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ABSTRACT 

We present a gauge invariant particle concept and Fock space const17u~tio~ for, scalar and 

spinoI' fields in (l+l)-dimensional curved space-times. It is base~ongaugel independent 

n6rInal ordering with respect to the energy measured on a geodesic hypersurface.We derive 

t~e normal ordered expressio~ for the induced energy-momentum tensor of massless 'sc8Jar 

and spinoI' fields. Our ~omputation is finite step by step and gives the energy-momentum 

. tensor, which is covariantly conserved and has the standard trace anomaly R/241r. We apply 

our methods t? four applications: 1) We show that a Rindler observer (accelerated observer 

in Minkowski space) interprets the Minkowski vacuum as his own vacuum, :i.eh~ computes 

< T"'v~= 0 and < nk >= O. 2) We consider an inhomogeneous patch R =1= Oin an othe~wise 

flat space-time and compute the production of particles, < n(k, t) >, andenergy":'momentum, 

< T/.£V(x, t) >, by the, inhomogeneity. We show that < n(k, t) > and < T-S'II(X, t) > are 

nonzero and consistent with each other. Our results contradict Parker's result that there.is 

no particle production if spac~-time is conformally flat and quantum fields are conformally 

coupled. 3) We compute the production of energy density and the evolutiono£ .prellSureof . 

a quantum field' in external FRW and inflationary space-time~ in 1+1 dim~nsions. 4) We 

consider the ,graVitational field of collapsing shells of classical matter in 1+3 dimensions, and 

we "~om~ute .the production of Hawking radiation everywhere inside a linear'wave guide ill the 

radIal dIrectIOn. The results show the origin ofthe radiation (trace anom~~)·· and resolve the 
paradox of 't Hooft. .	 . 
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1. Topic and question 

The topic is particle production (spin 0, .1/2) ·by gravi~tional tidal forces, i.e. 
curvature. This is relevant in the very early universe (e.g during inflation) and around 
black holes (Hawking radiation). The work for 1+1 dimensions is finished; the work in 
1+3 dimensions has been started, but will not be reported here. ' 

The question: for a given, arbitrary external curved space-time (CST), and for 
a given arbitrary initial state of the quantum field (most often for the initial vacuum 
state 10, in}), one has the task·of predicting the eXHectation value ofthe induced energy­
momentum-stress tensor, 

The question must specify the point -P in space-time and the local orthonormal frame 
(LONF with indices a, b) at .P. This is a gauge invariant question (gauge invariant = 
independent of choice ot coordinate system). 

The LO,NF chosen (at a given point Pin space-time) is a basis in the tangent vector 
space at P. The basis vector eo (P) could be taken to be .the instantaneous 4-velocity 
u(P) of some observer, eo(P) = u(P). It makes no difference whether the observer 1s 
free-falling or accelerated, since ~e only consider the instantaneous 4-velocity u(P). 

Our new method is gauge-invariant normal ordering. This is connected to a gauge . 
invariant rtotionof particle and ofvacuum. 

The trace anomaly, (To' a) = R/241r' for massless particles, turns out to be the key 
concept. The trace anomaly governs the production ofHawking radiation near a black 
hole and the' production of energy in the early universe. 

2. Critiql.le of Creque'ncy normal ordering. 

Previous definitions of particle, vacuum, Fock space, normal ordering were (in the 
words of Birrell and Davies [1J): "slippery, ambiguous, and not directly connected to 
TJ.'l/ "• 

Our key observation: previous wotkwas based on a fundamental distinction be­
tween positive and negative frequency modes. The frequency w is the eigenvalue of the 
Hamiltonian H ,which is the time evolution operator ~ But time, frequency, and (H) 
are gauge dependent. A separation between' positive anq negative frequency modes is 
gauge dependent and therefore cannot have a fundamental physical meaning. 

3. Our method: gauge invariant normal ordering 

3.1 External electromagnetic fields 

Our new method, gauge invariant normal ordering, will first be demonstrated in the 
case of quantum field theory in external electr~magnetic fields iIi Minkowski space [2]. 
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It is crucial to distinguish between the canonical and the, kinetic energy-momentum, ..
 

(Pp.) = (H,p> is the canonical energy-momentum. It is g,auge dependent. It is 
needed for Hamiltonian dynamics (time evolution), for conservation laws (Noether the­
orem), and for canonical quantization. 

