(l)(g) ® ... ® R(n)(g), 9 E SU(H), 
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be the representation of SU(N) on Vn . Since the Knizhnik-Zamolodchikov connection w 

is SU(N)-invariant, the representation cPn of Bn(1!, ... ,1m) on Vn commutes with the 

representation R(n) of SU(N) on Vn. Let In be the subspace of yiI. consisting of SU(N)­
invariant tensors, i.e., for eE In, R(n)(g){ = e, Vg ESU(N). The space In inherits the 

scalar product of Vn. It is an invariant subspace for ¢>n. It is interesting to ask whether the 

representation tPn of Bn(I},' .. ,1m ) on Vn, or its subrepresentation ¢>n II" ,are unitary in 

the scalar product of Vn . The answer is that they are not unitary. However, ¢>n Ix may 
contain a unitary .subrepre.sentation: Suppose that ft 

1 
K. - ± , k = 1,2,3,"', (1.21 ) 

k + C2 

where' C2 is the eigenvalue of the quadratic Casimir operator in the adjoint representation 

of the group G, normalized su~h that C2 = N, for G = SU(N). Let Uq(Lie G) denote the 

usual quantum deformation of the universal enveloping algebra of Lie G with deformation 

parameter q = exp i 1rK., [28]. We assume that the representations Rl' l = 1,' .. , m, have 

positive q-dimensions; see e.g. [29]. One may then define a certain quotient, Ilq
), of In of 

Uq(Lie G)-invariant tensors which is expected to be invariant under the representation ¢>n 
of Bn(I1 , ••• ,,1m ); see e.g. Chap. 6 of [29]., The miracle is that tPn Ixcf) appears to define 

" 
a unitary representation of Bn(Il ,··· ,1m ) on I~q). For G = SU(2), proofs have been 

sketched in [30,31]. More details can be inferred from the explicit formulas in [7,32] and 

the general results in Chaps. 5 and 6 of [29]. For G - SU(N), N ~ 3,a proof may, perhaps, 

be constructed on the basis of the results in [7,29,33,34], but has apparently not appeared 

in the literature. The result described above is expected to hold for arbitrary compact, 

simple Lie groups G, but proofs are not available, yet. The mathematical setting within 

which a proof might, be constructed is that of braided tensor categories (more precisely 

"quantum categories" [29]) and of generalized hypergeom~tric functions [35]; see also the 

contributions of Felder and Wasserman, and refs. given there. A mathematically precise 

definition of quantized pure Chern-Simons theory on M = )R3, with K. as in (1.21), would 

consist of converting the conjectures just described into theorems. Quantum-mechanical 

state vectors of this theory would be vectors in the spaces I~q), n = 0,1,2,··' (I~9) := C), 
and it would determine unitary representations, ¢>n, of the groups Bn(II, ... ,1m ) on ziq

) , 

for all II, ... ,1m, and all n. The CCphysics-inspired" literature on these matters is somewhat 

confusing, with many incomplete proofs for fairly obvious conjectures. 

The analysis sketched above for G = SU(N) becomes very simple when G = RN , 

N = 1,2"" ; (abelian pure Chern-Simons theory). See Sect. 3. Chern-Simons theories 

with G = )RftI are the basic building blocks in the'theory of the fractional quantum Hall 

effect. (It will turn out that G is actually given by )RN jr, where r is an integral E~clidian 

lattice. ) 
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f. 

Chern-Simons theory becomes a more interesting, dynamical qu~ntum field theory if 

the manifold M is a full cylinder (and k = 1,2) 3,· .. ). In this situation, it is equivalent to 

Lie G Kac-Moody algebra at level k and its representation category. See [6], and [36,37,27] 

for more details. In the context of the quantum Hall effect, the ~ac-Moodycurrents aquire 

physical significance as "edge currents". . 
But let us return to the representations tPn of the braid groups Bn(11 ,· •• ,1m } on 

the spaces In, for generic values of the parameter /\', and sketch their connection with 

polynomial invariants of knots; and links. We choose n =2p to be an even integer and 

assume that 

R (j+p)- R(j)V ,. - 1 ... p (1.22)- ) -, " 

where RV.·is the representation of SU(N) conjugate to R. Let 1f' be a permutation of� 

{I, ... ,2p} with 1I"(j + p)= j t p, R(1r(j» = R(j) (j and 1f'(j) are in the same subset, It,� 

of {I,··· ,2p}), for j = 1,·· .,p. Let {e~)}be an orthonormal basis of the representation� 

space YR. We define vectors e(1f') E I 2p by setting� 

(1.23) 
Ql,···,Q, 

Let b be ,an element of the braidgronp .B2p with the property that the coset of b modulo� 

pure braids on 2p strands is given by the permutation 1f'. We consider the scalar products� 

(1.24) 

, These·numbers are invariants of framed links; Quotients of these scalar products by 

analogous scalar products, with SU(N) replaced by IR, yield the evaluation of an invariant 

of oriented links on the oriented link determined by the element b EB2p· and coloured by 
the representations R(1), • .• ,R(p). The special case where R(I) - ... = R(p) = R is· the 

N-dimensional, fundamental representation of SU(N) has been analyzed in detail in [7], 

with generalizations appearing in Sect. 6.3 of [37]. 

The scalar products (1.24) can be calculated perturbatively, by expanding tP2p(bj t}, to) 

in a Taylor series in /\'. The Taylor coefficients can be found by either solving the Knizhnik­

Zamolodchikov equation for tP2p iteratively (seethe appendix in [7]) or, equivalently, by 

expanding the Wilson line operators Wj(t) defined in (1.11) in their Dyson series, plugging 

the Dyson series into the R.S. of (1.13) and using Wick's theorem and (1.9). These Taylor 

coefficients are given in terms of multiple integrals along the curves 0"1 (t),··· ,u2p(t).They 

are special cases of what has become known under the name of Vassiliev invariants [38]: If, 

in eq. (1.19), a specific Knizhnik-Zamolodchikov connection w is repla~ed by the "universal 

flat connection", defined· by (1.17), with {OJ;} the "universal solution" of (1.18), one 

obtains the Vassiliev invariants of links. 
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It is natural to conjecture that the invariants built from (1.24) depend on the choice 
of the gauge group G in a non-trivial and interesting way. For a review of recent results 

,concerning this topic see e.g. [39]'. 

Now it is time to shift gears and talk about physics. 

2. Quantum Hall effect and integral lattices. 

Experimentally, the quantum Hall effect is observed in two-dimensional systems of 

electrons confined to a planar region n and subject to a strong, uniform magnetic field Be 
transversal to !l, as indicated in Figure 1. 

