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ABSTRACT. To detect faint signals in the presence of a high background differential techniques are often used. 
In infrared astronomy this has led to the so-called chopping and nodding techniques. The introduction of array 
detectors especially for imaging in the thermal infrared region of the astronomical spectrum requires an adaption 
of these techniques which also takes into account the pixel non-uniformity of the array detector. I describe one 
possible imaging algorithm. 

1. INTRODUCTION 

In astronomical observations it is often necessary to obtain a weak image in the presence of a very 
high background. Examples are : (i) observations in the thermal infrared in which the background is 
dominated by the million times brighter thermal emission of the telescope and/or the sky, (ii) deep 
imaging at visible wavelengths of galaxies and other objects with magnitudes 100 times or more 
fainter than the dark time sky background, and (iii) the observation of very faint spectral lines against 
the 100 times or higher "background" of the spectrum continuum. While using single pixel detectors 
various techniques were developed to detect the signals against the frequently temporally and spatially 
variable background. The most sophisticated techniques were probably developed in the thermal IR 
case where sky chopping by means of rapid tilts (tens of Hz) of the telescope secondary mirror were 
Combined with slower telescope nodding to eliminate both rapid sky brightness variations and sky and 
telescope spatial variations in a differential detection which discriminated against the very high 
background. 

With the advent of array-detectors at all optical wavelengths the technical approaches have changed. 
Precise flat-fielding/calibration of the array-detector gain and dark current characteristics have gone 
a long way to eliminate the need for differential observations. But even so, the astronomical detection 
requirements always tend to exceed the limits of the flat-fielding techniques in critical applications 
where the background is very high. Differential detection is therefore still required in those 
applications. In this paper I describe one possible imaging algorithm to be used in combination with 
chopping/nodding observations using IR array detectors. I will consider the specific application to 8 
meter aperture telescopes. With the imaging algorithm in mind, I will then derive the technical 
requirements to be put on the telescope chopping/nodding properties. Unless otherwise mentioned the 
assumed wavelength in this paper is 10 p.m. 

For 8 meter telescopes the typical spatial and temporal scales for the sky emission variations equal 
Oem =:: DIH and rem =:: D/Vwind • With the following assumed parameters: D = the telescope 
diameter = 8 meter; H = average height of the emitting layers in the atmosphere = 8000 meters, 
and Vwind. = wind velocity at height H = 10 m/sec one obtains Oem = 200 arcsec and rem = 0.8 sec 
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(or frequency fem IE liTem = 1.25 Hz). Any differential observations should not exceed these values 
in chopping full amplitude (or throw) 8 and period P (liE lit). 

2. DESCRIPTION OF IMAGING ALGORITHM FOR CHOPPING ONLY 

2.1 The Algorithm 

Let the original astronomical image have a brightness distribution off(x,y) and let the superposed 
background signal due to the combination of the telescope,sky and detector be a(x,y). The detector 
therefore sees a signal 

s(x,y) = f(x,y)+a(x,y). (1) 

The signal a(x,y) fluctuates with time, and both a(x,y) and f(x,y) vary spatially. The atmospheric part 
of a(x,y) varies on angular scales comparable to Oem and temporal scales Tem • Chopping with full 
amplitudes/throws 0 -< Oem and at time scales T -< Tem will therefore sharply reduce atmospheric noise 
sources. Detector zero level and gain spatial variations are largely constant with time so that, except 
for the residual effects of gain variations on f(x,y), they are also removed by rapid chopping. 
However, the array detector electronics may suffer from l/f noise which may dominate the Signal-to
Noise of the observations at least at low chopping frequencies (currently estimated to be below = 1 
Hz). Fast chopping is then necessary to reduce its effect. 

I will assume in the following that the chopping occurs in the x direction with a PTV amplitude of 
o= 2~, symmetrical around the nominal zero position of the chopping secondary mirror to minimize 
the off-axis coma effects resulting from the misalignments of the telescope primary and secondary 
mirrors. I will omit therefore for convenience the y coordinate in the equations below. The difference 
signal resulting from the chopping then equals : 

ds(x) = f(x-~) - f(x+~) (2) 

and its Fourier transform (always expressed in capital letters) : 

DS(k) = F(k)exp(~) - F(k)exp(-i~) = 2i· F(k) sin(lu1). (3) 

where k • 21r/spatial wavelength in the x-direction in the image. 

