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What we learn by measuring 'Y'Y -+ 7f7f at DA~NE 

M.R. Pennington 

Centre for Particle Theory, Universi ty of Durham, 

Durham DRI 3LE, U.K. 

Dispersion relations provide a framework for the model-independent determination 

of key paralneters of hadron dynamics from measurelnents of II ---+ 1C'1C' scattering. This 

framework is outlined. Particular attention is paid to the range of applicability of approx

imations made in practical calculations and the consequent uncertainty in predictions or 

quantities extracted. Precise measuren1ents at DA<I>NE of the reactions II ---+ 7r+7r- and 

71"071"0 at low energies over as cOlnplete an angular coverage as possible will impose con

straints on 7r7r phases, test Chiral Perturbation Theory and provide a firmer basis for the 

determination of two photon couplings of the I = 0 scala.r resonances at higher 7r7l" masses 

and so help to solve the enigma of their structure. 

1. Introduction 

At low energy the cross-section, integrated a.nd differential, for the reaction II ---+ 71"71" , 

Fig. 1, observed in e+ e- ---+ e+ e-7r7l" [1], can be cOlnputed exactly with minimal assump

tions. This Inakes this reaction ahnost unique alnong processes in which important strong 

interaction effects occur. 
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Figure 1: The process 1/ ---+ 7r7l" in the s-channel. 
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isospin components. 

The photons scatter with either their helicities parallel or anti-parallel, so the ob

servables are specified by two helicity alnplitudes [1] M+~ and M+~, where c denotes 

charged pion production and n neutral. With unpolarised beams one only measures the 

sum of the squares of the moduli of these amplitudes, so at a II c.m. energy of VS the 

differential cross-sections are: 

(1)dO 

where f3 = /1 - 4m;/s with m 1r appropriately the charged or neutral pion lnass. The 

helicity amplitudes can be partial wave projected to give the components, :F~:~(s) , with 

7r7r spin J and helicity A (=0 or 2) with even J ~ A, defined by : 

e2~	 L :F~on(s) l<lO(B, ¢) 
J?O 

(2) 

e 2 J167r� L :F~~l(S) Y"J2(B, ¢) 
J?2 

where the factor of e2~ has been ta.ken out for la.ter convenience. With this nonnal

ization the integrated cross-sections are 

(3) 

These amplitudes and their partial waves are combinations of amplitudes with definite 

7r7r isospin I, :F1 , in tenns of which the aluplitudes for the physical processes II --t 

7r+7r- and II --t 7r0 7r0 are 2 : 

:F7l = - !I.ro + ff]="2 . (4)V3 V3 
Note once more that the one-pion exchange Born tern1 contributes to both isospin alnpli

tudes. 

I 

2the sign of the amplitudes is a matter of convention; some others use the opposite sign for the neutral 
one. 
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Figure 4: (a) 'T -t 7r+7r- cross-section for I cos () I~ 0.6 from Mark II [7] , CELLO [8] 
and PLUTO [9] - the last of these is only shown at low 1T1T ll1ass where the experimental 
results on da / d I cos () I at cos () = 0 can be scaled to give a for I cos () I~ 0.6 assuming 

0 0a fiat distribution; (b) " -t 1r 7r cross-section for I cos () I~ 0.8 froln Crystal Ball [10] 
(labelled Marsiske) and the higher statistics, higher mass data .(labelled Karch) tabulated 

. in the data review by Morgan et al. [1]. 
Both are as functions of 1r7r invariant mass. 
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2. The Dispersive Approach 

Let us discuss the properties of the partial wave alnplitudes, ..1'"5,,X(s) , and what we need 

to know to calculate them [13, 1~, 3, 4]. Firstly, these amplitudes are analytic functions of 

s. They have a left hand cut starting at s = 0 from the pion exchange Born term and then 

other cuts running to the left from s = - (A1 2 
- 17'1.;')2/1112 generated by p, wand other 

exchanges of mass M. Of course, only the nearby part of the left hand cut froln s = 0 
2 m 2to s = -mp•w is really known from one pion exchange [3]. For s ~ - ,fonn-factor 

p~ 

dalnping in the I V 1r vertex (where V = p or w) as well as other exchanges affect the left 

hand cut discontinuity. 