-Be 

~----....a II 1------:­

Figure 1 

By tuning the y-component, I y , of the total electric current to some value and then mea­
suring the voltage drop, Vz , in the :z:-direction of the plane of the system, i.e., the difference 

9� 



in the chemical potentials of the electrons at the two edgesR ·and L,one c~n calculate the 

Hall resi.dance ,V:z: (2.1)RH = - -,
I y 

and finds, that, for a fixed density, n, of electrons and at temperatures close to OK (ab­

solute 0), the value of RH is independent of the current I y • It depends only on the 

external magnetic field Be. If. the electrons-are treated classically one finds, by equating 

the electrostatic- .to the Lorentz force, that 

(2.2) 

where Be is the z-component of Be perpendicular to the plane of the system, e is the 

elementary electric charge and. c is the velocity of light. 
By also measuring the voltage drop, Vy , in the y-direction, one can d~termine the 

longitudinal resistance, RL, from the equation 

Neither classical, nor quantum theory make simp~e predictions about the behaviour of RL, 
but RL > 0 means that there are dissipative processes in the system. 

Two-dimensional systems of electrons are realized, ,in the laboratory, as inver.sion 

layers which format the interface between an insulator and a semiconductor when an 

electric field (gate voltage) perpendicular· to the interface, the plane of the system, is 

applied. An example of a material is a sandwich (a "heterojunctionn 
) made from GaAs 

and Ga:z:Ah-:z:As. The quantum-mechanical m~tion of the electrons in the z-direction 

perpendicular to the interface (identified with the z-y plane) is then constrained by a deep 

potential well with a 'minimum on the interface. Quantum theory predicts that electrons 

of sufficiently low energy, i.e., at low enough temperatures, remain bound to the interface 

and form a very nearly two-dimensional system. 

In a theoretical analysis of the Hall effect it is advantageous to consider the connection 

between the electric current density j(x) = (jl(X),j2(X» and the electric field E(x) = 

(E1 (x),E2 (x» at an arbitrary point x = (zl,z2) = (z,y) of n which is given by the 
Ohm-Hall law 

E(x) = P j(x), P -_ '(P:Z::Z: - PH) .• (2.3)
PH Pyy 

where P:z::r: = RL(iy /I.:z:), pyy = RL(I.:z:/l.y ), are the two longitudinal resistivities, PH = RH 
is the Hall resistivity, and 1.:z:,l.y are the .widths of the system in the :1:- and y-directions, 

respectively~ This is a phenomenological law valid on macroscopic distance scales and at 

low frequencies. 
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It is convenient to introduce a dimensionless quantity, the.so-called filling factor v, by 

setting 

v = n/(eBc/hc), (2.4) 

where :c is the quantum of magnetic flux. Then the classical Hall law (2.2) says that 

Rj/ rises linearly in v, R1./ = ~ v, the constant of proportionality being given by a 

constant of nature, e:. Since, experimentally, Be can be varied and n can be varied (by 

varying the gate voltage), this prediction of classical theory can be put to experimental 

tests. Experiments at very low temperatures and for rather pure inversion layers yield the 

following very surprising data [18,19,20]. 

clossica I curve� 

Figure! 

Tl:tese data tell us, the following: 
(1)� UH := ~ RE./ (the dimensionless Hall conductivity) has plateaux at certain rational 

heights. The plateaux at integer height occur with an astronomical precision of 1:108 
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(defining a new standard for' conductivity and yielding perhaps the most precise ex­

perimental value for the fine structure constant a = 21(" e 2 /hc ~ 1/137). The plateau 

quantization is insensitive to sample preparation and -geometry. 

(2)� When (v, O"H) belongs to aplateau the longitudinal resistance RL very nearly vani.she.s. 

This means that, for such values of v and 0"H, there are no dissipative processes in� 

the system.� 
The remarkable nature of these facts has been expressed by Laughlin [40] as follows:� 

"The exactness of these results and their apparent insensitivity to the type or location of 

impurities suggest that the effect is due, ultimately, to a fundamental principl~.)) 

It is the main purpose of this lecture to uncover some aspects of that principle. We 

shall be modest and focus our attention on the explanation of why O"H must be a rational 

number when RL vanishes, which rational numbers may occur, and what properties the 

system has when RL = 0 and dH takes an allowed rational value. 

As a first step, we formulate the classical electrodynamics of a two-dimensional sys­

tem of electrons in an external electromagnetic field (E, Btat.) when RL = 0, and for an 

arbitrary value of O"H. Here E is an 'external electric field, and Btat.= Be + B, where Be 
is a constant, external magnetic field transversal to the plane of the system, and B is a 

small, non-constant perturbation of Be. As long as we do not describe the dynamics of the 

spins of the electrons - which are quantum-mechanical degrees of freedom - the laws of 

electromagnetism in such a system only involve E = (E1 , E2 ), the component of E parallel 

to the plane of the system, and Btat. = Be +B, the component of Btat. perpendicular to 

the plane of the system. Since RL is assumed to vanish, eq. (2.3) ,can be rewritten as 

(i)� Hall'.s law. 

jk(z) = O"H eklEl(Z), z = (x, t), with k, l. = 1,2, and e = (~l ~), in units where 
e=h=l. 

More fundamental are the following two laws: 

(ii)� Charge con.servation. 

tt jOe z) + V . j(z) = 0, (continuity equation for the electric charge density jO and 
the electric current density j). 

'(iii) Faraday'.s induction law. 

:t B(z) +V 1\ E(z) = O. 

Combining (i), (ii) and (iii), we find that 

:t jO(z) = O"H :t B(z) . 

Defining jO to be the difference between the total electric ch~rge density and the uniform 
b~ckground density, n, we obtain the following result [15]. 
(iv)� Charge-jl,ux relation. 

jO(z) = O"H B(z). 

12 



The laws (i)-(iv) are generally covariant and metric-independent (topological), [15J. Inte­
, grating (iv) over all of space 0, we conclude that . 

(2.5) 

where qel = In d2 x jO(x, t) IS the total (excess) electric charge of the system, and 

~ = fn d2 x B(x, t) is the total (excess) magnetic flux passing through the system. 

These simple, beautiful laws, (i) - (iv), are the starting point of ouranalysis~ They 

remain valid in a quantum-mechanical treatment of the electrons, see Sect. 3, that leads 

to rather remarkable conclusions. Let me anticipate the main results of our analysis and 

discuss their consequences. To do this, I must recall what integral Euclidian ~attice.s are. 

Let V be a vector space over the rational number field equipped with a positive­

definite inner product, (', .). Ih V we choose a basis {ei}~l' N = dim V, with integral 

Gram matrix, K, where 
(2.6) . 

for all i,j ~ 1,'" ,N. The basis {ei}~l generates an integral Euclidian lattice r defined 

by 
N 

r = {q = L qi ei : gi E Z, V i} . (2.7) 
i=l 

The lattice r* dual to r, i.e., the lattice of integer-valued linear forms on r, is gi.Jen by 

r* = {n = L
N 

ni e i : ni E Z, Vi}) (2.8) 
i=l 

where {ei}~l is the basis of V dual to {ei}~l' i.e., 

N 

e i _ 2: (K-"l )i; ej , (2.9) 
j=1 

and 1 _ .. 
_ K 11 (2.10)- 6.. ' 

where 

A = det K = Ir* /r I (2.11) 

is the discriminant of r, and K is the matrix of cofactors (Kramer's rule). 
The matrix K is positive-definite, with rank (K) = N, if and only if (".) is positive­

definite. The lattice r is called odd iff it contains an element q, with (q, q) E 2 Z + 1. 