The sin~) term acts like a modulation transfer function (MTF) on F(k). The image f(x) can 
therefore be recovered from ds(x) by taking the Fourier transform of i'(k) = DS(k)/sin(k4), where 
it not that this function suffers from singularities at k.a = n·1r/t:t. values. At these spatial frequencies 
the image information is irrecoverably lost. Since at the wavelengths where the chopping is most 
needed (A ~ 8 #Lm) the 8 meter telescopes are diffraction limited the k1 value should occur at a spatial 
frequency of ~ 21r·D/>... Assuming k1 = 21r·D/>.. gives a = O.S·}JD, or a chopping throw 2a equal 
to the diffraction limit (0.258 arcsec at 10 #Lm). The only other spatial frequency which is then lost 
is the zero frequency leo. 

Spatial frequencies below =k/6 (corresponding to spatial structures of 1.6 arcsec and larger) will, 
however, be seriously attenuated by such a small chopping throw. With future detector arrays of 
perhaps 1024 x 1024 pixels covering 88 x 88 arcsec with sampling of 3 pixels/resolution element at 
10 #Lm one would often like to see structures at least up to a scale of = 80 arcsec. 
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Figure 1� Upper three graphs give the Modulation Transfer for the three differential images 
chopped with throws of 2~, 241 and 2~ respectively. The lower curve gives the 
Signal-to-Noise ratio for the recovered image using equation (4). 
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I propose that this be done by combining the Fourier transforms OSt; OS2 and OS3 of three successive 
images chopped with at = a; ~ = M'a and a 3 = W'a respectively. Assuming that the noise in 
OSi is white, the noise in DS(k)/sin(kAJ varies as lIsin(kAJ. The three DS Fourier transformed 
images are therefore averaged with weights sin2(k.AJ to give a combined : 

(4) 

This procedure results at a good SNR over a broad range of spatial frequencies. Figure 1 shows the 
relative SNR variation for M = 7 for 2a = 0.258 arcsec, where SNR = 1 corresponds to a direct 
image with a perfect spatially behaved detector/telescope/atmosphere. The SNR averages 70 % and 
exceeds 25 % at all spatial scales between 90 and 0.257 arcsec, covering all scales of interest for the 
88 x 88 arcsec array size. Note that chopping completely off the array to a piece of supposedly blank 
sky (all structure absent over the entire array) would at best result in a SNR of 50 %. The proposed 
imaging algorithm chops at throws ~ 8em, whereas chopping off the array involves throws similar 
to 80m, The latter will therefore suffer from spatial sky noise in addition to the possible mixing in of 
"nuisance" astronomical signals in the "blank sky" region. 

The Fourier transform of i'(k) results in the desired image. To avoid edge effects in the Fourier 
transform procedure it probably will help to repeat the f(x) image a number of times in the x 
direction. 

2.2 Chopping Amplitudes 

The chopping amplitudes 2~ equal 0.258; 1.81 and 12.64 arcsec for the case described above in a 
FOV of 88 x 88 arcsec. The resulting coma blur for the VLT 8 meter telescopes is 0.004; 0.026 and 
0.180 arcsec respectively which is just acceptable. Larger chopping throws are only acceptable if one 
is willing to sacrifice image quality. For longer ~avelengths these amplitudes go up proportionally, 
resulting at amplitudes of, for example, 0.62; 4.33 and 30.34 arcsec at 24 #Lm and a FOV of 211 x 
211 arcsec. The shortest wavelengths for which chopping will be used set therefore the minimum 
throw for the chopping mechanism, the longest the maximum throw. When using the proposed 
algorithm for imaging in the 8 to 24 #Lm wavelength range one thus arrives at the following amplitude 
criteria : (i) The minimum full chopper amplitude (2at) shall be 0.20 arcsec in the image plane, and 
(ii) The maximum full chopper amplitude shall be 30 arcsec in the image plane. 