The partial wave amplitudes also have a right hand cut generated by final state inter

actions. At low energy, the only possible strong interaction is II -+ 1r1r • Then the final 

sta.te pions will scatter strongly back to 7r1r . Indeed, it is in this way that the cross-section 
0 0 0 0for II -+ 1r 1r can readily becolne non-zero: II -+ 1r+1r- -+ 1r 1r , where the first process 

in the chain can occur by the Born term. Fortunately, such effects are exactly calculable~ 

thanks to two body unitarity. Above inelastic threshold, which effectively means above 

!{!{ threshold near 1 GeV, II can also go to 1(+1(- , which in turn can scatter back 

to 1r1r. Though unitarity still constrains these contributions, one needs infonnation on 

II -+ !{!( and 1r1r -+ !(!( scattering, as well as 1r1r -+1r7r , to know how. This means it is 

1110re difficult to implement the constraints of unitarity when many channels enter. How

ever below roughly 1 GeV, elastic unitarity enforces V\latson's theoreln [15] that makes the 

phase of the partial waves for II -+ 1r1r for each I and J, J='J,,X (s) , equal to the phase of the 

corresponding 1r1r -+ 1r7r amplitude, Tj (s). This is exceedingly useful, since knowledge of 

the phase of an alnplitude largely detennines the behaviour of its 1110dulus - amplitudes 

being analytic functions. A simple exalnple of this is the phase rising rapidly from 00 to 

1800 The 1110dulus then has to peak at a position and width wholly correlated with the• 

phase variation. This relationship is exenlplified by the well-known Breit-Wigner fannula. 

The general relation between the phase and the lnoclulus of the alnplitude is eUlhodied 

in the Olnnes representation [16]. Thus knowing the phase of a partial wave amplitude): 

c/>5,,X, froln 1r1r threshold to infinity, we can define a function n5.,X (s) (the Olnnes function) 

(5) 

where in t.he region of elastic unitarity <//J.'x(s) = 85(s), the 1r1r phase shift, independent 

of the two photon helicity A. This function, n, ha.s the phase </J by construction. The 
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way convergent dispersion relations work, n at low energies fortunately does not require 

detailed knowledge of the phase <p above 1 GeV. We will return to this later. 

How this information can be used to compute TT ~ 1r1r scattering is explained in 

detail in Ref. 6. Here we sketch the methodology. We can write an appropriately sub

tracted dispersion relation for each partial wave an1plitude, specified by I, J and A. For 

the S-waves (J = 0, A = 0), these are twice subtracted [17] : two subtractions to suppress 

the dependence at low energies on what the distant left and right hand cut discontinuites 

are. That is, there should be only a weak dependence on both higher mass cross-channel 

exchanges and the phases of the T' ~ 7r7r amplitudes above 1 GeV. The lack of knowl

edge of these terms is parametrized by two subtraction constants that are fixed by two 

crucial low energy constraints. Firstly, Low's theoreln that states each partial wave am

plitude equals its corresponding Born tenn at s = 0 - that follows from QED gauge 

invariance. Secondly, from chiral dyuaInics we have a prediction in the low energy region 

for the amplitude minus its Born term. Thus, for instance the neutral channel S-wave 

has a zero at s = 0(111,;') - in one loop Chiral Perturbation Theory (XPT ) [18, 19] 

this is at Sn = m;'. In general, all we know is that these near threshold corrections are 

O(m;/I;). These low energy limits fix the two subtraction constants, dI , in the I = 0 

and 2 T' ~ 1r1r S-wave amplitudes. Thus 

00'LI ( ) _ '1..11 () d ill ( ) _ s2n~0( s) 1 d I 1-{~0( s') hn(n~o(S')-l) 
~oo S - 11.00 S + IS HOO· S S 12 (' ) (6) 

7r 4711;. S S - S 

The functions ?-iI (s) have the cOlnplete left hand cut and no right hand cut. They are 

given by 

(7) 

where B1r is the one pion exchange Born tenn and £P, £W denote the contributions to the 

left-hand cut generated by exchanges with p and w quantum numbers, respectively. Then 

the combinations in the charged and neutral channels are: 

(8)� 
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According to Low's theoreln : 11.e ~ B1r and 11.71 ~ 0 as 8 ~ 0, so in turn this 

means: .cP(s) ~ 0 .cW (8) ~ 0 as 8 ~ 0 . Reca.lling (J = Jl - 41T~;/S (Eq. (1)), 

the S-wave Born amplitude is, for example, [1, 3] 

1r 1 - (32 ( 1 + (3 )
Boo(s) = 2(3 In 1-(3 (9) 

with a cut for 8 < o. 
The fixing of subtraction constants by appeal to chiral dynalnics only affects the S

wave amplitudes. The higher partial waves satisfy essentially once subtracted dispersion 

relations on dividing out their known threshold behaviour, so that only Low's QED the

orem is needed for these waves. Thus [3] 

00rrI ( ) _ f']JI ( ) _ s(s - 4n1~)J/2 05,\(s) 1 d' 1i5,\(s') Im(n5,\(s')-I) 
or J,\ S - II-J,\ S . S (10) 

7r 4m;' S'(8 - 47n;)J/2 (8' - 8) 

where the 11.5,,\(S) are the appropriate partial waves of the left hand cut components of 

Eq. (8). Using Eqs. (3, 5-10), the cross-sec~ions can then be deduced froln these partial 

wave amplitudes. 