Thus r is odd iff Kii is odd, for at least one i E {I"" ,N}. 
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We are now in a position to state our main contention.' Consider a two-dimensional 

system of electrons in a uniform, external magnetic field Be at a teInperature.T ~ OK, w.ith 
the property that RL vanishes. Following Laughlin, we call such a system an tncompre.,;nble 

quantum Hall fluid, abbreviated as IQHF. We claim that the physics of an IQHF on very 

large distance scales and at very low frequencies (i.e.,in the so-called scaling limit) is coded 

into the data (fe, Qe) and (fh' Qh), where' I 

(i) f e and fh are two integral, odd Euclidian lattices, and 

(ii) for z = e, h, Q:z: is a primitive, odd vector in f:. 
A vector Q E r· is called primitive, or visible, iff g.c.d. (Q, ej»)~l - I, and Q is called 

odd iff 
(2.12) 

The dimensionless Hall conductivity O'H is then given by 

(2.13) 

where 
(2.14) 

This proves immediately that U H is a. rational number. We shall denote it by 

nH 
UH - -.-, withg.c.d. (nH,dH) = l. 

dH 

At this point, there is the danger that our theory predicts far too many possible 

rational values of UH. However, what our theory really says is that if RL = 0 then UH 

must belong to a certain subset, S, of the rational numbers, and that if RL - 0 at some 

value of U H belonging to S then the properties of the system are encoded in some pair, 

(re, Qe) and (fh, Qh), of integral Euclidian lattices and primitive vectors in their duals. 

Typically it happens that there are many pairs, (fe, Qe) and (fh,Qh), corresponding to 

a given value of O'H in S. Whether a pair (re, Qc), (fh, Qh) describes an incompressible 

quantum Hall fluid that can be realized in a laboratory is aocomplicatedanalytical problem 

of quantum mechanics to which our theory can only give a tentative answer! Thus, it is 
very likely that many points in § do not correspond to the Hall conductivity UH of a real 

IQHF. 
The subscripts "e" and Uh)) refer to the following phy.,ics: the basic charge carriers 

in a quantum Hall fluid (QHF) can be mobile electron., of electric charge -e. If RL = 0 

the fluid is then described by a pair (rc,Qe). They could also be mobile hole., ("missing 

electrons") of charge +e, in which case the IQHF is described by (f h , Qh). Finally, an 

IQHF could be' composed of two fluids, one consisting of mobile electrons, the other one 

consisting of mobile holes. It is a natur~, phy.,ical idea that, for small values of the filling 
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{actor, these two fluids do not mix. We shall assume this henceforth; (but see [43,44J for a 

more general analysis also involving (indecomposable) 'Lorentzian lattices.). The IQHF is 

then described by a pair (fe, Qe), (fk' Qk)' Since the electric charge of an electron is -e 

and the one of a hole is +e, there is a relative minus sign between U e and Uk in eq. (2.13)*. 

As there is a complete symmetry between electrons and holes, it is sufficient to develop the 

theory of QH fluids composed of electrons, and we set UH := U e and drop the subscript 

"e" henceforth. 

A pair (r, Q) where r is an integral, odd Euclidian lattice and Q is a primitive, odd 

vector in r· satisfying (2.12), is called a chiral quantum Hall lattice, (cQHL). Our task is 

to classify cQHL's and to compare the predictions of the theory with experimental data. 
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Figure 9. Ob3erved Hall fraction3 UH in the range 0 < UH ~ 1.. 
and their experimental 3tatu3 in 3ingle-Iayer quantum Hall 3Y3tem3. 

*Historically, the existence of holes in semiconductors was first discovered in measurements 

of the sign of RH! 
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The success of the theory is quite impressive: In Figure 9, above, we display measured 

values of (I'H when RL ~ 0 (i.e., for IQHF's) in the range 0 < (I'H ~ 1 that have been 

reported in the literature [20,41L (for so-called single-layer, narrow-well IQHF's). We 

divide the data into separate "windows", Ep , p = 1,2,3,· ~., and each window Ep is the 

union of a left window, E~, and aright window, E; . Well established plateau-values of 

(I'H (i.e., values of (I'H corresponding to sorne IQHF) are indicated as a".". Values of (I'H 

whereRL has a clearly visible local 'minimum ~ 0, and (I'H has an inflection point a~ a 

function of the filling factor II are indicated as a "0". Very' weak, or controversial data are 

indicated by".". Finally, the symbol "p.t." indicates that, to such a value of (I'H, there 

correspond several distinct IQHF's, i.e., there are phaJe tranJitionJ between two or more 

different IQHF's with the same (I'H. 

The remarkable fact is that these data - in par~icular the abJence of data points 

- are very accurately reproduced by our theory of cQHL, see [42,43,44], if a heuriJtic 

principle of Jtability of a cQHL is introduced: The stability of a cQHL is intended to be 

a measure for the stability of the corresponding quantum-mechanical state of an IQHF 

under small p~rturbations, such as changes of the filling factor II, see (2.4), or of the 

density of "impurities" in the system, etc.. In order to formulate our stability principle 

for cQHL's _mathematically, we must introduc~ some numerical in1JariantJ of cQHL's. The 

most primitive invariant of a cQHL (f, Q) is the dimension, N, of the lattice r. Next, let 

k 
f = ffi r·J 

(2.15),=. 1 

be the finest decomposition of the lattice r into-an orthogonal direct sum of sublattices 

fj,j = 1,'·· ,k, and let 
1: 

Q = L Q(j), Q(j) E fj, (2.16) 
j=1 

be the decomposition of Q associated to (2.15). We say that a cQHL (f, Q) is primitive iff 

Q(j) is a (non-vanishing) primitive vector of rj, for all j = 1,··· , k. This means that the 

pairs (fj , Q{j» are indecompoJable cQHL's. Every indecompo~able cQHL (fo, Qo) has a 

basis {ql , .. ·qNo } with the property that (Qo , qt) = -1, for all I. = 1,,·, ,No. The 

set of all such bases is denoted by B(fo, Qo). We then define an invariant l(calledmax. 
"relative-angular-momentum invaria~tJJ [42]) by setting' 

lmax.(fo, Qo) := min (max (q. q.)) (2.17)
N l<i<N' I, I • 

, {q,h:l E8(ro,Qo) - - 0 

If (f, Q) is a decompoJable, primitive cQHL, i.e., 

(2.18) 
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as in (2.15), (2.16), we define 

(2.19) 

Our stability principle for cQHL's says that an incompressible quantum Hall fluid corre­

sponding to a primitive, chiral quantum Hall lattice (r, Q) is the more stable, the smaller 

the value of the invariant lrnax .(r, Q) and the smaller its dimension N. Available experi­
mental data suggest that 

lrnax.(r,Q) ~ 7,(or9), (2.20) 

for an arbitrary cQijL (r, Q) describing a physically realizable IQHF. This is confirmed, 

qualitatively, by heuristic theoretical and numerical arguments, [44]. Furthermore, there 

are fairly convincing, but heuri~tic theoretical arguments suggesting that, for a real IQHF 

with a non-zero density of impurities of finite strength, the dimension N of the cO,rrespond­

ing cQHL is bounded above by a finite integer, N., depending on the filling factor v, the 
density of electrons and the density and strength of the "impurities", with N. --+ 00, as 

the density of ,."impurities" tends toO. 

