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ABSTRACT
We present a gauge invariant particle g:onéept and Fock space construction for scalar and
spinor fields in (1+1)-dimensional‘ curved space-times. It is based on gauge independent

normal ordering with respect to the energy measured on a geodesic hypersurface. We derive

- the normal ordered expression for the induced energy-momentum tensor of massless scalar

and spinor fields. Our computatiofx is finite step by step and gives the energy-momentum ‘

“tensor, which is covariantly conserved and has the standard trace anomaly R/24m. We apply

our methods to four applications: 1) We show that a Rindler observer (accelerated observer
in Minkowski space) interprets the Minkowski vacuum as his own vacuum, i.e he computes

< T* >=0and < nj >= 0. 2) We consider an inhomogeneous patch R # 0 in an otherwise

~ flat space~time and compute the production of particles, < n(k,t) >, and »eneigy%momemum,

< T**(z,t) >, by the inhomogeneity. We show that < n(k,t) > and < T#*(z,t) > are
nonzero and consistent with each other. Our results contradict Parker’s result that there is
no particle production if space—time is cénformally flat and quantum fields are conformally
coupled. 3) We compute the production of energy density and the evolutic;n of pressure of
a quantum field in externaI‘FRW and. inflationary space-times in 141 dimensioné. 4.) We
consider the gravitational field of collapsing shells of classical matter in 143 dimensions, and

weAf:ompute the production of Hawking radiation everywhere inside a l_ineér“wave guide in the
radial direction. The results show the origin of the radiat ¥

- . ion (t k AN :
paradox of 't Hooft. ( race anomaly) and rgsolve the
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1. Topic and question

The topic is particle productwn (spin O, 1/2) by gravitational tidal forces, i.e.
curvature. This is relevant in the very early universe (e.g during inflation) and around
black holes (Hawking radiation). The work for 141 dimensions is finished; the work in
1+3 dimensions has been started, but will not be reported here.

- The question: for a given, arbitrary external curved space-time (CST), and for
a given arbitrary initial state of the quantum field (most often for the initial vacuum
state |0,in)), one has the task of predicting the expectatlon value of the induced energy-
momentum-stress tensor, :

{0,in| T(P)|0,in)y = ?

The question must specify the point P in space-time and the local orthonormal frame
(LONF with indices a b) at P. This is a gauge invariant questlon (gauge invariant =
independent of choice of coordinate system).

The LONF chosen (at a given point P .in space-time) is a basis in the tangent vector
space at P. The basis vector e5(P) could be taken to be the instantaneous 4-velocity
“u(P) of some observer, e;(P) = u(P). It makes no difference whether the observer is
free-falling or accelerated, since we only consider the instantaneous 4-velocity u(P).

Our new method is gauge invariant normal ordering. This is connected to a gauge
invariant notion of particle and of vacuum.

The trace anomaly, <T a) R/ 247 for massless pa.rtlcles turns out to be the key
concept. The trace anomaly governs the production of Hawking radiation near a black
hole and the production of energy in the early universe.

2. Critique of frequency normal ordering

Previous definitions of particle, vacuum, Fock space, normal orderihg were (in the
words of Birrell and Davies [1]): ”slippery, ambiguous, and not directly connected to
T,". " ‘

Our key observation: previous work was based on a fundamental distinction be-
tween positive and negative frequency modes. The frequency w is the eigenvalue of the
Hamiltonian H, which is the time evolution operator. But time, frequency, and (H )
are gauge dependent. A separation between positive and negative frequency modes is
gauge dependent and therefore cannot have a fundamental physical meaning.

3. Our method: gauge invariant normal ordering
3.1 External electromagnetic fields

' Our new method, gauge invariant normal ordering, will first be demonSti-a_t_ed in the
case of quantum field theory in external electromagnetic fields in' Minkowski space [2].
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It is crucial to distinguish between the canonical and the kinetic energy-momentum,

* ];:i)'—ei _; "cpzlp‘/,;—eA“
e=H —eA°® 'lD,‘ =i8,, -—-eA“

(pu) = (H ,,'13') is the canonical energy-momentum. It is gauge dependent. It is
needed for Hamiltonian dynamics (time evolutxon) for conservation laws (Noether the-
orem), and for canonical quantlzatxon :

(ku) = < €, > is the kinetic energy-—momentum It is gauge invariant. It is the

measured energy-momentum. It is given by the state (at a given time).