It is useful for our later discussion, though not necessary for our low energy calcu

lations, to note that these partia.l wave alnplitudes , for all J, can be expressed quite 

generally [3] as : 

(11 ) 

where the function 11.5,,\(8) has the left hand cut, Eq. (8), and n5,,\(s) the right hand 

cut, Eq. (5), and pJ,\ (8) is a real polynomial. While 11.5,'\ (s) is the full left hand cut func

tion, it is often convenient to 1110del this function by some h5,,\ (for instance, the Born 

ternl) and rewrite Eq. (11) as 

(12) 

PB and Pc (with I, J,"\ labels suppressed) lnay now be lnore c0111plicated functions along 

the left hand cut, but they will continue to be slnooth along the right hand cut away from 

their singularities. In physical terms, the first term 1110dels the si111ple well understood 

cross-channel exchanges and then Pc(8) incorporates the rest as dire~t channel contribu

tions. Near 7r7r threshold, h5,,\ is just the pion exchange Born tenn and there are essentially 

no direct channel effects other than those offinal state interactions auto111atically included 

in Eqs. (11,12). There 

(13) 
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to a good approximation. It is this fact that allows the low energy cross-section to be 

accurately predicted as we discuss in the next section. 

One can go to slightly higher 1(1( masses, 500 MeV or so, by taking 

(14) 

in Eq. (12) with Pc still zero. However, above that energy, direct channel effects ( or 

equivalently heavier mass cross-channel exchanges ) become increasingly important and 

definite predictions possible near threshold must give way to fitting data [3, 4, 11]. This 

is necessary to determine the form of Pc (s) and hence the direct channel couplings. 
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Figure 5: Integrated cross-section for " ~ 1(01{"0 as a. function of the 1(1( invariant mass, 
E = fi. The data are froln Crystal Ball [3] scaled to the full angular range by a 
factor of 1.25. The line Inarked 1fXPT is the prediction of one loop Chiral Perturbation 
Theory [18, 19]. The curve marked "lV1r" is the dispersive calculation using Weinberg 
phases [20], while that labelled "E)( P7r" are the predictions froln experimental7r1r phases 
as described in [6] - both with just 7r-exchange for the left hand cut. 
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3.� Dispersive Predictions 

At low energies we can evaluate the dispersion relations for the S and higher waves, 

Eqs. (6,10). We input 

(i)� the phases of the 7r7r partial wave amplitude from A11r1r = 21T1,1r to 800 or 900 MeV 

(above that the pha.ses are irrelevant for the " ~ 7r7r cross-section at low energies), 

(ii)� the discontinuity of the left hand cut - 7r-exchange plus whatever, 

(iii)� the slope of the II ~ 1r1r S-wave amplitudes Ininus their Born components in the 

sub-threshold region needed to fix the subtraction constants, d/, in Eq. (6). 

For orientation, we first perfonn a Inodel calculation. We input 

(i)� the phases of Weinberg's Inodel of 7r7r scattering [20], 

(ii)� assume only 1r-exchange in the crossed channels, and 

(iii)� we fix the slopes at s = rn; fro111 one loop XPT [18, 19] as there the neutral S-wave 
. 1· 2vanls les, I.e. sn = m 1r • 

We turn the ha~dle of the machinery defined in Eqs. (3-10,13,14) and out COlnes the cross

section for " ~ 7l" 
0 

7l"0 marked "HI 7l"" shown in Fig. 5. Near threshold this is identical with 

the one loop calculation of this process in XPT by Bijnens and Cornet and by Donoghue, 

Holstein and Lin [18, 19]. Both the lines "HI7r" and "IRXPT" exhibit the much discussed 

disagreement with the near threshold data of Crystal Ball [10]. Above 500 MeV, the 

dispersive result flattens out, as it has to from unitarity, unlike one loop XPT . This 

calculation, which is here wholly numerical, has also been performed se111i-analytically by 

Donoghue and Holstein [21], who si111plify this exercise by setting I O&(s) I cos 86 = 1 

so that Im,[O&(s)-l] can be replaced by -/3ReTc/(s) in order to compute the integral in 

Eq. (6). 