2.3 Effect of Chopper Amplitude Variations 

Especially for the smaller chopping throws the throw PTV amplitude 2a, as projected on the 
astronomical image, may vary by a large fraction of 2a both because of atmospheric seeing motions 
and because of opto-mechanical limitations in the chopping mechanism. In addition the image will 
drift over longer time scales for the same reasons. What are the effects of these variations and what 
are the resulting requirements to be placed on the secondary mirror chopper design? 

Let 0t and O2 be the variations in x direction in the position on the astronomical image for the two 
chop positions. Equation (3) then changes to : 

OS(k) = F(k)exp(ika+ikot) - F(k)exp(-ika+ikoJ 

= 2· F(k) sin(k{a+ocliffD exp(ikoave). (5) 

- 2· F(k)·A·B 

where oave = (Ot +oJ/2 and Ocliff = (ot-oJ/2. 
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The A = sin(k{~+Ocliff}) term in equation (5) changes the chopping transfer function. The B = 
exp(iko

ave
) term moves the resulting image, after taking the Fourier transform of 'If(k), by an amount 

of Ocliff in the x direction. 

2.3.1 Effect on ~ Modulation Transfer Function 

The sin(k{~+Ocliff}) term equals: 

A = sin(~)cos(kocliff) + cos(~)sin(kocliff) 

= sin(~)·(l-o.5 k2oclifl) + cos(~)sin(kocliff) (6) 

For random variations in 0 the second term in equation (6) average out to zero, resulting in : 

(6') 

The average MTF is therefore decreased by an amount which increases proportionally with It2. For 
the largest k value under consideration (1r/~t) the fractional decrease equals (omitting the < > signs) 

MIA 

= 300 RMS(Ocliff)2 at 10 #Lm wavelength (7) 

If I allow a maximum decrease in the MTF of 20 % that implies RMS(0cliff) ~ 0.026 arcsec. The 
wavelength independent RMS image motions in one direction caused by atmospheric seeing amount 
to 0.424·QJD)1I6·(}Jro)S/6 radian, or 0.144 arcsee for D = 800 cm and 0.66 arcsee seeing (at 0.5 #Lm). 
The RMS(0cliff) could therefore be as much as 0.144W2 = 0.102 arcsec if very slow chopping were 
an option. This is well beyond the tolerable value. The 0cliff refers, however, to one chopping cycle 
of lIf seconds, if chopping occurs at a frequency of f Hz. This will substantially deerease RMS(Ocliff), 
the amount of which will be estimated next. 

The Power Spectrum Density (PSD) for image motions equals (se eg Madec et al, 1993) : 

PSD(t) = Ct· f2l3 for f ~ fo , and 

PSD(t) =~. f11l3 (8) 

where the breakpoint fo equals approximately 0.5 Vwind/D or 0.625 Hz in the present case. For 0.66 
arcsec seeing (at 0.5 #Lm) this results in RMS(0cliff) values of 0.102, 0.073, 0.056, 0.018, 0.005 and 
0.001 arcsec above frequencies f of 0, 0.1, 0.3, 1.0, 3.0 and 10 Hz respectively. To meet the 
RMS(0cliff) = 0.026 arcsec criterion on has to chop therefore at frequencies above 0.75 Hz. Opto
mechanical inaccuracies which contribute to the 0cliff values have to be smaller than 0.026 arcsec as 
well. If the two effects are given equal contributions to the MIA error budget one arrives at the 
following criteria: (i) Opto-mechanical errors in full chopping amplitudes shall not exceed 0.018 
arcsee RMS over time intervals of a few seconds. For the positioning at each chopping extreme this 
means a maximum allowable error of 0.013 arcsec RMS, and (ii) For Image MTF preservation the 
minimum chopping frequencies shall be 1 Hz 
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2.3.2 Effect due to Image Motion 

The B term in equation (5) leads to an image motion of Oave' This image motion is the same as would 
be encountered in the non-chopping, staring mode use of an array detector. Since D/ro = 1.5 in the 
10/Lm case discussed here, rapid guiding is needed to achieve full diffraction limited resolution. A 
number of ways can be used to obtain oave : (i) from the images f(X-A) and f(x + A) themselves before 
their subtraction. This can be done since the original images are available individually provided that 
there is a bright reference object is available, (ii) from the difference image ds(x,y) or DS(lex,IS.)' This 
eliminates much of the detector fixed pattern noise, thus lowering the brightness of the object required 
to determine the image shift, or (iii) from a field viewing camera signal, possibly at another (e.g. 
visible) wavelength. Since all of the individual IR images are available rapid guiding correction might 
be done in software on the difference images DS(lex,IS,) using expression (5). 