The new thing is that our gauge invariant normal ordering separates between pos-
itive and negative eigenvalues of the kinetic energy operator ¢ (= measured energy).

3.2 External curved space—times‘_

In external (1+1)-dimensional curved space-time our gauge invariant normal or-
dering goes as follows:

1) What is the hypersurface on which to do the mode expansion and the normal
ordering? In Minkowski space it was a hypersurface of fixed time. In curved space-
time, for any given point P and for any given LONF e;(P) at P, it is the geodesic
extension of e;(P), and this geodesic hypersurface will be denoted by Z,; this is a
gauge invariant concept (in previous work people used the gauge dependent notion of
fixed time hypersurface, £;). We do not assume asymptotic flatness, neither for ¢ — +oo
nor for £ — +oo. But we have assumed that space is open, not closed.

2)What is the operator to be used for normal ordering? For external electromag-
" netic fields in Minkowski space it was the measured energy. In curved space-time it is
the locally measured energy (measured with cesium clocks) integrated over the geodesic
hypersurface £, (with the LONF’s parallel to £, at each point of X,): E

€= /d{'Tg = /dz“ Tﬁ“ = gauge invariant.
g Z, ' ‘

‘Here df is the proper length along I,. Previously people used the Hamiltonian
H= / d¥, Ty = gauge dependent.
B ;
Both the measured energy ¢ and the Hamiltonian H are formed from the energy-—

momentum tensor. The difference between ¢ and H is seen to arise in two places:

a) geodesic hypersurface E (gauge invariant) instead of a fixed—time hypersurface Et
(gauge dependent),

b) in the operator: the free index (i.e. the lower index) is a gauge invariant LONF-
index T. instead of a gauge dependent coordinate mdex Ty

The nece551ty of this normal orderlng prescnptlon in curved space-time has been
demonstrated in ref.[3].



4. Main results

4.1 Densities of energy —momentum

For the densities of energy-momentum T on Y, we obtain the following result
(derived for the case of no particle-particle interaction and no mass):
) k ob \  reobb oy \ TEROTT
(N TH(P)) = (T%(P))
The left-hand side is computed with our new gauge invariant normal ordering prescrip-
tion, Ng;; the computation is finite at each step. One might call this method the
"particle method”. The right-hand side is computed with the standard “field method”:
first point-splitting, second subtracting the divergent terms known from the Minkowski
space calculation, third enforcing V,T#” = 0 by hand (finite subtraction). Both meth-
“ods, the old "field method” and our new "particle method” give the same result. This
result agrees with the Wald tensor for 1+1 dimensions [4], which follows from the Wald
axioms. » ' ,

Note that although the notion of particle is related to the notion of normal ordering,
there is a big dxﬁ'erence between the two. The notion of particle needs the entire geodesic
hypersurface £,. On the other hand normal ordering of T°b(P) only needs the first
derivative (along Z,) of the LONF at P; it only needs the condition that the spin
connection wj at P is zero, which is a local condition. This local condition is easily
'extended to 143 dimensions: w; =0, a =1,2,3.

Note also that our method of normal ordering, discussed here and ca.rrled out in
ref. [5], works for arbitrary (1+1)-dimensional space-times.

As long as we work on one geodesic hypersurface X, (a lme), there exists no notion
of curvature. The observables on one geodesic hypersurface are the densities of energy
and momentum, but not the flows. In Hamiltonian formulation of single-particle clas-
sical mechanics this would be (£,5), which are used as initial conditions on the initial

hypersurface 2( Y When discussing the initial state on the initial hypersurface (or the
~ state on any fixed hypersurface), the notion of time evolution does not yet enter; there
is no time coordinate yet (except that one may choose ¢; = 0 on Zg)), no lapse and
shift function yet, no Hamiltonian yet, no velocities Z yet. Since quantum field theory
on the geodesic hypersurface £, contains no information about the curvature R, the

energy—-momentum density in the vacuum state must be zero: |

(0’ ZQIT%(P) |0, 29) =

for P € ¥, and e;( P) orthogonal to &;. In this precise sense vacuum polarization effects
do not give an energy—momentum density in the vacuum [3].