After this consistency check, we next input experimental7l"7r phases, based on a.nalyses 

of the CERN-Munich results by Ochs, by Estabrooks and Martin and by Hoogland et 

al. [22] extrapolated to threshold using the Roy equations ( which are the partial wave 

projection of twice subtracted dispersion relations embodying full three channel crossing 

symlnetry ) for different values of the I = 0 S-wave 7r7r scattering length ago The complete 

details of these calculations are given in [6]. Figs. 5-7 show the predictions for the inte

grated II ~ 1I" 0 7l"0 cross-section. Firstly, in Fig. 5 we have the curve "EX P1I"" with the 
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Figure 6: Integrated cross-section for II ---+ 1T
0 

1T
O as a function of the 1T1T invariant mass, 

E = 0. The data are froin Crystal Ball [3] scaled to the full angular range by a 
factor of 1.25. The band depicts our dispersive prediction using the central phases of Fig. 
17 of Ref. 6 with ag = 0.2. The shaded area is a reflection of both the experimental 
uncertainty above 500 MeV in the S-wave 7r7r phases and the different asyInptotics for 
the vector exchanges [6]. The band delineated by the dashed lines and the solid central 
curve marked 2f.XPT is the prediction of 2 loop Chiral Perturbation Theory [24]. 

input of 1r exchange, experilnental1T1T phases with ag = 0.2 and Sn = 1'n;. This is already 

in better agreelnent with the near threshold data. In Fig: 6 we add, to the inputs of Fig. 5, 

p and w exchanges. The values of the couplings of the various t and u-channel exchanges 

on-mass shell have been given by Ko [23] and are discussed in [6]. The addition of p,W 

exchange brings an even better Ineasure of agreeinent with experiment over a much larger 

energy range up to 500-600 MeV (as Inay have been anticipated from Fig. 3). In Fig. 6 

we also show the band (2fXPT) given by the recently completed two loop calculation in 

XPT by Bellucci, Gasser and Sainio [24]. This is in good agreement with the dispersive re

sults- the small discrepancy near threshold is due to a small difference in the 1r1r phases 

input into our calculation and those of XPT near threshold. The two loop calculation 
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0 0Figure 7: Integrated cross-section for II ~ 1r 1r as a function of the 1r1r invariant mass, 
E = .;s. The data are fron1 Crystal BaIl [10] scaled to the full angular range by a 
factor of 1.25. The three bands show the effect of varying the sub-threshold zero for 

0II ~ 1r 7r
0 fron1 8 n = !m; (the lower, horizontally shaded region) to m; (the unshaded 

region bounded by the dotted lines) to 2m; (the higher, vertically shaded region). Again 
the bands mark the uncertainties in the calculations [6]. 

depends on a significant number of new constants, beyond the lowest order parameters f1r 

and m 1r • These new constants have their analogue in the dispersive approach, Eq. (12), 

as we COlnlnent on later. 

To ha.ve an idea of how much the dispersive predictions for II ~ 1r1r reflect our 

specific inputs, we illustrate the dependence on the position, 8 n of the zero in the 11 ~ 

0 01r 1r S-wave and on the low energy 1r1r phases. Thus Fig. 7 shows the results with 1r, p, W 

exchanges, ag = 0.2 and 8 n = !m;, m;, 2m; in turn, while Fig. 8 has the same left hand 

cut, but with 8 n = m; and ag = 0.1,0.2,0.3. Of course, XPT has a definite view of what 

these pa.ralneters ag and 8 n are. Figs. 6-8 illustrate how da.ta on If ~ 7r
0 

1r0 can calibrate 

these predictions. 