(kp.) = (f.' f) is the kinetic energy-momentum~ It is gauge invariimt. It is the 

measured energy-momentum. It is given by the state (at a given time). 

The new thing is that our gauge invariant normal ordering separates between pos­
itive and negative eigenvalues of the kinetic energy operator f. (= measured energy). 

3.2 External curved space-times 

In external (1 +1 )-dimensional curved space-time our gauge invariant normal or­
dering goes as follows: 

1) What is the hypersurface on which to do the mode expansion and the normal 
ordering? In Minkowski space it was a hypersurfaceof fixed time. In curved space­
time, for any given point P and for any given LONF ea(P) at P, it is the geodesic 
extension of ei(P), and this geodesichypersurface will be denoted by ~gj this is a 
gauge invariant concept (in previous work people used the gauge dependent notion of 
fixed 'time hypersurface, E t ). We do not assume asymptotic flatness, neither for t -. ±oo 
nor for x -. ±oo. But we have assumed that space is open, not closed. 

2)What is the operator to he used for normal ordering? For external electromag­
netic fields in Minkowski space it was the measured energy. In curved space-time it is 
the locally measured energy (measured with cesium clocks) integrated over the geodesic 
hypersurface Eg (with the LONF's. parallel to ~g at 

~ 

each point of ~g): 
. 

f = {dfTt = (d'El/- Tt = gauge invariant. 
lEg jEg ' 

Here de is the proper length along Eg • Previously people used the Hamiltonian 

.H =~~Ep. Tt = gauge dependent. 

Both the measured energy f and the Hamiltonian Hare' formed from the energy­
momentum tensor. The difference between f. and H is seen to arise in two places: 

a)	 geodesic hypersurface ~g (gauge invariant) instead of a fixed-time hypersurface ~t 

(gauge dependent), ' 

b)	 in the operator: the free index (i.e. the low~r index) is a gauge invariant LONF­
index T( instead of a gauge dependent ~oordinate index Tt. 
The necessity of this normal ordering prescription in curved space-time has been 

demonstrated in,ref.[3]. 
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4. Main results 

4.1 Densities of energy-momentum 

For the densities of energy-momentum TOb on ~g we obtain the following result 
(derived for the c~se of no particle-particle interaction and no mass): 

The left-hand side is computed with our new gauge invariant normal ordering prescrip~ 

tion, N g •i .; the computation is finite at each step. One might call this method the 
"particle method". The right-hand side is computed with the standard "field method": 
first point-splitting, second subtracting the divergent termsknown from the Minkowski 
space calculation, third enforcihgV J.l.TI1-v - 0 by hand (finite subtraction). Both meth­
ods, th~ old "field method" and our new "particle method" give the same result. This 
result agrees with the Wald tensbr for 1+1 dimensions [4], ~hich follows from the Wald 
aXIoms. 

Note that although the notion of particle is related to the notion of normal ordering, 
there is a big difference between the two. The notion of particle needs the entire geod~sic 

hypersurface~g. On the other hand normal ordering of TOb(P) only needs the first 
derivative (along ~g) of the LONF at P; it only needs the condition that the spin 
connection Wi at P is zero, which is a local condition. This local condition is easily 

I extended to 1+3 dimensions: wa = 0, a= 1,2,3. 

Note also that our method of normal ordering, discussed here and carried out in 
ref. [5], works for arbitrary (1 +l)-di.mensional space-times. 

As long as we work on one geodesic hypersurface ~g (a line), there exists no notion 
of curvature. The .()b~ervables on one geodesic hypersurface are the densities of energy 
and momentum, but not the flows. In Hamiltonian formulation of single-particle clas~ 

sical mechanics this would be (i,P), which are used as initial conditions on the initial 

hypersurface ~~i). When discussing the initial' state on the initial hypersurface (or the 
state on any fixed hypersurface), the notion of time evolution does not yet ent~r; there 
is no time coordinate yet (except that one may choose ti = 0 on ~~i», no lapse and 
shift function yet, no Hamiltonian yet, no velocities £ yet. Since quantum field theory 
on the geodesic hypersurface ~g contains no information about the curvature R, the 
energy-momentum density in the vacuum state must be zero: 

(0, ~gl TOb(P) 10, ~g) = 0 

for P E ~g and eo{P) orthogonal to ~g. In this precise sense vacuum polarization effects 
do not give an energy-momentum density in. the vacuum [3]. 