4.2 Fluxes of energy—-momentum and the trace anomaly

The computation for the fluxes Tib of energy—momentum [5] through the timelike
geodesic hypersurface extended from ez(P) can be done using three different meth-

ods; the quickest method is to compute <T67’(‘P)> in two different LONF’s at P and
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afterwards use frame covariance. Our result is

(T(P)) = (N, TH(P)) - R(P)

24w

and <Tiﬁ> = ’<Tﬁi>. In this expression the gauge invariant normal ordering is done on

the geodesic hypersurface extending from ei(P),l although the fluxes Tt 7live” (can be
integrated) only on a hypersurface extending from ez(P). This is the origin of the extra

term on the right-hand side. This, together with < T66>, gives the trace anomaly

a _ R(p)
(T*a(P) =5 — -

After our gauge invariant normal ordering the computations are finite at each step
(there are no divergences to be subtracted) and they give V,T#* = 0; no need to enforce
this equation ”by hand”. In the language of pertubation theory (our calculations are
exact) after having subtracted the one-point functions, e.g. (0| 09 |0), there do not
arise new divergences to be subtracted in two—point functions (in 1-loop calculations),

~e.g. in (0] T¥(2)T%(y) |0).

If we give as the initial state (on a spacelike geodesic hypersurface) the vacuum
|0,%,), and if we compute at a point P on X, the fluxes (through a timelike geodesic
hypersurface), the quantum field theoretic problem involves time evolution and tidal
forces (i.e. the curvature R). Therefore it is no surprise that our computation gives a
nonzero pressure (momentum flow) in the vacuum state:

(01 zleii(P) |0a 29) 2(4P) :

for P € Ly and e3(P) orthogonal to £,. In this precxse sense vacuum polarization effects
produce pressure (momentum ﬂow) but not energy-momentum density nor energy flow.

4.3 Improved pomt—spllttmg

A second method, an improved pomt—sphttmg method, is directly motivated by our
gauge invariant normal ordering. As in the usual pomt—-sphttmg, our pomt—-sphttmg is
done along a geodesic. The new thing is that for a given point P and a given LONF,
the densities T are computed with the geodesic tangential to e; (P), while the fluxes
Ti® are computed with the geodesic tangential to ez(P). The motivation is that the
densities T "live” (can be integrated) only on a hypersurface orthogonal to eo, and the
fluxes T live only on a hypersurface tangential to €p- After the standard subtraction

of the divergent terms arising in Minkowski space one obtains the correct (T'**) directly
without the need to enforce V,T# =0 by hand (asin the old point-splitting methods).



5. Applications

5.1 The Rindler pfob]em .

In the first application we consider the "Rindler problem”: given Minkowski space,
‘given as the initial state of the quantum field the Minkowski vacuum, given the La-

grangian for freely propagating fields in external space-time without any detector pres-
ent (in the Lagrangian). Task: an accelerated man (Rindler, using Rindler coordinates)

: andafree-falhn man (using Minkowski coordmates both must predict T“b P)). The
g g P

answer of the free-falling man is clearly zero; but since <T°b> is a tensor, the Rindler
man must also predict zero. Next question: predict the particle number (n;) =? Our

gauge invariant particle concept gives <ni'i'> 0, whether one works in Minkowski

‘gauge or in Rindler gauge. On the other hand the frequency normal order:ng in Rindler
gauge gives (n}) g, gpc, 7 O

<T°b(P)> =0 , <ni'i'> =0 , <nk)Rmdler7'0 .