Fig. 9 shows the corresponding prediction from the present dispersive approach for 

II -t 1r+7r- , with the same inputs as for Fig. 8. Notice that in the charged channel, 
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Figure 8: Integrated cross-section for 11 ~ 7r
0 

7r0 as a function of the 7r7r invariant mass, 
E = VS. The data are from Crystal Ball [10] scaled to the full angular range by a factor 
of 1.25. The lines, labelled by the value of the 1 = 0 7r7r S'-wave scattering length in steps 
of 0.05 from 0.1 to 0.3, illustrate the effect of different extrapolations of the 7r7r phases 
above 520 MeV down to threshold on the dispersive prediction [6]. The bands above 500 
MeV on the ag = 0.1 and 0.3 curves mark the range generated by different asymptotics 
for the vector exchanges [6]. 

the effect of final state interactions is to enhance the Born cross-section very close to 

threshold and then suppress it above 360 MeV. One loop XPT for the charged channel 

only displays the near threshold enhancen1ent. The two loop calculation presently under 

way may be expected to show the sa.n1e suppression above 400 MeV, if it is to agree with 

this dispersive result and, of course, experilnent. This will be an interesting test. 

vVe see froln Figs. 8,9 that our dispersive results mean that to determine the 7r7r scat

tering length ag to an accuracy of ±0.1 requires the integrated 11 ~ 7r7r cross-section 

between 300 and 400 MeV to be 111easured to an accuracy of ±20 nb in the 7r+7r- channel 

and ±1.5 nb in the 7r
0 

7r
0 mode. This should be quite possible at DA<PNE, but to achieve 

considerably greater accuracy seems less likely in the 11 channel. Rather these processes 

provide a consistency check on otherwise measured 7r7r phases and give a way of pinning 
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Figure 9: Dispersive predictions for the integrated cross-section for the II ---+ 7r+7r- cross
section as a function of the 7r7r invariant 111ass, E = 0. The lines, labelled by the value 
of the I = 0 7r7r S-wave scattering length in steps of 0.1 froin 0.1 to 0.3, illustrate the 
effect of different extrapolations of 7i 7r }ihases above 520 MeV down to threshold [6] (cf. 
Fig. 8). The curve marked B is the Born cross-section [1, 3]. 

down the slopes of the low energy aInplitudes that fix the zero Sn, for example. Of course, 

XPT makes a definite stateInent about how far {roIn 7n; the zero position, Sn, can be, 

but tests of this theory require us to analyse data without inputting this information. 

As seen from the predictions of Fig. 7, to do this very accurately looks a tall order. We 

will comment on the implications of this for the Inodel-independent extraction of the pion 

polarizabilities in Sect. 4. 

It is important to realise that the 7r+7r- and 7r0 7r0 cross-sections are strongly con'elated. 

A 10% change in the charged data near threshold would mean a 100% change in the neutral 

cross-section. Thus early hints froIn the very sInall statistics experiment of D111/2 [25] 

that the low energy 11 ---+ 1r+1r- cross-section may be a factor of two larger than the 

Born cross-section would have required a 11 ---+ tr°7r° cross-section of 100 nb [4] rather 

than the rv 10 nb seen by Crystal Ball (Fig. 4) near threshold. It is this close correlation 
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0
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mass, E = fi, from Crystal Ball [10]. The histogralns are from the dispersive analysis 
up to 1.4 GeV of Ref. 11. They show two fits with different 10(980) ~ II couplings. 

and agreement between the Mark II and Crystal Ball data of Figs. 4,10,11 that is so 

reassuring. DA<I> NE should be able to probe this further and allow a bettel' low energy 

anchor for partial wave analyses at higher energies, to which we now turn. 

The region of applicability of the dispersive predictions we have presented here is 

below 500 MeV or so. Above that details of cross-channel exchanges and inelastic phases 

become increasingly relevant. The representation of the II ~ 7r7r alnplitude in terms of 

left hand cut effects becomes less and less econolnical as the various exchanges 1r, 1r1r, 

1r7r1r, p, W, aI, bI, PP, pw, etc., crowd in towards the II ~ 7r7r physical region, Fig. 3. 

Instead a direct channel representation of the non-pion exchange effects becomes the most 

econolnical, as described above, Eq. (12) with Pc f:. O. Of course, the two descriptions 

are equivalent, but a single direct channel resonance is generated by an infinite number of 

cross-channel exchanges and the description of the fonner is clearly far more economical. 

Nevertheless, from 600 MeV to 2 GeV, the pion exchange Born term continues to playa 

significant role (Fig. 3) [3, 4]. 
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Figure 12: Typical integrated cross-sections for individual I = 0 partial wave components 
for II ~ 7f7f as a function of II c.m. energy from the Amplitude Analysis of the fits of 
Figs. 10,11 [11]. Notice that the S-wave is highly structured. The peak near threshold 
largely reflects the Born term. The dip at 600 MeV is caused by the effect of final state 
interactions on this Born term. These final state interactions are dOlninated by the broad 
fo/E(1000), which is seen up to 1300 MeV, on top of which is the narrow 10/S*(980) 
signal. D denotes the total spin two COll1pOnent, i.e. the sum of helicity 0 and 2, while 
Do is just the helicity 0 part. 