It is an elementary result in the theory of chiral quantum Hall lattices that the total 

number of cQHL's, (r, Q), with lrnax .(r, Q) S l. and N dim r ~ N., for arbitrary finite 

values of I.., N., is finite, (though rapidly growing in I.., N.). 
A simple consequence of the Cauchy-Schwarz inequality tells us that the Hall conduc­

tivity UH of an IQHF corresponding to a cQHL (r, Q) obeys the inequality 

(2.21) 

This bound has interesting consequences, (confirming a prejudice of Mark Kac [45]): If 

UH E E" i.e.,� 
1 1� 

2
P 

+ 1 < UH (r, Q) < 2p - l'� 

then 

I.rnax .(r, Q) ~ 2p + 1. (2.22) 

Our stability principle for cQHL's then says that the most stable IQHF's with UH E E, 
are those described by cQHL's (r, Q) satisfying 

lrnax .(r, Q) = 2p + I, (N as small as possible). (2.23) 

Combining the universal upper bound (2.20), i.e., lrnax .(r,Q) ~ 7, with the bound (2.21), 

we conclude that there should not exist any physically realizable IQHF's with UH < ~, 

and that, for UH in the window Es, lrnax .(r, Q) must take the smallest possible value 
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compatible with (2.21), i.e~, l~ax .(r, Q) = 7. These conclusions are compatible with the 

data displayed in the table of Fig. 3. 
The family of all primitive cQHL's (f, Q), with O"H(f, Q) E Ep and lmax.(r, Q) = 

2p + 1, (the smallest possible value), is henceforth denoted by1-£p. In [43] we have proven 

an easy, yet remarkable theorem that says that there exist bijections, called C(shift maps", 

(2.24)S, : 1-£1 ~ 1-£,+b P = 1,2,3"" , 

between the cQHL's in 1-£1 and those in 1-£,+1, with the properties that 

and 
lmax.(S,(r,Q)) = lmax.(r,Q)+2p. (2.25) 

Furthermore, we have proven a somewhat deeper, but still rather easy uniquenes.s the~rem, 

[43]: Let 
1-£; .:= {(r, Q) E 1-£, : O"H(r, Q) E E;}. (2.26) 

Then all the cQHL's (r, Q) in 1i; are known explicitly: The possihle values in E; of the 

Hall conductivity 0" H corresponding to IQHF's described by cQHL's in 1-£; are given by 

the formula 
N 

un = 2pN + l' (2.27) 

and to each N = 1,2,3,," ,with un given by (2.27), there corresponds a unique cQHL, 

(rNt" Q), of dimension N, and there- are no further cQHL's in 1-£;! 

Note that it follows from the bound (2.20) on lmax. that 1-£; contains -all possible 

cQHL's with UH E E; (as given by (2.27)), forp = 3. 

The lattices (rNtp, Q) with Un(rNt" Q) = (Q, Q) = N(2pN +1)-1, can be described 

as follows: The lattice r Nt' has a basis {q, e}, ••• ,eN-I} with the property that 

(Q, q) = -1, (Q, ej) - 0,; = 1,'" ,N - 1, (2.28) 

and with a Gram matrix K given by 

2p + 1 -1 
-1 2 

K _ -1 (2.29) 

o 

where 2p+ 1 = (q, q), and Ki+I tj+l = (ei' ej) are tlie matrix elements of the AN-I-Cartan 

matrix. Thus, the Witt sublattice [46] of r Nt' is the AN-I-root lattice, and it is natural 
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to call the series (rNIP' Q) E 'H;, N = 1,2,3" .. , of cQHL's the fundamental A-JerieJ in 

the window Ep • The cQHL's (rNIP' Q) described here are typical examples of a general 

class of so-called maximally Jymmetric cQHL's [42,44] which can be classified. The ~hift 

map Sp-1 acts on the A-series in 'H~ by replacing K ll = 3 by K ll =2p + 1 and leaving 
the other matrix elements in the Gram matrices unchanged. 

If you compare these results with the data in the windows E; of Fig. 3 and recall that 

an IQHF is the less stable, the larger the values of p and N of the corresponding cQHL, 

the agreement between theory and experiment is remarkable. Is there a problem with the 
4 4data point at UH = 1} E E~? There are no cQHL's with UH = 11 and lmax. = 3, but there 

actually are at last two distinct, low-dimensional cQHL's, with UH = }4 and lmax. =5{!),
1 

one obtained by applying the shift map S1 to the lattice Z EB 3Z, hence of dimension 2, and 

another one of dimension 7, (among, perhaps, further lattices of high dimension). Since, 

for these lattices, lmax. does not have the minimal value, 3, allowed in the window E1 , an 

'IQHF with U H = 1
4
1 is expected to be quited unstable against perturbations. 

To the mathematician, the results just described may look disappointing, since they do 
not involve interesting lattices. The situation changes when we study the cQHL's belonging 

to the family 1-£; := 'Hp \1-£;, corresponding to the range E; of values of U,H. Since the 

shift map Sp-1 is a bijection between 'H? and 'H;, p = 2,3,4"", the classification of 
'the mOJt Jtable cQHL's with UHE'E;, that is of all the lattices in 'H;, reduces to the 

classification of lattices in 'H? But this is not an easy job. Although the number of 

cQHL's i~ 'H? of dimension N < N. is finite, it grows rapidly in N•. 
In order to make progress, one may attempt to translate physical properties of IQHF's 

(related e.g. to electron spin, or to the spectrum of quasi-particles in such systems)into 

mathematical properties of quantum Hall lattices (related to the structure of their Witt 

sublattices and of the so-called glue group; see [42,43,44]). This enables one to introduce 

subfamilies of quantum Hall lattices, likely to describe physically re~zable IQHF's, whose 

classification is feasible. 

A prominent finite series of cQHL's in 'H? is the one corresponding to the values 

2 3 4 5 6 
(2.30)

UH = 3' 5' 7' g' U' 

It is called the E-JerieJ, for the following reasons: Let 0 Ef) rw denote the Kneser shape 

[46] of an integral lattice r, 

where rw is the Witt sublattice generated by vectors of squared lengths 1 and 2. To every 

UH in the E-series (2.30) there corresponds a cQHL (r, Q) with the property that the 

O-sublattice in its Kneser shape is a one-dimensional, odd lattice, denoted 01" rw = rEI! 
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is an Ek-root lattice, with k == 7,6,5,4,3, and Q E Ok is orthogonal to r~, [42]. Here 

we define the lattices f E" as the root lattices of the Lie algebras corresponding to the 

following Dynkin diagrams: 

.-.. 0-0-0-0--0-o, 
I 
o 

E6 +-+ 0-0-0-0-0, 
I 
o 

Es - Ds '+-+ 0-0-0-0,
I 
o 

and 

o 

There is also a cQHL with UH == 17Sand lmax. == 3. It has a two-dimensional O-sublattice, 

and its Witt sublattice is the ~1 -root lattice. This cQHL may be viewed as an irregular 

endpoint of the E-series. For, there is no cQHL with UH == 1
8
5 "and lmcu:. == 3 in dimension 