The Rindler particles are fictitious, they do not correspond to nonvamshmg <T°5(P)> ;
they are of no help whatsoever in predicting <T°b(P)>. |

5.2 Particle production by an inhomogéneous patch

In the second application we consider an inhomogeneous patch with R # 0 in an
otherwise flat space-time. Curvature effects (tidal forces) produce a burst of particles,

Figure 1a

(n(k,1)) # 0, and of energy-momentum, ‘<T"‘,5(z,t)> # 0. To simplify we choose as
the initial state of the quantum field the Minkowski vacuum. For the inhomogeneity in
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fig. la we choose a thin elongated patch along a geodesic, with constant proper width
A€, and with R = constant except for switching on at the beginning and switching
off at the end (shaded area in fig. 1a). The produced energy density <T66(§,t)> is
shown cross—hatched in‘ﬁg. ‘1a; we see energy bursts caused by the switching on and
the switching ofl. The produced particle number (n(k,1)) is shown in fig. 1b.

i Ed<n>/
' dE
ti=0<f<ff
t fixed

. Figure 1b

Our particle dens;ty is consistent with the energy-momentum density, and the
latter agrees with the Wald tensor [4]. All this is true not only in the Minkowski xn/out
regions, but also inside the patch of inhomogeneity.

Let us compare our results with Parker’s theorem [6,7], which states: if space-time
is conformally flat and the particles are conformally coupled, then there is no particle
creation. Since in 141 dimensions space-time is always conformally flat and in 1+1
dimensions the minimal coupling of massless particles is conformal, there seems to be a
contradiction between our result that particles are produced and Parker’s theorem that
no particles are produced. The resolution comes from the fact that Parker normal orders
with respect to the conformal frequency, and this is inequivalent with our gauge invari-
ant normal ordering. In the Minkowski in-region Parker’s method can use Minkowski
coordinates, and the initial state has n, = 0 for both particle definitions. But if the
conformal coordinates agree with Minkowski coordinates in the flat in-geometry, they
must necessarily disagree with Minkowski coordinates in the flat out—geometry; the
conformal normal ordering must disagree with the standard Minkowski normal ordering
in the out~Minkowski space. The conformal pa.rt:cle number n}°" "S- is conserved and
remains zero for all times, :

(i) =0

while our gauge invariant normal ordering agrees with standard Minkowski normal or-



dering (whenever one has Minkowski geometry) and gives <n{"'> # 0 in the final state.
Our particle density matrix is in quantitative agreement with Wald’s energy-momentum
den51ty at all times (also in the intermediate geometry with R # 0), and this makes our
particle definition relevant for physxcs

,@“u¢»¢o
<n9'i‘(k t)> #0

Parker’s quanta clearly dlsagree with the standard partlcle notlon in the out—Mmkowskl
geometry

consistent at all times.

We have computed the exact evolution starting from a pure initial state. Therefore
‘the entropy S = —tr(pln p) is zero at all times. If one would introduce small random
phases into the density matrix p in the momentum basis, the entropy would increase
and partlcle production would become accompanied by entropy productlon The tlme
scale needed for this decoherence process remains undetermined.

5.3 Energy production in Friedman—Robertson—Walker spaces
As our initial condition we assume ‘that the energy density <T66> of the quantum

field and its momentum denéity <T6i> are zero on a hypersurface of constant Friedman

time ¢ (this hypersurface £, is not a geodesic hypersurface). The trace anomaly (T* ,) =
R/247 and the covariant conservation of energy—-momentum V,T* =0 are suﬂicxent
to predict the creatlon of energy. :

It is important to note that for external FRW geometnes the following two equa-
tions are equivalent:
FRW ’
—

V,T* =0 U =—pdv

whefe V denotes a comoving volﬁme, p = <Tii>, U = pV with p Ev-<T66‘> in the FRW
local orthonormal frame. S ' '