2.4 Effects of Spatial Gain Variations 

Precise flatfielding to determine the spatial dark level d(x,y) and gain variations g(x,y) in array 
detectors is critical for array detectors especially in the case where f«x,y) is much less than a(x,y), 
as is the case for most observations in the thermal IR. Including the effects of d(x,y) and g(x,y) in 
equations (1) and (2) one obtains : 

s(x,y) = g(x,y)'f(x,y) + g(x,y)'3wckground(x,y) + ~er(x,y) + d(x,y) (1 ") 

and 

ds(x,y) = g(x,y)'{f(X-A,y) - f(X+A,y)} (2') 

Thus, while differential detection removes the d(x,y) and the effects of g(x,y) on a(x,y), the effects 
of gain variations remain on the ds(x,y) signal. Since f(x,y) is generally much smaller than a(x,y) the 
effects of gain variations are much less severe in differential imaging than in direct imaging, they still 
need correction. Using flatfielding techniques to determine g(x,y), they are removed by dividing the 
ds(x,y) signals by g(x,y). 

3. DESCRIPTION OF IMAGING ALGORITHM FOR CHOPPING AND NODDING 

With the addition of "nodding" techniques to the imaging algorithm equations (2) and (3) would 
change to : 

ds(x) = 2· f(x) - f(X-A) - f(x + A), and (9) 

DS(k) = 2· F(k)' {I - cos(lu1)} (10) 

which has its fIrst zero at lu1 = 21f The chopper throw (now A rather than 2A) would therefore not 
change. The amount of nodding for each DS j exposure would equal ~ and the DS j averaging would 
change accordingly to : 

Y(k) lEE l;j[DSj(k)'{l - cos{kAJ}]/I;[{l - cos(kAJ}j2. (4') 

The chopping amplitude ranges, precision and frequencies are identical to the chopping only case. 
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4. CHOPPING FREQUENCIES DERIVED FROM OTHER REQUIREMENTS 

I already derived a minimum chopping frequency for the 10 #Lm imaging of 1 Hz. This limit was set 
by atmospheric seeing effects. The noise characteristics of the array detectors and of the atmospheric 
emission sets additional limits. As long as detector electronics and atmosphere l/f noise dominates 
it pays to chop at as high a frequency as possible. Low chopper throw will help to keep this frequency 
high. 

It is at this moment not clear what the minimum acceptable chopping frequency is, although there are 
indications that a frequency of around 1 to 4 Hz may suffice. More and better measurements are 
badly needed. 

5. CONCLUSION 

The imaging algorithm proposed in these notes resulted in estimates for the required chopper 
amplitudes and frequencies as a function of wavelength. As long as the chopping throw is large 
compared to the resolution limit of the telescope or instrument/detector combination a number of 
spatial frequencies are irrecoverably lost. That is even the case when chopping completely off the 
array unless an area of completely blank sky is available and therefore there are no lost low spatial 
frequencies available in the object. To allow complete imaging, preserving all spatial frequencies from 
those corresponding to the diffraction limit of the telescope up to those comparable to the dimension 
limit of the detector array, I proposed the algorithm described in these notes. 

These notes refer to wavelengths of 10 (and 24) p,m which cover the wavelength range most likely 
to require chopping techniques. If applied to shorter wavelengths smaller throws and higher temporal 
frequencies will be needed. 

When applying the imaging algorithm to other cases, it will of course be necessary to "chop" at a 
frequency consistent with the detector noise contribution. For deep CCD imaging at visible 
wavelength that means that the chopping frequency has to be very low in order not to become detector 
read-out noise limited. 
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