This is most readily illustrated for the D-wave, for which the helicity 2 component 

becomes rapidly important away from threshold. This partial wave exhibits the 12(1270) 

resonance, Figs. 4,10-12, which is known to be a highly elastic 7f7f resonance with a weak 

coupling to the ](J( channel [12], just as expected from ideal mixing. It is natural to 

aSSUll1e that this partial wave in the II ~ 7f7f channel continues to have the same pha.se 

as in 7f1r ~ 1r7f above the inelastic threshold, indeed through the 12(1270) region up to 

1.5 GeV, say. Then, the final state corrections to the Born amplitude are calculable, using 

8 7rEqs. (10,12) with h = • As noted by Mennessier [14] and by Morgan and the present 

author [3] in this context and by Basdevant and Berger [26] in other related situations, 

this amplitude actually has a zero close to the resonance position, here near 1270 MeV. 
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Thus the modifications to the real pion exchange Born term necessary to make it agree 

with unitarity and have the phase of 90° at the 12 mass, also place a zero there. In 

tenns of Feynlnan diagrams, this means the graphs (a, b) of Fig. 13 do not contribute 

to the 12-peak (though importantly they do affect its observed shape). Rather a direct 

II coupling of the 12(1270) is needed, Fig. 13c, or equivalently a sum of a large number 

of cross-channel exchanges. Thus, in accord with common sense, the II -+ 12(1270) 

coupling cannot be predicted, unless one knows all the cross-channel exchange couplings. 

Rather one lnust detennine such resona.nce couplings froln the lneasured cross-sections. 

y� 
y� 

y 1t y Tt 

( Q ) ( b ) ( c ) 

Figure 13: (a,b) Feynlnan diagrams displaying the contribution of final state scattering 
for the Born alnplitude through a resona.nce, R, encoded in the PB term of Eq. (11) ; 
(c) the direct coupling of the saIne resonance to II and 1r7f emobodied in the Pc term of 
Eq. (11). 

An exactly analogous zero (seen in Fig. 12) occurs in the I = 0 S-wave Born am

plitude, modified by final state interactions, at 600 MeV [3], as a result of the broad 

7f7f enhancement, the 10/((1000)/10(1300). Again simply adding Breit-Wigners to Born 

alnplitudes fails to respect Watson's theoreln and the above machinery is essential for any 

lneaningful extraction of resonance couplings. Thus to go beyond about 500 MeV in de

scribing If ~ 7f1r scattering, one must include direct f2( 1270), 10/E( 1000) and fo/5*(980) 

couplings 3 in a way consistent with analyticity, Watson's theorem and Low's low energy 

theorem. Such an analysis was performed by David Morgan and myself [11] to the earlier 

Crystal Ball statistics on II -+ 7f
0 7r0 [10l and Mark II results on If -+ 7f+7f- [7} and 

3These coupling parameters also arise in two and higher loop XPT . For example, in the two loop 
calculation [24] the "'{"'{ couplings of the scalar and tensor resonances are included as well as the "'{1r 

couplings of the vector and axial vector mesons and the usual Chiral Lagrangian parameters f.i . 
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a new analysis was begun together with Karch [27], incorporating the increased Crystal 

Ball statistics above 800 MeV and the newer CELLO data [8] on the charged channel. In 
0Figs. 10,11 are shown illustrative results (the corresponding plots for II ~ 7r 7r0 angular 

distributions are to be seen in Ref. 11). One sees that the dispersive description fits the 

integrated and differential cross-sections up to 1400 MeV remarkably well. This allows 

a partial wave separation, the I = 0 components being shown in Fig. 12. This leads to 

the following couplings [11] for the 10(1000), 10(980) and 12(1270) (quoted in the PDG 

tables [12]) : 

r(fo/8*(980)) ~ ,,) (0.63 ± 0.14) keV 

r(/o/E (1000)) ~ ,,) (5.4 ± 2.3 ) keY (15) 

f(/2(1270)) ~ II) (2.35 ± 0.65) keY 

4. Polarizabilities 

The polarizabilities - electric a, Inagnetic {3 - of a particle, like its charge radius, 

reflect its response to an electromagnetic stilnulus [28 1 21, 29]. They are related to how 

the Compton amplitudes approach the Born lilnit a.t threshold. Thus the combination 