4.2 Fluxes of energy-momentum and the trace anomaly 

The computation for the fluxes T ib of energy-momentum [5] through the timelike 
geodesic hypersurface extended from eo(P) can be done using three different meth­

ods; the quickest method is to compute (TOb(P)) in two different ~ONF's at P and 
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afterwards use frame covariance. Our result is 

and (TiO) =.(TOi). In this expression the gauge invariant normal ordering is done on 

the geodesic hypersurface extending from ei(P),' although the fluxes T ib "live" (can be 
integrated) only on a hypersurfaee extending from eo{P). This is the origin of the extra 

term on the right-hand side. This, together with (TO fJ), gives the trace anomaly 

After our gauge invariant normal ordering the computations are finite at each step 
(there are no divergences to be subtracted) and they give V p,TILV = 0; no need to enforce 
this equation "by hand". In the language of pertubation theory (~l!r calculations are 
exact): after having subtracted ,the one-point functions, e.g. (01 TOO 10), there do not 
arise new diy~rgen~~s to be subtracted in two-point functions (in I-loop calculations), 
e.g. in (01 TOO( x )TOO(y) 10). 

If we give as the initial state (on a spacelike geodesic hypersurface) the vacuum 
10, ~g), and if we compute at a point P on ~g' the fluxes (through a timelike geodesic 
hypersurface), the quantum field theoretic problem involves time evolution and tidal 
forces (i.e. the curvature R).Therefore it is no surprise that our computation gives a 

• nonzero pressure (momentum flow) in the vacuum state: 

for P E ~g and eo (P) orthogonal to Eg • In this precise sense vacuum polarization effects 
produce pressure (momentum Row) but not energy-momentum density nor energy flow. 

4.3 Improved point-splitting 

A second method, an improved point-splitting method, is directly motivated by our 
gauge invariant normal ordering. As in the usual point-splitting, our point-splitting is 
done along a geodesic. The new thing is that for a given point P and a given LONF, 
the densities TO b are computed with the geodesic tangential to €i (P), while the :Buxes 
rib are computed with the geodesic tangential to eo{P). The motivation is that the 

densities TOb"live" (can be integrated) only on a hypersurface orthogonal to ea', and the 

fluxes T ib live only on a hypersurface tangential to eo. Aftet the standard subtraction 
of the divergent terms arising in Minkowski space one obtains the correct (TILV) directly 
without the need to enforce Vp,TILv= °by hand (as in the old point-splitting methods). 
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5. Applications 

5~1 The Rindler problelu 

In the first application we consider the "Rindler problem":o given 11inkowski space, 
given as the init.ial st.at.e of t.he quant'Um field thel\1inkowski vacuum, given the La­
grangian for freely propagating fields in external space-time without any de~ector pres­
ent (in the Lagrangian). Task: an accelerated man (Rindler, using Rindler coordinates) 

a~d a free-falling man (using 11inkowski coordinates) both mustprecUct (TCib(P»). The 

answer of the free-falling man is clearly zero; but since (Tab) isa tensor, the Rindler 

man must also predict zeroo Next question: predict the particle number (nk) =1 Our 

gauge invariant particle concept gives <n~oio) = 0, whet.her one works in l\1inkowski 

gauge or in Rindler gauge. On the other hand the frequency normal ordering in Rindler 
gauge gives (n k

O 

Rindler -::A 0:) 

(nk)Rindler #- 0 

The Rindler particles are fict.it.ious, they do not correspond ~o nonvanishing (Tab(P)); 
t.hey are of no help whatsoever in predicting (Tab(P»). 

