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Scope and Purpose: This paper shows how artificial neural networks can be seamnlessly merged
with unique evidential reasoning techniques to form a flexible and convenient framework for rep-
resenting and solving complex scheduling problems with many “hard” and “soft” constraints. The
techniques described form the core of SPIKE, an operational scheduling environment for long-
range scheduling of astronomical observations with the orbiting NASA/ESA Hubble Space Tele-
scope. The methodology of SPIKE, which is currently being adapted to some other space mis-
sions, is fairly general and could be brought to bear on a wide range of practical scheduling prob-
lems.

Abstract: Creating an optimum long-term schedule for the Hubble Space Telescope is difficult by
almost any standard due to the large number of activities, many relative and absolute time con-
straints, prevailing uncertainties and an unusually wide range of timescales. This problem has mo-
tivated research in neural networks for scheduling. The novel concept of continuous suitability
functions defined over a continuous time domain has been developed to represent soft temporal re-
lationships between activities. All constraints and preferences are automatically translated into the
weights of an appropriately designed artificial neural network. The constraints are subject to prop-
agation and consistency enhancement in order to increase the number of explicitly represented
constraints. Equipped with a novel stochastic neuron update rule, the resulting GDS-network, ef-
fectively implements a Las Vegas-type algorithm to generate good schedules with an unparalleled
efficiency. When provided with feedback from execution the network allows dynamic schedule
revision and repair.

Keywords: artificial neural networks — combinatorial optimization — constraint satisfaction
problems — evidential/uncertainty reasoning — graph problems: maximum independent set, min-
imum vertex cover — heuristic search — nonmonotonic reasoning — scheduling — stochastic al-
gorithms ’



One of the great mysteries in the field of If there are connectivity structures that are
combinatorial algorithmsis the baffling good for particular tasks that the network
success of many heuristic algorithms. will have to perform, it is much more

—RM. Karp 1975 ~ efficient to build these in at the start.

—D.H. Ackley, G.E. Hinton &
TJ. Sejnowski 1985

1. Introduction

In many domains limited resources have to be optimally utilized and the construction of good schedules is often the
principal means of achieving this goal. Efficient scheduling is of great economic importance in the business world,
with significant problems arising in manufacturing and factory operations, transportation, and project planning, to
name only a few. In other fields scheduling has less of a direct economic impact, but is still of critical importance.
The problem we are addressing here is that of optimizing the scientific return of Hubble Space Telescope (HST), a
unique multi-billion dollar international space observatory. Similar problems arise for other space- and ground-
based observatories, particularly when the coordinated scheduling of these facilities is considered (see, e.g., Johnston
1988a, b, c).

Over the years many scheduling techniques have been studied and developed (see e.g. King & Spachis 1980;
Bellman et al. 1982; French 1986). However, because the general scheduling problem is an NP-hard combinatorial
optimization problem (COP) (Ullman 1975; see also Garey & Johnson 1979), large problems still present enormous
practical difficulties. The discovery that artificial neural networks could be used to attack complex combinatorial
optimization problems (COPs) (Hopfield 1982, 1984; Hopfield & Tank 1985, 1986; Tank & Hopfield 1986; see
however Wilson & Pawley 1988) has raised interest in the potential use of these networks for scheduling. Such an
approach is appealing because neural networks are intrinsically parallelizable and could in principle be used to solve
large problems (for a review see Adorf 1989 and references therein).

In the recent past neural networks have been considered for a variety of scheduling problems, including adaptive
control of packet-switched computer communication networks (Mars 1989), integrated scheduling of manufacturing
systems (Dagli & Lammers 1989), optimization of parallelizing compilers (Kasahara 1990), planning and scheduling
in aerospace projects (Ali 1990), real-time control systems for manufacturing applications (Smith et al. 1988) and
space mission scheduling (Gaspin 1989).

Artificial neural networks have been applied to delivery truck scheduling (Davis et al. 1990), dynamic load balanc-
ing (Oglesby & Mason 1989), job sequencing (Fang et al. 1990), job-shop scheduling (Foo & Takefuji 1988a, b, c;
Zhou et al. 1990, 1991), large-scale plant construction scheduling (Kobayashi & Nonaka 1990), load-balancing in
message-passing multiprocessor systems (Barhen er al. 1987b), non-preemptive, precedence-constrained process
scheduling for a single server system (Gulati ef al. 1987), planning, long-term and real-time scheduling of industrial
production processes in a steel plate mill (Li-wei Bao & Yong-zai Lu 1990; Yong-zai Lu ez al. 1990), precedence-
constrained task scheduling on muitiprocessors (Price & Salama 1990) real-time flexible manufacturing system
(FMS) scheduling including learning (Rabelo & Alptekin 1989a, b), real-time load-balancing of multiprocessors on
a mobile robot (Barhen ez al. 1987a, c), real-time scheduling with specialized hardware (Ae & Aibara 1990), re-
source allocation in changing environments in the context of aircrew training scheduling (Hutchison et al. 1990),
routing and load-balancing in large-scale packet-switching computer communication networks (lida et al. 1989),
school timetable construction and optimization (Gislen et al. 1989; Gianoglio 1990; Yu 1990), shared antenna
scheduling of low-altitude satellites (Bourret ef al. 1989), and student scheduling (Feldman & Golumbic 1989;
1990).

While a number of these investigators have developed artificial neural network representations of scheduling prob-
lems, there has not emerged any consensus on good network dynamics which would permit their application to
large-scale problems involving thousands to tens of thousands of activities.

In this paper we describe the results of our work on an artificial neural network approach to complex, large-scale
scheduling problems, which has led to the implementation of an operational system for scheduling observations with
the NASA/ESA Hubble Space Telescope. Our approach integrates several novel key elements:
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*  aquantitative representation of “hard” constraints and *'soft” preferences which exploits evidential reasoning
techmql::es and which can be automatically translated into the biases and connection weights of a neural
network,

* anetwork topology using multiple asymmetrically-coupled networks with different time constants to repre-
sent and enforce certain types of strict scheduling constraints, and

* anetwork dynamics consisting of discrete, deterministic neurons with a stochastic selection rule.

Qne of the major advantages of our approach is that no network training is required: instead, the network is de-
signed entirely and automatically from the scheduling constraints, both strict and preference. A second advantage
follows from our use of a discrete (in fact binary) stochastic network instead of a continuous deterministic one: this
permits the network to run efficiently even on standard serial machines. :

The organization of the paper is as follows: The HST scheduling problem is subject to a number of refinements and
transformations until it takes the form of a neural network which can be simulated on a serial computer to find feasi-
ble solutions for the original problem. We begin with an informal, qualitative overview of the HST scheduling
problem (§2) and then distill a formal, quantitative description of constraints using the novel concept of continuously
valued suitability functions over a continuous time domain (§3). Suitability functions are capable of simultaneously
representing “hard” constraints and “soft” degrees of preferences and even uncertainties. Techniques from eviden-

tial reasoning are invoked to combine constraints and preferences. Since the neural network requires a discrete time
formulation of the scheduling problem, a discussion of suitability function sampling is included here. The formal

description of constraints and preferences (§3) allows the generic HST scheduling problem to be cast into a concise
mathematical model — a conventional 0-1 programming problem — specified by a number of equalities, inequali-
ties and an objective function to be optimized (§4). These serve as the basis for representing the scheduling problem
as a weighted constraint graph (§5) augmented by a special purpose “guard graph”, which together form the topol-
ogy of the neural network. Adding a heuristic, sequential, stochastic neuron update rule (§6) completes the descrip-
tion and provides a dynamic neural network for searching for solutions to the scheduling problem. The resulting
neural network forms the core of SPIKE (§7), the operational long-range scheduling system for Hubble Space
Telescope. Some experience gained with the system and some considerations on the general applicability of our ap-
proach (§8) conclude the paper.

2. Scheduling the Hubble Space Telescope

2.1, HST and scheduling overview

Hubble Space Telescope (HST) is a large satellite observatory launched by the Space Shuttle in April 1990." It con-
sists of a reflecting telescope with a primary mirror of 2.4m diameter which focuses light onto an array of five scien-
tific instruments: two imagers, two spectrographs, and a photometer. As a result of lack of interference by the
Earth's atmosphere, the resolution, sensitivity, and ultraviolet wavelength coverage of HST are considerably greater
than those obtainable with ground-based telescopes. During its nominal mission lifetime of 15 years HST is ex-
pected to significantly increase our understanding of a wide range of astronomical objects and phenomena, ranging
from bodies in our own solar system to the most distant galaxies. HST science operations are conducted at the
Space Telescope Science Institute (STScI) on the campus of Johns Hopkins University in Baltimore, with command
and data interfaces to the spacecraft through NASA's Goddard Space Flight Center.

Shortly after launch it was discovered that the main mirror of the telescope had been incomectly figured, thus reduc-
ing the sensitivity of HST from its original design goals. In spite of this, the resolution of HST remains considerably
better than that of any ground-based observatory, and plans are being made now to install corrective optics during a
1993 Space Shuttle service mission. Although the mirror problems have delayed the start of full-scale operation of
the observatory, they have not changed the nature or importance of optimum scheduling of telescope operations.

HST is operated as a guest observatory. Astronomers from around the world submit proposals to conduct scientific
investigations with HST. Following a peer review and selection process, successful proposers prepare and furnish to
STScl the details of their scientific programs, including the specific exposures desired and any scientific constraints
on how they are taken. These proposals are submitted in machine-readable form over computer networks, and, fol-
lowing an automatic error- and feasibility-checking step, are stored in a central proposal database (Jackson et al.
1988). The first general proposal solicitation was completed in October 1989, and the process will be repeated annu-



-4-

ally throughout the HST mission. In order to provide scheduling flexibility and to guarantee maximum observatory
usage, approximately 20% more proposals are accepted than can reasonably be expected to be executed.

22, HST scheduling constraints

Proposers can specify a wide variety of constraints on their exposures in order to ensure that their scientific goals are
achieved. The most common constraints are relative timing requirements, e.g. exposure ordering, minimum or max-
imum time separations, interruptability, and repetitions. These types of constraints are common to other scheduling
problems as well. Most are strict in the sense that they must be satisfied by every schedule. Others may be treated
as preferences, i.e. they can be relaxed if necessary to obtain a feasible schedule.