(a - (3) is determined by the slope of the S-wave II ~ 7r7r a.mplitude at the cross-channel 

threshold: 
(a - (3) = 4Ea liln Foo(s) - Boo(s) , (16)

m7f' s-o S 

where for the charged pion case B is the one-pion-exchange Born amplitude, B1r, E = 1, 

and for neutral pions B = 0, E = -1 with our definition of Eq. (4). In terms of the 

dispersive representation of Egs. (6-9), these polarizabilities are silnply related to the 

subtraction constants [6] and, of course, the p, w exchange contributions at s = 0 : 

- do + - d2 - - £, 04a [A If A-- P'()]m 1r 3 3 3 

(17) 

Moreover, these combinations are sensitively related to the position of any sub-threshold 

zeros. In the neighbourhood of s = 0, the charged and neutral S-wave amplitudes can be 

20� 



paralnetrized as 

(18)� 

then 

(19) 

Note that this approxinlation is only valid for 0 ::; S « 4n~;, since the amplitudes have a 

cusp at 1r1r threshold, which is particularly marked in the 1r
0 

1r
0 amplitude, see Fig. 25 of 

Ref. 6 or Fig. 8 of Bellucci et al. [24] in 2 loop standard XPT or Fig. 6 of Knecht et al. [30] 

in 1 loop generalized XPT . Of course XPT has a definite expectation for the values of Sc 

and Sn. However, we have seen froIn Fig. 7 that present (or eve~l future) data cannot tell 

without a model paralnetrization whether the sub-threshold ·zero in the neutral channel 

is at Sn = m;/2, m; or 2m;. This variation leads to a factor of four difference in the 

neutral polarizability (a - (3)n froln -0.6 to -2.7 x 10-43 cm3
• These values are merely 

illustrative 4, in practice the range of uncertainty of a Inodel-independent extraction is 

still larger. Moreover, present data even allow Se to be zero, so (a - (3)e could be zero, 

also with a very large uncertainty. 

Rather than use the sub-threshold behaviour around S = m; as we have done in 

Sect. 3 to fix the S -wave subtraction constants, d], Ka.loshin and Serebryakov [31] have 

attelnpted a closely related dispersive ana.lysis in which the subtraction constants for the 

5'-wave are para.lnetrized directly in ·ternls of the polarizabilities (a - fJ)e,n' They find in 

unitsoflO-43 cln3
: (a-{3)c = (5.:3±l.O) (a-{3)n = (0.6±1.8). Asjust 

remarked a value of (a - (3)e = 0 is perfectly consistent with the charged channel data, 

so why have Kaloshin and Serebryakov [31] excluded this by Inany standard deviations? 

This is because though they only fit the Mark II II --t 1r+7r- data [7] below 400 MeV, they 

include in their fit data on II --t 7r
0

7r
0 [10] up to 850 ~1e V and yet assume they know the 

form of all the cross-channel exchanges 7r, p, W very far from their t and u-channel poles. 

The existence of the fo/E(lOOO) and fo/5*(980), the fonl1er markedly affects data at 800 

MeV, because of its large width (Fig. 12), require Inany lnore exchanges than p and w. 

Moreover, even in going froin the p and w poles at t = 7'n~, where the couplings are, of 

course, determined by the measured V --t 1r1 rates, to the C0111pton threshold at t = 711;, 

the couplings can change by a factor of 2 - a simple Veneziano-like model with towers 

of resonances, not just the p and w gives a. factor of 7r /2 5. To then assume at 850 MeV, 

where -7n~ ~ t, u ::; 0, the pure p a.nd w exchange a.lnplitudes have the same couplings 

4 note that the values quoted in Ref. 6 are for I Ct - {3 In and are in different units.� 
5thereby dramatically affecting their contributions to Eq. (6) of Ref. 31.� 
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as at t, U = +m~ is a grossly over-simplified model leading to far too small an estimate of 

the uncertainties on the supposedly determined polarizabilities. That the details of the 

cross-channel exchanges become increasingly important at higher 7f7f masses can be seen 

from Fig. 3 and from the band shown in Fig. 6. 

We now turn to the determination of (0 + 13) cOlnbinations of polarizabilities. While 

the (0 - 13)c,n are related to how the II -7 1r1r S-waves approach their Born term as s -7 0, 

Eq. (16), the (0: + 13)c,n are detennined by the way the helicity two D-waves approach their 

Born term at the same Compton threshold. These are even more difficult to determine 

from II -7 7f7f data. As we have stressed, it is only in the very low energy region 

that cross-channel exchange contributions are accurately calculable. Below 500 MeV, 

theD-wave alnplitude is overwhehningly (~ 99%) controlled by its Born component. 