5.2 Particle production by an inhomogeneous patch 

In the second application we consider an inhomogeneous patch with R :;1=0 in an 
otherwise flat. space-tim.e. Curvature effects (tidal forces) produce a burst of particles, 

INHOMOGENEOUS PATCH (R ¢ 0) 

--------- --"---------- L9 0 

Filure "la 

(n(k,t)) -::A 0, and of energy-momentum, (TQb(:r"t» :/=0. To simplify we choose as 
the init.ial state of the quantum field the 11inkowski vacuum. For the inhomogeneity in 
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fig. 1a we choose a thin elongated pat.ch along a geodesic, with constant proper ,,·idth 
~e, and with R = const.ant except for'swit.ching on at the beginning and swit.ching 

off at the end (shaded area in fig. la). The produced energy density (TOO ({, t)) is 

shown cross-hatched in fig.l a; we see energy bursts caused by the switching on and 
the switching off. The produced particle number (n(k,t)) is shown in fig. lb. 

! Ed<n>� 
,dE� 

tj=o<t<t f 
tfixed 

;---------r-------....;;;=:::=..-----~E 

I"-J 'It 
Figure,lb 

Our particle density is consistent with the energy-momentum density, and the . 
latter agrees with the \\rald tensor [4]. All this is true not only in the 11inkowski in/out 
regions, but also inside the patch of inhomogeneity. 

Let us compare our results with Parker's theorem [6,7], which states: if space-time 
is conformally flat and the particles are conformally coupled, then there is no particle 
creation. Since in 1+ 1 dimensions. space-time is alwa~ts conformally 'flat and in 1+1 
dimensions the minimal coupling of massless particles is conformal, there seems to be a 
cont.radiction between our result that particles are produced and Parker's theorem that 
no particles are produced. The resolution comes from the fact that Parker normal orders 
with respect to the conformal frequency, and this is inequivalent vdth our gauge invari­
ant normal ordering. In the 1\1inko~"ski in-region Parker's method' can use l\1inkowski 
coordinates, and the initial state has nk - 0 for both particle definitions. But if the 
conformal coordinates agree with l\1inkowski coordinates in the flat in-geometry, they 
must necessarily disagree with 1\1inkowski coordinates in the flat out~geometry; the 
confor1l:1al normal ordering must disagree with the standard Minkowski normal ordering 
in the out-1\1inkowski space.. The conformal particle numbe,r n~onf. is conserved and 
remains zero for all times, 

while our gauge in\'ariant normal ordering agrees with standard1\11nkowski normal or­
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dering(whenever one has Minkowski geometry) and gives (n~·i.) f:. 0 in the final state. 

Our particle d~nsitymatrixiBin quantitative' agreement withWald's energy-momentum 
density at all times (also in the intermediate geometry with R f:. 0), and this makes our 
particl~ definition relevant for physics: 

consistent at all times. 

Parker's quanta clearly disagree with the standard particle notion in theout-Minkowski 
geometry. ,. 

We havecoIllputed the exact evolution starting from a pure initial state. Therefore 
the entropy S = .....tr(p In p) is zero at all times. If one would introduce small random 
phases into, the density matrix p in the momentum basis,the entropy would increase 
and particle production would become accompanied by entropy production. The time 

, scale needed for thisdecoherence process remains undetermined. 

5.3 Energy production in Friedman--Robertson-Walker spaces 

As our initial condition we assume ''that the energy density (TOO) of the quantum 

field and its ~omentumdensity (TO i ) are zero on 'a hypersurface of c~nstant Friedman . 

time t (this hyperBurface ~t is not a geodesic .hypersurface). The tra:ce anomaly (TIL IL) ­
R/241r and the covariant conservation 'of energy-momentum V' ILTILII = 0 are sufficient 
to .predict the creation of energy. 

It is important to note that for external FRW geometries the following two equa­
tions are equivalent: 

V' ILTILII = 0 ~R'Y dU = ...-p dV 

whe~e V denotes a comoving volume,p == (Tii ), U= pV with p _',(TOO') in the FRW 

local orthonormal frame. 

Zel'dovich [8] asked (in 1971) under what conditions one can have energy production 
(in a quantum field), if one starts with p =0 at some initial time'ti_ He made the ansatz 
for short times,.( t - td ~ a-I, 

p ex (t - td n 

p ex (t - tdm 

From dU = -p dV it immediately follows that n > m, i.e. the pressure p must 
grow first, and afterwards the energy density p will follow. Specifically from dpldt ~ 