N ~ 4, or with discriminant 6 ~ 15 and N ~ 9. 
A lattice f is obtained from its Kneser shape, °E9 fw, by gluing, namely by adding 

cosets of vectors in O· E9 f w,to 0 E9 fw. Thelattices fk obtained from Ok E9 fE", where 

f Elc is the Ek-root lattice, k == 7,6,5, are unlikely to correspond to physically realizable 

IQHF's, since their dimensions (and the numberof quasi-particles of the corresponding 

IQHF's) are large. However, they contain quantum Hall ~'Ublattice.s, with the .same values 

for U If and lmax., which are realistic. For example, for k .' 7, U H == ~, the cQHL obtained 

from 07$rE7 by gluing contains a decomposable, two-dimensional QH sublattice, 3ZE93Z, 

and an indecomposable, three-dimensional QH sublattice, whose Witt sublattice is the A1­

root lattice which, physically, could describe electron spin [42], or an internal symmetry 

which we call "isospin" symmetry - as well as less realistic sublattices of dimension 4,5,6 
and 7. All th~se sublattices yieldcQHL's with UH == ~, lmax. == 3. We thus predict 

that there should be at lea.st three rather stable IQHF's with U H == i. They differ from 

each other in the role played by electron spin (which can be tuned by tilting the e~ternal 

magnetic field Be) or by ccisospin". One therefore expects a magnetic-field driven phase 

transition between different IQHF's with U H == ~ . These predictions of our theory are in 

remarkable agreement with experimental data. 

There is also a D-.serie~ of cQHL's, leading, e.g., to values of UH == i: with an even 

denominator dB: un == 4 (arbitrary D n ), and UH == 12:'n' corresponding to rw , fD" 

with n ~ 7. Let (f, Q) be a primitive cQHL. It has been shown in [42] that the sublattice 

of f orthogonal to Q cannot contain any self-dual lattice. 

Besides the D- and the E-series, there is also an AN-I-series of cQHL's in 1-l? ,that 

could describe single-layer IQHF's if N is an odd integer ~ 5. They yield the values 

N 
N+4 
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7of the Hall conductivity; (~, 11 , i3' ... ). 
Furthermore, we have classified all two-dimensional, three-dimensional and four-dim­

ensional cQHL's in 1-l?; see [44J. (With an efficient computer program one could extend 
these results to N = 5,6.) They correspond to the val,ues 1 ~ ~ ~ ~(N - 3) and 

2' 3' 5' 7' 13 -, 
2 3 3 4 4. 5 6 5 5 6 8 10 11 13 14 6 d 26 (N )
'3' 4' '5' 5"' 7' 7 '7' i' 9"' IT' IT, IT, 13' 17' 19' 2I an 31 = 4 . 

Besides the lattices discussed above, there are plenty 6f decomposable cQHL's in 1i? 
obtained as,the direct sum of two cQHL's of the fundamental A-series of cQHL's in 1i~. 

They correspond to the sequence 

4NM+N+'M 
UH =(2N + 1)(2M+ 1)' N, M = 1,2,3,'.·. , (2.32) 

of values of the Hall conductivity. Since there is a very stable single-layer IQHF with 

U H = 1, described by (r = Z, 'Q = 1), one does not expect to see plateaux in the Hall 

conductivity around the points given in (2.32), for values of Nand M larger than 2 or 3. 

Finally, our theory provides candidates of IQHF's described by pairs, (re, Qe) and 

(rh, Qh), of cQHL's corresponding to values of UH = Ue - Uh in the window E? These 

IQHF's would be charge-conjugate to those described by the fundamental A-series in 1i~. 

,They are obtained by setting r e = Z, Qe =" 1, rh = rj..r,1 j see (2.27), (2.28). One finds 
that 

N 
UH = U'e ,- Uk = 1 - 2N+ l' N = 1,2,3"" . (2~33) 

For N ~ 6, these values OfUB coincide with the ones of the E-series. The existence (and 

uniqueness) of these pairs of cQHL's makes it plausible that U H = 1
6
1' 1

7
3' 1

8
5' 1

9
7 are values 

of the Hall conductivity of physically realizable IQHF's. 

Those values of UH which correspond to severalcQHL's in 1i? (e.g. ~,~, j,~, ... ) 
tend to be values where, experimentally, phase transitions are observed. 

We emphasize that, logically, our theory predicts the values of UH that cannot appear 

in IQHF's - indeed, it predicts plenty of gaps if bounds onlmax.' and N are imposed. (For 

example, it tells us that values of UH = i:, with dB very large, require large values of 

either lmax. or N and hence should not be observed!) Furthermore, it tells us that if an 

allowed value of UH is observed in an IQHF, the structure of the IQHF can be described 

by a certain set of cQHL's. That's all our theory dpes if no heuristic principles are added 

to it. 

Next, we propose to sketch how the physics of IQHF's leads us to study the mathe­
matics of chiral quantum Hall lattices. 
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3.� From incompressible quantum Hall fluids to chiral quantum Hall lattices 

via Chern-Simons 'theory. 

The starting point ofour analysis is the idea to look for a theoretical description of the 

physics of an IQHF in the limiting regime of large distance- and long time- (low frequency) 

scales. This limiting regime is called the 3caling limit of the system,and experience shows 

that the theoretical description of physical systems simplifies in the scaling limit. An IQHF 

can be characterized by the following physical properties. 

(Pl) The temperature T of the system is close to OK. The longitudinal resistance. 

RL, of an IQHF at T=OK vanishes, and the total electric charge is a good quantum 

number to label quantum;mechanical state vectors of the system, [42.47]. The charge of 

the groundstates of the system is normalized to be zero.' 

(P2) In the scaling limit, the total electric charge- and current densities of an IQHF 

are� the sum of N = 1,2,3" .. separately conserved charge- and current densities describ­

ing electron- and/or hole transport in N separate "channels" distinguished by conserved 

quantum numbers. In our analysis, N will be treated as a free parameter. (Physically, 

N� turns out to depend on the filling factor 11 and other parameters characterizing the 

system.) 

(P3) In ,units wheree = h = I, the electric charge of an electron/hole is -1/l: A 

local excitation of the system composed of electrons and holes and of total electric charge 

qet.� satisfies Fermi~Dirac ,stati,stic,s if qel. is odd and Bo,se-Ein,stein ,stati,stic,s if qet. is even. 

The quantum statistics of any local excitation of the system .of electric charge qel. E 

2 Z +1 must be Fermi-Dirac statistics (i.e., the Pauli principle must hold), and if qel. E2Z 

it must be Bose-'Einstein statistics. 

(P4) The quantum-mechanical state vector describing an arbitrary physical state of 
an IQHF is ,single-valu.ed in the position of all those excitation,s that are multi-electrons/­

holes. 

The properties (PI) - (P4), believed to be true in every IQHF, are physical p,roperties. 