Zel'dovich [8] asked (in 1971) under what conditions one can have energy production
- (in a quantum field), if one starts with p = 0 at some initial time t;. He made the ansatz
for short times, (¢ — ;) << H™, '

pox(t—1t)"
po (t—t)™ .
From dU = —pdV it immediately follows that n > m, i.e. the pressure p must

grow first, and afterwards the energy density p will follow. Specifically from dp/dt ~
—p(dV/dt)V ! = —(const.)p, it follows that n = m + 1. But more importantly, from
Zel’dovich’s argument it follows that energy production (starting from zero energy) is
possible if and only if there is a trace anomaly:

n=mtl—sp#pe— (T#,)£0
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Dimensional arguments tell us that the trace (T* ,) can only be a pure number
times R in 141 dimensions. Therefore the pressure exponent is m = 0 (pressure approx-

imately constant), while the energy exponent isn=1 (energy density growing linearly
at the begmmng)

The computation of the trace anomaly gives (T“' ) = R/24m, therefore the initial
pressure is p = —R/24n. Our sign conventions are 7;; = —1 and such that R =
—2(H+H?) for a FRW universein 1+1 dlmensxons where H(t) is the Hubble parameter
and "= &,.

For an external FRW geometry with a scale factor a(t) o t7, where v = 1 /2 or2/3,
the curvature R = 2v(1—+)/t? is positive and the vacuum pressure of the quantum field
is negative. Energy density and pressure will evolve from their initial vacuum values to
an asymptotic regime for (¢t — ¢;) > H~!(#;), where genuine energy production stops; p
and p are both positive and get merely redshifted by adiabatic expansion: ~

a?(t) H(;
"0~ e

7 ' , independent of .
pt)

The asymptotic energy density and pressure of the quantum field are the same as for
a usua] radiation field, because the trace anomaly becomes negligible for (¢ — ¢;) >

H~1(t;). The trace anomaly goes to zero as (p—p) ~ t~ 2, while the energy density and
the pressure get redshifted only as p,p ~ 1727,

For an inflationary external curved space-time, a(t) o eft) the curvature is negative
and the vacuum pressure of the quantum field is positive. Energy density and pressure
will evolve from their initial vacuum value to an asymptotic regime for (t—t;) >> H~(¢;),
where energy and pressure reach a constant value

2
t
plt) — T 24r
p(t)
p(t) - A
Asymptotically we have (T**) — AgH”, with the induced cosmological constant A =
—H?/24x. This induced cosmological constant is opposite in sign to the external effec-
tive cosmological constant (of the external vacuum energy/pressure).

B ihdependent of t.
_1 _

5.4 Hawking radiation from collapsing shells

- We consider a collapsing thin spherical shell (in 143 dimensions) of classical matter
(e.g. many neutrons all at the same radius). For simplicity consider the special case
(m/E) — 0; therefore the shell follows the light—cone in the r~t-plane.

We now make a gedanken experiment. We consider a thin linear wave guide going
radially across the shell to infinity. Instead of electromagnetic waves we consider a

9



massless scalar field inside the wave gulde The initial state (on a given spacelike
hypersurface) is chosen to be the vacuum of the scalar field. The classical matter and
the geometry are (1+3)-dimensional, the wave field is (1+1)—d1mensmnal

Question: what is the energy flow (i.e. the Hawking radJatxon) msuie the tube
for any 7 (not only far away!) measured with respect to some local orthonormal frame
(LONF). In this talk we choose as an example the LONF adapted to Schwarzschild
coordinates, i.e. the LONF of an observer instantaneously at rest in Schwarzschild
coordinates. ' | ' !

Our exact solution is sketched in ﬁg.‘ 2. We see the collapsing shell following the |
light—cone, and the spacelike hypersurface I; on which we choose our initial state (the
" vacuum of the quantum field). Since the geometry inside the shell is flat (R = 0) there

is no trace anomaly and no energy-momentum production inside, <T°b> = 0 inside.