~p(dV/dt)V-l ~ -(const.)p, it follows that n = m + 1. But more importantly, from 
Zel'dovich's argument it follows that energy production (starting from zero energy) is 
'possiblei,f and only if there is a trace anomaly: 

n = m + 1 ---+ P f:. p ~. (TIL IL) '# 0 
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Dimensional arguments tell us that the trace (TIL IL ) can only be a pure number 
timesR in 1+1 dimensions. Therefore the pressure exponent is m = o(pressure approx­
imately constant), while the energy exponent is n = 1 (energy density growing linearly· 
at the beginning). " 

The computation of the trace anomaly gives (T/J. IL) = R/241r, therefore the initial 
pressure is p = - R/241r. Our sign conventions are TIll " -1 and such that R = 

-2(ii+H2) for a FRW universe in 1+1 dimensions, whereH(t) is the Hubble parameter 
and' =at. ' 

For an external FRW geometry with a scalefactora(t) ex: f Y, where -y = 1/2 or 2/3, 
the curvature R = 2-y(1--y)/t2 is positive and the vacuum pressure of the quantum field 
is negative. Energy density and pres'sure will evolve from their initial vacuum values to 
an asymptotic regime for (t - ti) » H-l(ti), where genuine energy production stops; p 
andp are both positive and get merely redshifted by adiabatic expansion: 

a 
2
(t) pet) ~ H 

2
Cti)� 

a2 (ti) '241r� 
- independent of t.

pet) .� 
pet) ~ 1� 

The asymptotic energy density and pressure or'the quantum field are the same as for 
a usual radiation field, because, the trace anomaly becomes negligible for (t -til » 
H -1 (ti)' The trace anomaly goes to' zero as (I' - p) fV C 2 , while the energy density and 
the pressure get redshifted emly as p, p fV t- 2-y. 

For an inflationary external ,curved space-time, a( t) ex: eHt , the curvature is negative 
and the vacuum pressure of the quantum field is positive. Energy density and pressure 
will evolve from their initial vacuum value to an asymptotic regime for (t-td » H-l(ti), 
where energy and pressure reach a constant,value: ' 

H 2 

pet) .~ - 241r 
, 

independent oft. 
pet) ~ -'-1 
p( t) 

Asymptotically we have (TILY) --+ AgILY, with the induced cosmological constant A= 
-H2 /241r. This induced cosmological constant is opposite in sign to the external effec­
tive cosmological constant (of the external vacuum energy/pressure). 

5.4 Hawking radiation from collapsing shells 

,. We consider a collapsing thin spherical shell (in 1+3 dimensions) of classical matter 
(e.g. many neutrons all at the same radius). For simplicity consider the special case 
(m/E) --+ OJ therefore the shell follows the light-cone in the r-t-plane. 

We now make a gedanken experiment. We consider a thin linear wave guide going 
radially across the shell to infinity. Instead of electromagnetic waves we consider a 

9� 



massless scalar field inside the wave guide. The initialstat.e (on a gh'en spacelike 
hypersurface) is cllosen to be the vacuum of the scalar field. The classical,matt.er and 
t he geometry are (1 +3)-dimensional, the wave field is (1 +1)....dimensional. 

Question: what ,is t he energy flow (i.e. the Hav"king radiation) inside the tub~ 
for any r (not olllyfar away!) measured ~·ith.respect to some local 'orthonormal frame 
(LONF). In this talk we choose as an example the LONF adapted to Schwarzschild 
coordinates,. i.e. the LONF of an obser,ver .instantaneously at rest in Schwarzschild 
coordinates. f 

Our exact solut.ion is sketched in fig. 2. "Te 'see the collapsing shell following the 
light-cone, and the spacelikehypersurface ~i on which we choose our initial stat.e (the 
vacuum of the quantum field). Since the geometry inside the shell is flat (R = 0) there 

is ,no trace anomaly and no energy-momentum production inside, (Tab) =oinside. 

vacuum 
on r· 
_L~ 

Figure 2 

Outside the shell we have R =f; 0, and' the trace anomaly causes the production of energy­
nlomentum. 'Ve have shown that the outgoing and the ingoing wave fields decouple also 
at the level of quantum field theory. The outgoing waves have positive energy density,' 
the ingoing waves .have negative energy density. Our solution agrees with the solution 
of Davies, Fulling, and Unruh (9). 