:rart of the art of theoretical physics is to translate physical properties, deduced from 

,experiments, into precise, m~thematical hypotheses; This cannot be done in the form of 

theorems and requires intuition. But once this exciting part of the job is completed, one 
must attempt to use mathematical theorems to derive new predictions on the behaviour 

of a physical system. 

The assumption that the longitudinal resistance RL of an IQHF vanishes is translated 

into the mathematical assumption that the energy spectrum of the quantum-mechani~al 

Himliltonian describing the dynamics of the system exhibits what is called a mobility gap. 
5, above the groundstate energy which is ,strictly po,sitive,uniformly in the size of the 

system. This is actually an assumption that one can try to derive from the underlying 
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, microscopic Schrodinger quantum mechanics of non-relativistic electrons. The problem is 

a difficult, but not hopelessly difficult problem of analysis; see [48] and refs. given there. 

The quantum-mechanical electric charge- and current densities of a physical system 

are operator-valued distributions 

(3.1) 

where d is the dimension of physical space, and x = (i, t) isa space-time point. They 

satisfy the continuity equation (conservation of electric charge) 

(3.2) 

Let J(x) = *j(x) be the d-form dual to j. Then (3.2) says that 

dJ(x) = o. (3.3) 

For a two-dimensional system confined to a disk n ~ lR2 , the Poincare lemma tells us that 

(3.3) implies that 

J(x) = db(z), (3.4) 

where bex) is a I-form; b is determined by J up to the gradient of a scalar distribution, X, 

i.e., b has the properties of an abeli~n gauge field. By assumption (P2) 

J(x) = L
N 

Qi Ji(z), (3.5) 
i=l 

where Qi is the unit of electric charge transported by the current Ji, and Ji satisfies the 

continuity equation 

d Ji (z) = 0, for i = 1, . .. ,N, (3.6) 

so that, by Poincare's lemma, 

(3.7) 

The key idea is to describe the physics of an IQHF in the lscaling limit in terms 
of an effective field theory of the gauge fields b(z) = (b1 (z), ... ,bN(z))T. Since, by 

property (PI), an IQHF has a strictly positive mobility gap S, that effective field theory 

can only be a topological field theory. The presence of a non-zero, external magnetic field 

transversal to the plane to which the electrons of an IQHF are confined implies that the 

quantum dynamics of the system violates the symtrletriesof parity (reflections in lines) 
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and time-reversal. The only topological field th~ory of the gauge fields b(:e) breaking these 

symmetries and respecting invariance under the gauge. transformations 

b(z) t-+ b(z) +dX(z) (3.8) 

is abelian Chern-Simon3 theory, with G = ]RH. This has been shown in [16,22]. (The same 

conclusion can be reached by starting from the laws (i) - (iv), Sect. 2, above eq. (2.5), of 

electrodynamics in -quantum Hall fluids [15], or by studying gauge anomaly cancellations 

[14,22].) The action funct~onal of abelian Chern-Simons theory is given by 

SA(b) = 4~ JbT II Cdb + raA(b), (3.9) 
A 

where A = n XR is the three-dimensional space-time of the system, 0 = (Oi; )~;=1 is some� 

, metric on "field.space" ]R N, aI\d r 8A (b) is the two-dimensional, anomalous chiral action� 

only depending on the restriction of the gauge fields b to the boundary, BA, of Aj see [49].� 

Note that, individually, the two terms on the r.h.s. of (3.9) are not invariant under gauge� 

transformations (3.8) not vanishing on 8A. The boundary action r8A(b) is chosen such� 

that their sum i3 gauge-invariant (and is essentially determined- by this requirement, [49)).� 

It is quadratic in b 18A. 
Quantum Hall fluids are quantum-mechanical systems, and hence the Chern-Simons 

theory, with action functional SA given ineq. (3.9) must be quantized. Since SA is quadratic 

in b, quantization may proceed via Feynman functional integrals. This task is not a big 

deal; see Sect. 1, and [2,6,7]. It turns oufthat the only dynamical degrees of freedom of 

the theory are localized on BA and describe chiral ;(l)-currents, [36,27]. Their dynamics is 

described by the term raA (b), (after having taken into account the equations of motion of 

Chern-Simons theory). The number of clockwise moving currents is equal to the number 

of positive (negative) eigenvalues of the metric 0, the number of counterclockwise moving 

currents is equal to the number of negative (positive) eigenvalues of C, (depending on the 

direction of Be). These are the experimentally observed ~dge currents first predicted by 

Halperin [50]. We shall focus our attention on the analysis of IQHF's with edge currents 

of only one chirality. Then C may be chosen to. be positive-definite. 

As sketched in Sect. I, states in the quantum-mechanical Hilbert space of Chern­

Simons theory can be viewed as solutions, tP, of the Knizhnik-Zamolodchikov equations 
[7] in n , 0, 1,2, ... variables. For our abelian Chern-Simons theory introduced in (3.9), 
these equations take. the form 

d¢ _ { '" (qi,Qj) Zi - Zj
dt L..J z·-z· 

l$i<i$n ." 

+ f (qi' qan) Zi h'(Zi)} tP, (3.10) 
,=1 . 
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-� where 
1 N)T oNqi = ( qi' . .. ,qi E ~ , i = 1,'" ,n, 

are n N -tuples of charges, mathematically: characters of \lR N , localized at the points 

Zl ~" . ,Zn, resp., qao is a~ N-tuple of boundary charges, 

N 

(q,q')=� L qiCijq'i, (3.11) 
i.i=l 

A-.(Z q Z q) = const. [ II' (z.: - z,·)(C!i .qj >]~ 1, 1,''', n, n� • . 

l~i<i~n 

X exp (~ (Qi,q811) h(Zi)). (3.12) 

with (Zl,'" ,zn) viewed as a pointof Mn, i.e., (Zl,'" ,zn) stands for (Zl(tl),'" ,Zn(t1»), 
together with the homotopy class of the path (Zl(t),'" , Zn(t))tE[tO.tl]; see Sect. 1 

'\ To see that the characters q;, i = 1,'" , N, are charges, we consider the charge 

operators 
i� (3.13)/ Ji = f b

Dj aDj 

of the Chern-Simons theory, where D; i~ a disk in ncontaining Z;, but not containing 

Zk, k i= j. From the results in [7] one easily derives that 

(/ Ji) tP (ZI' ql, ... ,Z." q.,) = q; tP(ZI, ql, ... ,Z." q.,), (3.14) 

Dj 

i.e., <p( Zl , ql , ... ,Znqn) is an eigenvector of the i th charge operator, JDj J i , with eigenvalue 

qj, for i 1" .. ,N, j = 1",' ,n. By eq. (3.5) the operator detecting the total electric 

charge in the disk D; is given by 

(3.15) 
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• 
and, by (3.14), 4> is an eigenvector of J J with eigenvalue 

. Dj , 

qe~.(D;, 4» = E
N 

Qi q; = (Q, qj). (3.16) 

i=1 

Suppose that qi = q; =q, for some i ¥ j. Let us' continue the solution tP along 

the path (Z1 (t), ... ,zn(t») from t = t1 to t = t2, assuming thatzk(t) = 0, for k f; i, j, 
< t < t and' that (z·(t) z ·(t») exchanges Zi and z,· along counterclockwise t1 _ _ 2, , ". t1 ~ t ~ t, . 