Proposers may also constrain their exposures by specifying the state of the spacecraft and instruments (in absolute
terms, or relative to other observations) and on the environmental conditions that must obtain when the exposures
are taken. For example, it may be desirable to orient the telescope in a particular way in order to place a target into a
spectrograph slit. It is also common to define “contingent” (i.e. conditional) exposures, to be taken only if precursor
observations reveal features of sufficient interest. At HST's resolution, targets are often not precisely identifiable
from the ground and in these cases target acquisition exposures must be scheduled. Most of the instruments also re-
quire various calibration exposures to be taken before or after science observations. :

-In addition to proposer-specified constraints, there are a large number of implied constraints on the HST schedule:
these arise from operational requirements on the spacecraft and instruments, many of which are derived from the low
orbital altitude of HST and consequent short (approximately 95 minute) orbital period. Because of the frequent
earth blockage, only about 40 minutes of each orbit on average are available for data collection. There are also high-
radiation regions over the South Atlantic where the instruments cannot be operated. Other constraints apply particu-
larly to faint targets, where interference from stray and background light (e.g. scattered sunlight from the Earth’s at-
mosphere, the Moon, and from interplanetary dust) must be minimized.

Policy and resource constraints significantly complicate the scheduling problem. Policies refer to conditions that
must be satisfied globally by the schedule to ensure that the overall distribution of observing time constitutes a bal-
anced program. Resource constraints are of several types: in addition to the obvious limitation on how much ob-
serving time is available, other resources are limited and must be allocated during the scheduling process. For exam-
ple:

» The HST ground system is limited in how much data it can handle in any given 24-hour period.
» There is limited onboard computer storage for commands.
» The tape recorders have limited capacities for storing data.

«  Only about 20 minutes per orbit of high-speed communications with the ground is permitted, due to limited
access to the Tracking and Data Relay Satellites (TDRSs) through which all communications are routed.

»  Only about 20% of all observations can be scheduled with real-time observer interaction.

Scheduling is further complicated by the fact that not all constraints are accurately predictable. For example, the
motion of HST in its orbit is perturbed by atmospheric drag to the extent that the precise in-track position of the tele-
scope is not predictable more than a few months into the future (in contrast, the plane of the orbit is predictable to
within a few degrees for many months). Guide stars for pointing control are selected on the ground, but stars that
appear single on the ground may in fact be multiple and thus be unusable by the interferometric detectors used to
maintain pointing stability. :
HST is operated almost entirely in a preplanned mode. Communication contacts through the TDRS network must
be requested a few weeks before observations are taken and cannot easily be changed. There is very limited onboard
command memory and almost no onboard decision-making capability: command sequences must be fully pre-speci-
fied. The process of generating the final command loads for uplink is time-consuming, since every precaution must
. be taken that the commands are correct and safe. There is a limited ability for astronomers to interact directly with
the telescope while their observations are being taken, but this is restricted to small target pointing adjustments and
instrument configuration changes (e.g. selection of the proper optical filter).

In spite of the preplanned operation of HST, the scheduling process must be able to react to unplanned changes.
New observing programs (“targets of opportunity™) may arrive within the scheduling period, requiring a schedule re-
vision. The execution of a scheduled observation may fail, e.g. due to a failed guide star acquisition, or a loss of
guide star lock, or an instrument or spacecraft anomaly. Also the availability of communication links is not assured
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ahead of time with' certainty, and may require an observation to be rescheduled at the last minute. These factors
make HST scheduling both dynamic and stochastic: the set of tasks to schedule changes in an unpredictable way.

Although the detailed schedule of observations must (at least nominally) be complete about two months before exe-
cution, in fact it is necessary to schedule much further in advance: this is because, for scientific reasons, constraints
among observations often extend over many months (in extreme cases up to several years) and it is necessary to en-
sure that all components of an extended sequence are in fact schedulable. It is also necessary to give notice suffi-
cieggy in advance to those astronomers who need to plan to visit the STScI when their observations are being exe-
cuted.

Typical long-range HST schedules will cover approximately a one- to two-year interval at a time resolution of about
one week. The schedule is refined to a greater and greater level of detail as execution approaches. Such a schedule
includes some 10,000-30,000 exposures, each participating in a few to several tens of constraints. Exposures on the
same targets are grouped to the maximum extent possible, thus reducing the number of individual activities to
schedule by a factor of 5-10. Many of the absolute-time constraints are periodic with different periods and phases:
e.g. occultation by the Earth, proximity of the dark or sunlit Earth to the telescope field-of-view, passage through
high radiation regions, regression of the orbital plane, and lunar and solar interference with observations of a given
target (see Fig. 2-1). As a consequence, there are generally several opportunities to make any particular observation,
and part of the scheduling problem is to make an optimal choice among these opportunities for as many observations
as possible. The interaction of many constraints on varying timescales makes it impossible to identify any single
dominant scheduling factor. '

For problems of this size and complexity it is more important to devise computationally efficient “satisficing™ algo-
rithms than to have algorithms which may be guaranteed to find optimal solutions but which exhibit poor average-
case time behavior. Practical limitations on computational resources remain a major factor influencing algorithm
development. These limits can not be significantly raised just by applying faster computers (see Garey & Johnson
1979, pp. 7-8).

23. Scheduling goals

The most important general scheduling goal for HST is observatory efficiency: as many observations as possible
should be scheduled within the interval under consideration. However, schedule efficiency must be balanced against
several other important factors: :

« schedule quality: scheduling to maximize quality is concerned with placing observations at times which
maximize the quality of the data obtained. While it may be possible to schedule a given observation at some
particular time, such a time may in fact be a poor choice given the specific nature of the observation. For
example, an observation sensitive to background light can be scheduled when the background light level is
high, at the expense of either more noise in the data or an increased exposure time.

» schedule risk: scheduling to avoid risk attempts to minimize the impact of unpredictable factors in the
schedule. An example of this might be scheduling observations when there are multiple pairs of guide stars
available, so that the impact of any single pair being unusable (which could cause the observation to fail) is
minimized.

« observation priority: observations are divided into different priority levels, based on anticipated scientific
return. All else being equal, it is more important to schedule higher priority observations.

The goals described above refer primarily to predictive scheduling. In reactive scheduling, which modifies an

adopted schedule based on feedback from execution, there is another goal to consider: minimizing the disruption to
the ongoing schedule. This is particularly important for observations which require observers to make travel plans in

advance, or for those on which numerous future observations depend (Sponsler & Johnston 1990).

In order to compare and rank different schedules it is of course necessary to quantify these general scheduling goals.
In SPIKE these factors are modeled in terms of suitability functions which describe the absolute and relative time de-
pendence of scheduling constraints and preferences and provide the basis for schedule optimization.

24. Summary

The outline above provides a flavor of the complexities arising in the HST scheduling problem, succinctly character-
ized by the task of scheduling over an extremely large time span a very large number of prioritized activities of po-
tentially variable duration, which are restricted by a multitude of absolute time restrictions and are related to each
other by a significant number of relative time relationships, both strict and preference. The problem of scheduling
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the operations of HST’s several non-identical science instruments (“processors”) with their individual set-up times
is further aggravated by the existence of time-variable resource requirements and resource bounds. In its general
form, the HST scheduling problem belongs to the most difficult class IV (King & Spachis 1980) of dynamic,
stochastic scheduling problems. Further details about HST scheduling are provided in Johnston (1987, 1989a,
1990); Miller ez al. (1987, 1988); Johnston & Miller (1988, 1990); Miller & Johnston (1991). A description of the
HST proposal submission and scheduling process is given in Adorf (1990).

3. Scheduling constraints and preferences

The scheduling constraint framework described in this paper was designed not just to schedule HST observations but
to handle a general class of scheduling problems. We focus on the problem of scheduling a set of activities A;
(i=1,....N) of fixed durations d; over the time interval [ta,tg] subject to a set of constraints {Cy}. The constraints,
which will be discussed more fully below, convey two major types of information to the scheduler:

» feasibility constraints specify conditions or times when activities may or may not be scheduled. We inter-
changeably use the term “strict constraint” for this type, as they may not be violated under any circum-
stances. A few examples in the HST scheduling context are:

—~ Never schedule an observation when the Sun is within 35° of the target
— Make sure that instrument calibration occurs within 24 hours of the science observation

—  Never schedule simultaneous activities that would require more than the total power available

» preference constraints specify quality judgements (based on objective or subjective factors) on conditions
which are preferred to obtain in the final schedule. In the context of HST scheduling, preference constraints
occur in a wide variety of forms, for example:

—  Schedule observations preferably when the background noise is minimized

— Schedule two particular observations as close together as possible

It is important that both feasibility and preference information be considered simultaneously during schedule con-
struction: ignoring feasibility constraints can obviously lead to unimplementable schedules, but ignoring preference
constraints (in order to simplify the problem) can lead to grossly suboptimal schedules. For this reason we have de-
veloped the concept of suitability functions (Johnston 1989b) as an amalgam of two well-studied frameworks,
namely constraint satisfaction problems (CSPs) for satisfying feasibility constraints, and evidential reasoning tech-
niques as a means to combine preference constraints.

31 Constraint satisfaction, weight of evidence, and suitability functions
If the role of preferences is ignored, the basic scheduling problem can be cast into the form of the following CSP:

Given a set of N activities Aj,..., AN to be scheduled over the interval [ta,tg], and a set of con-
straints Cq(Aj, Aj, ...); find an assignment of all activities A; to times t; € [ta,tB], such that all
constraints are satisfied.

In this formulation a constraint Cg(Aj, Aj, ...) is simply a subset of the Cartesian product [ta,.tg] x [tAtB]x ...
which specifies combinations of values (in this case times) which are compatible or incompatible with each other.

CSPs on discrete domains arise in a variety of applications and methods for solving them have been widely studied:
for a recent review see Meseguer (1989).