"Te now present the problemo! 't Hooft [10). He discussed an experiment where 
one photon is sent radially into a black hole fro,m far away. He considered the collision of 
this ingoingphoton with an outgoing Hawking photon. He computed the invariant mass 
(i. e. the total cent.er-of-mass energy of the two photons) [(pi +p~ )2]1/2• This in,~ariant 

mass has a finite yalue far away, but it isblueshifted ~?ith the factor 19~~)(r )J-l12 as 
one goes farther in. This blue shift is unbounded as we approach the Schwarzschild 
horizon, and the inyariantmass of the two photons will exceed the Planck mass. 
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't Hooft concl~des that fundamental modifications of our concepts are needed. 

The' resolu tion of this apparent difficulty will have the following' bottom line: it is 
wrong to assume that one can trace back Hawking photons like classical point particles 
or a classical radiation field. ' 

Our quantitative argument goes as follows: for a classical point particle moving 
radially in or out one has a conserved quantity, 

0.=0 conserved: PIJ-=o .•.-;- ep,=o Pa=o 

where the index It refers to Schwarzschild coordinates, a refers to a LONF aligned with 
Schwarzschild coordinate~, and e~ is the 2-bein (LONF). The quantity Pa=o is the locally ~ 
measured energy, PIJ-=o is the conserved energy (the Hamiltonian of section 3.2). For a 
swarm of classical point particles the measured,llux of particle number (through 411' per 
sec.) increases farther in. We define light-cone coordinates u, v( with du = d(t - r*), 
dv = d(t+ 1'*), where t is the Schwarzschild time and dr* is such that u (resp. 11) 
is )constant aldng outgoing (resp. ingoing) null geodesics. It follows that the flux of 
particle number for outgoing classical massless point particles per fixed du, dN/du, is 
conserved (as we follow the particlesalong their geodesics). From the two conservation 
laws (for a swarm of outgoing massless- particles),pu • Po = conserved and dN/du ­
conserved, it follows that 

T(o'Ut) = conserved ~ .i-[T~:'Ut)] = 0'U'U. ,8v . cla••. 

The same conservation law can be shown to hold also for classical field theory of mass­
less and conformally coupled fields. The argument of 't Hooft assumes that Hawking 
radiation can be traced back like classical radiation or like classical point particles. And 
this is equivalent to the above conservation law. 

But this conservation law is broken at the level of quantum field theory because of 
the trace anomaly: 'VIJ-TIJ-v - 0 together with the trace anomaly gi,;,es 

~ /T(o'Ut»). = _e2 1(> !- 'R 
8v \ 'U'U QFT au 9611" 

where e2 
t.p is the conformal scale factor inds2 = e2 

1{J dudv.This equation determines 

the production of Hawking radiation locally. The resulting (T~~'Ut») is shown in fig. 3. 

(T~~'Ut») 'starts at zero at the shell, it increases (as we go outwards) to an asymptotic 

value. In our figure we have chosen that value for u for which the shell crosses the 

horizon (u = 00). For u = fi~ed = ooJhe asymptotic value of (T~~'Ut») (for v ~ 00, i.e. 
l' = Schwarzschild coordinate"700) is the Hawking value. The horizontal dashed line 
is 't Hooft 'snaive "following back a Hawking photon" which disagrees with the exact 
result dramatically as we approach the shell. 
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If, one only discusses Hawking radiation infinitely far away, there is no need to 
consider the trace anomaly. But ifone wants to discuss the energy-momentum tensor 
,close t.o the black hole, one cannot escape the fact of the t.race anomaly. And if one 
wants to understand (derive) how t.he Hawking flux increases'from zero (at the shell) 
to� the Hawking value (at 00), the trace anomaly is the key concept. 

') 1: (r)I,� ' ,uu u. cons!.: co� , 

p------------------­HI 
p� - I 

. H- 1927T(GM2) 

rshell� r 

Figure 3 

In the external gravitational field approximation (i.e. in the only treatment known) 
the collapsing shell willha,te radiated away the equivalent of its total mass by: a certain 
time (the evaporation t.ime), more precisely before a certain null geodesic 1.L = canst. < 
00 is reached. This happens before the shellreac1}es the Sch'warzscbild radius and 
before a horizon is formed. Near this null geodesic and beyond it,backreaction effects 
n1ust become crucial and change the picture totally. Discussing what happens near the 
horizon is impossible without including back reaction. 
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