R4

positive

energy flow
(Howking)
vacuum ‘
on Zj negative
energy flow’

inside

Figure 2

Outside the shell we have R # 0, and the trace anomaly causes the production of energy- |

momentum. We have shown that the outgoing and the ingoing wave fields decouple also
at the level of quantum field theory. The outgoing waves have positive energy density,
the ingoing waves have negative energy density. Our solution agrees with the solution
of Davies, Fulling, and Unruh |9]. '

We now present the problem of 't Hooft {10]. He discussed an experiment where
one photon is sent radially into a black hole from far away. He considered the collision of
this ingoing photon with an outgoing Hawking photon. He computed the invariant mass
(i.e. the total center—of-mass energy of the two photons) [(p} +p5)?]!/?. This invariant
mass has a finite value far away, but it is blueshifted with the factor [goo)('r)]”’/2 as
one goes farther in. This blue shift is unbounded as we approach the Schwarzschild
horizon, and the invariant mass of the two photons will exceed the Planck mass.
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't Hooft éonéludes that fundamental fhodiﬁcations of our concepts are needed.

The resolution of this apparent difficulty will have the following bottom line: it is
wrong to assume that one can trace back Hawkmg photons like classical point particles
or a classical radiation field.

Our quantitative argument goes as follows: for a classical point particle moving
radially in or out one has a conserved quantity, -

ﬂ-
conserved: p,—¢ = 6,.-—0 Pa=b >

where the index u refers to SchWarzschild coordinates,’a refers to a LONF aligned with
Schwarzschild coordinates, and e is the 2-bein (LONF). The quantity p,_j; is the locally
‘measured energy, p,—o is the conserved energy (the Hamiltonian of section 3.2). For a
swarm of classical point particles the measured flux of particle number (through 47 per
sec.) increases farther in. We define light—cone coordinates u,v with du = d(t — *),
dv = d(t + r*), where t is the Schwarzschild time and dr* is such that u (resp. v)
is constant along outgoing (resp. ingoing) null geodesics. It follows that the flux of
particle number for outgoing classical massless point particles per fixed du, dN /du, is
conserved (as we follow the particles along their geodesics). From the two conservation
laws (for a swarm of outgoing massless- partlcles), Pu = po = conserved and dN/du =
conserved, it follows that

g ,
T(°*Y) — conserved «— — [Tt(tzui) R
' : . v class.

The same conservation law can be shown to hold also for classical field theory of mass-
less and conformally coupled fields. The argument of ’t Hooft assumes that Hawking
radiation can be traced back like classical radiation or like classical point particles. And
this is equivalent to the above conservation law. ‘

But this conservation law is broken at the level of quahtum field theory because of
the trace anomaly: V,T#" = 0 together with the trace anomaly gives

> 5 8 "R
QFT Bu 961

fi <T<out)

av uu

where €2 is the conformal scale factor in ds?> = ezf" du dv. This equation determines
the production of Hawking radiation locally. The resulting <T( ut)) is shown in fig. 3.

<T,(,zut)> starts at zero at the shell, it increases (as we go outwards) to an asymptotic

value. In our figure we have chosen that value for v for which the shell crosses the

horizon (u = o). For u = fixed = oo the asymptotic value of <T(°",t)> (for v — oo, i.e.

r = Schwarzschild coordinate — oo) is the Hawking value. The horizontal dashed line
is 't Hooft’s naive "following back a Hawking photon” which disagrees with the exact
result dramatically as we approach the shell.

11



If one only discusses Hawking radiation infinitely far away, there is no need to
consider the trace anomaly. But if one wants to discuss the energy-momentum tensor
close to the black hole, one cannot escape the fact of the trace anomaly. And if one
wants to understand (derive) how the Hawking flux increases from zero (at the shell)
to the Hawking value (at oo), the trace anomaly is the key concept.

‘ JTuu(r)|

u=const.= @

O R
Py 1927 (GM2)

1 : N
Fshell . r
Figure 3

In the external gravitational field approximation (i.e. in the only treatment known)
the collapsing shell will have radiated away the equivalent of its total mass by a certain
time (the evaporation time), more precisely before a certain null geodesic u = const. <
oo is reached. This happens before the shell reaches the Schwarzschild radius and
before a horizon is formed. Near this null geodesic and beyond it, back reaction effects
must become crucial and change the picture totally. D:scussmg what happens near the
horizon is impossible without including back reaction. '
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