There are two aspects of the scheduling problem that limit the direct applicability of discrete CSP methods: the time
domain is continuous (cf. Rit 1986, Sadeh & Fox 1988, Dechter et al. 1989), and preferences are ignored, i.e. only
strict constraints are considered. The latter point is especially important, since in the HST domain, as in many other
scheduling problems, it is not enough to find feasible schedules: preference constraints must be satisfied to the
greatest extent possible.

Consider the scheduling of an activity Aj, given that activities A;,; are already scheduled at times t;. A human
scheduler would assess the opportunities for scheduling A; at various times by considering the implications of the
constraints on A;. These constraints might take a variety of forms, but can be generally be cast into statements of the
foﬂowing general type:
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Given that activities Aj... are scheduled at times j..., the degree of preference for scheduling ac-
tivity A; at time t due to constraint Co is Wig(Ly,. .. ti-1.ti=tti+1,. .. IN) = Wia(titj=).

Here the dependence on tj can be dropped for constraints depending only on t, i.e. which are independent of when
other activities are scheduled.

The degrees of preference represented by Wia(ttj») can be assigned over some numerical range based on the value
judgment of the importance of the constraint, with larger values of Wjq corresponding to greater preference. Wig
can represent deterministic constraints, or some classes of intrinsically unpredictable constraints, e.g. Wjq can also

be formulated in terms of (a function of) the probability that some desirable condition will hold. The latter is partic-
ularly applicable to preference constraints concerned with minimizing risk.

To properly assess the possible scheduling times for an activity Aj it is necessary to combine in some manner the
degrees of preference Wiq derived from all applicable constraints. This combination process is formally similar to
that employed in a number of rule-based expert systems which assess evidence for and against various conclusions.
While this approach to uncertainty reasoning is known to have its limitations — in particular, the knowledge base
should form a tree so that no evidence is counted twice via alternative paths of reasoning (Pear]l 1988) — it is pre-
sumably adequate for most scheduling problems and has the advantage of being computationally feasible.

However, the techniques used in rule-based systems for evaluating evidence for or against discrete conclusions can-
not be applied directly to scheduling, since a continuum of scheduling conclusions must be considered (e.g., sched-
ule Aj at tj and A; at t;, etc.). What is required in this case is a “continuum” version of uncertainty reasoning, formu-
lated in a way which efficiently expresses the variety of constraints that typically appear in these problems and
which retains information about choices that affect schedule optimality. Such a formulation, called suitability
functions, has been developed and is motivated and described in detail in Appendix A. For the purposes of the
following discussion, the key point is that we can define a suitability function S;(t) whose non-negative value
represents approximately the degree of preference of scheduling activity Aj at time t.. Sj(t) is defined by
multiplicatively combining suitabilities Sjq(t) determined by each constraint Co which acts on Aj, along with any
scheduling decisions represented by a restriction operator R;(t)=0 for excluded times, 1 otherwise. A suitability
value of zero at time t has the special meaning that scheduling A; at t would violate a strict constraint. Larger
positive values indicate a greater degree of scheduling preference.

All of the conventional binary temporal interval relationships (before, after, during, etc.: see Allen 1983) are easily
represented by appropriate suitability functions, along with a large class of far more general temporal couplings
(Shapiro 1980). Both temporal constraints based on metric time and general relative time preference constraints can
be represented and combined in a straightforward manner.

The suitability function framework is also capable of modeling imprecision, as is encountered e.g. in the context of
airline crew scheduling in the minimum time a crew needs to change planes or in the statement of work rules. The
concept of real-valued suitability functions over a continuous time-domain introduces enough flexibility to
adequately model many real-world scheduling situations, thus helping to avoid manual intervention (see Gianessi &
Nicoletti 1979, p. 391). .

3.2. Time discretization and suitability function sampling

The neural network approach to be described below requires a time-discretized representation of the continuous
scheduling problem considered so far where a scheduling decision denotes the assignment of activity A;j to some
subinterval I, of [ta,tg], or possibly to some specific time within [tA,tg]. It is therefore necessary to consider how
to discretize the representation of time (unless there exists some natural time discretization in terms of which the
constraints can be defined). This requires a choice of how to treat the problem of sampling an intrinsically continu-
ous quantity. As a general rule, the sampling-interval must be less than the timescale for significant changes in the
scheduling constraints. If this condition is satisfied, then one has to decide upon a suitable sampling procedure
defining how to treat those strict constraints that would prevent the scheduling of an activity over some, but not all,
of a given interval I;,. The basic choice is whether to exclude the entire interval or not:

(a) If the entire interval is excluded, then there is a risk that feasible solutions may be missed.

()  If the interval is not excluded, then the scheduler may find what appears to be a feasible configuration,
but which turns out not to be feasible when the timing is examined in detail.
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In HST schedulmg we have generally chosen option (b) for sampling smtablhty functions, but the choice must be
determined for each problem type based on the characteristics of the constraints and the difficulty of dealing with the
consequences. Often, there will be a natural time unit in terms of which constraints are defined, so that no sampling
error will occur.

In the following we denote by Eny[f(t)] the sampled value of the quantity f(t) over the mth time interval Iy, and

Emn[f(t].t2)] to be the sampled value of a function f(t,t2) where t; ranges over I, and t2 over I. The appropriate
definitions of the sampling operators Ep, and Epy depend on the choice of interval exclusion above, and on an aver-

aging approach for variations of f(t) over the interval. In pracnce we have defined Er, to be simply the mean value

of f(t) over the interval, and Emn[f(t] ,12)] to be:

Emnlft1 1= {poey_) { €002 yemingry €02 | ymmaxi1} )

where min{I,,} and max{I,} are the earliest and latest times, respectively, in the interval I;,. Alternative definitions
of the sampling operators Ep, and Eyy, could be, e.g., to take the values of their arguments at the midpoints of the
intervals.

Unary constraints

Unary constraints apply to single activities only, i.e. they are independent of other activities and the times at which
they are scheduled. They therefore depend on absolute time only and determine the *“bias” values by, for an activity
A;. Consider the contribution of all unary constraints to the total suitability for activity A; in the absence of any
scheduling restrictions (i.e. Rj(t)=1):

simay(g) = [ [Sia™() (3-2)
) « a
In order to later (§5.2) combine the constraint and preference weights in a simple additive neuron, we must both

sample the suitability and convert it back to an additive form. The conversion is straightforward provided that a
sampling operator has been chosen and that small suitability values are treated appropriately:

In [S.‘sm'ry(l)] if Em[S;"™Y(1)] 2 So, :
bim = 0 , (3-3)
'bo otherwise

where Eq;[S;W"®Y(t)] denotes the appropriate sampled value of S;"™a7(t) over the schedule subinterval Iy, S is the
minimum suitability value to be considered as schedulable, and by, is the negative of the bias value to be associated
with an unschedulable interval.

Note that the bias is non-negative only if the sampled suitability is 2So. This has the straightforward interpretation
that negative biases indicate unschedulable subintervals, and that larger positive bias values represent higher suit-
ability values, i.e. intervals with higher preference. The threshold of schedulability can be modified by adjusting So:
higher values cause exclusion of low suitability intervals, at the possible expense of excluding feasible solutions.
Binary constraints

‘Binary activity constraints are derived from suitability functions which specify the impact of scheduling one activity
on another. Let Sjq(t;:t;) be the suitability of scheduling activity A; at time t; given that A; is scheduled at t;, and
Emn[Sia(titj)] be the sampled form of this expression, where t; and t; are taken to range over times in the intervals
Im and Ip, respectively. Then, for each such constraint C, the following term is computed and collected additively
in a “weight” matrix: ,

In EmnlSia(tit;)] if EmnlSia(tit)] 2 So and =1,

Wim,jn = Wim,jn + _ 34
, o if Emn(Sia(6t)] < So ~

Note that Emyy, should be defined so that the weights become symmetric: Wim jn = Win,im.



Higher-arity constraints

While higher order constraints (involving three or more activities) can be represented by suitability functions, they
are not explicitly converted to biases or connection weights in our representation. Instead, a general mechanism for
handling constraints of this type has been developed based on the introduction of appropriate “hidden variables”.
This technique is described below in §5.

4.  Mathematical model of the HST scheduling problem

We will now state an approximate abstraction of the HST scheduling problem. The formulation we derive will take
the form of a nonlinear 0-1 integer programming problem with a set of linear equality and inequality constraints and
a quadratic objective function. This form is particularly well-suited for comparisons with other abstract
combinatorial optimization problems (COPs) in the literature. As we will see (§5), this description is also directly
translatable into the topology (i.e. the static structure) of the desired neural network.

4.1. Formal description

We assume that the scheduling period is discretized into M time intervals. Following the classical CSP-approach we
could associate with each activity a multi-valued state variable specifying the start time of the activity. Instead, we
associate with each activity A; a vector of M binary-valued variables yim,. For a feasible commitment of A; at most
one of the variables yim can be set to 1; the others have to be 0. (As we will see later (§5.2), the variables yim can be

directly identified with the outputs of a rectangular array of binary neurons. We will therefore refer to collections
{yim: 1sm<M, i fixed} and ({yjm: 1<i<N, m fixed) as rows and a columns of neurons, respectively.) The collection

of all yim, with defined values represent a configuration.

The abstract HST scheduling problem now forms the following COP: Given a set {A;] of activities A;, a set {Lp]}
of resource limits Ly, a number M of time units I, and

@) for each activity Aje {Aj) a set of unary temporal constraints b, ,
@)  foreach resource L€ {Lp) a set of temporal resource bounds (or capacity limits) an,
(iii)  for each activity Aje {Aj) and each resource Lpe {Lp] a set of temporal resource requirements ﬁn and

(iv)  for each pair of activities A; and A; a set of binary temporal constraints Wi, jn.