oriented arcs not including any point Zk, for k ¥ i, j ~ Then 

(3.17) 

i.e., the half-monodromy (called "Aharonov-Bohm phase factor" by the physicists) of the 

solution t/J of (3.10) in the pair 'Zi, Zj is given by 

exp (i 11" (q, q)). (3.18) 

Similarly if Zi(t) = 0, tl ~ t ~ t2, i ¥ k, and (Zk(t))t <t<t describes a counterclock­1 __ 2 

wise oriented loop around the point Zl not including any point Zi, i 1= k, i, then 

(3.19) 

i.e., the monodromy of the solution t/J of (3.10) in the pair Zk, Zl is given by 

exp (i211" (qk, ql) ) . ,. (3.20) 

The groundstate of an incompressible quantum Hall fluid (IQHF) described by the� 

Chern-Simons theory (3.9) is the vector 4> == 4>0 . 1 (n .' 0 in (3.12»; the charge densities� 
Ji are normalized such that� 

j Ji rPo =0. 
(1 

The states t/J(Z1, q1, ... ,Zn, qn) given in (3.12) might .correspond to excited .state.s of 

the IQHF. To make this idea precise, we must find conditions on the char~cters, or charge 

vectors, ql,'" ,qn that guarantee that properties (PI) - (P4) of an IQHF are valid. Thus, 
suppose that 

N 

qet.(qj)= EQi q; = (Q, qj) 
i=l 

is an odd integer. By property (P3), a physical excitation with charges qj must satisfy 
Fermi-Dirac statistics. Hence the. half-monodromy (3.18) must satisfy 

exp (i1l" (qj,qj») = -I, 
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I.e., 

(3.21) 

Similarly, if (Q, qj) were even, the half-monodromy (3.18) would have to be +1, and hence 

(qj, q;) E 2 Z. (3.22) 

Summarizing (3.21) and (3.22), we have that 

(Q, q) = (q, q) mod 2, (3.23) 

whenever (Q, q) E Z.� 

Next, suppose that qel.(q;) E Z, for some j, (i.e., q; corresponds to a multi-electron/-hole� 

excitation of the fluid). By pro~erty (P4), the state vector 4>(ZI, ql,'" ,Zj, q;,'" ,Zn, qn)� 

must then be a Jingle-valued function of z; (for fixed Zi, i =1= j), provided ql,'" ,qn are� 

the charge vectors of (finite-energy) physical excitations of the IQHF. Thus, by (3.20),� 

(qj , qi) E Z, for all i i= j. (3.24) 

Next, if q is the charge vector of a localized physical excitation of an'IQHF then so is 

-q, by a principle of charge conjugation. ,Furthermore, if q and q' are the charge vectors 

of two localized physical excitations of an IQHF then so is q + q', since one may let their 

positions approach each other arbitrarily closely. Thus, the charge vectors of localized 

physical excitations of an IQHF form an additive group, denoted r ph1JI.. By (3.23) and 

(3.24), the charge vectors, q, with qel.(q) = (Q, q) E Z form an integral sublattice, f, in 

r ph1J ••• Finally, byeq. (3.24) (which expresses property (P4», 

r ph1Js. c- r· , (3.25) 

where r· is the lattice dual to r. Since 

qel.(q) = (Q,q) E Z, for all q E f, 

we conclude that Q E r·. Furthermore, a single electron or hole is a physical excitation 

of an IQHF. Thus, there exists a vector q E r, with 

(Q,q) = 1, 

i.e., Q is a primiti'Ue vector of r* . 
Suppose that r ph1J'. ~ r. Then there exists some local, excitation of the IQHF with a 

charge vector q E r p h1J" such that q mod r f:. O. The electric charge, qet.(q) = (Q,q), 
of this excitation is then necessarily non-integral (in units where e = 1), and its quantum 
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statistics, as described by the half-monodromy exp(i1r(q, q)) 1:- ±1, is neither Fermi­

Dirac nor Bose-Einstein statistics. It ,determines abelian, unitary representations of the 

braid groups En, n = 2,3,4,' .. , and is therefore called abelian braid statistics. Thus if 

r phy6. ~ r, there are local excitations in an IQ,HF with fractional electric charge and braid 

statistics ("Laughlin vortices"). 
Our analysis has enabled us to savely land on the notion of chiral quantum Hall 

lattices. It should" be emphasized, once more, that the general analysis described here 

does not imply that r is a Euclidian lattice. The quadratic form (".) could be indefinite; 

see [43]. For simplicity, this general situation is not considered here and is presumably not 

relevant physically. 

We are still missing one important point: that the Hall cond~(ttivity is given by 

(3.26) 

To prove eq. (3.26), we study the response of an IQHF to a perturbation given by a small 

magnetic field B in the interior of the region O. LetB be the component perpendicular 

to 0, and let A = E~=o Ap.d:cP. be an electromagnetic vector potential on A with 

B = (dA)12' (3.27) 

Now) recall that Qi is the unit of electric charge transported. by the current Ji. Thus, Ji 

couples-to the electromagnetic vector potential A through a term 

bl-1 JJ'./\ Q. A = - _.1 J . 1\ Q. dA21r . ., 21r' I· , 

A A 

(up to a boundary term). The action functional of the IQHF in the scaling Ii.mit is therefore 

given by 
T T

SA(b) = 4~ Jb ACdb - 2~ Jb AQdA, 
A A 

up to a boundary term only depending on b 18A and A 18A. The equations of motion 
obtained by variation of SA with respect to b are found to be 

N 

dll(:c) - I)c-1iiQidA(z), (3.28) 
i=1 

for z in the interior of A. Thus 

J12 ( ;c) - Qi J12 (z) - Qi (db; )12 '( Z ) 

_(£ N

Q;(C-1);iQi) (dA) 12 (:I:) 
1,1=1 

- (Q) Q)(dAh2 (:c). 
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Integrating this equation over 0, we find, using (3.27) that 

qel.. - JJ12 = (Q, Q) JB - (Q, Q) 4>. 
n n 

Comparing this identity with eq. (2.5), we conclude that UH = (Q, Q), which proves 

eq. (3.26). Following [51,52,53], one can show that UH can also be expressed in terms of a 

first Chern number of a vector bundle of Chern-Simons groundstates on a two-dimensional 

torus of magnetic fluxes - this is physically somewhat contrived, though - or as a "gener­

alized index", [15]. These matters will be discussed in more detail elsewhere. 

We conclude this report with a list of imporant invariants of cQHL's (f, Q) and their 

physical interpretations. For details and proofs, see [42,43]. 

(I) Invariants of f. 

Invariant physical quantity 

dim r number of independently c
currents ("channels") 

t 

onserved 

number of fractionally charged Laughlin 
vortices (assuming that r phy8. = r·); 

genus of r� monodromies, 
{exp (i21l" (q, q')) : q, q' E r*} of fractionally 
charged Laughlin vortices. 

Witt sublattice, rw� root lattice of simply laced Lie algebra 
of non-abelian symmetries of IQHF 
in scaling limit. 
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(II) Invariants of cr. Q). 