It is the residual ~ 1% that has to be extrapolated to s = 0 to determine the (0 + 
13) cOlnbinations of polarizabilities, clearly an impossible task with present data that only 

cover a very limited part of the angular range. More accurate separation of higher waves 

with helicity two will become possible using the azimuthal infor111ation that the DA4.>NE 

II experiinent should provide [32, 33, 34]. However, this has not deterred Kaloshin, 

Persikov and Serebryakov-[35] froin attempting a first estimate of the (0+13) with amazing 

results. They have once again, even up to 1.4 GeV in 7f7f mass, assuined only elementary 

7f, P and w exchange determine the left hand cut effects. No obvious t, u-dependence is 

included in the pole nlunerators, even though t, u-channel unitarity delnand these. They 

then add an !2(1270) direct channel contribution assluning this to be wholly helicity two 

with no S-wave background under this. While present data are not incoinpatible with 

this, they are equally consistent (see Fig. 12) with 30% of the I = 0 cross-section from 

1-1.4 GeV being S-wave [11,8] and possibly 30% of the D-wave having helicity zero [11]. 

This provides a.t least a 40-50% uncertainty in the !rcontribution to the helicity two 

D-wave cross-section. Yet Ka.loshin et a.l. [35] quote values of (a + ;3)n with 5% errors: 

(0: + 13)n = (1.00 ± 0.05), far away at s = O. 

In the dispersive treatment discussed above, the description of the 12(1270) region in 

tenns of Eq. (12), n5",(s) einbodies the expected Breit-Wigner shape of the resonance, 

while Pees) provides a smooth 1110dulation of this over the peak in 111uch the saIne way as 

the p-line shape in e+e- -7 7f+1r- differs slnoothly froln that in 1r1r elastic scattering. The 

exact form of Pc (s) depends, of course, on the structure of the left hand cut discontinuity 

embodied in the model for 1-l5,>..(s) defining Pc in Eq. (12). Kaloshin et al. take their 

analogue of Pc (s) to be a constant, as far as its s-dependence is concerned. However, 

Pc(s) is really built from many t and u-channel exchanges. While these do generate a 
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sinooth fonn over the f2-region from 1 to 1.4 GeV, for ahnost any couplings, it is the exact 

values of these individually that detennines the extrapolation to s = 0 (cf. the analogue 

of Eq. (17)). Consequently, the analysis of Kaloshin, Persikov and Serebryakov [35] is 

misguided. Fitting in the f2-region can in no way detennine the polarizability (Q + 
f3) charged or neutral. This is obvious froin the structure of Fig. 3, where exchanges 

crowd in near the physical region and only their collective effect is Ineasured, whereas in 

extrapolating to s = 0, it is the individual exchange contributions that matter. 

All this Ineans that the only way to measure the pion polarizabilities is in the Compton 

scattering process near threshold and not in 11 ~ 7f7f. Though low' energy II ~ 

1r1r scattering is seemingly close to the Compton threshold (vs ~ 2,n1r to VS = 0) and so 

the extrapolation not very far, the dOininance of the pion pole (for final state interaction 

effects, for example) means that the energy scale for this continuation is m 1r • Thus 

the polarizabilities cannot be detennined accurately fron1 11 experiInents in a model

independent way and must be ll1easured in the COlnpton scattering region [29]. 

5. SUlnmary 

Measurelnents of 11 ~ 1r1r scattering at DA <I> NE will fulfill a nUlnber of aims: 

(a)� they will test the predictions of XPT , 

(b)� they will fix the sub-threshold zero in the 11 ~ 71°71
0 channel, 

(c)� they will provide an independent check of low energy 7f1r phases, and 

(d)� they will anchor partial wave analyses of data at higher 1r1r masses, and so allow a 

better determination of the couplings of the scalars fo/5*(980) and fo/ f(1000) so 

crucial for understanding their quark cOlnposition [11, 36]. 

For all these, measurements of the a.ngular distributions over as complete a coverage as 

possible is vital [33, 37]. We have much to learn. 

To conclude: the importance of measuring 11 ~ 7f7f scattering at DA<I>NE should not 

be underestilnated. Consequently, we eagerly await the precision measurements of the 

KLOE detector at DA<I>NE. 

It is a pleasure to thank Rinaldo Baldini, Stefano Bellucci, Andre Courau, Jiirg Gasser, 

David Morga.n and Jorge Portales for nUlnerous invaluable discussions. 
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