The task is to find a feasible, non-preemptive schedule o: {A;}—{Im}, specified by a set of assignments of activities
to starting times, i.e. an assignment of values 0 or 1 to the state variables yjm with m=0(i), that:

(1)  maximizes the total U<l %4 g W !\Ed g b 4-1)

utili =5 NI N 28 2
v 2 mneligel mpTIRCR o m T
in such a way that the following equalities and ineqﬁalities hold:

) every activity is M o 4-2)
scheduled exactly 2 Yim =1 (for all activities A;)
once m=1

(3) o unary temporal M o 4-3)
(inhibitory) constraint X, by y; =0 (for all activities Aj)
is violated m=1

G no binary temporal @4<4)

M N
(inhibitory) constraint X X Wiy i Yim ¥jn =0
is violated mn=1ij=1



-10-

) no resource is N 0 ) 4-5)
overused T a Yims (% (for all resources p and times m)

=1

In the formulation above we have adopted an inhibitory formulation of the CSP (bjm<0 and Wim jn<0 represent in-
compatibilities), and have separated the general weight terms bim and Wim jn into compatibility (superscript +) and
incompatibility (superscript —) constraints:

» W=W-+W* and b=bt+b", (4-6)
where componentwise
W- = min(W, 0), W+ =max(W,0), b~ =min(b, 0) ,and b* =max(b,0). @-7

For a feasible solution, mcompanblhty constraints, which have to be satisfied under all cxrcumstances, do not con-
tribute to the total utility via their bias and weight terms.

4.2, Relation to conventional scheduling problem specifications

The mathematical model stated above provides a fairly general framework allowmg the subsumption of various con-
cepts found in formulations of more conventional scheduling problems. For instance, the different HST science in-
struments (“processors™) can be viewed as resources of unit capacity. Activity release times, (time-dependent) tem-
poral activity durations, due dates, overall or individual deadlines ezc. can all be absorbed into suitably adjusted
*“hard” or, when relaxed, into “‘soft” unary constraint terms. Both the simple relative precedence constraints (Allen
1983) between activities and the more demanding temporal couplings (Shapiro 1980) can be incorporated into
“inhibitory” binary constraints Wim in.

We emphasize that the general structure of our scheduling problem is descnbed by a set of lmear equalities, a set of
linear inequalities and a quadratic objective function to be optimized. As such it is general enough to encompass a
wide variety of scheduling problems, e.g. the restaurant crew-scheduling problem of Poliac er al. (1987), the mean-
flow permutation job-shop scheduling problem of French (1986, p. 135), the job-shop scheduling problem of Foo &
Takefuji (1988a, b, c), the vehicle routing problem of Christofides et al. (1979a) and the nondeadhead/deadhead air-
line crew scheduling problem of Gianessi & Nicoletti (1979, p. 391). Other COPs subsumed by our model above
are the travelling salesman problem (see e.g. Gianessi & Nicoletti 1979) and the loading problem of Christofides et
al. (1979b).

In passing we note that the neural network dynamics introduced below attempts to solve the maximum independent
set (or maximum node packing) problem on the constraint graph. A number of real-world scheduling problem such
as airline crew, railroad crew and truck delivery schedulmg (see Balas & Padberg 1979, p. 153) can be formulated as
set partitioning or set packmg problems, which in turn can be transformed into equivalent, unique node packlng
problem on the intersection graph. Thus solving the latter problem solves the former ones.

S. From a set of constraints to the constraint graph

5.1. Constructing the constraint graph

Having cast our general scheduling problem into the form of a nonlinear programming problem, we now address the
question of how to convert this representation into a directed weighted constraint graph G = (V » A) which will de-
fine the topological structure of the neural network. To this end the vertex set V of the graph G is identified with the
set of 0-1 variables yjm in which the CSP is formulated. The unary “bias” terms bjm, become vertex weights. For
each non-zero component of the binary weight matrix Wim jn, we add to the graph a pair of directed communicating
arcs, of which the Wim jn become the weights. We can additionally “color” the arcs according to whether they rep-
resent compatibility (W+) or incompatibility (W-) constraints. Note that a feasible configuration of the original CSP
is represented by an independent vertex set in the incompatibility constraint graph (i.e. the constraint graph restricted
to arcs corresponding to incompatibility constraints). The concept of the constraint graph G = (V, A) is best illus-
trated by the small example of Appendix B. )
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5.2. Network biases and connections

The definition of a neural network structure with suitable topology, biases and connection weights is now merely
one of nomenclature: We identify each vertex in the constraint graph G = (V, A) with a binary neuron, the state and
bias of which are given by the associated 0-1 variable yim and vertex weight bim,, respectively. Each arc with associ-
ated weight Wim jn in the constraint graph becomes a network connection with Wim,jn its connection strength. Then

the input of neuron m of row i, denoted by x;n,, is given by.

Xim = X, Wimn Yjn + bim . (5-1)
jn
A neuron selected for updating computes its state (= output) from its input via the following (“*hard” or “high gain™)
step transfer function

1 xim20

0 Xim<0 5-2)

¥Yim < n(Xim) ={
The neural network constructed so far possesses a symmetric connection matrix Wim,jn and thus can be viewed as a

feedback Hopfield network with an associated Lyapunov (“energy”) function (Hopfield 1982; Goles 1987) equal to
the negative of the total utility defined above ‘

E=-U. (5-3)

Note that if the auxiliary constraints were absent, the well-known standard dynamics for sequential binary Hopfield
networks (Hopfield 1982) could be used to “animate” the constraint graph, effectively implementing an optimization
algorithm for the unconstrained COP the network represents. Solutions would correspond to stable fixed points of
minimum energy (= maximum utility).

53. Encoding auxiliary constraints -
Encoding equality constraints

The conventional procedure for encoding an equality constraint into a network connection matrix consists of adding
the equality (suitably rearranged so that it equates to 0) to the unconstrained energy function using a Lagrange mul-
tiplier (see e.g. Peterson & Stderberg 1989). While admissible in principle, this method has the disadvantage that
the network, when equipped with standard Hopfield dynamics, will all too often converge to a stable fixed point of
the dynamics which does not correspond to a global minimum of the energy function. In this case some of the hard
constraints may be violated. No general method is known for adjusting the Lagrangian parameter so that the strict
constraints are always fulfilled.

Noting that equality constraints can always be represented by a pair of inequality constraints, we set out to treat the
former on the same footing as the more general inequality constraints. For the latter there is a representation method
based on the introduction of “hidden variables” which avoids the problems frequently encountered with the
Lagrangian method.

Encoding linear inequality constraints
The task consists of encoding linear inequality constraints of the type (Eqns. (4-2), (4-3) and (4-5))

YemymsK and Ycemym2K (5-4)
m ) m

into the neural network, where we have temporarily suppressed one neuron index.
For the generalized “at most K neurons” upper bound inequality constraint two principal encoding architectures arc
known (Fig. 5-1a, b):
(a)  complete, and therefore symmetric, lateral (“reciprocal™) inhibition or
®) an asymmetrically-coupled, “hidden” inhibitory guard neuron enforcing the upper bound constraint in
the set of neurons it supervises.

Method (a) is usually preferred for its symmetry-preserving property and is the one implemented in the GDS-net-
work.
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It would be desirable to also have a symmetric architecture for the generalized “at least K neurons” lower bound in-
equality constraint. However, it is unlikely that such a symmetric encoding exists and, following the example above,
we therefore use an architecture (Fig. 5-2) with ’
(b’) an asymmetrically-coupled, “hidden” excitatory guard neuron enforcing the lower bound constraint in
the set of supervised neurons.

The connection weights from the supervised neuron to the supervising guard WGim'i need only be negative to en-
sure that the guard is “off” when any neuron in the set is “on”. Conversely, when the guard is “on”, the input to each
neuron should be large enough to overcome the lateral inhibition (if there is any) and other inhibitory input, even
from many other neurons. We therefore set the corresponding weight WGUm = go, With a positive constant go cho-
sen such that g « go < bo. By carefully arranging these network weights, their absolute values will populate three
distinct, nonmixing regimes in the space of weights: a low level band for preferences, and medium and high level

bands for upper and lower bound constraint enforcement weights, respectively. The appropriate design of the bands
also guarantees that strict binary incompatibility constraints (Eqn. (4-4)) are always fulfilled in a feasible solution.

The implementation of all auxiliary inequality constraints in the way described here (Fig. 5-3) modifies the neural
network in such a way that the stable fixed points of the network dynamics correspond (bijectively) to network con-
figurations in which all strict unary and binary constraints are definitely satisfied.

6. Adding stochastic network dynamics

Having established the static network representation of the scheduling problem in form of a constraint graph aug-
mented by an auxiliary “guard graph”, we now have to equip the network with a suitable dynamics capable of deliv-
ering at least an approximation to an optimum solution of the COP at hand. Our interest in efficient and potentially
parallelizable heuristic search algorithms has yielded the GDS-network described below, which has shown remark-
able performance on a variety of CSPs and COPs.

6.1. The GDS-network — what is it?

The guarded discrete stochastic neural network, or GDS-network in short (Adorf & Johnston 1990), is an alternative
to the well-known Boltzmann machine (see §6.5). It is a general, parallelizable, randomized, heuristic neural net-
work algorithm suitable for a variety of constraint satisfaction and combinatorial optimization problems.

The static structure of the GDS-network consists of the two major components, the main and the guard constraint
graphs, introduced above. The main network captures the fundamental structure of the COP including the objective
function (total utility), whereas the guards enforce the (global) auxiliary constraints.

The GDS-network is a feedback neural network with a stochastic, sequential network update rule. For sequential
neural networks, which change their neuron states one at a time, it is useful to introduce a neighborhood structure in
the configuration space (Aarts & Korst 1989, p. 131) by calling two configurations neighbors if they differ by the
activation state of exactly one neuron. The neighborhood structure induces a metric: two configurations are a dis-
tance d apart if it takes d neuron flips to transform one configuration into the other. A locally optimal configuration
(Aarts & Korst 1989, p. 132) or simply local optimum is a network configuration where all neighboring configura-
tions have a higher network energy, i.e. the energy cannot be lowered by changing just one neuron state.