Invariant physical quantity 

UH - (Q,Q) Hall conductivity 
orbit of Q under orthogonal assignment of electric charges 
trsfs. of r to quasi-particles. 

"level" l = g.c.d.(~, ~UH) 

lmax .(r, Q) (see (2.17» relative angular momentum of 
a pair of el~ctrons. 

q­ - mIn 
qEr­

I (Q,q) I smallest fractional electric charge =1= O. 

( Q,q)#o 

These invariants and their physical counterparts permit us to elucidate fairly specific 

physical properties of IQHF's. But this goes beyond the present report. 

4. Epilogue: Origins of the problems discussed in this lecture. 

In 1986, we got interested in two seemingly unrelated topics: Three-dimensional gauge 

theories with a Chern-Simons term in their Lagrangian (or action), and the braid statistics 

of.charged particles described by such theories, on one hand, and the fractional quantum 

Hall effect, on the other hand. It had already been suggested that these two topics .are 

related to each other [12,13]' but it appeared that nobody understood the relationship in 

precise terms. 

Between the fall of 1986 and1990, we focussed our attention primarily on the problems 

of understanding Chern-Simons gauge theory, the related two-dimensional conformal field 

theories, the general theory of braid statistics and of quantized symmetries in two- and 

three-dimensional quantum field theory, and some mathematical problems in knot theory 

and the theory of braided tensor categories related to low-dimensional quantum field theory. 

Our main results on these topics appeared in [7,29,37,54,55]; see also [56,57] .. 
. j 

In studying Chern-Simons-Higgs theories [2}, J.F. and P.-A.M.' understood 'that abel­

iap, pure Chern-Simons theory was, in essence, justa way of reproducing the Gauss linking 

number. In 1987, during a sabbatical at I.H.E.S., J .F. was taught the basics of subfactor­

and knot theory by V.F.R. Jones. Jones expressed the intriguing idea that, in analogy to 
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the Gauss linking number, more general knot invariants should be calculable from some 

"field theories" .defined on links. Thanks to the presence of G. Felder and K. Gawf;dzki 

at I.H.E.S.,J .F. also acquired some rudimentary knowledge in two-dimensional conformal 
field theory. 

These strands of ideas naturally merged and led to some preliminary understanding 

of braid statistics in low-dimensional quantum field theory and· its connection with the 

theory of knots and links [3]. Seminar notes of V.F.R. Jones and 'a preprint by V. Turaev 

[58] were very helpful in attempting to make those insights more precise. They soon 

led to the conjecture that, just as abelian pure Chern-Simons theory gives rise to the 

Gauss invariant of links, non-abelian pure Chern-Simons theory ought to give rise to more 

interesting link invariants. Apparently, A. Schwarz independently arrived at the same 

conjecture, around the same time (1987), [59J. Unfortunately, it appeared to be difficult 

to identify those invariants. It is well known that, in 1988, E. Witten independently came 

up with the same ideas, identified the link invariants emerging from non-abelian Chern-

Simons theory and went on to define new invariants for three-dimensional manifolds, [6]. 

His work provided new motivation for us (J.F. and C.K.) to return to the ideas leading to 

the original conjecture. We found a way of deriving the so-called Knizhnik-Zamolodchikov 

(KZ- )equations [26J from formal Chern-Simons functional integrals; see Sect. 1. We showed 
how to calculate some knot polynomials generalizing the Jones polynomial from solutions of 

the KZ-equations. The existence of appropriate solutions of the KZ-equations was proven 

by using convergent power series expansions in .\ = ±(k + C2)-1, where k is the level of 

some Kac-Moody algebra and C2 is the dual Coxeter number of the underlying Lie algebra 

[7]. Our results gave substance to Jones' idea of constructing invariants of links from some 

"field theory" defined on links. 

The KZ-equations are the equations for horizontal sections of certain vector bun- . 

dIes equipped with flat connections, called KZ-connections. The construction of KZ­

connections is based on solutions of the so-called infinitesimal pure braid relations (a 

special case of which are the classical Yang-Baxter equations [60]). In fact, every solution 

of the infinitesimal pure braid relations gives rise to a KZ-connection. Horizontal sections 

of vector bundles can be cons-tructed, locally, with the help of Chen's iterated integrals, 

more appropriately called Dyson series by the physicists. This method was used in [7]. 

Later on, the results and methods of [7] - see also Sect. 6.3 of [37] - were confirmed 

and put in a more general context of Vassiliev invariants [38] in [61]. 

In 1990, R. Morf taught us the basic facts about the (fractional) quantum Hall effect. 
A paper by B.T. Halperin [50] made it clear to us that there is a fundamental relationship 
between the quantum Hall effect and the theory of Kac-Moody algebras. We found that the 

quantum Hall effect is actually described by abelian pure Chern-Simons theories, [15]. This 

insight, combined with the theory of the chiral anomaly in two-dimensional gauge theory, 
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provided a completely general explanation pf Halperin's-findings (in a more general context 
than the one he hadenvisaged)jsee also [22]. Similar results were found, independently 

and somewhat earlier, by X.G. Wen [14] and were later confirmed by many other groups; 

see e.g. [17J. 
The work of J.F. and C.K. on Chern-Simons theory now -turned out to be very use­

ful: It said that physical state vectors of incompressible quantum Hall fluids (RL = 0,0'H 

on- a plateau)' could be constructed in terms of solutions of KZ-equations derived from 

certain abelian pure Chern-Simons theories. The known monodromy of solutions of the 

KZ-equations provided an essential clue to understanding the role played by the theory 

of integral quadratic forms on lattices in the theoretical analysis of incompressible quan­

tum Hall fluids. Our analysis led us to the notion of chiral quantum Hall lattices. A 

partial classification of those chiral quantum Hall lattices that appear in the analysis of 

,incompressible quantum Hall fluids was accomplished in joint work of J.F. and E.T., with 

contFibutions by T.K. and U.S.. Incidentally, such lattices also appear in algebraic topol­

ogYj (algebraic surfaces in algebraic four-manifolds). Our enterprise has taken quite a -lot 

of time and effort. We are grateful to L. Michel for explaining to us many basic facts 

concerning integral lattices. Our results have appeared in [16,22,42,43,44]. 
Now, that the .classification of incompressible quantum Hall fluids in terms of chiral 

quantum Hall lattices has reached a satisfactory stage, it would be time to develop an­

alytical proofs of existence of incompressible quantum Hall fluids. Interesting ideas on 

, this problem have appeared in [62]. The strategy followed there leads to rather beautiful 

variational problems on spaces of sections of some line bundles - somewhat similar to the 
vortex problems in Higgs models, [63] - which are described in [48]. 

Another line of research concerns the definition of Chern-Simons actions on non­

commutative spaces, in the sense of 00nnes[9], and the analysis of the corresponding 

Chern-Simons theories, [11]. This leads to a unifying point of view on topological field 

,theory [6,24]. The interplay between non-commutative geometry and quantum field theory 

appears to be a promising area for future, work, [64]. 

I believe we had "fun imagining it" -even though the job has sometimes been pretty 

hard. 
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