As mentioned before, if the main network with its symmetric connection matrix, were equipped with the standard
Hopfield dynamics and executed on its own (i.e. without any guards), it would settle in a stable fixed point of the
network dynamics corresponding to a locally optimal “solution” of the encoded COP. However, local instead of
global optimality may mean that a solution comprises one or more neuron rows with no neuron turned “on”, which
in the context of scheduling means that the corresponding activities are not scheduled at all.

Instead of the standard Hopfield dynamics, the GDS-network is equipped with the following heuristically motivated,
sequential stochastic neuron update rule executed once per cycle in a network run (Adorf & Johnston 1990):

1. The set of all rows is determined which contain at least one neuron in an “inconsistent” state. (We call a
neuron state inconsistent if its input would lead the neuron to change its state according to Egn. (5-2).) If no
inconsistent row is found, the algorithm stops.

2. A row of neurons is randomly selected from the set of inconsistent rows.
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3. For each inconsistent neuron in the selected row the degree of inconsistency ly;m — N(xim)lIxjm| is deter-
mined. Here n denotes the (deterministic) neuron transfer function of Eqn. (5-2).

4. The neuron with_ maximal inconsistency is selected in that row — if more than one neuron is maximally in-
consistent, one is picked at random — and is flipped, thus becoming consistent. This max-inconsistency
:neut:dsuc makes the largest possible change in the network energy due to neuron transitions limited to the se-
ected row.

Note that, in contrast to the Boltzmann-machine (§6.5), where an individual neuron is completely randomly selected
for updating and then also reacts nondeterministically to its input, the GDS-network realizes a random automata net-
work (Demongeot 1987) with a controlled stochastic neuron selection but a deterministic neuron update rule.

6.2. How does it work?

Usually the GDS-network is started in an “empty” configuration, i.e. all main neurons are switched “off™, and conse-
quently all guard neurons are “on”. The network proceeds initially by tumning neurons “on” and may either proceed
directly to a solution or may encounter a row on which all neurons have conflicts with others already “on”. In this
case the max-inconsistency dynamics will cause the guard to force some neuron to transition from “off” to “on”.
Such a transition will, however, produce some other conflicts within the main network. The algorithm proceeds to
try to resolve them by turning “off” neurons on the conflicting rows, then, in a separate step, turning some other neu-
ron “on”. This process proceeds under the control of the max-inconsistency heuristic and the network configuration
irregularly oscillates between feasible and infeasible configurations (Adorf & Johnston 1990). In other words, the
algorithm switches back and forth between construction work and damage repair. During a run the network spends
most of its time attempting to resolve a few remaining consistency problems.

In a way the GDS-network’s guard neurons can be viewed as external agents temporarily modifying the energy
landscape of the main network. This has similarities to the approach taken by Jeffrey & Rosner (1986), who tem-
porarily invert the energy function (i.e. every local energy minimum becomes a local maximum and vice versa)
when the system configuration is trapped in a local energy minimum. '

While the connection matrix of the main network is symmetric, the connection matrix of the total (main + guard)
network is not. Consequently there is no guarantee that the network dynamics will ultimately converge to a stable
fixed point, although, in practice, the network often fairly rapidly comes to rest in such a configuration. (The proba-
bility of non-convergence depends on the difficulty of the underlying CSP.) We have frequently observed that, in-
stead of reaching a stable fixed point, the GDS-network converges to a “stable limit set™ of configurations, compara-
ble to the “limit cycle” of deterministic dynamic systems. The network oscillates between configurations within the
limit set, but, because of its restricted stochasticity, ultimately cannot escape. Since the dynamics of neural networks
with asymmetric connection weights is not yet well researched, not much more can be said at this point about the
general behavior of such asymmetric networks.

In order to prevent infinite oscillations, the basic GDS-network has been augmented with a simple stopping rule: if
the algorithm has not converged after a preset number of cycles, it is started over.

The basic GDS-network without stopping rule can be considered as a stochastic multi-start algorithm of the Las
Vegas type: it either finds a solution or, with some low probability, announces to have failed to find an answer (cf.
Johnson 1984, p. 437). If the GDS-network comes up with an answer, it is always a feasible solution. However if
the network does not find a solution, it cannot be said whether the network just failed to find it or whether there ex-
ists no solution at all. :

When truncated to run in polynomial time, the GDS-network represents a Monte Carlo algorithm in the following
sense: if it stops before truncation, it has converged to a feasible solution. If it is stopped by truncation, the “no re-
sult” can be interpreted as “there exists no solution” with some probability that this conclusion is erroneous.
Therefore using repeated runs (multistart) we can improve the certainty of this result to an arbitrary degree (or con-
versely refute it altogether). See Appendix C for a discussion of Monte Carlo and Las Vegas algorithms, and the use
of the former to solve instances of decision problems via probabilistic classification.

6.3. Why does it work?

The success of a stochastic algorithm is not as easy to explain as that of a deterministic one. We offer the following
explanation derived from observing the GDS-network on a variety of CSPs and COPs.

A major innovation of the GDS-network, when compared to the classical deterministic search algorithms is, apart
from the built-in stochasticity, that the network frequently operates in the space of infeasible configurations. The
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conflicts inform the network of bad decisions made earlier, and the unsystematic, almost “chaotic” way the algo-
rithm proceeds often allows an immediate backjump to a bad assumption. The GDS-algorithm can thus be viewed
as a type of constraint-directed search algorithm (Fox 1987).

Allowing the GDS-network to trespass into the domain of infeasible configurations provides it with a means for ex-
ploring, in the neighborhood of a given feasible configuration, promising configurations which are infeasible or
would be quite a distance apart, had they to be connected through a path of feasible configurations. This effect can
be described as tunneling from a feasible configuration to another feasible configuration through a forbidden region

(Fig. 6-1).

64. How does it perform?

Developed in late 1987/early 1988 (see historical note in the Appendix D), the GDS-network showed a surprising
performance on the standard N-queens benchmark problem, for which the standard, general network easily
constructed solutions for N up to 1024. (This has to be compared with the published record of N=96 for solutions to
the N-queens problem found in a performance comparison of general deterministic, backtracking search algorithms
(Stone & Stone 1987).) Since then the GDS-algorithm’s virtues have been explored on difficult problems, including
NP-complete ones such as 3-colorability (Adorf & Johnston 1990). In our experience the GDS-network outperforms
many other deterministic or stochastic search algorithms in terms of speed and quality of the solutions produced.

We have found that the performance of the GDS-network scales well with problem size. For instance, on N-queens
problems the number of neuron transitions scales as 1.15N when starting with all neurons in their “off” state. For
random constraint graphs (Dechter & Pearl 1988) the number of transitions scales linearly with the size of the prob-
lem. On HST scheduling the scaling is approximately quadratic in the number of activities to schedule (§7). Of
course there are problems for which the network performance is worse than this: on certain types of 3-colorability
problems the probability of convergence decreases exponentially with problem size (Adorf & Johnston 1990).

The heuristics embodied in the GDS-network have been analyzed by Minton ez al. (1990) and successfully applied
to other CSPs. They also find that starting with a good initial guess can significantly improve performance. Using a
representation specially tailored to the N-queens problem, they have been able to find solutions on a workstation for
N as large as 105,

6.5. How does it compare with the Boltzmann machine?

For comparison we implemented the standard Boltzmann machine (BM) algorithm within our general neural net-
work representational framework. The BM (Hinton & Sejnowski 1983; Hinton et al. 1984; Ackley et al. 1985)
arises when the concept of simulated annealing — independently proposed by Kirkpatrick et al. (1982, 1983) and
Cemny (1982, 1985) as a general method for large-scale COPs — is applied to the neuron dynamics of a binary
Hopfield network. (Following Aarts & Korst (1989, p. 126) “the basic idea underlying the Boltzmann machine, i.e
the implementation of local constraints as connection strengths in stochastic networks”, had previously been intro-
duced by Moussouris (1974).) '

In our BM-implementation all guard connections were disabled, since the BM is guaranteed to asymptotically settle
into a global energy minimum by itself. We started our runs with a fairly high temperature, where neuron flips were
practically totally random, and used a quasi-stationary cooling schedule, i.e. the temperature parameter was reduced
at every neuron update cycle by some small amount (typically 1 per mille). The application of the BM to small-
sized N-queens problems (N<16) has been very discouraging. With neuron transitions occurring randomly all over
the main network, the BM would either not settle quickly on a solution, or, particularly when we tried to speed up
the cooling, it would all too often converge to a local instead of a global energy minimum.

* In view of the apparent popularity of the BM-approach for large-scale OOPs, further investigations using supposedly
more efficient variants of the classical SA such as fast simulated annealing (FSA; Szu 1986; Szu & Hartley 1987) or
mean field annealing (MFA; see e.g. Galland & Hinton 1991 and references therein) may be warranted. i

6.6. What can it be used for?

Schedule construction for HST and various other types of scheduling problems is of primary concern within this pa-
per. Here the network representation permits an easy updating of all events that actually have happened, thus allow-
ing a convenient reactive scheduling and schedule repair by restart (Sponsler & Johnston 1990).

However, the range of problems that can be cast into the form of a neural network and solved with an appropriate
neurodynamics such as the GDS-algorithm seems to be far more general than scheduling. In fact, any CSP-type or
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propositional logic problem can be represented. Thus the neural network, when equipped with a suitable interface,
forms a general tool for reasoning with “hard” and “soft” constraints. Since assumptions can not only easily be as-
serted but equally easily be retracted — the built-in constraint propagation mechanism guarantees consistency -— the
network can be used for nonmonotonic reasoning with uncertainty, quite similar to a general assumption-based truth
maintenance system (ATMS, cf. de Kleer 1989). However, the CSP-formulation appears to be conceptually much
less clumsy and the network representation to be minimal (in the sense that it is hardly conceivable how a more
compact and more efficient representation than the adopted numeric one could be found) for the purpose of non-
monotonic reasoning with uncertainty.

7.  SPIKE — an integrated part of the HST ground system

The framework described in this paper has been implemented in the workstation-based SPIKE scheduling system for
long-range scheduling of Hubble Space Telescope observations. A brief description of the operation of SPIKE is de-
scribed here, highlighting the use of the neural network scheduler in a practical application.

7.1, The flow of observing programs

As described in §2, HST observing programs (the “jobs™) are prepared by astronomers and sent electronically to
Space Telescope Science Institute where they are checked for errors and stored in a database (Jackson et al. 1988,
Adorf 1990). When scheduling begins, programs are retrieved from the database and converted into a form useable
by SPIKE. This process is called TRANSFORMATION (Rosenthal 1986; Rosenthal et al. 1986; Gerb 1991) and, for
the purposes of SPIKE, consists of the following major steps:

« Exposures are aggregated where possible into scheduling units consisting of observations which should be
done as a contiguous group. These usually observe the same target with the same instrument and could be
scheduled separately only at a significant cost in observing efficiency. It is these scheduling units which
correspond to the activities scheduled by SPIKE.

» Unary constraints on exposures such as those described in §2 are computed as suitability functions and com-
bined for scheduling units as described in §3 and Appendix A.

« Temporal constraints on exposures are propagated to derive a path-consistent form for precedence and time
separation constraints. Temporal constraints on scheduling units are derived from those on exposures.

Aggregated exposures, path-consistent relative constraints, and other orbital and astronomical constraints are
recorded in files which are later input for SPIKE scheduling. This pre-processing is valuable not only because is
saves time later during scheduling search, but it also identifies unschedulable activities (because of infeasible con-
straints) as early as possible in the scheduling process. The total computer time devoted to preprocessing a year-
long observing program will be approximately one week, which is much longer than the time needed to schedule the
results.

Schedule construction proceeds by first specifying the overall scheduling time interval, the choice of subintervals,
the resource and capacity constraints, and other runtime parameters, then by loading the pre-processed files defining
the activities to schedule and their initial suitability functions. Several scheduling search algorithms including pro-
cedural ones are available in SPIKE through a graphical window-based user interface (Fig. 7-1). The neural network
is, however, by far the fastest method and provides the most extensive exploration of the search space. All of the
search methods are uniformly based on the same suitability functions for representing and propagating constraints
and preferences.

In its present mode of operation SPIKE is intended to construct schedules at a resolution of one week over periods of
one year of more. Once the contents of a week is defined, the scheduling units contained in it are sent to the Science
Planning and Scheduling System (SPSS) about two months before execution for final detailed scheduling. SPSS or-
ders the scheduling units in a week by considering constraints on a more detailed level than SPIKE, then expands the
exposures into detailed command requests for the week. The command requests are translated by a system at
Goddard Space Flight Center into the onboard computer instructions transmitted to the spacecraft in orbit.

7.2. Performance

As described in §2, the discovery of spherical aberration has delayed the onset of normal HST operations by many
months. Up to this time SPIKE has been used either for scheduling a few months into the future (rather than years as
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planned), or on large-scale test problems. The full multi-year scheduling concept will be exercised operationally
once the scientific program of the telescope is redefined in mid-1991.

The performance of the neural network based on tests with real HST observing programs has been extremely
promising. The scheduling of 2,600 scheduling units consisting of about 12,000 exposures takes less than one hour
on an Texas Instruments Explorer II workstation (Fig. 7-2). A problem of this size represents about six months of
HST observing scheduled at one-week time resolution. Scaling with problem size is empirically approximately lin-
ear in the number of subintervals considered, and quadratic in the number of activities to schedule. This is fast
enough to permit the exploration of many potential schedules before adopting one as a baseline schedule.

8. Conclusion

We have used the challenging problem of scheduling astronomical observations with the orbiting Hubble Space
Telescope (HST) as a motivating example for a large and complex real-world scheduling problem.

“Soft” preferences and uncertainties have been seamlessly integrated along with “hard” incompatibility constraints
into the same representational scheme of “suitability functions™ defined over a continuous time domain. This novel
concept captures objective reasons and subjective human expertise in the form of “evidence™ for or against certain
scheduling decisions. Techniques from uncertainty reasoning are used to combine disparate pieces of scheduling
evidence. : : :

We have shown how the declarative problem description can be translated into a 0-1 integer programming problem
formulation, which encompasses, in addition to the HST operations scheduling problem, a variety of other problems
such as airline crew scheduling, restaurant crew-scheduling, various forms of job-shop scheduling and vehicle rout-
ing. The integer programming problem formulation lends itself to an automatic synthesis of a constraint graph,
which forms the static structure of a discrete neural network for constraint propagation and problem solving. The
scheme allows the incorporation of general temporal couplings between pairs of activities. The important linear
equality and inequality auxiliary constraints, frequently occurring in 0-1 programming problems, are enforceable
quite generally and conveniently via complete lateral inhibition and networks of hidden “‘guard” neurons asymmetri-
cally coupled to the main network.

This representational system, suitably encoded into computer programs, can be used as a simple bookkeeping device
for manual constraint satisfaction problem (CSP) solving such as schedule construction or constraint violation
checking. Its built-in constraint propagation mechanism — effectively implementing a nonmonotonic truth-mainte-
nance system — allows for quick and easy assertion and retraction of scheduling decisions during predictive and re-
active scheduling by means of an “active” timetable as part of a mouse-sensitive, graphical user interface.

The paradigm of feedback neural networks has been used to equip the graph-based representational scheme with a
suitable dynamics, thus allowing the network to efficiently solve a variety of CSPs, including scheduling. The ap-
proach is particularly appealing because of its apparent generality, syntactic simplicity and its computational mini-
mality (no parser, no pattern matcher etc.). The novel GDS-network with its heuristically controlled stochastic neu-
ron selection rule, effectively implementing a probabilistic “Las Vegas” type algorithm, often finds “good” solutions
quickly — to our surprise even on serial machines. In contrast to many other schemes, the GDS-network has no free
parameters and no ‘cooling schedule’ to adjust. Both the representational scheme and the search algorithm show a
satisfying scaling behavior with the size of the problem, indicating that the built-in stochasticity of the method effi-
ciently probes the statistical properties of the underlying problem (cf. Karp 1986).

In contrast to most search methods employed so far for CSP-solving, the GDS-network is a hybrid of construction
and repair. It admits inconsistent configurations, thus permitting it to work from infeasible initial guesses. In the
context of scheduling the network can therefore equally well be used for extending partial schedules previously gen-
erated by other means, or for repairing damaged schedules. The latter is achieved by asserting the successful execu-
- tion and failures of past activities and generating a new schedule from the updated fact base. In a way the network
can thus be likened to a rule-based expert system, except that it executes several orders of magnitudes faster.

The concepts described above form the core of HST’s operational long-term scheduler SPIKE, which is an integrated
part of the HST ground system. SPIKE has successfully passed serious efficiency tests on both formal combinatorial
optimization problems and on realistic collections of HST observing programs.

In conclusion we mention a few open problems subject to future research: Can the behavior of the GDS-network
and the related min-conflict heuristic algorithm (Minton ef al. 1990) be satisfactorily understood by a model based
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on the theory of Markov chains? Can the behavior of neural networks with asymmetric connection matrices be
better understood theoretically? What are the characteristics of the constraint graphs occurring in the context of HST
and other scheduling problems? What are the best techniques for generating good initial guesses, and how do these
depend on the structure of the constraint graphs? Can convergence be improved by permitting less strictly
controlled stochasticity? :

Appendix A: Suitability functions

Suppose that we have defined, as in §3.1, a function Wia(titj#) for each constraint Cyy, affecting activity A; which
specifies the preference associated with the hypothesis “schedule A; at t given that A, is scheduled at t;, A at
t2,...". How should the preferences from different constraints Co and Cp be combined? Denoting the combination
by Wio @ Wip, we can place the following reasonable conditions on the combination operator ®; v

@) @ should be a continuous, monotonically increasing function of each of its arguments, and

(ii) @ should be associative, i.e. it should not matter in what order evidence is considered:
(Wia © Wip) ® Wiy = Wjq & (Wip ® Wiy)

Under these conditions the weights Wjq together with the combination operator @ can be shown to form an Abelian
group isomorphic to the additive group of real numbers on (-eo,es), a result which has been independently discovered
by a number of researchers (e.g., Cox 1946; Good 1960, 1968; Hijek 1985, Cheng & Kashyap 1988). Thus with no
loss of generality we can take the W;q to be real-valued functions that combine simply by addition.

The additive form of the weights Wjgq is often not the most convenient. It is common in scheduling pfoblems to

have numerous incompatibility constraints that specify times when an activity is not permitted to be scheduled.
These are particularly important since they allow the scheduler to eliminate blocks of time from further considera-
tion. In terms of the weights, these times should have highly unfavorable weight values, e.g.

Wia(t;tjz) =-wo,
where wy is sufficiently large to indicate overwhelming evidence against scheduling activity A; at time t. A conve-

nient representation suitable for implementation on digital computers is obtained by adopting a limiting multiplica-
tive form for the weights denoted by Bjq:

Bia(ttisd) = gy xP(Winlts) - @D

Except where Bjqa(t;tj#)=0, the additive combination of the weights Wig(t:j»i) is equivalent to the multiplicative
combination of Bia(titj»); when Bjg(t;tj»)=0, multiplicative combination provides precisely the desired behavior,
i.e. if there is overwhelming evidence against scheduling A; at t from any source, then no amount of evidence from
other sources can counteract this. We have found that the multiplicative formulation is particularly convenient for
representing practical constraints by scheduling experts: in the HST domain we have further adopted the convention
that a value W;o=0 < B;jo=1 represents the absence of evidence either for or against a scheduling decision. In prac-

tice, the B;q are defined by analysis of the constraints and preferences in consultation with telescope scheduling ex-
perts.
It is computationally infeasible to work with the full N-dimensional form of the Bja(t;tj+;) in any practical schedul-
ing problem. The approach adopted in SPIKE consists in projecting the Bjq onto functions of one time variable
only:

Sial0 = (1. o) BioGted *-2)

where the maximum operator ranges only over times tj where activity A; is permitted to be scheduled (based on the
current state of the schedule). S;q(t) is zero only when, due solely to the constraint a, no possible choices for
scheduling activity Aj,; will permit A; to be scheduled at t; otherwise its value is the best (most preferable) value of
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B that can be obtained by scheduling A; at t;, regardless of where any other activities are scheduled. The former
property of Sja(t) ensures that no times are excluded prematurely unless provably in violation of a strict constraint.
The latter provides an important indicator of optimal scheduling choices to the scheduling agent by always indicat-
ing the best that can be achieved, regardless of future scheduling decisions. We call Sio(t) the suitability function for
activity A; due to constraint Co. The total suitability function for an activity S;(t) is the product of the suitability
functions determined from each of its constraints, multiplied by a “restriction” operator R;(t) indicating any schedul-
ing decisions made so far in constructing the schedule (R;(t) = 0 for excluded times, 1 otherwise):

$i(0 = Ri® [ [ Sia® @A)
a .

S;(1) = 0 if activity A is excluded from being scheduled at time t, either because a strict constraint would be violated
or because of prior scheduling decisions. Thus we can rewrite Eqn. (A-2) in terms of the set of times over which the
maximum is to be taken: '

Sial) = (1, & 5;(e0) B )

Eqns. (A-3) and (A4) implicitly determine the suitability function for an activity and can be solved by an. iteration
procedure corresponding to the propagation of constraints.

The suitability function concept can be illustrated by a simple example: consider a preference constraint of the
form: “Schedule A; as soon as possible after the end of A;, but starting no sooner than x minutes after and ending no
later than x+y minutes after.” We can represent this by choosing Biu(t:t;) = f(t-t;) where f is a function indicating
the judgement (objective or subjective) of how much “better” or “worse” it is to delay scheduling A; after Aj. Given
the suitability function S;(1) it is straightforward to construct S;a(t) due to this constraint as illustrated in Fig. A-1 for
a hypothetical example. Fig. A-1(a) shows what- the Bjo(t;tj) could look like for a plausible choice of f(t-t;).
Fig. A-1(b) shows what the suitability function S;(t) might be at some stage in the scheduling: in this case there are
two disjoint candidate intervals where A; could be scheduled. Applying the definition of S;u(t) yields the result
shown in Fig. A-1(c).

Exploiting consistency methods

Consistency methods have long been known to improve search efficiency for discrete CSPs (see, e.g., Dechter &
Meiri 1989 and references therein). These techniques make explicit information that is implicit in the constraints. A
full discussion of consistency methods is beyond the scope of this paper: here we only highlight the use of low-or-
der techniques which we have found to significantly speed up scheduling search in the network representation.

1. Node-consistency refers to the removal from consideration of domain values which cannot be part of any
solution, where this determination is made based on unary constraints. In our formulation this is explicit
in the definition of suitability (Eqn. A-4) and in the definition of bias values based on the combination of
all unary constraints.

2, Arc-consistency refers to removing from consideration domain values based on permitted domain values
and binary constraints. This technique is best illustrated by example: suppose Aj is constrained to follow
Aj with a minimum end-to-start separation of At, that both activities have unit durations and are restricted
to be scheduled in the interval [tA,tg]. Then the interval [tg-At-1,tg] is excluded for A;, and the interval
[ta.ta+At+1] is excluded for A;. To introduce arc-consistency into the network, we restrict activities to
fall within the overall scheduling interval [tA,tg], propagate constraints as specified by Eqn. A4, then set
the bias values based on the resulting activity suitabilities.

3 Path-consistency refers to the inference of additional binary constraints based on those explicitly stated.
Again an example makes the principle obvious: suppose Aj must precede Aj which must in turn precede
Ay: by explicitly stating the precedence A; precedes Ay we can immediately represent the implication of
a decision on scheduling Aj which would otherwise require a further decision about Aj. For simple
precedence the additional constraints inferred by path consistency are simply those derived from the tran-

sitive closure of the precedence relationship. However, for binary constraints which depend on time dif-
ferences only it is possible to generalize this as follows:



-19-

S}:ppose Aj constrains A; as specified through a weight function Bj(tj-t;) which is a function of the time
difference t;-t; only, and that a similar constraint exists By (tx-;) exists between A; and Ax. Then we can
infer a constraint between A; and Ay specified by B(ty-t;) defined to be:

BO= (B cye0) *Bk(t- 9] (A-5)

where ¢(x)=1 if x>0, O otherwise. We have found that the derivation of additional constraints by this
techn}que dramatically improves scheduling search. There is, however, a significant pre-processing com-
putational cost which must be traded against the speed-up in search.

An alternative to pre-computing inferred constraints is their derivation during search. This technique (a type of ma-

chine learning), in conjunction with delayed evaluation of network connection weights, can be used to significantly

reduce the computational costs of applying consistency methods. A version of this technique has been used by

gezl:ite:'f (11998869)) for classical CSPs, and has also been successfully employed in the neural network context (Johnston
&) .

Appendix B: A toy “scheduling” problem

The concept of a neural network based CSP solver, which is derived from the problem’s constraint graph, is best il-
lustrated with a small example. Consider the following simple *“scheduling” problem: Place (if possible) N activities
A1, ..., AN onto a square timetable with N time-units t1, ..., tN subject to the following (admittedly odd) highly regu-
lar incompatibility constraints: ‘

1. No activity should be scheduled twice.
2. No two activities should be scheduled simultaneously.

3. No two activities should occur on the same *“diagonal” of the timetable (i.e. if activity A; is scheduled at time
tm, then activity A; is not schedulable at times tm+i.jl)-

For N 2 4 our toy problem always admits at least 1 feasible solution with all N activities scheduled, which we call
“globally” optimum. Fig. B-1a and b show for N=4 two fragments of the corresponding constraint graph G = (V, A)
realized with *“inhibitory” arcs.

When the constraint graph is equipped with a suitable vertex dynamics, such as the random sequential Hopfield
(1982) dynamics, the graph is turned into an active binary neural network. When the neurons are slightly excited
(not shown), the network always converges to a stable fixed-point configuration with K < N neurons being “on” and
N2 . K neurons being “off”. (In graph-theoretic language, the K “on” nodes form a dominating, independent vertex
set of the constraint graph, i.e. a clique in the constraint graph’s complement, and the “off” nodes form a vertex
cover. The “scheduling” problem stated above amounts to finding a (globally) maximum independent set of vertices
in the constraint graph.)

Fig. B-2a shows the only feasible globally “optimal” (K = N) solution for N=4, Fig. B-2b shows a feasible configu-
ration, corresponding to an attractive, stable fixed-point configuration of the network dynamics, which cannot be ex-
tended to a globally optimal solution by placing activity A3, which is still missing on the timetable. (This situation
corresponds to a “locally” maximum independent set of vertices.) The problem that stable attractors exist which cor-
respond to locally but not globally optimum feasible solutions is quite a general one for “direct” neural network
problem solvers which are implemented solely with visible neurons and has motivated the introduction of guard
neurons (Fig. B-3).

To clarify the definition of the biases bjm and weights Wim i, we can specify a set of appropriate numeric values for
the case N=4 which satisfy the constraints (1)-(3) above as well as the conditions discussed in §3 and §5. From §5.3
we have the condition wg « go < bg, Where bg and @y, are the inhibitory values for biases and weights (see §3.2), and

go is the guard-to-neuron weight. For specificity, let us choose:
%=2, g0=10, and bo=l 1.
In the following, the indices i and j indicate activities, m and n indicate times, and both range over 1,....4.
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» biases: since there are no preferred or excluded times we can choose bjm =1. Excluded times would be
indicated by bjm=-bo. Preferences for different time values would be indicated by values of bjm between 0
and 1. .

» weights: we consider each of the constraints separately (see Fig. B-1ab).
(1) An activity should not be scheduled more than once: Wim in=-tg, m#n.
(2) Two activities should not be scheduled simultaneously: Wim jm=-®o, i#j.
(3) No two activities on same *diagonal™: Wim jn=-0o, i#j, m#n, and Im-ni=tli-jl.

Note that, as stated, these constraints specify uniform inhibition only: if there were varying degrees of
inhibition associated with the constraints, then the values of Wim,jn could be adjusted to incorporate them.

« guards: Illustrated in Fig. B-3, the guards can have bias values bC#=0 (i.e. they are stable and “on” with no
additional stimulus.) Then the neuron-to-guard weights WC;r, ; need only be <0 to ensure that the guard is
“off” when any neuron in the row it guards is “on” (see §5.3). The guard-to-neuron weight wG;; ,im has the
value go. The condition wg « go ensures that the input to neuron im from a guard which is “on” will raise
the input level x;m, to be >0 (see Eqn. 5-1).

Appendix C:  Stochastic algorithms

The fact that most interesting combinatorial optimization problems are NP-hard — a property related to an algorithm
executing on a serial, deterministic Turing machine — has motivated recent research in parallel and stochastic algo-
rithms. While the use of random numbers is very natural in computer simulations of random processes, the idea of
embedding elements of stochasticity into an algorithm for solving deterministic combinatorial problems is less ob-
vious, but is slowly penetrating the computer science community and has recently become even quite popular (see
e.g. Andreatta et al. 1986). Sometimes a simple randomization of the input is sufficient to achieve a considerable
speed-up compared to the truly deterministic algorithm (Maffioli 1987a).

The perhaps most famous examples of stochastic algorithms are two related methods for testing the primality of in-
tegers proposed independently by Rabin (1976, 1980) and by Solovay & Strassen (1977): they output “prime” when-
ever the input number is prime, but output either “prime” or "composite” with some stateable (bounded) probability,
when the input is composite. In other words: the output ‘composite” is always correct, the output “prime” is mostly.

The statistical behavior of the primality testers is characterized by the four transition probabilities or likelihoods
(only two of which are independent)

Pr(primegylprime;,) = 1 Pr(compositeqyiprime;p) = 0
Pr(prime o, kcomposite;y) = € Pr(compositeyylcompositej;) =1 - €

By repeating the algorithm a number of times one can efficiently test even large numbers for primality to any desired
certainty, even when € is not small.

The primality testers are typical examples of stochastic algorithms of the Monte Carlo-type which always terminate
in polynomial time, but sometimes lie, as opposed to Las Vegas-type algorithms which always tell the truth, but
~ sometimes fail to stop (see Johnson 1984). Thus Las Vegas algorithms appeal to those who prcfer failure to termi-
nate to an unreliable answer.

A general Monte Carlo algorithm for a decision problem can be viewed as a probabilistic classifier (Fig. C-1) sorting
problem instances from two classes A;;, and Bjy, into one of two classes Agyt and Boy with likelihoods

Pr(AoutlAin) = 1 Pr(BoutlAin) =0
Pr(Aow/Bin) = ¢ Pr(BoutBin) =1-¢
which depend on the problem’s and algorithm’s characteristics.
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In practical applications, one is not so much interested in the likelihoods, but in the posterior probabilities, which
allow to u;fer_the probable input, given the somewhat uncertain output. The posterior probabilities can be computed
from the likelihoods and the probability distribution of the input instances via Bayes theorem of statistics

Pr(AinlAow)  =Pr(AcutlAin) Pr(Ain) / Pr(Aour) = Pr(Ain) / [Pr(Ain) + € Pr(Bip)]
Pr(BinAout) =Pr(AouBin) Pr(Bin) / Pr(Aou) =¢€ Pr(Bin) / [Pr(Ain) + € Pr(Bip)]
Pr(AinBou) =Pr(BoutlAin) Pr(Ain) / Pr(Bow) =0
Pr(BinBout) =Pr(Bout/Bin) Pr(Bin) /Pr(Bowt) =1

Here we have used the expressions
Pr(Aou) =Pr(AculAin) Pr(Ain) + P(AcudBin) Pr(Bin) = Pr(Ain) + € Pr(Bin)
Pr(Bou) = Pr(BoutlAin) Pr(Ain) + Pr(BoutBin) Pr(Bin) = (1 - &) Pr(Bin)

for the output probabilities appearing in the denominators. It is important to clearly distinguish between likelihoods
and posterior probabilities, since the latter depend on the input distribution.

Recently the potential of embedding elements of stochasticity into algorithms has started to be explored more widely
(Maffioli 1979, p. 77; Gelfand & Mitter 1989). The idea behind stochastic (or probabilistic or randomized heuris-
tics) algorithms in combinatorial optimization often amounts to using random numbers as “noise” to escape from
disappointing local optima and thereby opening the possibility of exploring more globally the feasible regions (cf.
Maffioli 1987a, b). It is usually required that the problem admits the definition of a neighborhood structure and that
an efficient algorithm exists for searching neighborhoods.

Appendix D: A historical remark

Our interest in artificial neural networks and their use for the HST scheduling problem was motivated by Hopfield's
representation of the travelling salesman problem (Hopfield & Tank 1985). At the end of 1987 one of us (HMA)
started with an implementation of the graded Hopfield model (Hopfield 1984), at that stage using the object system
and the user interface of the KEE™ expert system shell on a Texas Instruments Explorer™ Lisp machine. As a test
problem we used the well known N-queens problem, since it was easily scalable and mathematically proven to
possess solutions for any N 2 4. Initial trials looked promising; the network functioned as a content-addressable,
autoassociative memory (CAM) — provided the symmetry of the empty board was broken by a suitable “partial
solution” stimulus.

However, because of serious performance problems, one of us (MDJ) soon instead tried the binary neuron model
(Hopfield 1982) in conjunction with a heuristically controlled stochastic neuron selection rule and also invented the
guard neurons. (We recently learnt from an article by Eliashberg (1988) that the idea of such auxiliary neurons can
historically be traced back to the year 1904.) After a period of joint optimization, where e.g. lazy evaluation of the
weights was introduced allowing the execution of much bigger problems, the fundamental GDS-network algorithm
stabilized in 1988 — an early account is given in Adorf & Johnston (1988) — and the core code has essentially re-
mained unchanged since then.

We were impressed by the performance of the GDS-network on the N-queens problem, for which the first N=1024
solution was found early in 1988, a considerable increase over the previously published maximum of N=96 (Stone &
Stone 1987). Since then the basic algorithm has formed the most efficient search algorithm of HST’s long-range
scheduler SPIKE, only recently being superseded by an even more efficient algorithm of Minton ez al. (1990), which
uses the same representational concepts but a different variable/neuron selection rule.

In view of these successes, we were surprised to learn that the integer programming formulation of scheduling prob-
lems has been essentially dismissed (see, e.g., French 1986, p. 135) as being computationally infeasible.
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Acronym ‘ Eannsion

ANN artificial neural network

BM Boltzmann machine

CAM content-addressable associative memory
COP combinatorial optimization problem
CSA classical simulated annealing

CSp constraint satisfaction problem

EARN European Academic Research Network
ESO European Southern Observatory

FMS flexible manufacturing system

FSA fast simulated annealing

GDS guarded discrete stochastic

HEAO High-Energy Astronomy Observatory
HST Hubble Space Telescope

KEE™ Knowledge Engineering Environment™
NN neural network

MFA mean field annealing

SA simulated annealing

SPAN Space Physics Analysis Network

SPSS Science Planning and Scheduling System
ST-ECF Space Telescope — European Coordinating Facility
STScl Space Telescope Science Institute
TDRS Tracking and Data Relay Satellite
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Fig. 2-1: The range of timescales of important constraints in the Hubble Space Telescope scheduling domain:
the gray bars show the approximate timescales over which important classes of constraints can affect scheduling
choices. The variation is over more than six orders of magnitude.
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Fig. 5-1a: A complete “lateral” inhibition of a set of neurons implementing a (generalized “at most K

neurons”) upper bound inequality constraint. Large circles with their incoming and outgoing lines represent

artificial neurons with their “dendrites” and “axons”. Small unfilled and filled circles represent excitatory and
inhibitory “synapses”. (Note that the latter are introduced only as a visual aid; they are not meant to invert the

incoming weight, contrary to natural synapses). Only the inhibitory connections outgoing from neuron 2 are

shown; analogous connections would have to be made for each other neuron.
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Fig. 5-1b: An asymmetrically coupled inhibitory guard as an alternative means for implementing a (generalized
“at most K neurons”) upper bound inequality constraint.
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Fig. 5-2: An asymmetrically coupled excitatory guard as a means for implementing a (generahzed ‘at least K

neurons”) lower bound inequality constraint.
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Resource guard
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Main "time-table” 1-0f-M selection
network guard network

Fig. 5-3: Architecture of connected neural networks for scheduling: the main network consists of an array of N
X M neurons (= 0-1 variables = active graph vertices) representing the major part of the combinatorial opti-
mization problem. A network of fast guard neurons, asymmetrically-coupled to the main network, supervises
the fulfillment of strict lower-bound constraints. Sheets of resource guard neurons, also asymmetrically-coupled
to the main network, guarantee that the resource capacity constraints are fulfilled.
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Fig. 6-1: Tunneling through the region of infeasible configurations as a means for efficiently finding good solu-
tions: here each circle indicates a network configuration, arranged in form of a search tree. The GDS-network is
allowed to explore promising configurations even when they are infeasible.
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Fig. 7-1: A sample screen showing SPIKE scheduling windows for a small number of activities. The two larger
windows display suitability functions for several activities (the one at the bottom is simply a view at higher time
resolution). The smaller superimposed window shows a graphical display of the neural network for the same
activities: darker squares represent neurons in their “on” state. The displaced row on the right displays “guar .
neurons which attempt to ensure that each activity is scheduled at some time.
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Fig. 7-2: Performance of the neural network as a function of problem size. The open squares show the wall-
clock time in minutes as a function of problem size (number of scheduling units) when run on a TI Explorer II
workstation (XII): 3000 scheduling units represent about six months of HST scheduling, which can be
accomplished in about an hour. The dark line shows the approximately quadratic scaling behavior with problem
size. The diamonds represent runs made on a TI MicroExplorer (1X) showing scheduling over six months (26
segments) and one year (52 segments) at one-week resolution.
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Fig. A-1: Illustration of suitability functions for the case of a binary interval preference constraint: (a) Bjo(t;t;)
represents the suitability of scheduling A; at t given that Aj is scheduled at tj. The duration of Aj is dj and Aj is
constrained to start no sooner than x and no later than x+y after the end of Aj; (b) hypothetical suitability of Aj
at some point in the scheduling process; (c) the resulting suitability of A;. The intervals where each displayed
function is non-zero are indicated by bars under the time axis in (b) and (c).
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Fig. B-1a: A fragment of the constraint graph G = (V, A) of the toy scheduling problem for N=4. Suppose that
activity A1 is already scheduled at time tj. The inhibitory edges shown implement the constraints that 1. activity
A] should not be scheduled twice by complete lateral row inhibition, that 2. no other activity should be
Scheduled at time t] by complete lateral column inhibition and that 3. no other activity should occur on one of
the two timetable diagonals coincident with place (1,1) by complete lateral diagonal inhibition.
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Fig. B-1b: Another fragment of the constraint graph G = (V, A) of the toy scheduling problem for N=4, imple-
menting the outbound constraints for activity A assumed to be scheduled at time 3.
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Fig. B-2a: A globally optimal (K = N) solution for the N=4 toy scheduling problem.

® ¢ O ©



-41-

® 6 0 O
O © o @

@ 6 O ©
O ¢ 0 ©

Fig. B-2b: A feasible configuration of our toy scheduling problem for N=4, corresponding to an attractive stable
fixed-point of the network dynamics, which cannot be extended to a globally optimal (K = N) solution by
placing activity A3 somewhere.
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Fig. B-3: An additional network of fast “hidden” guard neurons asymmetrically coupled to the main network al-
lows the implementation of the global constraint that only globally optimum (K = N) configurations of the
original problem are feasible.
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Fig. C-1: Solving instances of a binary decision problem with the help of an unreliable probabilistic classifier:
being fed with a problem instance the classifier decides upon either of two output categories, where sometimes
this decision is erroneous. Nevertheless, by repeating the classification process sufficiently often the uncertainty
about the true category of the problem instance can (in a probabilistic sense) be made arbitrarily small. In a
sense the GDS-network when acting on a CSP can be likened to a probabilistic classifier.
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